CN101454688A - 心腔壁增厚的量化和显示 - Google Patents

心腔壁增厚的量化和显示 Download PDF

Info

Publication number
CN101454688A
CN101454688A CNA2007800188540A CN200780018854A CN101454688A CN 101454688 A CN101454688 A CN 101454688A CN A2007800188540 A CNA2007800188540 A CN A2007800188540A CN 200780018854 A CN200780018854 A CN 200780018854A CN 101454688 A CN101454688 A CN 101454688A
Authority
CN
China
Prior art keywords
heart
imaging system
image
border
ultrasonic diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800188540A
Other languages
English (en)
Other versions
CN101454688B (zh
Inventor
I·萨尔戈
S·塞特尔迈尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101454688A publication Critical patent/CN101454688A/zh
Application granted granted Critical
Publication of CN101454688B publication Critical patent/CN101454688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52073Production of cursor lines, markers or indicia by electronic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52087Details related to the ultrasound signal acquisition, e.g. scan sequences using synchronization techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Physiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

描述了用于对心肌壁增厚进行定量和显示的超声成像系统和方法。在一心动周期内定义图像序列中的心内膜边界和心外膜边界,并在所述心动周期内跟踪处于围绕心肌的指定位置处的所述边界之间的距离的变化。优选连同该心动周期中的其他量度一起,例如,连同心腔容积变化、射血分数或ECG波形一起,将所述距离变化以图形格式提供给用户。跨越心肌的弦长度的距离变化提供了对指定位置处壁厚度变化的直接指示。优选通过散斑跟踪完成在该心动周期内对指定位置的跟踪。本发明的技术还能够呈现处于心肌的指定位置处的应变。

Description

心腔壁增厚的量化和显示
本申请要求分别于2006年5月25日和2006年8月22日提交的美国临时专利申请No.60/803148和No.60/823114的权益。
技术领域
本发明涉及医疗诊断超声系统,具体而言,涉及执行超声心动图定量测量的超声系统。
背景技术
存在很多种用于对心腔功能进行定量的方法。指示心肌梗塞和射血分数的心室壁运动是超声心动图仪(echocardiographer)的基本诊断工具。这些诊断工具要求,在心动周期上在一系列图像上界定并跟踪心室,从而完成对所描绘出的心肌和心室的测量。用于在超声图像中描绘出心壁的技术包括(例如)对血液组织界面的自动边界跟踪和用于对收缩速度进行定量的心壁运动的组织多普勒成像,及其他。用于描绘和跟踪心肌运动的能力对于诊断心脏电刺激的同步性也很重要,其中,所述心脏电刺激又被称为机电换能。由通过心肌中肌肉细胞内的钠和钾通道传递的电化学信号命令心脏收缩。散布于整个心肌上的这些信号应当命令心肌细胞在同一时刻收缩。在其发生时,心脏从松弛的全容积状态收缩至收缩后的最小容积,从而通过每次心搏泵送最大容积的血液。这是健康心脏的特点。但是,在刺激这一收缩的信号使得心脏的不同区域在不同时刻收缩时,那么这种不规律的收缩所泵送的血液的容积将小于所述最大血液容积,从而使效率降低,并使心脏随着时间的推移而疲劳。希望能够对这种状况加以诊断,从而在有必要的时候实施必要的治疗措施,所述措施通常是植入设置为迫使进行同步收缩的具有导线的起搏器。将这种诊断及其治疗称为心脏再同步治疗或CRT。
能够影响心脏的机电换能的疾病状况为左束支传导阻滞。在心脏电脉冲的传输受到延迟或者未能沿主要的左束支的快速传导纤维或者左前分支和左后分支二者内的快速传导纤维得以传导时,将发生左束支传导阻滞。其可能通过从右心室扩展到左心室的细胞到细胞的传导而导致左心室缓慢去极化。这一状况导致了心室收缩的同步性的丧失以及由此产生的来自心室的射血量的不足。相应地,希望能够有效并且准确地标识这种诸如心壁增厚的状况的指征和效应,并对其进行定量。到目前为止,一直是通过专家的主观测量来评估心壁增厚的。
标识心壁增厚需要描绘出心内膜和心外膜。目前,没有什么可靠的方法能够通过常用的提取图像梯度的办法提取出心外膜边界。此外,尽管理论上能够通过组织多普勒方法评估心壁增厚,但是多普勒效应受到声束的取向限制,因而所检测的速度与运动方向和询问超声束的方向之间的关系成比例地变化。例如,如果心肌与声传输线(波束方向)成直角运动,那么将检测不到任何运动。而且,多普勒方法只能间接测量增厚。所述方法通过测量速度确定位移,进而确定增厚,其中,要对所述速度进行积分,而这将引入噪声和潜在的误差。因而,希望能够直接标识出心肌壁增厚,并对其进行定量。
发明内容
根据本发明的原理,对于处于心动周期内的某一点处的帧而言,采用心内膜和心外膜上的点界定处于心脏超声图像内的感兴趣区域(ROI)。之后,在该心动周期内对这些点进行散斑/纹理跟踪。针对每一帧计算对应的心内膜和心外膜跟踪点之间的距离,从而得到长度和Lagrangian应变或者相对于初始值的其他长度分数变化的直接量度。两种量度均为对心壁增厚的直接测量,可以以作为时间的函数的图形对其予以显示。本发明的技术不限于梯度检测法(血液组织界面),其不受组织运动相对于表征多普勒测量的超声束的角偏差的影响,其能够提供对位移的直接测量,并由此获得对增厚的直接测量。
附图说明
在附图中:
图1通过方框图的形式示出了根据本发明的原理构建的具有自动边界检测处理器的超声系统;
图2更为详细地示出了图1的超声系统的部分;
图3a-3c示出了用于检测超声图像中左心室的心内膜边界的技术;
图4示出了图3a-3c的技术的扩展,其用于检测超声图像中的左心室的心外膜边界;
图5借助图形学示出了用于根据本发明的原理测量心壁增厚的超声图像;
图6示出了根据本发明的另一实施例在心动周期上得到的心壁厚度测量值的图线。
具体实施方式
首先,参考图1,其以方框图的形式示出了根据本发明的原理构建的超声诊断成像系统。包括换能器元件的一维(1D)或二维(2D)阵列412的探头或扫描头410发射超声波,并接收超声回波信号。在波束形成器420的控制下执行这一发射和接收,其中,所述波束形成器420对从正在受到扫描的人体接收到的回波信号进行处理,从而形成来该回波信号的相干束。在想要呈现多普勒信息时,通过多普勒处理器430对所述回波信息进行多普勒处理,并将所述经处理的多普勒信息耦合至形成2D或3D多普勒图像的图像处理器440。对于组织结构的B模式成像而言,通过幅度检测对所述回波信号进行图像处理,并将其扫描转换为用于显示的预期图像格式。所述图像经过
Figure A200780018854D0007172546QIETU
存储器460,可以从所述存储器将所述图像直接耦合至视频处理器470,以显示在图像显示器480上。所述Cineloop存储器还可以用于取得最新获取的实时图像序列,以便对其存储,并供以后的检查和诊断之用。所取得的图像序列又被称为图像“环(loop)”,其可能分布于一个或多个心动周期上。如下所述,还可以将所述图像应用于自动边界检测(ABD)处理器490,该处理器对2D或3D图像进行处理,以界定图像内的解剖学边界和界限。将所界定的边界以图形形式重叠到耦合至视频处理器470以供显示的图像上。所述系统可以用于界定并显示Cineloop存储器460内存储的图像环上的边界,或者显示在对病人进行现场扫描(livescanning)的过程中所生成的实时图像上绘制的边界。
图2是图1的图像处理器440和视频处理器470之间的超声系统的部分的详细方框图。图像处理器440生成存储于图像数据存储器140内的图像的扫描线数据。通过由ABD处理器144执行的心室边界检测来分析心脏图像序列的第一起始点图像,在下文中将对其予以更为详细的说明。当在该第一图像内界定了所述边界时,由散斑跟踪器142在接下来的图像中跟踪所述边界的位置。通过图形处理器148绘制最初界定的边界和接下来的图像中的边界。通过扫描转换器50将所述序列的超声图像转换为预期的显示格式(例如,扇形、直线、3D等),该扫描转换器将以图形的形式显示出在所述超声图像内界定的边界位置上生成的边界。将具有图形边界重叠的图像存储在Cineloop存储器460内。之后,将所述图像耦合至视频处理器470,以供显示。
通过散斑跟踪器142跟踪连续图像的标识边界上的特定点。所述散斑跟踪器通过由处于这些点的图像位置上的局部组织生成的散斑图案跟踪这些点的起始解剖学位置。所述散斑跟踪器142标识处于相邻心肌中的参考点周围的像素区域。保存这些像素的散斑图案,并将其与接下来的图像的相同区域内的散斑图案进行比较,并且通过块匹配对所述散斑图案进行匹配,如US专利6442289(Olsson等)所述。所述匹配的难度和精确度是通过针对所述匹配建立最大相关性而决定的。因而,能够通过跟踪这些点周围的散斑图案在不同的图像之间跟踪图像内的参考点位置。在散斑跟踪器142在新的图像中对参考点定位时,将所述参考点位置耦合至图形处理器148,从而采用最新标识出的点位置重新绘制出边界,并且针对新的图像生成图形重叠。对新的图像及其图形重叠进行扫描转换,并将其显示在图像显示器480上。
在提取心肌边界处的图像梯度时优选采用散斑跟踪,因为其对图像中的噪声的敏感度较低。此外,与心内膜边界可由相邻的血池(blood pool)界定这一情况不同,对于心外膜边界而言没有明确定义的梯度。此外,图像噪声可能引起所描绘的边界的缺失,其将导致所估算的边界看起来更加深入到心肌内,而不是处于组织边界上。已经找到了一种得到了相当明确界定的散斑图案,其能够在存在噪声的情况下,在不同的帧之间以合理的准确度进行跟踪。但是,已经发现,所述散斑图案将随时间发生变化。通过在一心动周期中的所存储图像内在多个位置处播种(seeding)散斑图案位置能够抵消这一趋势,之后,从两个界定的边界开始在时间上前后跟踪,从而使漂移的散斑图案收敛。通过采用如下所述的自动或半自动边界检测技术或者通过人工手动界定边界在(例如)心动周期的开始和结束处描绘两个边界来执行所述播种。一旦界定了心内膜边界,那么可以使这一边界沿所有方向均匀地向外扩展,之后将所述边界人工调整至在所述图像中看到的心外膜边界。已经找到了能够在80-300帧的帧序列上良好实施的收敛技术,其中,在一个心动周期内含有30-100帧。
如果不跟踪围绕参考点或者位于参考点之下或者与参考点相邻的心肌组织中的散斑图案,那么可以认识到,可以通过除散斑跟踪之外的手段,即,通过跟踪尺寸大于波长的图像特征来跟踪参考点位置。例如,可以跟踪特定解剖学特征的移动。作为另一个例子,可以跟踪组织纹理。还将认识到,可以在经扫描前转换或扫描后转换的图像数据中跟踪目标特征。
图3a、3b和3c示出了对左心室(LV)的边界进行描迹的LV的对比度增强长轴图像。用户通过通常位于超声系统控制板150上的诸如鼠标或跟踪球的指示设备或者用于操纵图像上的光标的工作站键盘来指定图像中的第一界标。在图3a所示的例子中,所指定的第一界标是内侧(medial)(隔膜)二尖瓣环(MMA)。在用户点击图像中的MMA时,将在图中出现图形标记,例如,由编号“1”表示的白色对照点。之后,用户指定第二界标,在这一例子中,所述第二界标为侧面二尖瓣环(lateral mitral annulus)(LMA),在图3b中,采用编号“2”表示的第二白色对照点对其做出标记。之后,由ABD处理器生成的线自动连接所述两个对照点,就左心室的这一长轴视图而言,该线表示二尖瓣平面。之后,用户将指示器移动到心内膜顶点,即,左心室腔内的最高点。随着用户将指示器移动到图像中的这一第三界标,左心室心内膜腔的模板形状将动态地追随光标,从而随着所述指示器寻找LV腔的顶点而发生扭曲和伸展。如图3c中的白线所示,这一模板被所述第一和第二对照点1和2锚定(anchored),并且经过所述第三对照点“3”,在用户在顶点处点击指示器时,所述第三对照点被定位在所述顶点处。在经过定位之后,所述心内膜腔模板提供了如图3c所示的心内膜的近似描迹。在图3c的实施例中,随着指示器接近并指定所述顶点,一条将左心室分成两半的黑线跟随所述指示器而形成。这条黑线锚定于指示二尖瓣平面的线的中点和左心室顶点之间,其实质上表示二尖瓣中心和腔顶点之间的中心线。在商业实现中,所述ABD处理器144是可得到的在板超声系统(onboard ultrasound system),或者来自Andover,MA的PhilipsMedical Systems的离线工作站形式,所述离线工作站处于被称为“QLABTM”的图像分析包内。在美国专利公开文本No.2005/0075567(Skyba等)中更为详细地描述了所述QLAB包的这一特征。可以通过其他手段,例如,美国专利No.6491636(Chenal等)中描述的手段使所述自动边界处理充分自动化。
根据本发明的另一方面,如图4所示,所述ABD处理器144还能够对心肌的心外膜边界进行描迹。可以从通过图3a、3b和3c所示的心内膜标识步骤开始的连续过程完成心外膜边界描迹。凭借由此界定的心内膜边界,用户将光标移动到心外膜顶点,即心肌的外表面的最高点。之后,用户点击所述心外膜顶点,从而确定了标记为“4”的第四对照点的位置。之后,将自动出现第二描迹,如图4所示,该描迹大致描绘了心外膜边界。如图4中的所述外侧白色边界线所示的这一第二描迹也被所述第一和第二对照点锚定,并且经过处于心外膜顶点处的第四对照点。这两条描迹是心肌边界的大致轮廓。
作为最后的步骤,用户可能想要调整图4所示的描迹,从而使其精确地勾画心肌边界的轮廓。在每条描迹周围存在很多在图中以“+”号表示的小的对照点。这些小的对照点的数量和间距为系统设计选项,或者可以是用户能够设置的变量。采用用户界面或控制面板150上的控制,用户能够指向这些对照点或在其附近,并且点击和拖动所述轮廓,从而在图像中更为精确地描绘心肌边界。这一拉伸或拖动边界的过程被称为“橡皮条选择(rubberbanding)”,在前述专利No.6491636中对其给出了更为详细的说明,其中具体参考该专利的图9。作为橡皮条选择的替代,在更为复杂的实施例中,可以通过图像处理将近似边界自动调节至图像边界,其中,所述图像处理采用了处于近似的组织边界处或附近的像素的强度信息。在完成之后,所述边界能够通过在图像中使心肌的图像像素封闭而精确地描绘心肌的界限。
图5示出了由根据本发明的原理构建的超声系统生成的短轴心脏图像。在所述短轴图像的中央示出了受到心肌12包围的心室10。例如,采用上述技术或者在US专利No.5797396(Geiser等)中描述的技术界定心内膜和心外膜边界。在心内膜和心外膜边界二者上都界定了若干参考点。在这一例子中,每一对心内膜和心外膜参考点14、16包括位于所述短轴视图的独立半径上的两个点。通过所述图形处理器148生成的以图形的方式绘制的弦线18连接每一对参考点,其中,所述弦线连接所述点,并且与初始图像的边界正交。在这一例子中,未显示边界描迹图形;只显示了心内膜和心外膜参考点14、16及其连接弦18。在这一例子中,在心肌周围具有连出七条线的参考点,并且绘出了七条弦线,但是在指定的实现方式中,可以采用更多或更少的弦,或者由用户利用用户界面150对其予以指定。随着用户对参考点位置的修改,参考点数据文件146内的参考点位置的值将得到相应更新。所述弦线在相关参考点之间可以是连续的,或者在所述点之间可以是分段的,这样能够更为详细的分析线段变化。
由于图像序列在心动周期内在帧与帧之间发生移动,因而随着心肌在心脏收缩期内收缩,在心脏舒张期内松弛,心内膜和心外膜边界将在图像之间发生变化。由于对边界位置的散斑跟踪,所述参考点14、16将持续跟踪相应边界上的相同位置。随着心肌收缩而从心腔射血,心内膜将相对均匀地朝向心腔的中央移动,弦18的长度将增大,心内膜到心外膜的厚度也将增大。之后,如图6中的七条对应的透壁增厚曲线30所示,比较壁厚度弦的长度变化,其中,所述曲线是通过壁增厚曲线计算器20生成的。在这一例子中,相对于表示不断变化的心腔容积的声学量化曲线32-38绘制了壁增厚曲线30。可以如US专利No.5195521(Melton Jr.等)中所述生成所述声学量化(AQ)曲线。在AQ曲线的初始部分32内,该心腔射血,直到达到最小心腔容积点34为止。在这一时间段内,心壁将增厚,直到达到最大厚度点40为止。在这一例子中,所有的壁增厚曲线都大致在同一时刻40处达到最大值,这是健康心脏的特征。如果心脏发生病变,例如,发生梗塞,那么处于梗塞位置的弦可能不会与处于健康位置的弦同时达到其最大值,或者由于相邻的健康区域将拖曳梗塞区域,因而将使所述梗塞位置处的弦达到较小的最大厚度,如壁厚度曲线42所示。
从最大收缩点34开始,随着心脏以来自肺部的血液再充满,LV的心肌将开始在AQ曲线的部分36内松弛,并且壁厚度将下降,如处于这一时段内的下降的曲线30所示。松弛的心脏将在心脏舒张期的后一部分期间趋向平稳,直到在左心房收缩时经历了最后的心房“突跳(kick)”38为止。
所述弦参考点不是必要严格地恰好位于心内膜和心外膜边界上。可以由位于心肌内与心内膜边界相距一定距离的用户选定数量的参考点14界定ROI(ROI心内膜)。在心肌内的另一用户选定距离处定义对应的点(ROI心外膜)。如果希望的话,可以通过手绘的方式对所述ROI点进行加工,从而使其心内膜点和心外膜点匹配所觉察到的组织区域。使所述点位于所述组织内的一定距离处,而不是恰好位于所述边界上能够确保其在散斑图案中的位置更易于实现在心动周期的接下来的帧中的跟踪。所述ROI必须依靠在心动周期开始时的单帧内的定义,接下来,其将通过由于跟踪而带来的更新而被重新定义。
作为图6所示的跟踪弦长的变化的替代,或者除此之外,可以通过壁增厚曲线计算器20计算Lagrangian应变(相对于初始长度的长度分数变化),并对其给出图形显示。应变是组织变形的量度,并且是肌肉组织的机械效应的指示。例如,参考美国专利No.6537221(Criton等)。根据本发明的另一方面,可以显示并分析从心内膜到心外膜的累积应变。如图6所示,以心室面积、射血分数或者所显示的ECG的参考图作为比较,在图表中,相对于时间显示出了针对每一对心内膜和心外膜参考点14和16的长度和应变计算值。在其他实现方式中,可以在图5所示的组织图像中通过颜色或图解表示以参量图像的形式显示出所述长度和应变变化,从而使临床医师易于与心肌组织中的位置相关地标识出异常变化。

Claims (20)

1、一种用于诊断心壁增厚的超声诊断成像系统,包括:
探头,其用于向心脏内发射超声波,并接收作为响应的回波;
图像处理器,其响应于所述回波,用于生成心肌的图像;
心肌壁厚度描绘器,其描绘所述心肌的心内膜和心外膜之间的距离;以及
壁厚度分析器,其响应于所描绘的距离,用于生成心肌壁厚度在心动周期的至少一部分内的变化的指示。
2、根据权利要求1所述的超声诊断成像系统,还包括图像跟踪器,其用于在经过所述心动周期的至少一部分的帧与帧之间跟踪所描绘的所述距离。
3、根据权利要求2所述的超声诊断成像系统,其中,所述图像跟踪器还包括散斑跟踪器。
4、根据权利要求2所述的超声诊断成像系统,其中,所述图像跟踪器还包括解剖学特征跟踪器。
5、根据权利要求2所述的超声诊断成像系统,其中,所述图像跟踪器还包括纹理跟踪器。
6、根据权利要求1所述的超声诊断成像系统,其中,所述壁厚度分析器还用于生成跨越所述心肌定向的弦的长度变化的指示。
7、根据权利要求6所述的超声诊断成像系统,其中,所述壁厚度分析器还用于生成所述心内膜和心外膜之间的所述距离的变化的指示。
8、根据权利要求1所述的超声诊断成像系统,还包括:
解剖学边界检测器,其响应于所述心肌的图像,用于描绘所述心肌的心内膜边界和心外膜边界,
其中,所述壁厚度分析器用于生成所述心内膜边界和所述心外膜边界之间的变化的指示。
9、根据权利要求8所述的超声诊断成像系统,其中,所述壁厚度分析器还用于生成处于围绕心腔的选定位置处所述心内膜边界和所述心外膜边界之间的变化的指示。
10、根据权利要求9所述的超声诊断成像系统,其中,所述壁厚度分析器还用于生成在心动周期的至少一部分上,处于围绕所述心腔的选定位置处的所述心内膜边界和所述心外膜边界之间的变化的定量量度。
11、根据权利要求10所述的超声诊断成像系统,其中,所述定量量度包括图形显示。
12、根据权利要求1所述的超声诊断成像系统,其中,所述壁厚度分析器用于生成跨越所述心肌的至少一部分的应变的指示。
13、根据权利要求12所述的超声诊断成像系统,其中,所述壁厚度分析器用于生成跨越所述心肌的至少一部分的Lagrangian应变的指示。
14、根据权利要求13所述的超声诊断成像系统,其中,所述壁厚度分析器用于生成在心动周期的至少一部分上跨越所述心肌的至少一部分的Lagrangian应变的定量量度。
15、根据权利要求14所述的超声诊断成像系统,其中,所述定量量度包括图形显示。
16、一种测量心肌壁厚度的方法,包括:
在心动周期的至少一部分上获取心肌的超声图像序列;
在所述图像的至少其中之一内界定心内膜和心外膜之间的距离;
在所述心动周期的至少一部分上跟踪所定义的距离的变化;以及
显示在所述心动周期的至少一部分内所述变化的定量量度。
17、根据权利要求16所述的方法,其中,所述定义距离的步骤还包括定义多个跨越所述心肌的长度;并且
其中,所述跟踪变化的步骤还包括跟踪所定义的长度的变化。
18、根据权利要求17所述的方法,其中,所述显示步骤还包括显示所定义的长度的变化的图形显示。
19、根据权利要求16所述的方法,还包括跟踪所述图像的至少其中之一内的所述心内膜边界和心外膜边界,
其中,所述跟踪步骤还包括在所述心动周期的至少一部分内跟踪所述心内膜边界和心外膜边界。
20、根据权利要求19所述的方法,其中,所述跟踪步骤还包括通过散斑跟踪来跟踪所述心内膜边界和心外膜边界。
CN2007800188540A 2006-05-25 2007-05-17 心腔壁增厚的量化和显示 Active CN101454688B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US80314806P 2006-05-25 2006-05-25
US60/803,148 2006-05-25
US82311406P 2006-08-22 2006-08-22
US60/823,114 2006-08-22
PCT/IB2007/051895 WO2007138522A1 (en) 2006-05-25 2007-05-17 Quantification and display of cardiac chamber wall thickening

Publications (2)

Publication Number Publication Date
CN101454688A true CN101454688A (zh) 2009-06-10
CN101454688B CN101454688B (zh) 2013-01-30

Family

ID=38544380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800188540A Active CN101454688B (zh) 2006-05-25 2007-05-17 心腔壁增厚的量化和显示

Country Status (7)

Country Link
US (1) US8096947B2 (zh)
EP (1) EP2030042B1 (zh)
JP (1) JP2009538172A (zh)
KR (1) KR20090010069A (zh)
CN (1) CN101454688B (zh)
RU (1) RU2448649C2 (zh)
WO (1) WO2007138522A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724918A (zh) * 2010-01-29 2012-10-10 株式会社日立医疗器械 超声波诊断装置及其测量点追踪方法
CN103220982A (zh) * 2010-11-18 2013-07-24 皇家飞利浦电子股份有限公司 用于检测对象的性质的装置
CN104471424A (zh) * 2012-07-18 2015-03-25 皇家飞利浦有限公司 利用mri、ct或us对心肌收缩功能的量化
CN105105775A (zh) * 2011-07-19 2015-12-02 株式会社东芝 心肌运动解析装置
CN112842384A (zh) * 2020-12-30 2021-05-28 无锡触典科技有限公司 超声心动图心肌包络量测方法、装置和存储介质

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119924A (ja) * 1995-08-01 1997-05-06 Hewlett Packard Co <Hp> クロマトグラフィー用分離カラム
US20070167809A1 (en) * 2002-07-22 2007-07-19 Ep Medsystems, Inc. Method and System For Estimating Cardiac Ejection Volume And Placing Pacemaker Electrodes Using Speckle Tracking
US8187190B2 (en) 2006-12-14 2012-05-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for configuration of a pacemaker and for placement of pacemaker electrodes
US9089278B2 (en) 2008-07-10 2015-07-28 Koninklijke Philips N.V. Ultrasonic assessment of cardiac synchronicity and viability
US20100123714A1 (en) * 2008-11-14 2010-05-20 General Electric Company Methods and apparatus for combined 4d presentation of quantitative regional parameters on surface rendering
JP2011025011A (ja) * 2009-06-26 2011-02-10 Toshiba Corp 超音波診断装置及び超音波診断装置制御プログラム
US8394025B2 (en) * 2009-06-26 2013-03-12 Uab Vittamed Method and apparatus for determining the absolute value of intracranial pressure
US20110213260A1 (en) * 2010-02-26 2011-09-01 Pacesetter, Inc. Crt lead placement based on optimal branch selection and optimal site selection
JP5444175B2 (ja) 2010-09-14 2014-03-19 富士フイルム株式会社 画像処理装置、方法およびプログラム
US10321892B2 (en) * 2010-09-27 2019-06-18 Siemens Medical Solutions Usa, Inc. Computerized characterization of cardiac motion in medical diagnostic ultrasound
US9224240B2 (en) * 2010-11-23 2015-12-29 Siemens Medical Solutions Usa, Inc. Depth-based information layering in medical diagnostic ultrasound
CN102890823B (zh) * 2011-07-19 2016-04-27 株式会社东芝 运动对象轮廓提取及左心室图像分割方法和装置
US8705836B2 (en) * 2012-08-06 2014-04-22 A2iA S.A. Systems and methods for recognizing information in objects using a mobile device
DE102012107825B4 (de) * 2012-08-24 2017-03-16 Tomtec Imaging Systems Gmbh Anpassung eines 3D Oberflächenmodells an Grenzflächen einer anatomischen Struktur in einem 3D Bilddatensatz
KR101587150B1 (ko) * 2014-02-18 2016-01-21 연세대학교 산학협력단 좌심실 기능 변화 분석 장치 및 방법
EP3110317B1 (en) 2014-02-25 2023-05-03 ICU Medical, Inc. Patient monitoring system with gatekeeper signal and corresponding method
EP4193928A1 (en) * 2015-03-10 2023-06-14 Koninklijke Philips N.V. Ultrasonic diagnosis of cardiac performance using heart model chamber segmentation with user control
CA3002372C (en) 2015-10-19 2021-03-02 Icu Medical, Inc. Hemodynamic monitoring system with detachable display unit
CA3023458C (en) * 2016-05-12 2021-09-21 Fujifilm Sonosite, Inc. Systems and methods of determining dimensions of structures in medical images
JP7252206B2 (ja) 2017-08-17 2023-04-04 コーニンクレッカ フィリップス エヌ ヴェ 画像アーチファクト特定及び除去のための深層学習ネットワークを有する超音波システム
US11278259B2 (en) 2018-02-23 2022-03-22 Verathon Inc. Thrombus detection during scanning
US20220211342A1 (en) * 2021-01-05 2022-07-07 GE Precision Healthcare LLC Method Of Performing Automated Measurements Over Multiple Cardiac Cycles
WO2023095950A1 (ko) * 2021-11-25 2023-06-01 이준호 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195521A (en) * 1990-11-09 1993-03-23 Hewlett-Packard Company Tissue measurements
US5544656A (en) * 1994-12-02 1996-08-13 The Regents Of The University Of California Method and apparatus for myocardial wall measurement
JPH10504225A (ja) * 1995-06-07 1998-04-28 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク. デジタル画像定量化のための自動化された方法
RU2122339C1 (ru) * 1996-01-11 1998-11-27 Московский научно-исследовательский институт глазных болезней им.Гельмгольца Способ диагностики прорастания внутриглазной опухоли в склеру
DE19621099C2 (de) * 1996-05-24 1999-05-20 Sulzer Osypka Gmbh Vorrichtung mit einem Katheter und einer von der Innenseite in die Herzwand einstechbaren Nadel als Hochfrequenzelektrode
US6086534A (en) * 1997-03-07 2000-07-11 Cardiogenesis Corporation Apparatus and method of myocardial revascularization using ultrasonic pulse-echo distance ranging
US6250162B1 (en) * 1998-04-24 2001-06-26 Murata Manufacturing Co., Ltd. Ultrasonic sensor
WO2000069490A1 (en) * 1999-05-18 2000-11-23 Sonometrics Corporation System for incorporating sonomicrometer functions into medical instruments and implantable biomedical devices
US6491636B2 (en) 2000-12-07 2002-12-10 Koninklijke Philips Electronics N.V. Automated border detection in ultrasonic diagnostic images
US6863655B2 (en) * 2001-06-12 2005-03-08 Ge Medical Systems Global Technology Company, Llc Ultrasound display of tissue, tracking and tagging
US6773402B2 (en) * 2001-07-10 2004-08-10 Biosense, Inc. Location sensing with real-time ultrasound imaging
US6638221B2 (en) * 2001-09-21 2003-10-28 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus, and image processing method
US20050075567A1 (en) * 2001-12-18 2005-04-07 Koninklijke Philips Electronics N.V. Ultrasonic diagnostic imaging system with assisted border tracing
JP4060615B2 (ja) * 2002-03-05 2008-03-12 株式会社東芝 画像処理装置及び超音波診断装置
JP3875581B2 (ja) * 2002-03-18 2007-01-31 独立行政法人科学技術振興機構 超音波診断システム
US7356172B2 (en) * 2002-09-26 2008-04-08 Siemens Medical Solutions Usa, Inc. Methods and systems for motion tracking
US6628743B1 (en) * 2002-11-26 2003-09-30 Ge Medical Systems Global Technology Company, Llc Method and apparatus for acquiring and analyzing cardiac data from a patient
JP4359749B2 (ja) * 2003-04-17 2009-11-04 株式会社日立メディコ 生体組織の運動表示方法及び画像診断装置
US7318804B2 (en) * 2003-12-09 2008-01-15 The Regents Of The University Of Michigan Methods and systems for measuring mechanical property of a vascular wall and method and system for determining health of a vascular structure
JP4847684B2 (ja) * 2004-03-11 2011-12-28 株式会社日立メディコ 画像診断装置
CN100475155C (zh) * 2004-05-21 2009-04-08 松下电器产业株式会社 超声波诊断装置及超声波诊断装置的控制方法
US7647109B2 (en) * 2004-10-20 2010-01-12 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US20060184190A1 (en) * 2005-02-14 2006-08-17 Feiler Ernest M Trans-myocardial fluid-jet revascularization arrangement
US8187186B2 (en) * 2005-11-08 2012-05-29 Koninklijke Philips Electronics N.V. Ultrasonic diagnosis of myocardial synchronization
RU2306104C1 (ru) * 2006-07-31 2007-09-20 Елена Романовна Мутьен Способ дифференциальной диагностики степени кальциноза аортального клапана

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724918A (zh) * 2010-01-29 2012-10-10 株式会社日立医疗器械 超声波诊断装置及其测量点追踪方法
CN103220982A (zh) * 2010-11-18 2013-07-24 皇家飞利浦电子股份有限公司 用于检测对象的性质的装置
CN103220982B (zh) * 2010-11-18 2016-06-15 皇家飞利浦电子股份有限公司 用于检测对象的性质的装置
CN105105775A (zh) * 2011-07-19 2015-12-02 株式会社东芝 心肌运动解析装置
CN105105775B (zh) * 2011-07-19 2018-11-09 东芝医疗系统株式会社 心肌运动解析装置
CN104471424A (zh) * 2012-07-18 2015-03-25 皇家飞利浦有限公司 利用mri、ct或us对心肌收缩功能的量化
CN112842384A (zh) * 2020-12-30 2021-05-28 无锡触典科技有限公司 超声心动图心肌包络量测方法、装置和存储介质

Also Published As

Publication number Publication date
RU2008151409A (ru) 2010-06-27
EP2030042A1 (en) 2009-03-04
JP2009538172A (ja) 2009-11-05
US20090131788A1 (en) 2009-05-21
WO2007138522A1 (en) 2007-12-06
RU2448649C2 (ru) 2012-04-27
US8096947B2 (en) 2012-01-17
EP2030042B1 (en) 2016-03-16
CN101454688B (zh) 2013-01-30
KR20090010069A (ko) 2009-01-28

Similar Documents

Publication Publication Date Title
CN101454688B (zh) 心腔壁增厚的量化和显示
EP1778093B1 (en) Ultrasonic diagnosis of ischemic cardiodisease
CN102088913B (zh) 心脏同步性和生成力的超声评估
US8144956B2 (en) Ultrasonic diagnosis by quantification of myocardial performance
EP0880937B1 (en) Ultrasonic diagnostic imaging system with doppler assisted tracking of tissue motion
US8187186B2 (en) Ultrasonic diagnosis of myocardial synchronization
US20120008833A1 (en) System and method for center curve displacement mapping
JP3378446B2 (ja) 超音波画像の処理方法及びその装置
Prasad et al. An image processing method for cardiac motion analysis
US20230240645A1 (en) Systems and methods for measuring cardiac stiffness
Olstad et al. Display of cardiac activation pathways with echocardiography
Berg et al. Real-time quantitative wall motion coding in two-dimensional echocardiography

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant