CN101432103A - 机器人手臂的控制装置及控制方法、机器人、及机器人手臂的控制程序 - Google Patents

机器人手臂的控制装置及控制方法、机器人、及机器人手臂的控制程序 Download PDF

Info

Publication number
CN101432103A
CN101432103A CNA2007800149419A CN200780014941A CN101432103A CN 101432103 A CN101432103 A CN 101432103A CN A2007800149419 A CNA2007800149419 A CN A2007800149419A CN 200780014941 A CN200780014941 A CN 200780014941A CN 101432103 A CN101432103 A CN 101432103A
Authority
CN
China
Prior art keywords
collision
robot arm
people
control
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800149419A
Other languages
English (en)
Other versions
CN101432103B (zh
Inventor
冈崎安直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101432103A publication Critical patent/CN101432103A/zh
Application granted granted Critical
Publication of CN101432103B publication Critical patent/CN101432103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/084Tactile sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39201Control of joint stiffness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39347Joint space impedance control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40203Detect position of operator, create non material barrier to protect operator

Abstract

本发明涉及机器人手臂(8)的控制装置(1),在人接近探测单元(3)探测到人的接近时,通过基于人运动检测单元(2)检测的人的运动,按机器人手臂(8)的每个关节部分别地设定机械阻抗,由对应于人与机器人手臂(8)的碰撞的碰撞对应动作控制单元(4)进行控制。

Description

机器人手臂的控制装置及控制方法、机器人、及机器人手臂的控制程序
技术领域
本发明涉及家庭用机器人等有可能与人物理接触的机器人手臂的控制装置及控制方法、机器人、及机器人手臂的控制程序。
背景技术
近年,宠物型机器人等家庭用机器人的开发十分活跃,将来期待着家务支援机器人等更实用的家庭用机器人的实用化。由于家庭用机器人需要进入家庭与人共同生活,因此与人的物理接触是不可缺少的,从安全性方面考虑,需要是柔软的。
对于如此的课题,作为以往技术,在专利文献1(JP特开平10—329071号公报)中公开了一种控制装置,其探测施加给机器人手臂的与人的接触力,在对手臂施加较大的力时,减小复原力,提高安全性,在对手臂施加微小的力时增大复原力,确保动作精度。
此外,在专利文献2中也公开了一种控制装置,如图11A所示,其具有:传感器机构515,其分别探测障碍物所处的环境和与机器人513接触的接触部及其接触力;位置姿势测量装置514,其分别测量移动机构511及机械手512的位置姿势;计算机517,其从所述接触力和位置姿势计算机器人513的接触力回避动作;驱动器516,其根据该计算机517的计算结果,驱动移动机构511和机械手512。在障碍物所处的环境和机器人513的接触时,通过移动机构511和机械手512两者的联合动作进行回避动作。
此外,在专利文献3中公开了一种阻抗控制装置,如图12所示,其对于用力觉传感器412检测到作用于具有手端操作装置411的机器人401的来自外部环境的力,实时推定外部环境的刚性系数,通过电机413a的控制驱动控制机器人401的手臂410。
专利文献1:JP特开平10—329071号公报
专利文献2:JP特开2005—59161号公报
专利文献3:JP特开2004—223663号公报
但是,在上述以往控制装置中,未考虑到在多关节式的机器人手臂上的应用,在是多关节式的机器人手臂时,不能成为保证安全性的控制装置。
此外,在上述以往控制装置中,也未考虑到进行接触的人的活动,不能成与人的活动相符的最佳的控制。
此外,在专利文献2中,如图11B及图11C所示,通过使机器人513上的与存在障碍物的环境的接触部532向接触力531的方向沿着接触回避路径526移动,进行回避动作527,减小来自环境的接触力531,最终避免接触。此外,如图11D及图11E所示,通过使机器人513上的与存在障碍物的环境的接触部532的接触面向通过接触力531发生的力矩533的方向倾斜,同时使前述接触部以描绘任意尺寸的圆圈526的方式移动,进行回避动作527,减小来自环境的接触力531,最终避免接触。但是,对于各个回避动作527的具体的动作控制没有任何公开。
此外,关于专利文献3,如图12所示,与算出的外部环境的刚性系数具有相关关系地,使机器人侧的阻抗特性变化,采用这些值算出手端操作装置411的位置,只着眼于手端操作装置411的位置,对于为了不对人施加接触损害而进行的手臂410的具体的动作控制完全没有公开。
发明内容
本发明的目的就在于解决上述以往的控制装置的问题,提供一种机器人手臂的控制装置及控制方法、机器人、及机器人手臂的控制程序,其即使多关节式的机器人手臂也能与人安全地接触,而且,能够进行对应人的活动的最佳的接触动作,能够不对人施加接触损害地与人共存,能够实现机器人手臂的安全的动作控制。
为达到上述目的,本发明如以下构成。
根据本发明的第1方式,提供一种多关节式机器人手臂的控制装置,其具有以下单元:
碰撞位置取得单元,其取得人或移动体与所述多关节式机器人手臂的碰撞位置;
碰撞对应动作控制单元,其基于所述碰撞位置取得单元取得的、所述人或移动体与所述多关节式机器人手臂的所述碰撞位置,控制进行使比所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近根部一侧的关节部的刚性比其它关节部的刚性低的碰撞对应动作。
根据本发明的第9方式,提供一种多关节式机器人手臂的控制方法,其中,
由运动检测单元检测靠近所述机器人手臂的人或移动体的运动;
基于由所述运动检测单元检测的所述人或移动体的运动检测结果,由接近探测单元探测所述人或移动体接近所述机器人手臂;
在通过所述接近探测单元探测到所述人或移动体接近时,基于由所述运动检测单元检测的所述人或移动体的所述运动,推定所述人或移动体与所述多关节式机器人手臂的所述碰撞位置,通过碰撞位置取得单元取得所述碰撞位置,并且,通过利用碰撞对应动作控制单元,控制使比通过所述碰撞位置取得单元取得的所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近根部一侧的关节部的刚性比其它关节部的刚性低,进行对应于所述人与所述机器人手臂的碰撞的碰撞对应动作。
根据本发明的第10方式,提供一种机器人,其特征在于:
具有,
所述多关节式机器人手臂、
控制所述机器人手臂的第1方式~第8方式中的任何一项所述的机器人手臂的控制装置;
通过所述碰撞对应动作控制单元控制进行对应于所述人或移动体与所述机器人手臂的碰撞的所述碰撞对应动作。
根据本发明的第11方式,提供一种机器人手臂的控制程序,用于使计算机具有作为如下单元的功能:
碰撞位置取得单元,其取得人或移动体与多关节式机器人手臂的碰撞位置;
碰撞对应动作控制单元,其基于所述碰撞位置取得单元取得的所述人或移动体与所述多关节式机器人手臂的所述碰撞位置,控制进行使比所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近根部一侧的关节部的刚性比其它关节部的刚性低的碰撞对应动作。
根据本发明的机器人手臂的控制装置及控制方法、机器人、及机器人手臂的控制程序,具备碰撞位置取得单元和碰撞对应动作控制单元、或具备这些功能。因此,在人接近机器人手臂时,可按对应人的运动的适当的姿势动作、或按适当的关节部的机械阻抗动作。换句话讲,基于上述人或移动体与上述多关节式机器人手臂的上述碰撞位置,通过使比上述碰撞位置所属的上述多关节式机器人手臂的连杆靠近根部一侧的关节部的刚性低于其它关节部的刚性,容易使靠近根部一侧的关节部活动,由该关节部消减碰撞时施加的力,从而能够减小施加给人的冲击力,提高安全性。因而,即使是多关节式的机器人手臂也能安全地与人接触,而且,可进行对应人的活动的最佳的接触动作,能够实现不对人施加接触损害地与人共存的安全的机器人手臂的动作控制。
附图说明
本发明的上述目的和特征,可从参考附图对本发明的优选的实施方式进行的以下的叙述中阐明。其中:
图1是表示本发明的第1实施方式中的机器人手臂的控制装置的构成及控制对象即机器人手臂的构成的说明图。
图2是说明本发明的上述第1实施方式中的上述机器人手臂的控制装置中的机器人手臂的碰撞警戒区域的示意图。
图3A是说明上述第1实施方式中的上述控制装置的人运动检测单元及碰撞位置推定单元的功能的俯视图。
图3B是说明上述第1实施方式中的上述控制装置的人运动检测单元及碰撞位置推定单元的功能的俯视图。
图3C是说明上述第1实施方式中的上述控制装置的人运动检测单元及碰撞位置推定单元的功能的俯视图。
图3D是说明上述第1实施方式中的上述控制装置的人运动检测单元及碰撞位置推定单元的功能的俯视图。
图4是表示上述第1实施方式中的上述控制装置的动作控制单元的详细构成的框图。
图5是表示上述第1实施方式中的上述控制装置的动作控制单元中的控制程序的动作步骤的流程图。
图6是表示上述第1实施方式中的上述控制装置全体的动作步骤的流程图。
图7是说明本发明的上述第1实施方式中的上述机器人手臂的控制装置的目标轨道的示意图。
图8A是表示本发明的第2实施方式中的机器人手臂的控制装置的构成及控制对象即机器人手臂的构成的示意图。
图8B是表示上述第2实施方式中的上述控制装置的动作控制单元的详细构成的框图。
图9A是说明本发明的上述第2实施方式中的上述机器人手臂的控制装置的动作的示意图。
图9B是说明本发明的上述第2实施方式中的上述机器人手臂的控制装置的动作的示意图。
图9C是说明本发明的上述第2实施方式中的上述机器人手臂的控制装置的动作的示意图。
图9D是说明本发明的上述第2实施方式中的上述机器人手臂的控制装置的动作的示意图。
图10是表示本发明的第2实施方式中的机器人手臂的控制装置的控制对象即机器人手臂的其它构成的示意图。
图11A是涉及专利文献2的以往技术的机器人控制装置的简要构成图。
图11B是表示图11A的机器人控制装置中的回避接触动作的具体例的示意图。
图11C是表示图11A的机器人控制装置中的回避接触动作的上述具体例的示意图。
图11D是表示图11A的机器人控制装置中的回避接触动作的另一具体例的示意图。
图11E是表示图11A的机器人控制装置中的回避接触动作的上述又一具体例的示意图。
图12是涉及专利文献3的以往技术的机器人控制装置的框图。
具体实施方式
在继续本发明的叙述之前需要说明的是,对于附图中相同的部件附加相同的参照符号。
以下,参照附图对本发明的实施方式进行详细地说明。
以下,在参照附图对本发明中的实施方式进行详细地说明之前,先对本发明的各种方式进行说明。
根据本发明的第1方式,提供一种多关节式机器人手臂的控制装置,其具有:
碰撞位置取得单元,其取得人或移动体与所述多关节式机器人手臂的碰撞位置;
碰撞对应动作控制单元,其基于所述碰撞位置取得单元取得的所述人或移动体与上述多关节式机器人手臂的所述碰撞位置,控制进行碰撞对应动作使比所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近根部一侧的关节部的刚性比其它关节部的刚性低。
根据本发明的第2方式,提供一种如第1方式所述的机器人手臂的控制装置,其中,所述碰撞对应动作控制单元,控制进行所述碰撞对应动作使所述碰撞位置所属的所述多关节式机器人手臂的连杆的最靠近所述根部一侧的关节部的刚性比其它关节部的刚性低。
根据本发明的第3方式,提供一种如第1方式或第2方式所述的机器人手臂的控制装置,其中,所述碰撞对应动作控制单元,通过维持比所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近手腕部的一侧的关节部的刚性或附加更大的刚性,控制进行所述碰撞对应动作。
根据本发明的第4方式,提供一种如第1方式或第2方式所述的机器人手臂的控制装置,其中,所述碰撞对应动作控制单元,通过对比所述碰撞位置所属的所述多关节式机器人手臂的所述连杆靠近手腕部的一侧的每个关节部分别地控制关节角度,控制进行所述碰撞对应动作。
根据本发明的第5方式,提供一种如第1方式或第2方式所述的机器人手臂的控制装置,其中,
还具备检测所述人或移动体的运动的运动检测单元;
所述碰撞位置取得单元,基于所述运动检测单元的检测结果,推定所述人或移动体与所述多关节式机器人手臂的所述碰撞位置,取得所述碰撞位置;
所述碰撞对应动作控制单元,基于由所述碰撞位置取得单元推定的所述碰撞位置,控制进行所述碰撞对应动作。
根据本发明的第6方式,提供一种如第5方式所述的机器人手臂的控制装置,其中,
还具备基于所述运动检测单元的检测结果,探测所述人或移动体接近所述机器人手臂的接近探测单元;
所述碰撞对应动作控制单元,在所述接近探测单元探测到所述人或移动体接近时,控制进行所述碰撞对应动作。
根据本发明的第7方式,提供一种如第5方式或第6方式所述的机器人手臂的控制装置,其中,所述碰撞对应动作控制单元,基于所述运动检测单元检测的所述人或移动体的运动的速度成分,控制进行所述碰撞对应动作。
根据本发明的第8方式,提供一种如第5方式至第7方式中任何一项所述的机器人手臂的控制装置,其中,所述运动检测单元检测所述人或移动体的位置和移动速度,而检测所述人的运动。
根据本发明的第9方式,提供一种多关节式机器人手臂的控制方法,其中,
由运动检测单元检测靠近所述机器人手臂的人或移动体的运动;
基于由所述运动检测单元检测的所述人或移动体的运动检测结果,由接近探测单元探测所述人或移动体接近所述机器人手臂;
在通过所述接近探测单元探测到所述人或移动体接近时,基于由所述运动检测单元检测的所述人或移动体的所述运动,推定所述人或移动体与所述多关节式机器人手臂的所述碰撞位置,通过碰撞位置取得单元取得所述碰撞位置,并且,通过利用碰撞对应动作控制单元,控制使比通过所述碰撞位置取得单元取得的所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近根部一侧的关节部的刚性比其它关节部的刚性低,进行对应于所述人与所述机器人手臂的碰撞的碰撞对应动作。
根据本发明的第10方式,提供一种机器人,其特征在于:
具有,所述多关节式机器人手臂、
控制所述机器人手臂的第1方式~第8方式中的任何一项所述的机器人手臂的控制装置;
通过所述碰撞对应动作控制单元控制进行对应于所述人或移动体与所述机器人手臂的碰撞的所述碰撞对应动作。
根据本发明的第11方式,提供一种机器人手臂的控制程序,用于使计算机具有作为如下单元的功能:
碰撞位置取得单元,其取得人或移动体与多关节式机器人手臂的碰撞位置;
碰撞对应动作控制单元,其基于所述碰撞位置取得单元取得的、所述人或移动体与所述多关节式机器人手臂的所述碰撞位置,控制进行使比所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近根部一侧的关节部的刚性比其它关节部的刚性低的碰撞对应动作。
以下,参照附图对本发明的实施方式进行详细地说明。
(第1实施方式)
图1是表示本发明的第1实施方式中的多关节式的机器人手臂的控制装置1的构成及其控制对象即多关节式的机器人手臂8的构成的示意图。该机器人手臂的控制装置1是实施上述第1实施方式的机器人手臂的控制方法的控制装置,可用于具备多关节式的机器人手臂8的机器人,如后述,也可使用为多关节式的机器人手臂8的控制程序。
在图1中,2是作为运动检测单元的一例的人运动检测单元,根据用摄像头等图像摄像装置36拍摄的图像数据,由人运动检测单元2进行图像识别处理,由人运动检测单元2检测接近机器人手臂8的人38的位置以及移动速度及移动方向的信息。
3是作为接近探测单元的一例的人接近探测单元,由人运动检测单元2的检测结果即人位置的信息、和从后述的动作控制单元7得到的由机器人手臂8的关节角度信息求出的机器人手臂8的姿势的信息的关系,检测到人38接近机器人手臂8。
5是作为碰撞位置取得单元的一例的碰撞位置推定单元,由人运动检测单元2检测的接近的人38的位置信息、以及人38的移动速度及移动方向即移动速度矢量信息,推定机器人手臂8与人38的碰撞预定位置(可作为碰撞位置处理的位置),将推定结果输出给后述的碰撞对应动作生成单元6。
4是碰撞对应动作控制单元,进行用机器人手臂8执行作业时的机器人手臂8的动作的控制(具体是,上述机器人手臂8的机械阻抗的值的控制),在人接近探测单元3探测到人38向机器人手臂8接近时,基于人运动检测单元2的检测结果,控制人38和机器人手臂8的碰撞时的碰撞对应动作。
碰撞对应动作控制单元4由碰撞对应动作生成单元6、及动作控制单元7构成。
碰撞对应动作生成单元6,计算在碰撞位置推定单元5推定的碰撞预定位置,机器人手臂8和人38接触时的机器人手臂8的关节目标轨道及关节目标的机械阻抗值,将计算结果输出给动作控制单元7。
动作控制单元7控制机器人手臂8的手指的位置姿势,用机器人手臂8的手指实现目标作业,并且,在人38接近的情况下,切换控制使得追随碰撞对应动作生成单元6生成的关节目标轨道,同时进行阻抗控制,控制机器人手臂8的各关节部的机械阻抗的值,达到碰撞对应动作生成单元6生成的关节目标的机械阻抗值。这里,机器人手臂8的各关节部,如后述,经由连接在D/A转换器21及A/D转换器22上的电机驱动器19,在阻抗控制下驱动作为各关节部的驱动装置的一例的电机34,分别进行弯曲动作。
控制装置1,作为硬件由普通的通用微机构成,除了人运动检测单元2、人接近探测单元3、碰撞位置推定单元5、碰撞对应动作生成单元6、及动作控制单元7中的输入输出IF(输入输出接口)20以外的部分利用可由通用微机执行的控制程序18由软件来实现,。
输入输出IF20由连接在通用微机的PCI总线等的扩展插口上的D/A转换器21、A/D转换器22、计数转换器23构成。
通过执行用于控制机器人手臂8的动作的控制程序18使控制装置1发挥作用,由连接在机器人手臂8的各关节部的电机34上的编码器35输出的关节角度信息,通过计数转换器23输入给控制装置1,通过控制装置1算出各关节部的旋转动作的控制指令值。算出的各控制指令值通过D/A转换器21输送给电机驱动器19,按照从电机驱动器19送出的各控制指令值,驱动机器人手臂8的各关节部的电机34。
机器人手臂8是4自由度的多连杆机械手,具有:手9、在前端具有安装手9的手腕部10的第2连杆11、可旋转地连结第2连杆11的第1连杆12、可旋转地连结支持第1连杆12的基座部13。手腕部10具有第3关节部16及第4关节部17的2个旋转轴(沿上下方向的旋转轴和沿横向的旋转轴),能够使手9与第2连杆11的相对姿势(朝向)变化。第2连杆11的另一端相对于第1连杆12的前端,可围绕第2关节部15的沿着上下方向的旋转轴旋转,第1连杆12的另一端相对于基座部13,可围绕第1关节部14的沿着上下方向的旋转轴旋转,合计可围绕4个轴旋转,如此构成上述4自由度的多连杆机械手。
在构成各轴的旋转部分的各关节部,具备:由各关节部连结的2个部件中的一部件上所设且由后述的电机驱动器19驱动控制的作为旋转驱动装置的一例的电机34(实际上设在机器人手臂8的各关节部的内部)、和检测电机34的旋转轴的旋转相位角(即关节角)的编码器35(实际上配设在机器人手臂8的各关节部的内部)。电机34的旋转轴连结在由各关节部连结的2个部件之另一个部件上,通过使上述旋转轴正反旋转,使另一个部件相对于一部件围绕各轴旋转。
32是相对于基座部13的下侧固定部的相对位置关系被固定的绝对坐标系,将其原点设为O0。33是相对于手9相对的位置关系被固定的手指坐标系。将从绝对坐标系32看的手指坐标系33的原点位置Oe(x、y)规定为机器人手臂8的手指位置、将从绝对坐标系32看的手指坐标系33的姿势(φ、θ)规定为机器人手臂8的手指姿势,将手指位置/姿势矢量r定义为r=[x、y、φ、θ]T。在控制机器人手臂8的手指位置及姿势的情况下,使手指位置/姿势矢量r追随目标手指位置/姿势矢量rwd,如此可用控制装置1进行控制。
接着,对构成控制装置1的各功能模块的详细构成和作用进行说明。
向人运动检测单元2输入由图像摄像装置36拍摄的图像数据,通过人运动检测单元2中的图像识别处理,检测从配置有机器人手臂8的房间的天花板俯视地面时的人38的二维位置Xp(xp、yp)及人38的移动速度矢量Vp(vx、vy),将二维位置Xp(xp,yp)及移动速度矢量Vp(vx、vy)的信息由人运动检测单元2输出给人接近探测单元3及碰撞位置推定单元5。
人接近探测单元3定义图2所示的碰撞警戒区域100,探测并判断人38是否进入该区域100、人38是否接近机器人手臂8。
碰撞警戒区域100的基端侧的扇形区域100A,为以第1连杆12的长度L1的α1倍即α1L1为半径,以第1关节轴(第1关节部14的旋转轴)为圆点,以第1关节部14的关节角q1的例如第1连杆12的中心轴为中心的±β1°的角度的区域。此外,碰撞警戒区域100的前端侧的扇形区域100B,为以第2连杆11的长度L2和手9的长度LH的α2倍,即α2(L2+LH)为半径,以第2关节轴(第2关节部15的旋转轴)为圆点,以第2关节部15的关节角q2的例如第2连杆11的中心轴为中心的±β2°的角度的区域。如此一来,即使与速度成正比地使扇形区域的范围变化,也能确实防止手9的手指伸出到前端侧的扇形区域100B之外。
定义碰撞警戒区域100的α1、α2、β1、β2的值是任意的值,但能够基于例如使机器人手臂8动作的手指速度Vr={(dx/dt)2+(dy/dt)2}1/2确定这些值,如果以与手指速度Vr成正比地加大α1、α2、β1、β2的值的方式确定,则在机器人手臂8的动作速度快的情况下,碰撞警戒区域100的面积增大,能够提高安全性。
在该第1实施方式中,例如,将手指速度Vr的单位设定为m/s,并且将VK设定为根据Vr的大小与Vr成正比的值或为常数的值,设定为α1=1.2VK、α2=1.2VK、β1=24VK、β2=24VK。其中,在VK为以下[式1]时,是按VK=1.9Vr定义的值(变数),在Vr<0.5[m/s]时,是定义为VK=0.95和常数的值(变数)。
[式1]
Vr≥0.5[m/s]
如此一来,在手指速度为0.5[m/s]以上时,与手指速度的大小成正比地确定碰撞警戒区域100的尺寸。此外,在低于0.5[m/s]时,分别成为固定值α1=1.14、α2=1.14、β1=22.8、β2=22.8,即使在手指速度低的情况下,也能确保某种程度的尺寸的碰撞警戒区域100。
人接近探测单元3,由人运动检测单元2检测的人38的位置的信息、和从动作控制单元7得到的机器人手臂8的关节角度信息,算出人38和机器人手臂8的相对关系,如果人38进入碰撞警戒区域100,就将人侵入这一情况通知给碰撞对应动作控制单元4。
碰撞位置推定单元5,由人运动检测单元2检测的人38的位置的信息及移动速度矢量的信息推定与人38的碰撞预定位置[式2],并将其输出给碰撞对应动作生成单元6。
[式2]
Xp(xi,yi)
例如,图3A所示,假想与速度矢量Vp(vx,vy)的延长线垂直相交,通过机器人手臂8的第1关节部14的旋转轴的直线A。如果将直线A和绝对坐标系32的x轴形成的角度设定为q1i、将速度矢量Vp(vx、vy)的延长线和直线A的交点设定为碰撞预定位置[式3],则按以下[式4]~[式7]给出角度q1i
[式3]
Xp(xi,yi)
[式4]
Xp(xi,yi)
[式5]
q1i=π/2+atan2(vx,vy)
[式6]
x i = ( &pi; / 2 - q 1 i ) x p + y p tan q 1 t - q 1 t + &pi; / 2
[式7]
yi=xi tan q1i
接着,参照图3A~图3C,对碰撞对应动作生成单元6的详细情况进行说明。
碰撞对应动作生成单元6,从图3A的通常作业时的状态(当前状态)生成向图3B的阻止碰撞姿势的关节目标轨道。
机器人手臂8的第1连杆12的中心轴的线与碰撞预定位置[式8]重叠地通过碰撞对应动作生成单元6确定第1关节部14的角度q1i。即,q1i=atan2(yi,xi)。其中,atan2(yi,xi)=arg(yi+jxi),是j为虚数、arg为复数的偏角。此外,第2关节部15的角度q2i,为了使机器人手臂8围住人38,例如设定为60°的固定值。
[式8]
Xp(xi,yi)
将碰撞对应姿势时的机器人手臂8的第1关节部14的角度设定为q1i。此外,关于第2关节部15的角度q2i,规定根据碰撞预定位置[式9]和绝对坐标系32的原点O0间的距离Lxi,按以下的接触模式(1)~(3)这3个模式使其变化。
[式9]
Xp(xi,yi)
图3B所示的接触模式(1):
[式10]
Lxi≤L1×0.8
在这种情况下,设定q2i=90°。
图3C所示的接触模式(2):
[式11]
L1×0.8<Lxi≤L1×1.2
在这种情况下,设定q2i={(Lxi—L1)/0.4×L1}×90°。
在图3D所示的接触模式(3):L1×1.2<Lxi时,设定为q2i=0°。
如此一来,机器人手臂8能够伴随以下这样的姿势进行阻抗控制动作。
在上述接触模式(1)时,如图3B所示,由于与人38的接触发生在第1连杆12,呈第2连杆11相对于第1连杆12折弯90°的姿势,因此成为机器人手臂8围住人38的姿势。
在上述接触模式(2)时,如图3C所示,成为与人38的接触发生在第2关节部15附近,第2关节部15的张开角度q2i根据与人38的接触位置而变化的姿势。
在上述接触模式(3)时,如图3D所示,与人38的接触发生在第2连杆11,第2关节部15的角度q2i为0°,机器人手臂8成为第1连杆12和第2连杆11在一条直线上的姿势。
在如此的阻抗控制动作中,从机器人手臂8的关节角度的当前值(q1、q2),通过以下[式12]的5次多项式插补由碰撞对应动作生成单元6,计算求出接触动作时的到关节角度(q1i、q2i)的目标轨道即关节角度目标值qnd(t)。这里,t为时间。
[式12]
qnd(t)=a0+a1t+a2t2+a3t3+a4t4+a5t5
其中,
[式13]
ao=qn
[式14]
a 1 = q . n
[式15]
a 2 = 1 2 q . . n
[式16]
a 3 = 1 2 t f 3 ( 20 q m - 20 q n - 12 q . 0 t f - 3 q . . n t f 2 )
[式17]
a 4 = 1 2 t f 4 ( 30 q n + 16 q . n t f + 3 q . . n t f 2 )
[式18]
a 5 = 1 2 t f 5 ( - 12 q n - 6 q . n t f - q . . n t f 2 ) .
[式19]
n=1,2,
此外,tf为阻抗控制动作的动作结束时间。
碰撞对应动作生成单元6,作为关节角度目标值,将按式(12)计算的关节角度目标值qnd(t)输出给动作控制单元7。
此外,碰撞对应动作生成单元6,根据接触模式(1)~(3)及碰撞时的人38的速度成分,确定图3B~图3D的碰撞对应姿势时的各关节部的机械阻抗值。作为机械阻抗值的设定参数,有惯性I、粘性D、刚性K。
在接触模式(1)及(2)时:根据接触时的人38的速度中与第1及第2连杆12、11垂直的成分vi1、vi2,通过In=KI/vin、Dn=KD/Vin、Kn=KK/Vin确定各关节部的机械阻抗参数。其中,n=1、2。此外,KI、KD、KK是常数增益,为了达到安全的动作通过实验求出具体的数值。此外,确定各参数的上限值Imaxn、Dmaxn、Kmaxn,在计算值超过这些上限值时,视为各参数与上限值相等。
在接触模式(3)时:关于第1关节部14,设为I1=Imax1、D1=Dmax1、K1=Kmax1,关于第2关节部15,根据接触时的人38的速度中与第2连杆11垂直的成分vi2,通过I2=KI/vi2、D2=KD/Vi2、K2=KK/Vi2确定第2关节部15的机械阻抗参数。
关于手腕部10的机械阻抗,通常,上限值为In=Imaxn、Dn=Dmaxn、Kn=Kmaxn,其中,设n=3,4。
上限值设为足够大的值,例如为Imaxn=Dmaxn=Kmaxn=10000,其中设n=1,2,3,4。
若如上所述确定了关节部的机械阻抗,则在接触模式(1)及(2)中,例如,在人38与第1连杆12大致垂直碰撞时,由于
Figure A200780014941D0019142212QIETU
,因此在第1关节部14,与阻抗控制动作前相比比较小地设定机械阻抗值,第1关节部14变得柔软,在第2关节部15、第3关节部16及第4关节部17,与阻抗控制动作前相比将机械阻抗值设定在上限值,第2关节部15、第3关节部16及第4关节部17变得坚固。也就是说,可通过碰撞对应动作控制单元4进行使与第1连杆12的碰撞位置所属的第1连杆12相比靠近根部(基座部13)的一侧即第1关节部14的刚性低于另一关节部例如第2关节部15、第3关节部16及第4关节部17的刚性的碰撞对应动作。因此,通过利用第1关节部14的柔软性使碰撞的撞击缓和,同时使第2关节部15坚固,第2连杆11不会因碰撞的反作用力而不经意地活动,第2连杆11也不会碰撞人38,可确保安全性。此外,通过由第1连杆12和第2连杆11构成L字形,围住人38,能够起到作为人38的前侧及横侧两方向的支撑的作用,可防止人38摔倒(通过在人38摔倒时由第1连杆12或第2连杆11抓住人38,能防止人38摔倒),能够更加提高安全性。
此外,在接触模式(2)中,即使在有与第2连杆11垂直的速度成分vi2的情况下,由于根据速度成分vi2,比较低地设定第2关节部15的刚性,第2关节部15变得柔和,因此能够确保安全性。
此外,在接触模式(3)中,由于与阻抗控制动作前相比第1关节部14变得坚固,根据人38的移动速度中与第2连杆11垂直的成分vi2,与阻抗控制动作前相比比较柔和地设定比碰撞预定位置所属的第2连杆11的碰撞预定位置最靠近根部(基座部13)的一侧的关节部即第2关节部15,因而能够用第2关节部15的柔软性吸收人38碰撞第2连杆11的撞击,所以能够确保安全性。此外,与上述相反,与柔和地设定第1关节部14、坚固地设定第2关节部15时相比,碰撞时施加的惯性主要是第2连杆11的惯性,由于不施加第1连杆12的惯性,因此可减小碰撞时的撞击。
再有,在接触模式(3)中,除了柔和地设定第1关节部14、坚固地设定第2关节部15时以外,也可以考虑同时使第1关节部14和第2关节部15比另外的第3关节部16及第4关节部17柔和,也就是说,使比碰撞预定位置所属的第2连杆11靠近根部(基座部13)的一侧的所有关节部比其以外的关节部柔和的方法。
在该方法中,在关节部具有可动范围的情况下,可更安全。在各关节部具有可动范围时,因碰撞而使关节部活动,如果超出可动范围,由于不能使关节部过度活动,因此也就不能发挥柔软性。可是,在使靠近根部(基座部13)一侧的关节部都比其以外的关节部柔和时,由于通过相加第1关节部14和第2关节部15的可动范围,可获得更大的可动范围,因此能够扩大可发挥柔软性的范围,从而能够提高安全性。
接着,参照图4对动作控制单元7的详细构成进行说明。
在图4中,8是控制对象即图1所示的机器人手臂。从机器人手臂8,输出通过各自的关节轴的编码器35测量的关节角的当前值(关节角度矢量)q=[q1、q2、q3、q4]T,通过计数转换器23输入给控制装置。其中,q1、q2、q3、q4分别是第1关节部14、第2关节部15、第3关节部16、第4关节部17的关节角度。
24是作业目标轨道生成单元,输出作为目标的用于实现机器人手臂8的作业的手指位置/姿势目标矢量rwd。如图7所示,机器人手臂8的目标动作,根据目的作业,预先给出每个示教点的位置(rwd0、rwd1、rwd2……),目标轨道生成单元24使用多项式插补,修补每个点的位置间的轨道,生成手指位置/姿势目标矢量rwd。其中,上述位置rwd0假设为时间t=0时的位置、rwd1假设为时间t=t1时的位置、rwd2假设为时间t=t2时的位置。
由目标轨道生成单元24输入给逆运动学计算单元25的手指位置/姿势目标矢量rwd,通过逆运动学计算单元25被变换成关节目标矢量qwd
26是目标轨道切换单元,向目标轨道切换单元26,由逆运动学计算单元25输入关节目标矢量qwd,由碰撞对应动作生成单元6输入碰撞对应动作关节目标矢量qid,由人接近探测单元3输入碰撞对应动作切换指令。通常,由作业目标轨道生成单元24生成的手指位置/姿势目标矢量rwd被逆运动学计算单元25变换为关节目标矢量qwd,目标轨道切换单元26选择上述变换的关节目标矢量qwd,作为关节目标矢量qd由目标轨道切换单元26输出。但是,如果人接近时目标轨道切换单元26从人接近探测单元3接受碰撞对应动作切换指令,则目标轨道切换单元26选择由碰撞对应动作生成单元6输入的接触动作关节目标矢量qid,作为关节目标矢量qd由目标轨道切换单元26输出。
27是扭矩推定单元,推定因人38和机器人手臂8的接触而施加给机器人手臂8的各关节部的外力扭矩。向扭矩推定单元27,经由A/D转换器22输入由电机驱动器19的电流传感器测量的在驱动机器人手臂8的各关节部的电机34中流动的电流值i=[i1、i2、i3、i4]T,此外,由关节误差补偿单元30输入关节角的当前值q及后述的关节角度误差补偿输出uqe。扭矩推定单元27具有作为观测器的功能,由以上的电流值i、关节角的当前值q、关节角度误差补偿输出uqe算出因施加给机器人手臂8的外力而发生在各关节部的扭矩τext=[τ1ex、τ2ext、τ3ext、τ4ext]T
关节阻抗计算单元28是具有能在机器人手臂8实现机械阻抗的功能的部分,在人38不接近的通常动作时由关节阻抗计算单元28向位置控制系31的输入侧输出0。另一方面,如果人38接近,从碰撞对应动作生成单元6接受到接触动作切换指令,则在关节阻抗计算单元28,通过以下的式(20),从由碰撞对应动作生成单元6设定的机械阻抗参数I、D、K、关节角的当前值q、和扭矩推定单元27推定的外力扭矩τext,计算用于在机器人手臂8的每个关节部实现机械阻抗的关节目标修正输出q,然后输出给位置控制系31的输入侧。将关节目标修正输出q,在位置控制系31的输入侧与目标轨道切换单元26输出的关节目标qd相加,生成修正关节目标矢量qdm,并输入给位置控制系31。
[式20]
q d&Delta; = ( s 2 I ^ + s D ^ + K ^ ) - 1 &tau; ext
式中,s为拉普拉斯算子,另外,
[式21]
I ^ = I 1 0 0 0 0 I 2 0 0 0 0 I 3 0 0 0 0 I 4
[式22]
D ^ = D 1 0 0 0 0 D 2 0 0 0 0 D 3 0 0 0 0 D 4
[式23]
K ^ = K 1 0 0 0 0 K 2 0 0 0 0 K 3 0 0 0 0 K 4
30是位置控制系31内的关节误差补偿单元,在机器人手臂8中测量的关节角度矢量的当前值q、和关节修正目标矢量qdm的误差qe被输入给关节误差补偿单元30,由关节误差补偿单元30将关节误差补偿输出uqe向机器人手臂8输出。
关节误差补偿输出uqe,经由D/A转换器21,作为电压指令值传递给电机驱动器19,正反旋转驱动各关节轴,机器人手臂8动作。
再有,上述动作控制单元7,如上所述,由目标轨道生成单元24、逆运动学计算单元25、目标轨道切换单元26、扭矩推定单元27、关节阻抗计算单元28和位置控制系31构成。
关于按以上构成的动作控制单元7,对其工作的原理进行说明。
工作的基本是关节误差补偿单元30形成的关节矢量(关节角的当前值)q的反馈控制(位置控制),图4的虚线围住的部分为位置控制系31。作为关节误差补偿单元30,例如,如果使用PID补偿器,则以关节误差qe收缩为0的方式进行控制,实现作为目标的机器人手臂8的动作。
在通过人接近探测单元3探测到人38向碰撞警戒区域100的侵入时,相对于上述说明的位置控制系31,通过关节阻抗计算单元28,在位置控制系31的输入侧,将关节目标修正输出q与目标轨道切换单元26输出的关节目标qd相加,进行关节部的目标值的修正。因此,上述的位置控制系31的关节部的目标值比原来的值略微错开,结果可实现机械阻抗。由于通过式(20)由关节阻抗计算单元28计算关节目标修正输出q,因此可实现惯性I、粘性D、刚性K的机械阻抗。
对实现基于以上的原理的动作控制单元7的工作的控制程序的实际工作步骤,基于图5的流程图进行说明。
在步骤1中,将由编码器35测量的关节角度数据(关节变数矢量或关节角度矢量q)输入给控制装置1。
接着,在步骤2中,基于预先存储在控制装置1的存储器(未图示)中的机器人手臂8的动作控制程序18,通过动作控制单元7的作业目标轨道生成单元24,计算机器人手臂8的手指位置/姿势目标矢量rwd
接着,在步骤3中,在逆运动学计算单元25中将手指位置/姿势目标矢量rwd变换成关节目标qwd
接着,在步骤4中,通过目标轨道切换单元26进行目标轨道的切换。在没有人38向碰撞警戒区域100的侵入的情况下,执行作业动作,而进入步骤5A。另一方面,在有人38向碰撞警戒区域100的侵入的情况下,执行碰撞对应动作,而进行向步骤5B的处理(在目标轨道切换单元26的处理)。
在步骤5B中,将关节目标矢量qd作为碰撞对应动作生成单元6生成的接触动作关节目标矢量qid(在目标轨道切换单元26的处理)。然后,进入步骤6。
在步骤5A中,将关节目标矢量qd作为关节目标qwd(在目标轨道切换单元26的处理)。然后,进入步骤8。
在步骤6中,从各自的电机34的驱动电流值i、关节角度数据(关节角度矢量(关节角的当前值)q)、关节角度误差补偿输出uqe,通过扭矩推定单元27计算机器人手臂8的关节部上的外力扭矩τext(在扭矩推定单元27的处理)。
接着,在步骤7中,从在碰撞对应动作生成单元6中设定的机械阻抗参数I、D、K、关节角度数据(关节角度矢量q)、由扭矩推定单元27计算的施加给机器人手臂8的外力扭矩τext,通过关节阻抗计算单元28计算关节目标修正输出q(在关节阻抗计算单元28的处理)。
接着,在步骤8中,作为关节目标矢量qd和关节目标修正输出q的和,计算修正关节目标矢量qdm,并输入给位置控制系31。
接着,在步骤9中,将修正关节目标矢量qdm和当前的关节矢量q的差即关节部的误差qe输入给关节误差补偿单元30,在关节误差补偿单元30计算关节角度误差保证输出uqe(在关节误差补偿单元30的处理)。作为关节误差补偿单元30的具体例,可考虑PID补偿器。通过控制来适当调整常数的对角行列即比例、微分、积分这3个增益,将关节误差收缩为0。
接着,在步骤10中,将关节角度误差补偿输出uqe通过D/A转换器21传递给电机驱动器19,通过使沿着各自的关节部的电机34流通的电流量变化,发生机器人手臂8的各个关节轴的旋转运动。
通过作为控制的计算循环重复执行以上的步骤1~步骤10,实现机器人手臂8的动作的控制。
接着,对本发明的第1实施方式中的控制装置1全体的工作,以用机器人手臂8的手9把持物体,进行搬运作业为例,基于图6的流程图进行说明。
在步骤21中,在人运动检测单元2,基于图像摄像装置36的图像数据进行图像识别处理,检测接近机器人手臂8的人38的位置以及移动速度、移动方向的信息。
接着,在步骤22中,通过人接近探测单元3进行人38的向碰撞警戒区域100的侵入判断,在人接近探测单元3判断为没有侵入的情况下,进入步骤23。
在步骤23中,通过动作控制单元7控制机器人手臂8动作,用机器人手臂8的手9把持物体,进行搬运作业动作。
在步骤23后,返回到步骤21,只要人接近探测单元3没有确认人38的侵入,就重复步骤21→步骤22→步骤23→步骤21…的循环,机器人手臂8执行通常的上述物体把持及搬运作业。
在步骤22中,在确认了人38的侵入的情况下,进入步骤24,通过碰撞位置推定单元5推定碰撞预定位置[式24]。
[式24]
Xp(xi,yi)
接着,在步骤24.1中,由碰撞对应动作生成单元6算出碰撞预定位置Xp和绝对坐标系32的原点O0间的距离Lxi,碰撞对应动作生成单元6比较距离Lxi和长度L1,通过碰撞对应动作生成单元6判断在式(10)的不等式时为接触模式(1)、在式(11)的不等式时为接触模式(2)、在其它时为接触模式(3)。
接着,在步骤25中,在碰撞对应动作目标轨道生成单元6中,在碰撞预定位置[式25],通过式(12)生成用于取得碰撞对应姿势的碰撞对应动作目标轨道qd(t)。
[式25]
Xp(xi,yi)
接着,在步骤26中,对于在碰撞对应姿势方面要设定的关节部的机械阻抗值,根据接触模式(1)~(3),此外根据接近的人38的移动速度,按作为确定方法先前介绍关节部的机械阻抗的那样,通过碰撞对应动作目标轨道生成单元6进行设定。
接着,在步骤27中,在动作控制单元7中,目标轨道切换单元26工作,选择碰撞对应动作目标轨道qd(t),通过位置控制系使机器人手臂8动作,成为碰撞对应姿势。此外,关节阻抗计算单元28也工作,将机器人手臂8的各关节部分别(独立)地控制在设定的机械阻抗值。
接着,在步骤28中,在人运动检测单元2中,由图像摄像装置36的图像数据进行图像识别处理,检测接近机器人手臂8的人38的位置以及移动速度、移动方向的信息。
接着,在步骤29中,在人接近探测单元3进行人38的向碰撞警戒区域100的侵入判断,在人接近探测单元3判断为有侵入的情况下,返回到步骤27,只要没有确认人38从碰撞警戒区域100脱离,就重复步骤27→步骤28→步骤29→步骤27…的循环,机器人手臂8继续碰撞对应动作。
另一方面,在步骤29中,在人接近探测单元3判断没有人38向碰撞警戒区域100侵入的情况下,返回到步骤21,机器人手臂8向通常的上述物体把持及搬运作业动作复原。
通过以上的动作步骤21~步骤29,可实现利用机器人手臂8的上述物体把持及搬运作业,在人38接近时,实现向碰撞对应动作的切换。
如以上所述,通过具备人运动检测单元2、人接近探测单元3、碰撞位置推定单元5、碰撞对应动作控制单元4,在人38接近机器人手臂8时,以对应人38的运动的适当的姿势动作,能以适当的关节部的机械阻抗,控制与人38和上述机器人手臂8的碰撞对应的碰撞对应动作。
由于机器人手臂8通过根部即基座部13被固定在地面上,因此在碰撞预定位置的根部(基座部13)侧的关节部上,如果没有刚性比其它关节部低、容易活动的状态的关节部,则产生对碰撞的抵抗力,产生撞击力。可是,根据本发明的上述第1实施方式,由于在机器人手臂8的每个各关节部上分别设定机械阻抗时,与其它的关节部相比可在根(基座部13)侧的关节部上设定刚性低且容易活动的状态的关节部,因此能够在该关节部释放碰撞时施加的力,对人的撞击力减小,能够提高安全性。
因此,根据本发明的上述第1实施方式的控制装置1,即使是多关节式的机器人手臂8,也能安全地与人接触,而且,可进行对应人的动作的最佳的接触动作,能够实现不损害与人的接触地与人共存的机器人手臂8的安全的动作控制。
再有,在上述第1实施方式中,将机器人手臂8的关节部的数量规定为3个,但也不局限于此,对于2个关节部以上的机器人手臂8都能发挥同样的效果。
此外,在上述第1实施方式中,举例说明了机器人手臂8和人的碰撞,但也不局限于此,对于与移动机器人或移动中的货车等其它移动体与机器人手臂8的碰撞,也能发挥同样的效果。
再有,在上述第1实施方式中,在人38进入碰撞警戒区域100的情况下,一次进行碰撞预定位置的推定,但也不局限于此,也可以采用(继续)连续地进行碰撞预定位置的推定的方法。在这种情况下,由于碰撞的推定精度提高,因此能够以更佳的姿势、接触模式对应,能够更加提高安全性。另一方面,如上述第1实施方式,在一次进行碰撞预定位置的推定的情况下,具有可减少计算量,能够减轻对CPU的负担的优点。
(第2实施方式)
图8A及图8B是表示本发明的第2实施方式中的机器人手臂的控制装置1的构成及控制对象即机器人手臂8的构成的示意图、及表示上述第2实施方式中的上述控制装置的动作控制单元的详细构成的框图。由于本发明的第2实施方式中的控制装置1的基本构成,与图1所示的第1实施方式时同样,因此对共通部分的说明省略,以下只对不同的部分进行详细地说明。
在本发明的第2实施方式中,不是通过图像识别处理,而是通过检测机器人手臂8和人38接触时产生的力,进行人运动检测及人接近探测。因而,作为人运动检测单元2形成从动作控制单元7的扭矩推定单元27输入外力扭矩信息的结构。因此,在第2实施方式中的控制装置1中,不需要图像摄像装置36。
人运动检测单元2基于扭矩推定单元27推定的外力扭矩τext=[τ1ex、τ2ext、τ3ext、τ4ext]T,按以下的模式,推定机器人手臂8和人38的相对的位置关系。其中,在图9A~图9D中(从上方侧俯视机器人手臂8)使关节部向左旋转动的扭矩定义为正扭矩。
(1)在第1关节部14的外力扭矩τ1ext>0、第2关节部15的外力扭矩
Figure A200780014941D00281
时,如图9A所示,由人运动检测单元2推定为人38在第1连杆12的接触。
(2)在第1关节部14的外力扭矩τ1ext<0、第2关节部15的外力扭矩
Figure A200780014941D00282
时,如图9B所示,由人运动检测单元2推定为人38在第1连杆12的接触。
(3)在第1关节部14的外力扭矩τ1ext>0、第2关节部15的外力扭矩τ2ext>0时,如图9C所示,由人运动检测单元2推定为人38在第2连杆11的接触。
(4)在第1关节部14的外力扭矩τ1ext<0、第2关节部15的外力扭矩τ2ext<0时,如图9D所示,由人运动检测单元2推定为人38在第2连杆11的接触。
只要进行根据以上的4个模式的分类,就能得知机器人手臂8和人38的大概的位置关系。此外,人接近探测单元3通过探测到外力扭矩从第1关节部14的外力扭矩第2关节部15的外力扭矩
Figure A200780014941D00284
的状态向上述(1)~(4)的模式中的任一模式变化,就能够探测人38的接近。
通过用以上的方法推定人38的大致位置,用碰撞对应动作控制单元4控制对应位置关系的姿势、关节扭矩,可进行能够与人38共存的机器人手臂8的安全的动作控制。
再有,在上述第1实施方式中将人运动检测单元2规定为利用图像识别处理,但也不局限于此,只要用其它传感检测单元,例如激光雷达传感器或超声波传感器等能够检测人38的位置和速度,也能发挥同样的效果。
此外,在上述第2实施方式中,基于扭矩推定单元27推定的外力扭矩进行人探测,但也不局限于此,如图10所示,在机器人手臂8的连杆12、11等可能与人38接触的部位上,作为碰撞位置取得单元的一例设置接触传感器39,通过人38与接触传感器39接触进行人探测,也能发挥同样的效果。此外,如果并用利用接触传感器和外力扭矩的人探测,则能提高推定精度,能够更加安全地控制机器人手臂8。
再有,在上述第2实施方式中,将机器人手臂8的关节部的数量规定为3个,但也不局限于此,对于2个关节部以上的机器人手臂8都能发挥同样的效果。
此外,在上述第2实施方式中,举例说明的机器人手臂8和人的碰撞,但也不局限于此,对于移动机器人或移动中的货车等其它移动体与机器人手臂8的碰撞也能发挥同样的效果。
此外,在上述第1及第2实施方式中举例对机器人手臂8进行了说明,但也不局限于手臂,即使是通过车轮运动的移动机器人或2脚步行机器人、多脚步行机器人等移动体,通过在本体和人的接触中应用本发明,也能得到与本发明同样的效果。
再有,通过适当组合上述多种实施方式中任意的实施方式,能够发挥各自具有的效果。
产业上的可利用性
本发明的机器人手臂的控制装置及控制方法、机器人、及机器人手臂的控制程序,有效用作家庭用机器人等进行有可能与人接触的机器人手臂的动作的控制的机器人手臂的控制装置及控制方法、机器人、及机器人手臂的控制程序。此外,也不局限于家庭用机器人,也可用作产业用机器人、或生产设备等中的可动机构的控制装置。
本发明参照附图充分叙述了优选的实施方式,但显然对于熟悉此项技术的人士而言能够进行多种变形或修正。这样的变形或修正,只要不超出所附的技术方案的范围所规定的本发明的范围,都应理解为涵盖在本发明中。

Claims (11)

1、一种机器人手臂的控制装置,是多关节式机器人手臂的控制装置,其中,包括:
碰撞位置取得单元,其取得人或移动体与所述多关节式机器人手臂的碰撞位置;
碰撞对应动作控制单元,其基于所述碰撞位置取得单元取得的所述人或移动体与所述多关节式机器人手臂的所述碰撞位置,控制进行碰撞对应动作使比所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近根部一侧的关节部的刚性比其它关节部的刚性低。
2、根据权利要求1所述的机器人手臂的控制装置,其中,所述碰撞对应动作控制单元控制进行所述碰撞对应动作使所述碰撞位置所属的所述多关节式机器人手臂的连杆的最靠近所述根部一侧的关节部的刚性比其它关节部的刚性低。
3、根据权利要求1或2所述的机器人手臂的控制装置,其中,所述碰撞对应动作控制单元,通过对比所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近手腕部一侧的关节部的刚性进行维持或附加更大的刚性,控制进行所述碰撞对应动作。
4、根据权利要求1或2所述的机器人手臂的控制装置,其中,所述碰撞对应动作控制单元,通过对比所述碰撞位置所属的所述多关节式机器人手臂的所述连杆靠近手腕部的一侧的每个关节部分别控制关节角度,控制进行所述碰撞对应动作。
5、根据权利要求1或2所述的机器人手臂的控制装置,其中,
还具备检测所述人或移动体的运动的运动检测单元;
所述碰撞位置取得单元基于所述运动检测单元的检测结果,推定所述人或移动体与所述多关节式机器人手臂的所述碰撞位置,取得所述碰撞位置;
所述碰撞对应动作控制单元基于由所述碰撞位置取得单元推定的所述碰撞位置,控制进行所述碰撞对应动作。
6、根据权利要求5所述的机器人手臂的控制装置,其中,
还具备基于所述运动检测单元的检测结果探测所述人或移动体接近了所述机器人手臂的接近探测单元;
在所述接近探测单元探测到所述人或移动体接近时,所述碰撞对应动作控制单元控制进行所述碰撞对应动作。
7、根据权利要求5或6所述的机器人手臂的控制装置,其中,所述碰撞对应动作控制单元基于所述运动检测单元检测的所述人或移动体的运动的速度成分,控制进行所述碰撞对应动作。
8、根据权利要求5~7中任何一项所述的机器人手臂的控制装置,其中,所述运动检测单元检测所述人或移动体的位置和移动速度,而检测所述人的运动。
9、一种机器人手臂的控制方法,是多关节式机器人手臂的控制方法,其中,
由运动检测单元检测靠近所述机器人手臂的人或移动体的运动;
基于由所述运动检测单元检测的所述人或移动体的运动检测结果,由接近探测单元探测所述人或移动体接近了所述机器人手臂;
在通过所述接近探测单元探测到所述人或移动体的接近时,基于由所述运动检测单元检测的所述人或移动体的所述运动,推定所述人或移动体与所述多关节式机器人手臂的所述碰撞位置,通过碰撞位置取得单元取得所述碰撞位置,并且,通过碰撞对应动作控制单元,使比通过所述碰撞位置取得单元取得的所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近根部一侧的关节部的刚性比其它关节部的刚性低,控制进行对应于所述人与所述机器人手臂的碰撞的碰撞对应动作。
10、一种机器人,其具有:
所述多关节式机器人手臂、
控制所述机器人手臂的权利要求1~8中的任何一项所述的机器人手臂的控制装置;
通过所述碰撞对应动作控制单元,控制进行对应于所述人或移动体与所述机器人手臂的碰撞的所述碰撞对应动作。
11、一种机器人手臂的控制程序,用于使计算机具有作为如下单元的功能:
碰撞位置取得单元,其取得人或移动体与所述多关节式机器人手臂的碰撞位置;
碰撞对应动作控制单元,其基于所述碰撞位置取得单元取得的所述人或移动体与所述多关节式机器人手臂的所述碰撞位置,控制进行碰撞对应动作,使比所述碰撞位置所属的所述多关节式机器人手臂的连杆靠近根部一侧的关节部的刚性比其它关节部的刚性低。
CN2007800149419A 2006-07-04 2007-06-28 机器人手臂的控制装置 Active CN101432103B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006184172 2006-07-04
JP184172/2006 2006-07-04
PCT/JP2007/062984 WO2008004487A1 (fr) 2006-07-04 2007-06-28 Appareil et procédé de commande de bras robotisé, robot et programme de commande de bras robotisé

Publications (2)

Publication Number Publication Date
CN101432103A true CN101432103A (zh) 2009-05-13
CN101432103B CN101432103B (zh) 2012-05-23

Family

ID=38894459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800149419A Active CN101432103B (zh) 2006-07-04 2007-06-28 机器人手臂的控制装置

Country Status (4)

Country Link
US (1) US8676379B2 (zh)
JP (2) JP4243309B2 (zh)
CN (1) CN101432103B (zh)
WO (1) WO2008004487A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970185A (zh) * 2009-05-22 2011-02-09 关东自动车工业株式会社 作业辅助机器人系统
CN102917843A (zh) * 2010-11-26 2013-02-06 日商乐华股份有限公司 机器人的控制装置及控制方法
CN103902020A (zh) * 2012-12-25 2014-07-02 苏茂 数据手套手腕关节检测装置
CN106725861A (zh) * 2017-02-15 2017-05-31 山东大学 一种手术机器人末端工具碰撞位置检测方法
CN107614214A (zh) * 2015-05-21 2018-01-19 日产自动车株式会社 故障诊断装置及故障诊断方法
CN108621205A (zh) * 2017-03-17 2018-10-09 广明光电股份有限公司 协作型机器手臂的防夹方法
CN108883533A (zh) * 2016-03-24 2018-11-23 Cmr外科有限公司 机器人控制
CN109620410A (zh) * 2018-12-04 2019-04-16 微创(上海)医疗机器人有限公司 机械臂防碰撞的方法及系统、医疗机器人
CN109715350A (zh) * 2018-05-07 2019-05-03 深圳蓝胖子机器人有限公司 机器人及其机械抓手
CN110216682A (zh) * 2018-03-02 2019-09-10 欧姆龙株式会社 机器人系统
CN111240269A (zh) * 2014-08-08 2020-06-05 机器人视觉科技股份有限公司 用于机器人设备的基于传感器的安全特征
CN111347421A (zh) * 2018-12-21 2020-06-30 皮尔茨公司 用于扭矩估计的方法和装置

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602007013300D1 (de) * 2007-10-01 2011-04-28 Abb Technology Ab Ndustrierobotersystem und industrierobotersystem
JP5086778B2 (ja) * 2007-11-26 2012-11-28 トヨタ自動車株式会社 ロボットアーム
WO2009098855A1 (ja) * 2008-02-06 2009-08-13 Panasonic Corporation ロボット、ロボットの制御装置及び制御方法、並びに、ロボットの制御装置の制御プログラム
JP2009297810A (ja) * 2008-06-11 2009-12-24 Panasonic Corp マニピュレータの姿勢制御装置および姿勢制御方法
DE102008041602B4 (de) * 2008-08-27 2015-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Roboter und Verfahren zum Steuern eines Roboters
JP2010120139A (ja) * 2008-11-21 2010-06-03 New Industry Research Organization 産業用ロボットの安全制御装置
KR101537039B1 (ko) * 2008-11-28 2015-07-16 삼성전자 주식회사 로봇 및 그 제어방법
EP2364243B1 (en) * 2008-12-03 2012-08-01 ABB Research Ltd. A robot safety system and a method
EP2243602B1 (de) * 2009-04-22 2013-05-15 KUKA Roboter GmbH Verfahren und Vorrichtung zur Regelung eines Manipulators
JP5167548B2 (ja) * 2009-09-01 2013-03-21 川田工業株式会社 吊下げ型協調作業ロボット
JP4962551B2 (ja) * 2009-10-20 2012-06-27 株式会社安川電機 ロボットシステムおよびロボットシステムの制御方法
JP5528095B2 (ja) * 2009-12-22 2014-06-25 キヤノン株式会社 ロボットシステム、その制御装置及び方法
JP4896276B2 (ja) * 2010-01-04 2012-03-14 パナソニック株式会社 ロボット、ロボットの制御装置、制御方法、及び制御プログラム
CN102686371B (zh) * 2010-01-25 2015-01-14 松下电器产业株式会社 危险提示装置、危险提示系统以及危险提示方法
IT1399248B1 (it) * 2010-03-11 2013-04-11 Uni Politecnica Delle Marche Apparecchiatura per la gestione di un sistema di controllo di un macchinario dotato di una parte mobile provvista di almeno un sensore di prossimità e contatto
WO2011161765A1 (ja) * 2010-06-22 2011-12-29 株式会社 東芝 ロボット制御装置
US8777818B1 (en) * 2010-12-22 2014-07-15 Larry E. Tate, Jr. Training device
JP5129415B2 (ja) * 2011-03-17 2013-01-30 パナソニック株式会社 ロボット、ロボットの制御装置、制御方法、及び制御プログラム
JP2012236244A (ja) * 2011-05-10 2012-12-06 Sony Corp ロボット装置、ロボット装置の制御方法、並びにロボット装置制御用プログラム
EP2708334B1 (en) * 2011-05-12 2020-05-06 IHI Corporation Device and method for controlling prediction of motion
TW201247373A (en) * 2011-05-23 2012-12-01 Hon Hai Prec Ind Co Ltd System and method for adjusting mechanical arm
DE102012108418A1 (de) 2011-09-14 2013-03-14 Robotics Technology Leaders Gmbh Vorrichtung zur sicheren Kollaboration zwischen Mensch und Roboter
EP2829370A1 (en) 2012-03-19 2015-01-28 Kabushiki Kaisha Yaskawa Denki Task robot and robot system
WO2013140579A1 (ja) 2012-03-22 2013-09-26 株式会社安川電機 作業ロボットおよびロボットシステム
DE202012101121U1 (de) * 2012-03-29 2013-07-16 Kuka Systems Gmbh Trenneinrichtung
WO2013164470A1 (en) * 2012-05-04 2013-11-07 Leoni Cia Cable Systems Sas Imitation learning method for a multi-axis manipulator
EP2853359B1 (en) 2012-05-21 2022-07-20 Kabushiki Kaisha Yaskawa Denki Robot
WO2013175554A1 (ja) 2012-05-21 2013-11-28 株式会社安川電機 ロボットおよびロボットシステム
JP5907859B2 (ja) * 2012-12-21 2016-04-26 本田技研工業株式会社 リンク機構
JP5802191B2 (ja) 2012-12-21 2015-10-28 本田技研工業株式会社 リンク機構の制御装置
JP5668770B2 (ja) * 2013-03-15 2015-02-12 株式会社安川電機 ロボットシステム、及び、ロボットシステムの制御方法
DE102013104265A1 (de) 2013-04-26 2014-10-30 Pilz Gmbh & Co. Kg Vorrichtung und Verfahren zum Absichern einer automatisiert arbeitenden Maschine
EP2824522B1 (en) * 2013-05-06 2017-11-29 ABB Schweiz AG Human safety provision in mobile automation environments
KR20140147267A (ko) * 2013-06-19 2014-12-30 광주과학기술원 위치 제어 산업 로봇의 제어 방법 및 장치
CN103600354B (zh) * 2013-11-08 2016-10-05 北京卫星环境工程研究所 航天器机械臂柔性随动控制重力补偿方法
WO2015120864A1 (en) * 2014-02-13 2015-08-20 Abb Technology Ag Robot system and method for controlling the robot system
US10299868B2 (en) * 2014-03-14 2019-05-28 Sony Corporation Robot arm apparatus, robot arm control method, and program
JP5946859B2 (ja) * 2014-04-14 2016-07-06 ファナック株式会社 力に応じて動かすロボットのロボット制御装置およびロボットシステム
CN104020699A (zh) * 2014-05-30 2014-09-03 哈尔滨工程大学 一种移动式视觉识别物料分拣智能机器人控制装置
DE102014210544B4 (de) * 2014-06-04 2023-04-13 Robert Bosch Gmbh Verfahren zur Steuerung eines Manipulators bei einer point-to-point Bewegung
US9908244B2 (en) * 2014-07-02 2018-03-06 Siemens Aktiengesellschaft Warning method and robot system
US10099609B2 (en) * 2014-07-03 2018-10-16 InfoMobility S.r.L. Machine safety dome
JP6140114B2 (ja) * 2014-07-31 2017-05-31 ファナック株式会社 移動式人協調型ロボット
JP6682120B2 (ja) * 2014-10-23 2020-04-15 立花 純江 ロボットティーチング装置
ES2648295T3 (es) * 2014-11-07 2017-12-29 Comau S.P.A. Robot industrial y procedimiento de control de un robot industrial
DE102014222809B3 (de) * 2014-11-07 2016-01-14 Kuka Roboter Gmbh Event-basierte Redundanzwinkelkonfiguartion für Gelenkarmroboter
WO2016189740A1 (ja) * 2015-05-28 2016-12-01 株式会社安川電機 ロボットシステム、教示治具及び教示方法
US9868213B2 (en) 2015-08-11 2018-01-16 Empire Technology Development Llc Incidental robot-human contact detection
US10215852B1 (en) * 2015-10-05 2019-02-26 Google Llc Robotic radar assistance
JP6850538B2 (ja) 2016-02-08 2021-03-31 川崎重工業株式会社 作業ロボット
JP6481635B2 (ja) * 2016-02-15 2019-03-13 オムロン株式会社 接触判定装置、制御装置、接触判定システム、接触判定方法及び接触判定プログラム
US11052537B2 (en) * 2016-05-16 2021-07-06 Mitsubishi Electric Corporation Robot operation evaluation device, robot operation evaluating method, and robot system
JP6755724B2 (ja) * 2016-06-20 2020-09-16 キヤノン株式会社 制御方法、ロボットシステム、および物品の製造方法
JP6496335B2 (ja) * 2017-03-03 2019-04-03 ファナック株式会社 ロボットシステム
JP7427358B2 (ja) * 2017-07-20 2024-02-05 キヤノン株式会社 ロボットシステム、物品の製造方法、制御方法、制御プログラム、および記録媒体
KR102370879B1 (ko) 2017-09-12 2022-03-07 주식회사 한화 협동로봇제어장치 및 협동로봇을 제어하는 방법
JP6680752B2 (ja) * 2017-11-28 2020-04-15 ファナック株式会社 ロボットの速度を制限する制御装置
US11872698B2 (en) 2018-02-13 2024-01-16 Canon Kabushiki Kaisha Controller of robot and control method
EP3755504A1 (en) * 2018-02-23 2020-12-30 ABB Schweiz AG Robot system and operation method
JP7127316B2 (ja) * 2018-03-22 2022-08-30 カシオ計算機株式会社 ロボット、ロボットの制御方法及びプログラム
DE102018109320A1 (de) * 2018-04-19 2019-10-24 Gottfried Wilhelm Leibniz Universität Hannover Verfahren zur Erkennung einer Intention eines Partners gegenüber einer mehrgliedrigen aktuierten Kinematik
IT201800005091A1 (it) 2018-05-04 2019-11-04 "Procedimento per monitorare lo stato di funzionamento di una stazione di lavorazione, relativo sistema di monitoraggio e prodotto informatico"
JP7155660B2 (ja) * 2018-06-26 2022-10-19 セイコーエプソン株式会社 ロボット制御装置およびロボットシステム
CN109240092B (zh) * 2018-11-30 2021-09-10 长春工业大学 基于多智能体可重构模块化柔性机械臂轨迹跟踪控制方法
JP2020089927A (ja) * 2018-12-03 2020-06-11 学校法人立命館 ロボット制御システム
JPWO2020158642A1 (ja) * 2019-01-31 2021-12-02 ソニーグループ株式会社 ロボットの制御装置、ロボットの制御方法、及びプログラム
JP7160118B2 (ja) * 2019-02-08 2022-10-25 日本電気株式会社 制御装置、制御方法、プログラム
DE102020104364B3 (de) * 2020-02-19 2021-05-27 Franka Emika Gmbh Steuerung eines Robotermanipulators bei Kontakt mit einer Person
CN113319844A (zh) * 2020-02-28 2021-08-31 东莞市李群自动化技术有限公司 机械臂控制方法、控制设备和机器人
WO2023037437A1 (ja) * 2021-09-08 2023-03-16 東京ロボティクス株式会社 無人飛行機、飛行体及び飛行ロボット
WO2023042464A1 (ja) * 2021-09-15 2023-03-23 ソニーグループ株式会社 ロボット装置、およびロボット制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2196763A (en) 1986-10-29 1988-05-05 Philips Electronic Associated Solid modeling
US5150026A (en) * 1990-11-19 1992-09-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Obstacle avoidance for redundant robots using configuration control
US5737500A (en) * 1992-03-11 1998-04-07 California Institute Of Technology Mobile dexterous siren degree of freedom robot arm with real-time control system
JP3865158B2 (ja) 1997-05-30 2007-01-10 株式会社安川電機 ロボットアームのインピーダンス制御装置
JP2000162062A (ja) 1998-12-01 2000-06-16 Fujitsu Ltd 障害物センサ装置
JP2002187090A (ja) * 2000-12-21 2002-07-02 Matsushita Electric Works Ltd マニピュレータ
JP4408616B2 (ja) * 2002-10-11 2010-02-03 ソニー株式会社 脚式移動ロボットの動作制御装置及び動作制御方法
JP4228871B2 (ja) * 2002-10-29 2009-02-25 パナソニック株式会社 ロボット把持制御装置及びロボット把持制御方法
US7443115B2 (en) 2002-10-29 2008-10-28 Matsushita Electric Industrial Co., Ltd. Apparatus and method for robot handling control
JP2004223663A (ja) 2003-01-24 2004-08-12 Doshisha インピーダンス制御装置、およびインピーダンス制御プログラム
JP3888310B2 (ja) 2003-02-06 2007-02-28 トヨタ自動車株式会社 歩行ロボットの制御用データ作成装置とzmp位置の計算方法
JP2005059161A (ja) 2003-08-18 2005-03-10 Univ Waseda ロボット制御装置
DE102004041821A1 (de) * 2004-08-27 2006-03-16 Abb Research Ltd. Vorrichtung und Verfahren zur Sicherung eines maschinell gesteuerten Handhabungsgerätes
DE102004043514A1 (de) * 2004-09-08 2006-03-09 Sick Ag Verfahren und Vorrichtung zum Steuern einer sicherheitsrelevanten Funktion einer Maschine

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970185B (zh) * 2009-05-22 2015-08-19 丰田自动车东日本株式会社 作业辅助机器人系统
CN104308849A (zh) * 2009-05-22 2015-01-28 丰田自动车东日本株式会社 作业辅助机器人系统
CN104308848A (zh) * 2009-05-22 2015-01-28 丰田自动车东日本株式会社 作业辅助机器人系统
CN104308849B (zh) * 2009-05-22 2016-06-01 丰田自动车东日本株式会社 作业辅助机器人系统
CN104308848B (zh) * 2009-05-22 2016-06-01 丰田自动车东日本株式会社 作业辅助机器人系统
CN101970185A (zh) * 2009-05-22 2011-02-09 关东自动车工业株式会社 作业辅助机器人系统
CN102917843A (zh) * 2010-11-26 2013-02-06 日商乐华股份有限公司 机器人的控制装置及控制方法
TWI489234B (zh) * 2010-11-26 2015-06-21 Rorze Corp Control device and control method of manipulator
CN102917843B (zh) * 2010-11-26 2016-08-31 日商乐华股份有限公司 机器人的控制装置及控制方法
CN103902020A (zh) * 2012-12-25 2014-07-02 苏茂 数据手套手腕关节检测装置
CN103902020B (zh) * 2012-12-25 2017-04-12 苏茂 数据手套手腕关节检测装置
CN111240269A (zh) * 2014-08-08 2020-06-05 机器人视觉科技股份有限公司 用于机器人设备的基于传感器的安全特征
CN111240269B (zh) * 2014-08-08 2023-12-08 机器人视觉科技股份有限公司 实现用于机器人单元的基于传感器的安全特征的方法和系统
CN107614214A (zh) * 2015-05-21 2018-01-19 日产自动车株式会社 故障诊断装置及故障诊断方法
CN107614214B (zh) * 2015-05-21 2019-07-09 日产自动车株式会社 故障诊断装置及故障诊断方法
CN108883533A (zh) * 2016-03-24 2018-11-23 Cmr外科有限公司 机器人控制
US11292127B2 (en) 2016-03-24 2022-04-05 Cmr Surgical Limited Robot control
CN106725861A (zh) * 2017-02-15 2017-05-31 山东大学 一种手术机器人末端工具碰撞位置检测方法
CN108621205A (zh) * 2017-03-17 2018-10-09 广明光电股份有限公司 协作型机器手臂的防夹方法
CN110216682A (zh) * 2018-03-02 2019-09-10 欧姆龙株式会社 机器人系统
CN109715350A (zh) * 2018-05-07 2019-05-03 深圳蓝胖子机器人有限公司 机器人及其机械抓手
CN109715350B (zh) * 2018-05-07 2022-07-05 深圳蓝胖子机器智能有限公司 机器人及其机械抓手
CN109620410A (zh) * 2018-12-04 2019-04-16 微创(上海)医疗机器人有限公司 机械臂防碰撞的方法及系统、医疗机器人
CN109620410B (zh) * 2018-12-04 2021-01-26 微创(上海)医疗机器人有限公司 机械臂防碰撞的方法及系统、医疗机器人
CN111347421A (zh) * 2018-12-21 2020-06-30 皮尔茨公司 用于扭矩估计的方法和装置

Also Published As

Publication number Publication date
CN101432103B (zh) 2012-05-23
JP4243309B2 (ja) 2009-03-25
JPWO2008004487A1 (ja) 2009-12-03
JP2008302496A (ja) 2008-12-18
WO2008004487A1 (fr) 2008-01-10
US8676379B2 (en) 2014-03-18
US20090171505A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
CN101432103B (zh) 机器人手臂的控制装置
US11045945B2 (en) Method for controlling walking of robot and robot
CN101332604B (zh) 人机相互作用机械臂的控制方法
US8160745B2 (en) Robots with occlusion avoidance functionality
US9002519B2 (en) Robot control method, robot control device, and robot control system
JP6238021B2 (ja) ロボット、ロボットの制御装置及び制御方法、並びに、ロボット用制御プログラム
US20200376666A1 (en) Robot system and operation method
US20080234864A1 (en) Robots with Collision Avoidance Functionality
JPWO2007111252A1 (ja) マニピュレータの制御方法および制御システム
CN103722565A (zh) 仿人机器人自碰撞监控系统及监控方法
US20120004775A1 (en) Robot apparatus and control method therefor
US20090295324A1 (en) Device and method for controlling manipulator
Kuo Trajectory and heading tracking of a mecanum wheeled robot using fuzzy logic control
KR102418451B1 (ko) 로봇 제어 시스템
US20120059518A1 (en) Walking robot and control method thereof
Kim et al. Full-body collision detection and reaction with omnidirectional mobile platforms: a step towards safe human–robot interaction
Zanchettin et al. A novel passivity-based control law for safe human-robot coexistence
JP7160118B2 (ja) 制御装置、制御方法、プログラム
CN110116424A (zh) 机器人
CN112041125A (zh) 机器人的控制方法
Moorehead et al. Collision detection using a flexible link manipulator: a feasibility study
JP2009012133A (ja) 安全装置およびそれを備えたマニピュレータ
JP7024215B2 (ja) 移動体の制御装置及び制御システム
Omrčen et al. Autonomous motion of a mobile manipulator using a combined torque and velocity control
Tsetserukou et al. Obstacle avoidance control of humanoid robot arm through tactile interaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant