CN101473366B - 散斑导航系统 - Google Patents

散斑导航系统 Download PDF

Info

Publication number
CN101473366B
CN101473366B CN2006800531343A CN200680053134A CN101473366B CN 101473366 B CN101473366 B CN 101473366B CN 2006800531343 A CN2006800531343 A CN 2006800531343A CN 200680053134 A CN200680053134 A CN 200680053134A CN 101473366 B CN101473366 B CN 101473366B
Authority
CN
China
Prior art keywords
illumination beam
planar substrates
sensor array
collimated
laser positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800531343A
Other languages
English (en)
Other versions
CN101473366A (zh
Inventor
B·A·斯普尔洛克
J·I·特里斯纳迪
S·桑德斯
C·B·卡利斯尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cypress Semiconductor Corp
Original Assignee
Cypress Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cypress Semiconductor Corp filed Critical Cypress Semiconductor Corp
Publication of CN101473366A publication Critical patent/CN101473366A/zh
Application granted granted Critical
Publication of CN101473366B publication Critical patent/CN101473366B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0317Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/08Cursor circuits

Abstract

一个实施例涉及激光定位设备,该设备用于通过确定表面的连续图像的图像特征位移来感测数据输入设备和该表面之间的相对移动。该设备构成单集成封装,该封装包括平面基片(102)和含有准直镜(108)的透明密封剂。相干光源(104)和传感器阵列(106)及相关电路都配置在平面基片上。另一个实施例涉及感测数据输入设备和表面之间相对移动的方法。相干光由激光器发射,并被准直,以形成预定直径为D的并具有基本均匀的相前的准直照射光束。散斑模式由准直照射光束在表面的撞击形成,并被传感器阵列检测。也公开了其它实施例。

Description

散斑导航系统
技术领域
本发明通常涉及光学定位设备(OPD)和利用这种设备感测运动的方法。
背景技术
诸如计算机鼠标或跟踪球的指点设备用于向个人计算机和工作站输入数据并与之接口。这种设备允许光标在监视器上快速定位,并且在许多文本、数据库和绘图程序中都很有用。例如,用户通过在表面上的移动鼠标控制光标在一个方向上移动,移动的距离与鼠标的移动成比例。可选地,在固定设备上手的移动也可用于相同的目的。
计算机鼠标有光学和机械两种。机械鼠标通常使用旋转球检测运动,并使用一对与球接触的轴编码器产生由计算机用来移动光标的数字信号。机械鼠标存在一个问题,就是在持续使用之后由于污垢的积累等原因容易不精确并出现故障。另外,机械元件,尤其是轴编码器的移动及合成磨损不可避免地限制该设备的使用寿命。
解决上述机械鼠标的问题的一种方式就是开发出光学鼠标。由于光学鼠标更稳定并可以提供更好的定位精度,它们已经变得非常普遍。
用于光学鼠标的一种方法依赖于以切线或接近切线入射照射表面的发光二极管(LED),捕获所得图像的二维CMOS(互补金属氧化物半导体)检测器,以及关联连续图像以确定鼠标移动的方向、距离和速度的软件。这种技术通常可以提供高精度,但需要复杂的设计和相对高的图像处理要求。另外,由于照射是切线入射,因此光学效率很低。
另一种方法是使用例如光电二极管的光电传感器或检测器的一维阵列。表面的连续图像由成像光学器件捕获,转移到光电二极管,并进行比较以检测鼠标的移动。光电二极管可以直接用导线连成组以便于运动检测。这样就减少了光电二极管的要求,可以进行快速模拟处理。这种鼠标的一个实例公开于授权给Dandliker等人美国专利号5907152。由 Dandliker等人公开的这种鼠标与标准技术也不同,因为其使用了例如激光器的相干光源。从相干光源发出的光,在粗糙表面散射,生成一种称为散斑的随机强度分布的光。
使用上述现有方法的设备通常有几个不足和缺点。例如,这些设备通常都是多部件设备,要利用分立部件制造。该分立部件通常包括光源、照射光束致偏装置(deviator)、集成传感阵列和电路,以及采集透镜或其它成像光学器件。
本申请公开了一种光学定位设备的新型设计。公开的设计相比于现有技术设备的优势在于在保持跟踪设备移动的足够精度的同时降低了复杂性,使用更少的部件,且更容易制造。
发明内容
一个实施例涉及激光定位设备,该设备用于通过确定表面的连续图像中的图像特征位移来感测数据输入设备和表面之间的相对移动。该设备构成单集成封装(single integrated package),该封装包括平面基片和也含有准直透镜的透明密封剂(encapsulant)。相干光源和传感器阵列及相关电路都配置在该平面基片上。
另一个实施例涉及感测数据输入设备和表面之间相对移动的方法。相干光从激光器发射,并被准直,以便形成预定直径为D并具有基本均匀的相前(phase front)的准直照射光束。散斑模式由准直照射光束在该表面上的撞击产生,并被传感器阵列检测。
也公开了其它实施例。
附图说明
本公开的这些和各种其它特征及优点可以根据下面的详细描述及附图充分理解,但这些描述及附图只是为了说明和理解所用,不应当被认为将随附的权利要求书限于所示的具体实施例。
图1A是依照本发明实施例的在表面上的激光定位设备的横截面图。
图1B示出了具有包含准直透镜的透明密封剂层的具体实施例。
图2是依照本发明实施例的激光定位设备的集成封装的透视图。
图3是依照本发明实施例的在表面上的具有某一尺寸和角度θ的激光定位设备的横截面图。
图4是依照本发明实施例的描述激光定位设备跟踪不同速度的圆周运动的描迹图(trace diagram)。
图5是依照本发明实施例的在表面上的具有刃形边缘用于抬升检测(lift detection)的激光定位设备的横截面图。
图6是依照本发明实施例的二维梳状阵列的示意图。
具体实施方式
图1A是依照本发明实施例的在表面上的激光定位设备的横截面图。如图所示,该激光定位设备包括平面基片(substrate)102、激光发射器104、传感器阵列106和准直透镜108。图1B所示为具有包括准直透镜108的透明密封剂层110的具体实施例。密封剂层110也用于保护发射器104和传感器阵列106。在其它实施例中,准直透镜108可以被接入到覆盖基片102的封装中,或可以成为覆盖基片102的透明模制塑料的一部分,或可以以其它方式实现。
例如,该激光定位设备可以包括用于用户向计算机系统输入的鼠标设备。该设备可以如此构造,以便支撑平面基片102使得其在固定距离处平行于散射表面120。该设备(以及因此平面基片102)可以在表面120上横向移动。
激光发射器104配置在平面基片102上。激光器104向散射表面120发射相干光。依照优选实施例,准直镜108被配置为接近激光器104,以便接收相干光并由此形成准直照射光束110。
准直照射光束110具有预定直径D,并且包括射向表面120的相干光的均匀相前。优选地,准直光束110处于垂直于散射表面120或几乎垂直于散射表面120的轨迹。如同图1所示,这就不需要光束致偏器部件。
准直照射光束110撞击到表面120上,并且在反射侧半球中以几乎所有的方向散射光。由于散射散布的非常广泛,传感器106的特定放置变得更加灵活且不那么严格。换言之,传感器106的放置可以有相对宽松的公差,这就有利地增加了该激光定位设备的可制造性。
传感器阵列106可以有利地配置在与激光器104相同的平面基片102上。而且,传感器阵列106可以包括二维梳状阵列或其它类型的检测器阵列。感测元件的二维梳状阵列以特定的方式和相关电路进行分组。来 自选定的感测元件组的信号可以被组合以生成组信号,并且可以从该组信号中生成差分信号,以便确定二维表面上的移动。二维梳状阵列的一个实例示于图6中,这将在下面进一步讨论。
依照本发明的一个实施例,不需要采集透镜或其它成像光学器件将散射光映射到传感器阵列106上。这就有利地简化了该设备的制造并降低了成本。
与传感器阵列106相关的电路可以被配置为从散射光中捕获被检测信号的连续图像帧。散射光的图像帧包括被称为“散斑模式(specklepattern)”的光学特征模式。
对于基片102相对于表面120的小的横向位移,散斑模式的变化优选由具有低水平散斑“沸腾”(boiling)(即除偏移之外模式的很小变化)的模式偏移(shift)所支配。依照本发明的实施例,因为准直照射光束110提供了均匀的相前,具有由横向偏移产生的低水平散斑沸腾的条件可以容易满足。
另外,在散斑模式中,散斑特征的典型大小(例如,均值或中值)优先与梳状阵列中元件分组的周期性相匹配。依照本发明的一个实施例,通过适当地配置准直照射光束110的预定直径,可以有便利地满足梳状阵列周期性与散斑大小相匹配的条件。
图2是依照本发明实施例的用于激光定位设备的集成封装的透视图。如图所示,激光器104和传感器阵列106都耦合到基片102。传感器阵列106可以是较大集成电路202的一部分,较大集成电路202可以包括处理检测到信号的电路以及执行其它操作的电路。
基片封装204可以密封激光发射器104和传感器阵列106。依照本发明的实施例,准直透镜108可以集成到封装104中,以便准直来自激光器104的相干光。可选地,准直透镜108可以被实施为附接到基片封装104的微型透镜。在传感器阵列106附近的封装部分可以是透明的,以便允许传感器阵列106检测从表面120散射的光。
图3是依照本发明实施例的在表面上的具有标明的某一面积和角度θ的激光定位设备的横截面图。该图说明了从散射表面120到平面基片102的高度h。该图还说明了准直照射光束110在表面120的“足迹”的直径D。如图所示,照射光束110的轨迹和从表面120到传感器阵列106上一点的散射光的轨迹之间的夹角为θ,其中所述传感器阵列106上的 一点可很好地近似由传感器阵列中心来表示。
对于梳状阵列检测,适合的准直光束直径D可由下式给出:
D = hλ ξΛ cos 2 θ (式1)
在上式中,h为平面基片到表面的高度,λ为相干光的波长,ξ为0.25到0.5之间的分数,Λ为梳状阵列的元件分组的周期(即,传感器像素间距的预定倍数),θ为来自传感器上一点的光束所对的角度。
散斑空间频率v与梳状阵列(逆)周期1/Λ匹配的条件可以表示为v=1/Λ。将所选频率表示为截止频率vmax=2NA/λ的分数ξ(优先在0.25到0.5之间),且取NA=从传感器上一点出来的光束所对的角的一半的正弦=Dcos2θ/(2h),这就可以由式1求出适合的光束直径D。例如,当λ=850nm,A=50μm,h=5nm,ξ=0.3,θ=30°时,准直光束直径D=0.38mm。
图4是依照本发明实施例的描述激光定位设备跟踪不同速度的圆周运动的四个描迹图(a,b,c和d)。这些描迹图是利用依照本发明的实施例的激光定位设备的原型试验单元生成的。
每个图中跟踪的运动包括半径大约为一厘米的近似圆周运动。参考圆形轨迹402和相应的跟踪轨迹404如图4所示。在左上方的标为(a)的图中,围绕圆周的移动速度为1cm/sec。在右上方的标为(b)的图中,围绕圆周的移动速度为10cm/sec。在左下方的标为(c)的图中,围绕圆周的移动速度为25cm/sec。在右下方的标为(d)的图中,围绕圆周的移动速度为40cm/sec。从每个图中可看出,在不同速度下的移动跟踪都相当好。
本公开提供了一种基于激光散斑的集成光学导航系统。该系统方便集成,紧凑且低档(low profile)、低成本,可以以宽松的公差建造,并且光学有效。
激光器和传感器的共面性有利地使得在单个平面封装内可能集成这些部件。现有系统由于使用波束致偏器和/或光学几何(opticalgeometry),其中传感器接近照射的镜向,因此排除了使用共面封装的可能。
而且,有利地使用准直照射生成具有很小的散斑“沸腾”的散斑模式,当相对于散射表面横向移动鼠标设备时,该散斑模式偏移。另外,表面照射的法向角有利地回避了除准直透镜之外,照射光束致偏器的需 求,或任何其它附加光学器件的需求。
二维梳状阵列传感器的使用方便地要求简单的信号处理,低功耗以及简单的集成电路实现。
在“鼠标”类型的指点设备或类似应用中,经常希望有抬升检测机构。抬升检测机构是一种机械机构,该机构在鼠标设备被抬升超过预定高度Δh时,可以使鼠标设备停止跟踪,Δh值通常设为1到5毫米(1-5mm)之间。在本公开的系统中,抬升检测可以由不透明的刃形边缘502实施,该刃形边缘被放置为如果鼠标设备被抬离表面120超过预定高度时,刃形边缘502将表面120被照射部分与传感器阵列的视野阻隔开。该布置的几何关系如图5所示。刃形边缘502的位置可以由距传感器阵列中心的水平距离x和垂直距离y表示:
x = 4 hs + Δh ( 2 s + w - D ( h , s ) ) 4 hw - 4 hD ( h , s ) + 2 Δh ( 2 s + w - D ( h , s ) ) · w (式2)
y = 2 x + w 2 s + w - D ( h , s ) · h (式3)
参考图5,Δh是最大抬升高度,h是传感器阵列平面到表面的标称距离,w是传感器阵列宽度,s是传感器阵列与激光器之间的中心到中心的间距,d=h-y是刃形边缘502到表面120的距离。在表面处的照射光束直径D(h,s)依赖于h和s,可由式1,其中θ=tan-1(s/h)给出。例如,给定λ=850nm,Λ=50μm,h=5mm,ξ=0.3,s=3mm,w=1mm,Δh=2.2mm,可以得到准直光束直径D=0.385mm,θ=31°,x=1.8mm,y=3.5mm,d=1.5mm。
图6是依照本发明实施例的二维梳状阵列的示意图。示出了检测器元件的示例二维阵列602。2D阵列602由以8×8的矩阵组织的64个子阵列604组成。一个这样的子阵列604的展开图如图的左侧所示。
每个子阵列604包括以4×4的矩阵组织的16个检测器元件。在每个子阵列604中的这16个检测器元件每个都被标识为八个元件组的其中一个元件组的成员。与每个子阵列604的每个检测器元件关联的组号由在扩展图中标注各元件的数字(1,2,3,4,5,6,7或8)示出。对于整个阵列602,来自每组的信号以电组合在一起。合成的组信号(标号为1到8)就是阵列602的输出(如图的右侧所示)。
差分电路606用于根据多对组信号生成差分信号。第一差分信号CC由信号1和信号2的差生成。第二差分信号SC由信号3和信号4的 差生成。第三差分信号CS由信号5和信号6的差生成。第四差分信号SS由信号7和信号8的差生成。这四个差分信号包含了x方向和y方向上正交信号信息和同相信号的信息。
前面给出关于本发明的具体实施例和实例的描述是为了描述和说明的目的,并且虽然已经通过前面的实例描述和说明了本发明,但不应将其解释为局限于此。这些描述不打算是穷尽的或将本发明限于所公开的具体形式,而且根据上面的教导在本发明范围内的许多修正、改进和变化都是可能的。本发明的范围旨在包括如这里所公开的一般范围,并且该范围由随附的权利要求书及其等同物限定。

Claims (18)

1.一种激光定位设备,该激光定位设备用于通过确定表面的连续图像中光学散斑的位移来感测数据输入设备和该表面之间的相对移动,该设备包括:
平面基片;
配置在平面基片上的相干光源;
配置在平面基片上的传感器阵列以及其相关电路;以及
定位在相干光源和该表面之间的准直透镜以接收来自相干光源的相干光并提供准直照射光束,
其中传感器阵列包括二维梳状阵列,以及其中准直照射光束的预定直径D满足等式 
Figure FSB00000460307300011
其中h为平面基片到该表面的高度,λ为相干光的波长,ξ为0.25到0.5之间的分数,Λ为梳状阵列的周期,θ为来自传感器上一点的光束所对的角度。
2.权利要求1中的激光定位设备,其中准直透镜具体体现为下面之一:a)覆盖平面基片的透明密封剂的一部分;b)覆盖平面基片的透明模制塑料的一部分;或c)插入覆盖平面基片的封装中的小透镜。
3.权利要求1中的激光定位设备,进一步包括用于抬升检测的不透明边缘。
4.权利要求3中的激光定位设备,其中放置该边缘以便当该设备被抬离平面基片超过预定高度时,将平面基片的被照射部分与传感器阵列的视野阻隔开。
5.根据权利要求1所述的激光定位设备,其中准直透镜被配置成接收来自相干光源的相干光并提供准直照射光束,该准直照射光束以该表面的法向角被传送到该表面。
6.根据权利要求5所述的激光定位设备,其中,由于准直光束的相前的均匀性,平面基片和该表面之间的小的横向位移就可导致具有最小沸腾的散斑模式的偏移。
7.根据权利要求1所述的激光定位设备,其中梳状阵列接收光形成该表面的图像而不使用采集透镜。 
8.根据权利要求7所述的激光定位设备,其中由于准直光束的预定直径,在该表面处的散斑大小与梳状阵列的周期匹配。
9.一种通过确定表面的连续图像中的光学散斑的位移来感测数据输入设备和该表面之间的相对移动的方法,该方法包括:
从激光器发射相干光;
准直该相干光,以便形成预定直径为D的准直照射光束,且以该表面的法向角将其传送到该表面;
通过来自准直照射光束的相干光在该表面的撞击生成散斑模式;以及
利用传感器阵列检测该表面的图像。
10.根据权利要求9所述的方法,进一步包括使用用于抬升检测的不透明边缘。
11.根据权利要求9所述的方法,其中由于校准光束的基本均匀的相前,平面基片和该表面之间的小的横向位移就可导致散斑模式的偏移。
12.根据权利要求9所述的方法,其中传感器阵列包括梳状阵列。
13.根据权利要求12所述的方法,其中梳状阵列直接对该表面成像,而不使用其间的成像或采集透镜。
14.根据权利要求12所述的方法,其中激光器和传感器阵列都配置于同一平面基片上,该平面基片被配置为平行于该表面。
15.根据权利要求14所述的方法,其中准直照射光束的预定直径D满足等式 
Figure FSB00000460307300021
其中h为平面基片到该表面的高度,λ为相干光的波长,ξ为0.25到0.5之间的分数,Λ为梳状阵列的周期,θ为来自传感器上一点的光束所对的角度。
16.根据权利要求12所述的方法,其中由于准直光束的预定直径,在该表面处的散斑大小与梳状阵列的周期匹配。
17.一种光斑导航系统,包括:
发射相干光的装置;
校准相干光以便形成预定直径为D的准直照射光束的装置,该准直照射光束以表面的法向角被传送到该表面; 
通过来自准直照射光束的相干光在该表面的撞击生成散斑模式的装置;以及
利用传感器阵列检测该表面的图像的装置。
18.根据权利要求17所述的系统,进一步包括使用用于抬升检测的不透明边缘。 
CN2006800531343A 2005-12-20 2006-12-14 散斑导航系统 Expired - Fee Related CN101473366B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/313,133 US7737948B2 (en) 2005-12-20 2005-12-20 Speckle navigation system
US11/313,133 2005-12-20
PCT/US2006/047802 WO2007075367A2 (en) 2005-12-20 2006-12-14 Speckle navigation system

Publications (2)

Publication Number Publication Date
CN101473366A CN101473366A (zh) 2009-07-01
CN101473366B true CN101473366B (zh) 2011-07-27

Family

ID=38172874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800531343A Expired - Fee Related CN101473366B (zh) 2005-12-20 2006-12-14 散斑导航系统

Country Status (6)

Country Link
US (1) US7737948B2 (zh)
EP (1) EP1964102A2 (zh)
JP (1) JP2009520988A (zh)
KR (1) KR101390438B1 (zh)
CN (1) CN101473366B (zh)
WO (1) WO2007075367A2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760186B2 (en) * 2006-04-04 2010-07-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical mouse that automatically adapts to glass surfaces and method of using the same
US10935364B2 (en) * 2006-06-16 2021-03-02 Lyle G. Shirley Method and apparatus for remote sensing of objects utilizing radiation speckle
US8089465B2 (en) * 2006-11-16 2012-01-03 Microsoft Corporation Speckle interference laser tracking
US8263921B2 (en) * 2007-08-06 2012-09-11 Cypress Semiconductor Corporation Processing methods for speckle-based motion sensing
US20090102793A1 (en) * 2007-10-22 2009-04-23 Microsoft Corporation Optical mouse
US8847888B2 (en) * 2007-12-18 2014-09-30 Microsoft Corporation Optical mouse with limited wavelength optics
US20090160772A1 (en) * 2007-12-20 2009-06-25 Microsoft Corporation Diffuse optics in an optical mouse
US20090160773A1 (en) * 2007-12-20 2009-06-25 Microsoft Corporation Optical mouse
CN102105895B (zh) * 2008-03-14 2014-05-14 赛普拉斯半导体公司 基于手指移动的光感导航仪器及方法
CN102575925B (zh) * 2009-10-23 2015-12-09 皇家飞利浦电子股份有限公司 具有波导结构的自混合干涉设备
CN102959494B (zh) 2011-06-16 2017-05-17 赛普拉斯半导体公司 具有电容式传感器的光学导航模块
US8896553B1 (en) 2011-11-30 2014-11-25 Cypress Semiconductor Corporation Hybrid sensor module
US9218069B2 (en) 2013-04-11 2015-12-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical sensing device to sense displacement
US9208566B2 (en) 2013-08-09 2015-12-08 Microsoft Technology Licensing, Llc Speckle sensing for motion tracking
KR102491850B1 (ko) * 2015-07-15 2023-01-26 삼성전자주식회사 레이저 스펙클 대조도 이미징 시스템 및 방법, 이를 적용한 장치
CN105630206B (zh) * 2015-12-23 2018-10-16 广州中国科学院先进技术研究所 一种基于dic的触摸定位方法及系统
DE102019108426A1 (de) 2019-04-01 2020-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum dreidimensionalen Erfassen wenigstens eines Objekts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533686A2 (en) * 2003-10-30 2005-05-25 Agilent Technologies, Inc. Low power consumption, broad navigability optical mouse
EP1533989A2 (en) * 2003-11-20 2005-05-25 Fujifilm Electronic Imaging Limited Imaging apparatus and method

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH552197A (de) * 1972-11-24 1974-07-31 Bbc Brown Boveri & Cie Einrichtung zum messen der rauhigkeit einer oberflaeche.
US4546347A (en) * 1981-05-18 1985-10-08 Mouse Systems Corporation Detector for electro-optical mouse
US4560881A (en) 1984-03-13 1985-12-24 Syntex (U.S.A.) Inc. Method and apparatus for enhanced detection of electromagnetic signals
US4799055A (en) * 1984-04-26 1989-01-17 Symbolics Inc. Optical Mouse
US4814553A (en) * 1985-06-21 1989-03-21 Advanced Robotic Technology, Inc. Absolute position controller
US4751380A (en) * 1986-11-25 1988-06-14 Msc Technologies, Inc. Detector system for optical mouse
US4920260A (en) * 1988-08-30 1990-04-24 Msc Technologies, Inc. Detector system for optical mouse
US4936683A (en) * 1989-06-22 1990-06-26 Summagraphics Corporation Optical tablet construction
US5086197A (en) * 1990-09-17 1992-02-04 Liou Kwang Wan Optical encoding method and device
EP0503431A3 (en) * 1991-03-08 1994-11-23 Mita Industrial Co Ltd Box body construction of a digital image forming apparatus
US6031218A (en) * 1992-10-05 2000-02-29 Logitech, Inc. System and method for generating band-limited quasi-sinusoidal signals
US5729009A (en) * 1992-10-05 1998-03-17 Logitech, Inc. Method for generating quasi-sinusoidal signals
US5854482A (en) 1992-10-05 1998-12-29 Logitech, Inc. Pointing device utilizing a photodector array
US5907152A (en) * 1992-10-05 1999-05-25 Logitech, Inc. Pointing device utilizing a photodetector array
US5703356A (en) 1992-10-05 1997-12-30 Logitech, Inc. Pointing device utilizing a photodetector array
US5288993A (en) * 1992-10-05 1994-02-22 Logitech, Inc. Cursor pointing device utilizing a photodetector array with target ball having randomly distributed speckles
US5391868A (en) * 1993-03-09 1995-02-21 Santa Barbara Research Center Low power serial bias photoconductive detectors
US5345527A (en) 1993-09-03 1994-09-06 Motorola, Inc. Intelligent opto-bus with display
US5473344A (en) * 1994-01-06 1995-12-05 Microsoft Corporation 3-D cursor positioning device
US6097371A (en) * 1996-01-02 2000-08-01 Microsoft Corporation System and method of adjusting display characteristics of a displayable data file using an ergonomic computer input device
JP2919267B2 (ja) * 1994-05-26 1999-07-12 松下電工株式会社 形状検出方法およびその装置
US5627363A (en) * 1995-02-16 1997-05-06 Environmental Research Institute Of Michigan System and method for three-dimensional imaging of opaque objects using frequency diversity and an opacity constraint
US5578813A (en) * 1995-03-02 1996-11-26 Allen; Ross R. Freehand image scanning device which compensates for non-linear movement
US6950094B2 (en) 1998-03-30 2005-09-27 Agilent Technologies, Inc Seeing eye mouse for a computer system
US5786804A (en) * 1995-10-06 1998-07-28 Hewlett-Packard Company Method and system for tracking attitude
USD385542S (en) * 1996-01-05 1997-10-28 Microsoft Corporation Pointing device
USD382550S (en) * 1996-01-16 1997-08-19 Microsoft Corporation Rear portion of a pointing device
US5729008A (en) 1996-01-25 1998-03-17 Hewlett-Packard Company Method and device for tracking relative movement by correlating signals from an array of photoelements
US5781229A (en) * 1997-02-18 1998-07-14 Mcdonnell Douglas Corporation Multi-viewer three dimensional (3-D) virtual display system and operating method therefor
US6256016B1 (en) * 1997-06-05 2001-07-03 Logitech, Inc. Optical detection system, device, and method utilizing optical matching
US6034760A (en) * 1997-10-21 2000-03-07 Flight Safety Technologies, Inc. Method of detecting weather conditions in the atmosphere
US6176143B1 (en) * 1997-12-01 2001-01-23 General Electric Company Method and apparatus for estimation and display of spectral broadening error margin for doppler time-velocity waveforms
US6172354B1 (en) * 1998-01-28 2001-01-09 Microsoft Corporation Operator input device
US6037643A (en) * 1998-02-17 2000-03-14 Hewlett-Packard Company Photocell layout for high-speed optical navigation microchips
AU6633798A (en) * 1998-03-09 1999-09-27 Gou Lite Ltd. Optical translation measurement
US6424407B1 (en) * 1998-03-09 2002-07-23 Otm Technologies Ltd. Optical translation measurement
JP3321468B2 (ja) 1998-03-09 2002-09-03 オーティーエム テクノロジーズ リミテッド 並進運動の光学式測定
US6233368B1 (en) * 1998-03-18 2001-05-15 Agilent Technologies, Inc. CMOS digital optical navigation chip
US6151015A (en) * 1998-04-27 2000-11-21 Agilent Technologies Pen like computer pointing device
US6057540A (en) * 1998-04-30 2000-05-02 Hewlett-Packard Co Mouseless optical and position translation type screen pointer control for a computer system
US5994710A (en) * 1998-04-30 1999-11-30 Hewlett-Packard Company Scanning mouse for a computer system
US6396479B2 (en) * 1998-07-31 2002-05-28 Agilent Technologies, Inc. Ergonomic computer mouse
US6195475B1 (en) * 1998-09-15 2001-02-27 Hewlett-Packard Company Navigation system for handheld scanner
TW530254B (en) * 1999-07-08 2003-05-01 Primax Electronics Ltd Pointing device using grain input device to generate pointing signal
TW546582B (en) 1999-07-08 2003-08-11 Primax Electronics Ltd Pointing device using two line-shaped image input devices and fingerprint to generate displacement signals
US6674475B1 (en) * 1999-08-09 2004-01-06 Agilent Technologies, Inc. Method and circuit for electronic shutter control
US6455840B1 (en) * 1999-10-28 2002-09-24 Hewlett-Packard Company Predictive and pulsed illumination of a surface in a micro-texture navigation technique
WO2001045981A2 (en) * 1999-12-22 2001-06-28 Quantumbeam Limited Optical free space signalling system
US6529184B1 (en) * 2000-03-22 2003-03-04 Microsoft Corporation Ball pattern architecture
US6421045B1 (en) * 2000-03-24 2002-07-16 Microsoft Corporation Snap-on lens carrier assembly for integrated chip optical sensor
US6462330B1 (en) * 2000-03-24 2002-10-08 Microsoft Corporation Cover with integrated lens for integrated chip optical sensor
US6642506B1 (en) * 2000-06-01 2003-11-04 Mitutoyo Corporation Speckle-image-based optical position transducer having improved mounting and directional sensitivities
US6618038B1 (en) * 2000-06-02 2003-09-09 Hewlett-Packard Development Company, Lp. Pointing device having rotational sensing mechanisms
US6476970B1 (en) * 2000-08-10 2002-11-05 Agilent Technologies, Inc. Illumination optics and method
ATE463004T1 (de) * 2000-11-06 2010-04-15 Koninkl Philips Electronics Nv Verfahren zur messung der bewegung eines eingabegeräts
US6585158B2 (en) * 2000-11-30 2003-07-01 Agilent Technologies, Inc. Combined pointing device and bar code scanner
EP1342151A4 (en) 2000-12-15 2007-02-28 Finger System Inc OPTICAL PEN-TYPE MACHINE AND METHOD FOR CONTROLLING IT
US6621483B2 (en) * 2001-03-16 2003-09-16 Agilent Technologies, Inc. Optical screen pointing device with inertial properties
US6977645B2 (en) * 2001-03-16 2005-12-20 Agilent Technologies, Inc. Portable electronic device with mouse-like capabilities
US6677929B2 (en) * 2001-03-21 2004-01-13 Agilent Technologies, Inc. Optical pseudo trackball controls the operation of an appliance or machine
EP1255334A1 (en) * 2001-04-30 2002-11-06 Agilent Technologies, Inc. - a Delaware corporation - Fault tolerant electrical circuit and method
US6603111B2 (en) * 2001-04-30 2003-08-05 Agilent Technologies, Inc. Image filters and source of illumination for optical navigation upon arbitrary surfaces are selected according to analysis of correlation during navigation
US6809723B2 (en) * 2001-05-14 2004-10-26 Agilent Technologies, Inc. Pushbutton optical screen pointing device
US6774351B2 (en) * 2001-05-25 2004-08-10 Agilent Technologies, Inc. Low-power surface for an optical sensor
US6795056B2 (en) * 2001-07-24 2004-09-21 Agilent Technologies, Inc. System and method for reducing power consumption in an optical screen pointing device
US6823077B2 (en) * 2001-07-30 2004-11-23 Agilent Technologies, Inc. Simplified interpolation for an optical navigation system that correlates images of one bit resolution
US6664948B2 (en) 2001-07-30 2003-12-16 Microsoft Corporation Tracking pointing device motion using a single buffer for cross and auto correlation determination
US7126585B2 (en) * 2001-08-17 2006-10-24 Jeffery Davis One chip USB optical mouse sensor solution
US6657184B2 (en) 2001-10-23 2003-12-02 Agilent Technologies, Inc. Optical navigation upon grainy surfaces using multiple navigation sensors
US6703599B1 (en) * 2002-01-30 2004-03-09 Microsoft Corporation Proximity sensor with adaptive threshold
US6774915B2 (en) * 2002-02-11 2004-08-10 Microsoft Corporation Pointing device reporting utilizing scaling
USD464352S1 (en) * 2002-03-18 2002-10-15 Microsoft Corporation Electronic mouse
US6705993B2 (en) * 2002-05-10 2004-03-16 Regents Of The University Of Minnesota Ultrasound imaging system and method using non-linear post-beamforming filter
US7045763B2 (en) * 2002-06-28 2006-05-16 Hewlett-Packard Development Company, L.P. Object-recognition lock
US6869185B2 (en) * 2002-10-16 2005-03-22 Eastman Kodak Company Display systems using organic laser light sources
US6967321B2 (en) * 2002-11-01 2005-11-22 Agilent Technologies, Inc. Optical navigation sensor with integrated lens
US6819314B2 (en) * 2002-11-08 2004-11-16 Agilent Technologies, Inc. Intensity flattener for optical mouse sensors
JP3944095B2 (ja) * 2003-02-26 2007-07-11 キヤノン株式会社 保持装置
US7019733B2 (en) * 2003-03-31 2006-03-28 Ban Kuan Koay Optical mouse adapted for use on glass surfaces
US7321359B2 (en) * 2003-07-30 2008-01-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method and device for optical navigation
US7205521B2 (en) * 2003-07-31 2007-04-17 Avage Technologies Ecbu Ip (Singapore) Pte. Ltd. Speckle based sensor for three dimensional navigation
US7227531B2 (en) * 2003-08-15 2007-06-05 Microsoft Corporation Data input device for tracking and detecting lift-off from a tracking surface by a reflected laser speckle pattern
US7161582B2 (en) * 2003-08-29 2007-01-09 Microsoft Corporation Data input device for tracking and detecting lift-off from a tracking surface by a reflected laser speckle pattern
US7737947B2 (en) * 2003-10-16 2010-06-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Tracking motion using an interference pattern
US7221356B2 (en) * 2004-02-26 2007-05-22 Microsoft Corporation Data input device and method for detecting an off-surface condition by a laser speckle size characteristic
US7292232B2 (en) * 2004-04-30 2007-11-06 Microsoft Corporation Data input devices and methods for detecting movement of a tracking surface by a laser speckle pattern
US7515280B2 (en) * 2004-05-12 2009-04-07 Mitutoyo Corporation Displacement transducer with selectable detector area
US20050258346A1 (en) * 2004-05-21 2005-11-24 Silicon Light Machines Corporation Optical positioning device resistant to speckle fading
US20050259078A1 (en) * 2004-05-21 2005-11-24 Silicon Light Machines Corporation Optical positioning device with multi-row detector array
US20050259097A1 (en) * 2004-05-21 2005-11-24 Silicon Light Machines Corporation Optical positioning device using different combinations of interlaced photosensitive elements
US7773070B2 (en) * 2004-05-21 2010-08-10 Cypress Semiconductor Corporation Optical positioning device using telecentric imaging
US7042575B2 (en) * 2004-05-21 2006-05-09 Silicon Light Machines Corporation Speckle sizing and sensor dimensions in optical positioning device
US7189985B2 (en) * 2004-10-30 2007-03-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Tracking separation between an object and a surface using a reducing structure
US7248345B2 (en) * 2004-11-12 2007-07-24 Silicon Light Machines Corporation Signal processing method for use with an optical navigation system
WO2006060798A2 (en) * 2004-12-02 2006-06-08 Silicon Light Machines Corporation Signal processing method for optical sensors
US8212775B2 (en) * 2005-02-22 2012-07-03 Pixart Imaging Incorporation Computer input apparatus having a calibration circuit for regulating current to the light source
US20060279545A1 (en) * 2005-06-13 2006-12-14 Jeng-Feng Lan Sensor chip for laser optical mouse and related laser optical mouse
US7505033B2 (en) * 2005-11-14 2009-03-17 Microsoft Corporation Speckle-based two-dimensional motion tracking

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533686A2 (en) * 2003-10-30 2005-05-25 Agilent Technologies, Inc. Low power consumption, broad navigability optical mouse
EP1533989A2 (en) * 2003-11-20 2005-05-25 Fujifilm Electronic Imaging Limited Imaging apparatus and method

Also Published As

Publication number Publication date
JP2009520988A (ja) 2009-05-28
KR101390438B1 (ko) 2014-04-30
CN101473366A (zh) 2009-07-01
KR20090031846A (ko) 2009-03-30
US20070139381A1 (en) 2007-06-21
WO2007075367A3 (en) 2008-04-24
WO2007075367A2 (en) 2007-07-05
US7737948B2 (en) 2010-06-15
EP1964102A2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
CN101473366B (zh) 散斑导航系统
US9454261B2 (en) Optical navigation device and use thereof
US7042575B2 (en) Speckle sizing and sensor dimensions in optical positioning device
CA1173573A (en) Optical cursor control device
US7505033B2 (en) Speckle-based two-dimensional motion tracking
US7773070B2 (en) Optical positioning device using telecentric imaging
US7285766B2 (en) Optical positioning device having shaped illumination
KR100905382B1 (ko) 컴퓨터 마우스 내의 광신호 처리 방법
US20060118743A1 (en) Signal processing method for optical sensors
US8823952B2 (en) Measurement system for optical touch trigger or scanning probe with a concave mirror
US7746477B1 (en) System and method for illuminating and imaging a surface for an optical navigation system
US7405389B2 (en) Dense multi-axis array for motion sensing
KR101612023B1 (ko) 광학 센싱을 이용한 손가락 동작 기반 내비게이션 장치 및 방법
US8259069B1 (en) Speckle-based optical navigation on curved tracking surface
EP1429235B1 (en) An input device for screen navigation, such as cursor control on a computer screen
CN116166132A (zh) 光学导航装置
EP1756512A2 (en) Speckle sizing and sensor dimensions in optical positioning device
WO2005114698A2 (en) Optical positioning device having shaped illumination
JPH05181597A (ja) 光学マウス装置
JPWO2012042976A1 (ja) 物体検出装置および情報取得装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110727

Termination date: 20131214