CN101496150B - 控制外延层形成期间形态的方法 - Google Patents

控制外延层形成期间形态的方法 Download PDF

Info

Publication number
CN101496150B
CN101496150B CN2007800284868A CN200780028486A CN101496150B CN 101496150 B CN101496150 B CN 101496150B CN 2007800284868 A CN2007800284868 A CN 2007800284868A CN 200780028486 A CN200780028486 A CN 200780028486A CN 101496150 B CN101496150 B CN 101496150B
Authority
CN
China
Prior art keywords
base material
dichlorosilane
silane
temperature
technology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007800284868A
Other languages
English (en)
Other versions
CN101496150A (zh
Inventor
Y·金
A·M·兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN101496150A publication Critical patent/CN101496150A/zh
Application granted granted Critical
Publication of CN101496150B publication Critical patent/CN101496150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Abstract

本发明的第一方面是提供一种在基材上选择性形成外延层的方法。此方法包含加热所述基材至低于约800℃的一温度;以及在所述外延膜形成过程中,一并使用硅烷与二氯甲硅烷作为硅源。本发明亦提供其它各式的方面。

Description

控制外延层形成期间形态的方法
本申请要求2006年7月31日提交的美国临时专利申请第60/820956号的优先权,该申请的全文结合在此作为参考。
相关申请的对照
本申请涉及以下共同待审的申请,下列申请的全文结合在此作为参考。
2004年12月1日提交的美国专利申请第11/001774号(代理人案号9618);以及
2005年9月14日提交的美国专利申请第11/227974号(代理人案号9618/P01)。
技术领域
本发明关于半导体器件的制造,更具体地,关于控制外延层成长期间形态的方法。
背景技术
随着小型晶体管的制造,要生产超浅源/漏极结变得更具挑战性。一般而言,次100纳米(sub-100nm)的互补性金属氧化物半导体(Complementary Metal-OxideSemiconductor;CMOS)器件,所要求的结深度需小于30nm。常利用选择性的外延沉积(selective epitaxial deposition),将含硅材料(例如硅、硅锗或碳化硅)的外延层形成于结中。一般而言,选择性外延沉积能够让外延长在硅沟(silicon moats)上,而非长在介电区上。选择性外延可用于半导体器件,例如提高源/漏极、源/漏极延展、接触插塞或双极性器件的基层沉积。
一般而言,选择性外延工艺牵涉到沉积反应与蚀刻反应。沉积反应与蚀刻反应是同时发生,但对于外延层与多晶质层则具有不同的反应速率。在沉积的过程中,外延层形成于一单晶质层表面,而多晶质层则沉积于至少第二层(例如已有的多晶质层及/或非晶质层)上。然而,所沉积的多晶质层的蚀刻速率通常较外延层快。因此,通过改变蚀刻气体的浓度,净选择工艺的结果为外延材料的沉积,同时限制了或并无多晶质材料的沉积。举例而言,选择性外延工艺会在单晶硅表面上形成含硅材料的外延层,而于间隙壁上无任何沉积。
在形成提高源/漏极与源/漏极延展的特征时,例如在形成含硅的金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)器件时,含硅材料的选择性外延沉积技术具有相当助益。源/漏极延展的制造方式,是先蚀刻硅表面以制造出嵌壁式的源/漏极特征,再利用选择性成长的外延层,例如硅锗(silicon germanium,SiGe)材料,填入蚀刻后的表面。选择性外延能以内掺杂(in-situ doping)近乎完全的掺杂活化(dopant activation),进而省略后续的回火工艺。因此,可通过硅蚀刻与选择性外延准确地定义出结深度。另一方面,超浅源/漏极无可避免地会导致串联电阻的增加。此外,在形成硅化物过程中的结消耗(junction consumption),会进一步地提高串联电阻。为了弥补结消耗,可于结上外延地且选择性地成长提高的源/漏极。一般而言,提高的源/漏极层为未掺杂硅。
然而,现有选择性外延工艺具有某些缺点。为了在现今的外延工艺中维持选择性,因此前体的化学浓度以及反应温度必须在沉积过程中全程控管与调整。若未提供足够的硅前体,蚀刻反应则会居于主要,并延滞整个工艺。此外,亦可能发生对基材特征有害的过度蚀刻。若未提供足够的蚀刻前体,沉积反应则会居于主要,降低在基材表面形成单晶质与多晶质材料的选择性。另外,现今选择性外延工艺需以高反应温度进行,例如800℃、1000℃或更高。但由于热预算(thermal budget)的考量,且于基材表面可能有难以控制的氮化反应,在工艺过程中,此高温反应乃是不利的。
因此,仍待开发需一种工艺,可选择性且外延地沉积具有选择性掺杂物的硅与含硅化合物。此外,在具有快速沉积速率、平滑表面形态且工艺温度维持于例如约800℃或更低时以及优选地约700℃或更低时,此工艺需能与各种元素浓度形成含硅化合物。
发明内容
本发明的第一方面是提供一种于基材上选择性形成外延层的方法。此方法包含将所述基材加热至低于约800℃的一温度,并于该选择性外延膜形成工艺中,一并使用硅烷与二氯甲硅烷作为硅源。
本发明的另一方面提供一种于基材上选择性形成外延层的方法。此方法包含轮流交替至少一个沉积步骤与至少一个蚀刻步骤。所述方法包括将所述基材加热至低于约800℃的一温度。所述沉积步骤一并使用硅烷与二氯甲硅烷作为硅源。在室压约为5-50Torr下,以约10sccm至100sccm的流速流入每一硅源气体。该蚀刻步骤包含流入氯化氢与氯气中的至少一个。
在本发明的另一方面中,提供一种于基材上形成外延层的方法。此方法包含:(1)加热所述基材至低于约800℃的一温度;以及(2)于所述基材上进行一选择性外延膜形成工艺,于该选择性外延膜形成工艺中,一并使用硅烷与二氯甲硅烷作为硅源,以便形成该外延层。硅烷对二氯甲硅烷的比例大于1。本发明亦提供其它各式的方面。
依据下述的实施方式、申请专利范围与所附图表,可使本发明其它特征与方面更为清楚。
附图说明
为让本发明的上述和其它目的、特征、优点与实施例能更明显易懂,附图的详细说明如下:
图1是绘示依据本发明的一个实施例,用以形成外延膜的第一示范方法的流程图。
图2是绘示依据本发明的一个实施例,用以形成外延膜的第二示范方法的流程图。
具体实施方式
在以介电膜图案化的硅基材上的选择性外延成长过程中,仅于暴露的硅表面上(例如,不在介电表面上)形成单晶半导体。所谓的选择性厚度则定义为在膜成长开始或在介电表面成核之前,硅表面所获得的最大膜厚度。
选择性外延成长的过程可包含同时进行的蚀刻-沉积工艺,亦或气体交替供应工艺。在同时进行的蚀刻-沉积工艺中,蚀刻剂与沉积物两者同时流动。据此,在形成外延层的过程中,沉积与蚀刻为同时发生。
在美国专利申请案号11/001,774一案中(申请日2004年12月1日,代理人案号9618),则描述了以气体交替供应(alternating gas supply,AGS)于基材上形成外延层的工艺。在AGS工艺中,则是先于基材上进行外延沉积工艺,然后在于基材上进行蚀刻工艺。此种外延沉积工艺续以蚀刻工艺的循环则不断重复,直至形成所需的外延层厚度为止。
当沉积温度小于800℃时,硅烷(silane,SiH4)可作为选择性硅外延的另一种前体。在此较低温度下,硅烷的成长速率比二氯甲硅烷(Dichlorosilane,DCS)高。然而,本发明的发明人却观察到以硅烷为基础的工艺可能会产生形态上的问题(例如表面粗糙或坑洞)。
在本发明的至少一个实施例中,通过一并使用硅烷与二氯甲硅烷(例如于膜成长时,混合硅烷与二氯甲硅烷),可降低及/或消除与使用硅烷有关而观察到的形态问题。相信此方法改变膜表面上的扩散机制,提供较大的形态控制。
虽然本发明可与其它选择性外延工艺一并使用,但在部份实施例中,本发明可与美国专利申请案号11/001,774一案中(申请日2004年12月1日,代理人案号9618),所述的AGS工艺一同施行。
利用仅以硅烷作为硅源的选择性工艺(例如在AGS工艺中)所形成的硅外延膜,已发现表面粗糙且有凹洞。利用硅烷与二氯甲硅烷两者作为硅源的选择性工艺(例如在AGS工艺中)所形成的硅外延膜,已发现具有改善的膜形态,例如改善的表面平滑(例如没有凹洞)。不同于其它方法(例如后沉积平化步骤),不需额外的工艺步骤,使用硅烷与二氯甲硅烷可实时控制膜形态(例如在外延膜形成过程期间)。
在部份实施例中,如上述使用硅源的工艺的示例可包含流速约10sccm到约100sccm硅烷。此外,硅源可包含流速约10sccm到约100sccm的二氯甲硅烷。在此示例中,在AGS工艺中的沉积循环过程中,可采用约5Torr到50Torr的室压范围,而沉积时间约为2-250秒,且较佳约为5-10秒,以及介于约700℃至约750℃之间的温度范围。在部份实施例中,硅烷与二氯甲硅烷的比例可大于1,例如为2∶1,3∶1,4∶1,5∶1,7∶1,10∶1等(硅烷∶二氯甲硅烷)。在沉积循环之后,可进行蚀刻工艺,举例而言,以流速约50sccm至约500sccm的氯化氢(HCl)作为蚀刻剂,约5Torr到100Torr的室压范围,而沉积时间约为2-250秒,且较佳约为5-10秒,以及介于约700℃至约750℃之间的温度范围。在蚀刻循环后,可于约5Torr至50Torr的压力下,温度范围介于约700℃至750℃之间,进行约10秒的清洁循环。在沉积、蚀刻及/或清洁过程中,亦可使用其它的工艺时间、温度及/或流速。举例而言,可如在美国专利申请案号11/227,794(申请日2005年09月14日,代理人案号9618/P01)一案中所述,在每一蚀刻步骤中,使用氯气(Cl2)或氯气与氯化氢的组合。
图1为依据本发明,用以形成外延膜的第一示范方法100的流程图。参照图1,在步骤101中,将基材放入处理室中,并将基材加热至约800℃或低于800℃。在部份实施例中,在外延膜形成过程中,可使用较低温度范围,例如低于750℃,低于700℃或低于650℃。
在步骤102中,硅烷与二氯甲硅烷则与适用的载流气体及/或掺杂物一起流入处理室中,以便于基材上形成外延膜。在部份实施例中,一种或多种蚀刻气体(例如氯化氢、氯气、氯化氢与氯气的组合等)可与硅源气体在相同的时间一起流入(例如在同时进行的沉积-蚀刻工艺过程中)。在其它实施例中,可于沉积之后,采用分开的蚀刻步骤(例如于AGS工艺中)。沉积与蚀刻步骤则持续进行,直至达到所需的外延膜厚度为止。在部份实施例中,所采用的硅烷与二氯甲硅烷的比例可大于1,例如为2∶1,3∶1,4∶1,5∶1,7∶1,10∶1等(硅烷∶二氯甲硅烷)。亦可使用其它的硅源比例。
图2为依据本发明,用以形成外延膜的第二示范方法200的流程图。参照图2,在步骤201中,将基材放入处理室中,并将基材加热至约800℃或低于800℃。在部份实施例中,在外延膜形成过程中,可使用较低温度范围,例如低于750℃,低于700℃或低于650℃。
在步骤202中,硅烷与二氯甲硅烷则与适用的载流气体及/或掺杂物一起流入处理室中,以便在基材上形成外延膜。在部份实施例中,可使用流速约为10sccm至约100sccm的硅烷,随着流速约为10sccm至约100sccm的二氯甲硅烷。可采用约5Torr至约50Torr的压力范围。进行约2-250秒的沉积,且较佳为5-10秒。在部份实施例中,硅烷与二氯甲硅烷的比例可大于1,例如为2∶1、3∶1、4∶1、5∶1、7∶1、10∶1等(硅烷∶二氯甲硅烷)。亦可采用其它流速、压力、温度、时间及/或硅烷与二氯甲硅烷比例。
在步骤203中,蚀刻气体例如氯化氢及/或氯气,则与适用的载流气体一起流入处理室中,以对在步骤202中所沉积的材料进行蚀刻。举例而言,可以流速约50sccm至约500sccm的氯化氢作为蚀刻剂,处理室压力约5Torr到100Torr的室压范围,对基材进行蚀刻,而蚀刻时间约为2-250秒,且较佳约为5-10秒。亦可使用其它蚀刻剂、流速、压力及/或时间。
在步骤204中,在蚀刻循环后,进行约2-250秒的清洁循环,且较佳为约5-10秒。亦可使用其它的清洁时间。
在步骤205中,则确认是否达到所需的外延膜厚度。若达到,则在步骤206终止工艺。否则的话,工艺则回到步骤202,以在基材上沉积额外的外延材料。
前述揭示仅作为本发明的示范实施例。任何熟习此技艺者,在不脱离本发明的精神和范围内,可对前述所揭示的装置与方法可作各种的更动与润饰。举例而言,在外延膜形成过程中,可使用较低的温度范围,例如低于750℃,低于700℃,或小于650℃。
据此,虽然本发明已以实施例揭露如上,然其并非用以限定本发明,其它实施例亦可能落入本发明的精神与范围下,如后权利要求书所界定。

Claims (21)

1.一种形成外延层的方法,所述方法包含:
提供基材;
加热所述基材至低于约800℃的温度;以及
在所述基材上进行选择性外延膜形成工艺,在所述选择性外延膜形成工艺中,一并使用硅烷与二氯甲硅烷作为硅源,以便形成所述外延层;
其中进行所述选择性外延膜形成工艺包含:进行沉积步骤,且在所述沉积步骤后进行蚀刻步骤;
其中进行所述沉积步骤包含提供硅烷流以及二氯甲硅烷流;
其中进行所述沉积步骤包含流入长达约10秒的硅烷与二氯甲硅烷。
2.如权利要求1所述的方法,其中加热所述基材包含将所述基材加热至低于约750℃的温度。
3.如权利要求1所述的方法,其中加热所述基材包含将所述基材加热至低于约700℃的温度。
4.如权利要求1所述的方法,其中加热所述基材包含将所述基材加热至低于约650℃的温度。
5.如权利要求1所述的方法,其中进行所述选择性外延膜形成工艺包含:
流入硅烷与二氯甲硅烷;以及
流入蚀刻气体,所述蚀刻气体包含氯化氢与氯气中的至少一种。
6.如权利要求1所述的方法,其中所述硅烷的流速为约10-100sccm。
7.如权利要求1所述的方法,其中该二氯甲硅烷的流速为约10-100sccm。
8.如权利要求1所述的方法,其中进行所述沉积步骤包含使用约5-50Torr的工艺压力。
9.如权利要求1所述的方法,其中进行所述蚀刻步骤包含流入蚀刻气体,其中所述蚀刻气体包含氯化氢与氯气中的至少一种。
10.如权利要求9所述的方法,其中所述蚀刻气体的流速约为50-500sccm。
11.如权利要求9所述的方法,其中进行所述蚀刻步骤包含采用约5-100Torr的工艺压力。
12.如权利要求9所述的方法,其中所述蚀刻步骤包含流入长达约10秒的蚀刻气体。
13.如权利要求1所述的方法,更包含至少一个清洁步骤。
14.一种形成外延层的方法,所述方法包含:
提供基材;
加热所述基材至低于约800℃的温度;
进行选择性外延膜形成工艺,所述选择性外延膜形成工艺包含至少一个沉积步骤与至少一个蚀刻步骤:
其中在所述至少一个沉积步骤后进行所述至少一个蚀刻步骤;
其中所述沉积步骤与所述蚀刻步骤轮流交替;
其中所述沉积步骤包含在约为5至50Torr的沉积压力下,以约10sccm至100sccm的流速流入硅烷与二氯甲硅烷;以及
其中所述蚀刻步骤包含流入长达约10秒的氯化氢与氯气中的至少一种。
15.如权利要求14所述的方法,其中所述选择性外延膜形成工艺更包含至少一个清洁步骤。
16.如权利要求14所述的方法,其中加热所述基材包含将所述基材加热至低于约750℃的温度。
17.如权利要求14所述的方法,其中加热所述基材包含将所述基材加热至低于约700℃的温度。
18.如权利要求14所述的方法,其中加热所述基材包含将所述基材加热至低于约650℃的温度。
19.一种形成外延层的方法,所述方法包含:
提供基材;
加热所述基材至低于约800℃的温度;以及
在所述基材上进行选择性外延膜形成工艺,在所述选择性外延膜形成工艺中,一并使用硅烷与二氯甲硅烷作为硅源,以便形成所述外延层;
其中硅烷对二氯甲硅烷的比例大于1。
20.如权利要求19所述的方法,其中硅烷对二氯甲硅烷的比例大于2。
21.如权利要求20所述的方法,其中硅烷对二氯甲硅烷的比例大于5。
CN2007800284868A 2006-07-31 2007-07-30 控制外延层形成期间形态的方法 Active CN101496150B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US82095606P 2006-07-31 2006-07-31
US60/820,956 2006-07-31
PCT/US2007/017053 WO2008033186A1 (en) 2006-07-31 2007-07-30 Methods of controlling morphology during epitaxial layer formation

Publications (2)

Publication Number Publication Date
CN101496150A CN101496150A (zh) 2009-07-29
CN101496150B true CN101496150B (zh) 2012-07-18

Family

ID=39184089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800284868A Active CN101496150B (zh) 2006-07-31 2007-07-30 控制外延层形成期间形态的方法

Country Status (7)

Country Link
US (1) US7588980B2 (zh)
JP (1) JP5175285B2 (zh)
KR (1) KR101369355B1 (zh)
CN (1) CN101496150B (zh)
DE (1) DE112007001813T5 (zh)
TW (1) TWI390606B (zh)
WO (1) WO2008033186A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100120235A1 (en) * 2008-11-13 2010-05-13 Applied Materials, Inc. Methods for forming silicon germanium layers
US8501594B2 (en) * 2003-10-10 2013-08-06 Applied Materials, Inc. Methods for forming silicon germanium layers
US7682940B2 (en) 2004-12-01 2010-03-23 Applied Materials, Inc. Use of Cl2 and/or HCl during silicon epitaxial film formation
JP2009512196A (ja) * 2005-10-05 2009-03-19 アプライド マテリアルズ インコーポレイテッド エピタキシャル膜形成のための方法及び装置
WO2007112058A2 (en) * 2006-03-24 2007-10-04 Applied Materials, Inc. Carbon precursors for use during silicon epitaxial firm formation
WO2007117583A2 (en) * 2006-04-07 2007-10-18 Applied Materials Inc. Cluster tool for epitaxial film formation
US7674337B2 (en) * 2006-04-07 2010-03-09 Applied Materials, Inc. Gas manifolds for use during epitaxial film formation
US8029620B2 (en) 2006-07-31 2011-10-04 Applied Materials, Inc. Methods of forming carbon-containing silicon epitaxial layers
US7897495B2 (en) * 2006-12-12 2011-03-01 Applied Materials, Inc. Formation of epitaxial layer containing silicon and carbon
US9064960B2 (en) * 2007-01-31 2015-06-23 Applied Materials, Inc. Selective epitaxy process control
JP4635062B2 (ja) 2008-03-11 2011-02-16 株式会社東芝 半導体装置の製造方法
KR101776926B1 (ko) 2010-09-07 2017-09-08 삼성전자주식회사 반도체 소자 및 그 제조 방법
CN103779278A (zh) * 2012-10-22 2014-05-07 中芯国际集成电路制造(上海)有限公司 Cmos管的形成方法
JP5931780B2 (ja) * 2013-03-06 2016-06-08 東京エレクトロン株式会社 選択エピタキシャル成長法および成膜装置
KR102422158B1 (ko) 2015-12-23 2022-07-20 에스케이하이닉스 주식회사 반도체장치 및 그 제조 방법
JP6640596B2 (ja) * 2016-02-22 2020-02-05 東京エレクトロン株式会社 成膜方法
US10446393B2 (en) * 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
JP6489198B1 (ja) * 2017-12-25 2019-03-27 株式会社Sumco エピタキシャルウェーハの汚染評価方法および該方法を用いたエピタキシャルウェーハの製造方法

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675619A (en) 1969-02-25 1972-07-11 Monsanto Co Apparatus for production of epitaxial films
NL187942C (nl) 1980-08-18 1992-02-17 Philips Nv Zenerdiode en werkwijze ter vervaardiging daarvan.
US5294286A (en) 1984-07-26 1994-03-15 Research Development Corporation Of Japan Process for forming a thin film of silicon
US5693139A (en) 1984-07-26 1997-12-02 Research Development Corporation Of Japan Growth of doped semiconductor monolayers
JPH0639357B2 (ja) 1986-09-08 1994-05-25 新技術開発事業団 元素半導体単結晶薄膜の成長方法
US5607511A (en) 1992-02-21 1997-03-04 International Business Machines Corporation Method and apparatus for low temperature, low pressure chemical vapor deposition of epitaxial silicon layers
US5112439A (en) 1988-11-30 1992-05-12 Mcnc Method for selectively depositing material on substrates
JPH0824191B2 (ja) 1989-03-17 1996-03-06 富士通株式会社 薄膜トランジスタ
EP0413982B1 (en) 1989-07-27 1997-05-14 Junichi Nishizawa Impurity doping method with adsorbed diffusion source
JP2880322B2 (ja) 1991-05-24 1999-04-05 キヤノン株式会社 堆積膜の形成方法
US5227330A (en) * 1991-10-31 1993-07-13 International Business Machines Corporation Comprehensive process for low temperature SI epit axial growth
US5480818A (en) 1992-02-10 1996-01-02 Fujitsu Limited Method for forming a film and method for manufacturing a thin film transistor
JP2917694B2 (ja) 1992-04-02 1999-07-12 日本電気株式会社 化合物半導体気相成長方法及びその装置
JPH0750690B2 (ja) 1992-08-21 1995-05-31 日本電気株式会社 ハロゲン化物を用いる半導体結晶のエピタキシャル成長方法とその装置
US5273930A (en) 1992-09-03 1993-12-28 Motorola, Inc. Method of forming a non-selective silicon-germanium epitaxial film
US5236545A (en) 1992-10-05 1993-08-17 The Board Of Governors Of Wayne State University Method for heteroepitaxial diamond film development
JP3255469B2 (ja) 1992-11-30 2002-02-12 三菱電機株式会社 レーザ薄膜形成装置
JP3265042B2 (ja) 1993-03-18 2002-03-11 東京エレクトロン株式会社 成膜方法
JPH0729897A (ja) 1993-06-25 1995-01-31 Nec Corp 半導体装置の製造方法
US5372860A (en) 1993-07-06 1994-12-13 Corning Incorporated Silicon device production
JPH07109573A (ja) 1993-10-12 1995-04-25 Semiconductor Energy Lab Co Ltd ガラス基板および加熱処理方法
US5796116A (en) 1994-07-27 1998-08-18 Sharp Kabushiki Kaisha Thin-film semiconductor device including a semiconductor film with high field-effect mobility
US6342277B1 (en) 1996-08-16 2002-01-29 Licensee For Microelectronics: Asm America, Inc. Sequential chemical vapor deposition
US5916365A (en) 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
US5807792A (en) 1996-12-18 1998-09-15 Siemens Aktiengesellschaft Uniform distribution of reactants in a device layer
US6335280B1 (en) 1997-01-13 2002-01-01 Asm America, Inc. Tungsten silicide deposition process
US6055927A (en) 1997-01-14 2000-05-02 Applied Komatsu Technology, Inc. Apparatus and method for white powder reduction in silicon nitride deposition using remote plasma source cleaning technology
US5849092A (en) 1997-02-25 1998-12-15 Applied Materials, Inc. Process for chlorine trifluoride chamber cleaning
TW417249B (en) 1997-05-14 2001-01-01 Applied Materials Inc Reliability barrier integration for cu application
US6118216A (en) 1997-06-02 2000-09-12 Osram Sylvania Inc. Lead and arsenic free borosilicate glass and lamp containing same
KR100385946B1 (ko) 1999-12-08 2003-06-02 삼성전자주식회사 원자층 증착법을 이용한 금속층 형성방법 및 그 금속층을장벽금속층, 커패시터의 상부전극, 또는 하부전극으로구비한 반도체 소자
US6287965B1 (en) 1997-07-28 2001-09-11 Samsung Electronics Co, Ltd. Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor
KR100269306B1 (ko) 1997-07-31 2000-10-16 윤종용 저온처리로안정화되는금속산화막으로구성된완충막을구비하는집적회로장치및그제조방법
KR100261017B1 (ko) 1997-08-19 2000-08-01 윤종용 반도체 장치의 금속 배선층을 형성하는 방법
US6042654A (en) 1998-01-13 2000-03-28 Applied Materials, Inc. Method of cleaning CVD cold-wall chamber and exhaust lines
US6383955B1 (en) 1998-02-05 2002-05-07 Asm Japan K.K. Silicone polymer insulation film on semiconductor substrate and method for forming the film
TW437017B (en) 1998-02-05 2001-05-28 Asm Japan Kk Silicone polymer insulation film on semiconductor substrate and method for formation thereof
US6514880B2 (en) 1998-02-05 2003-02-04 Asm Japan K.K. Siloxan polymer film on semiconductor substrate and method for forming same
US6159852A (en) 1998-02-13 2000-12-12 Micron Technology, Inc. Method of depositing polysilicon, method of fabricating a field effect transistor, method of forming a contact to a substrate, method of forming a capacitor
US6797558B2 (en) 2001-04-24 2004-09-28 Micron Technology, Inc. Methods of forming a capacitor with substantially selective deposite of polysilicon on a substantially crystalline capacitor dielectric layer
WO1999045167A1 (en) 1998-03-06 1999-09-10 Asm America, Inc. Method of depositing silicon with high step coverage
US6019839A (en) * 1998-04-17 2000-02-01 Applied Materials, Inc. Method and apparatus for forming an epitaxial titanium silicide film by low pressure chemical vapor deposition
JP4214585B2 (ja) 1998-04-24 2009-01-28 富士ゼロックス株式会社 半導体デバイス、半導体デバイスの製造方法及び製造装置
US6025627A (en) 1998-05-29 2000-02-15 Micron Technology, Inc. Alternate method and structure for improved floating gate tunneling devices
FR2779572B1 (fr) 1998-06-05 2003-10-17 St Microelectronics Sa Transistor bipolaire vertical a faible bruit et procede de fabrication correspondant
KR100275738B1 (ko) 1998-08-07 2000-12-15 윤종용 원자층 증착법을 이용한 박막 제조방법
JP4204671B2 (ja) 1998-09-11 2009-01-07 三菱電機株式会社 半導体装置の製造方法
KR100287180B1 (ko) 1998-09-17 2001-04-16 윤종용 계면 조절층을 이용하여 금속 배선층을 형성하는 반도체 소자의 제조 방법
KR100327328B1 (ko) 1998-10-13 2002-05-09 윤종용 부분적으로다른두께를갖는커패시터의유전막형성방버뵤
US6200893B1 (en) 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6305314B1 (en) 1999-03-11 2001-10-23 Genvs, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6653212B1 (en) 1999-04-20 2003-11-25 Sony Corporation Method and apparatus for thin-film deposition, and method of manufacturing thin-film semiconductor device
US6124158A (en) 1999-06-08 2000-09-26 Lucent Technologies Inc. Method of reducing carbon contamination of a thin dielectric film by using gaseous organic precursors, inert gas, and ozone to react with carbon contaminants
US6391785B1 (en) 1999-08-24 2002-05-21 Interuniversitair Microelektronica Centrum (Imec) Method for bottomless deposition of barrier layers in integrated circuit metallization schemes
US6511539B1 (en) * 1999-09-08 2003-01-28 Asm America, Inc. Apparatus and method for growth of a thin film
US6489241B1 (en) 1999-09-17 2002-12-03 Applied Materials, Inc. Apparatus and method for surface finishing a silicon film
FI117942B (fi) 1999-10-14 2007-04-30 Asm Int Menetelmä oksidiohutkalvojen kasvattamiseksi
FR2801420B1 (fr) 1999-11-23 2002-04-12 St Microelectronics Sa Transistor bipolaire vertical a faible bruit basse frequence et gain en courant eleve, et procede de fabrication correspondant
US6780704B1 (en) 1999-12-03 2004-08-24 Asm International Nv Conformal thin films over textured capacitor electrodes
US6291319B1 (en) 1999-12-17 2001-09-18 Motorola, Inc. Method for fabricating a semiconductor structure having a stable crystalline interface with silicon
US6348420B1 (en) 1999-12-23 2002-02-19 Asm America, Inc. Situ dielectric stacks
EP1123991A3 (en) 2000-02-08 2002-11-13 Asm Japan K.K. Low dielectric constant materials and processes
US6492283B2 (en) 2000-02-22 2002-12-10 Asm Microchemistry Oy Method of forming ultrathin oxide layer
KR100803770B1 (ko) * 2000-03-07 2008-02-15 에이에스엠 인터내셔널 엔.브이. 구배(graded)박막
KR100363088B1 (ko) 2000-04-20 2002-12-02 삼성전자 주식회사 원자층 증착방법을 이용한 장벽 금속막의 제조방법
US6458718B1 (en) 2000-04-28 2002-10-01 Asm Japan K.K. Fluorine-containing materials and processes
US6630413B2 (en) 2000-04-28 2003-10-07 Asm Japan K.K. CVD syntheses of silicon nitride materials
EP2293322A1 (en) * 2000-06-08 2011-03-09 Genitech, Inc. Method for forming a metal nitride layer
JP3650727B2 (ja) * 2000-08-10 2005-05-25 Hoya株式会社 炭化珪素製造方法
KR100373853B1 (ko) 2000-08-11 2003-02-26 삼성전자주식회사 반도체소자의 선택적 에피택시얼 성장 방법
US6461909B1 (en) 2000-08-30 2002-10-08 Micron Technology, Inc. Process for fabricating RuSixOy-containing adhesion layers
JP5290488B2 (ja) * 2000-09-28 2013-09-18 プレジデント アンド フェロウズ オブ ハーバード カレッジ 酸化物、ケイ酸塩及びリン酸塩の気相成長
KR100378186B1 (ko) 2000-10-19 2003-03-29 삼성전자주식회사 원자층 증착법으로 형성된 박막이 채용된 반도체 소자 및그 제조방법
US6613695B2 (en) * 2000-11-24 2003-09-02 Asm America, Inc. Surface preparation prior to deposition
JP4333900B2 (ja) 2000-11-30 2009-09-16 エーエスエム インターナショナル エヌ.ヴェー. 磁気メモリセル、磁気構造体及び磁気素子の製造方法、並びに磁気構造体用金属層の成長方法
KR100385947B1 (ko) 2000-12-06 2003-06-02 삼성전자주식회사 원자층 증착 방법에 의한 박막 형성 방법
KR20020049875A (ko) 2000-12-20 2002-06-26 윤종용 반도체 메모리 소자의 강유전체 커패시터 및 그 제조방법
KR100393208B1 (ko) 2001-01-15 2003-07-31 삼성전자주식회사 도핑된 다결정 실리콘-저매니움막을 이용한 반도체 소자및 그 제조방법
US6426265B1 (en) * 2001-01-30 2002-07-30 International Business Machines Corporation Incorporation of carbon in silicon/silicon germanium epitaxial layer to enhance yield for Si-Ge bipolar technology
KR101027485B1 (ko) * 2001-02-12 2011-04-06 에이에스엠 아메리카, 인코포레이티드 반도체 박막 증착을 위한 개선된 공정
US20020117399A1 (en) * 2001-02-23 2002-08-29 Applied Materials, Inc. Atomically thin highly resistive barrier layer in a copper via
US6576535B2 (en) 2001-04-11 2003-06-10 Texas Instruments Incorporated Carbon doped epitaxial layer for high speed CB-CMOS
US7108748B2 (en) * 2001-05-30 2006-09-19 Asm America, Inc. Low temperature load and bake
US6828218B2 (en) * 2001-05-31 2004-12-07 Samsung Electronics Co., Ltd. Method of forming a thin film using atomic layer deposition
US6391803B1 (en) 2001-06-20 2002-05-21 Samsung Electronics Co., Ltd. Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane
US6861334B2 (en) * 2001-06-21 2005-03-01 Asm International, N.V. Method of fabricating trench isolation structures for integrated circuits using atomic layer deposition
US6806145B2 (en) * 2001-08-31 2004-10-19 Asm International, N.V. Low temperature method of forming a gate stack with a high k layer deposited over an interfacial oxide layer
US6960537B2 (en) * 2001-10-02 2005-11-01 Asm America, Inc. Incorporation of nitrogen into high k dielectric film
US20030072884A1 (en) * 2001-10-15 2003-04-17 Applied Materials, Inc. Method of titanium and titanium nitride layer deposition
US6916398B2 (en) * 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
KR20030035152A (ko) 2001-10-30 2003-05-09 주식회사 하이닉스반도체 반도체웨이퍼 제조방법
US6743681B2 (en) * 2001-11-09 2004-06-01 Micron Technology, Inc. Methods of Fabricating Gate and Storage Dielectric Stacks having Silicon-Rich-Nitride
US6590344B2 (en) 2001-11-20 2003-07-08 Taiwan Semiconductor Manufacturing Co., Ltd. Selectively controllable gas feed zones for a plasma reactor
US6773507B2 (en) * 2001-12-06 2004-08-10 Applied Materials, Inc. Apparatus and method for fast-cycle atomic layer deposition
US7081271B2 (en) * 2001-12-07 2006-07-25 Applied Materials, Inc. Cyclical deposition of refractory metal silicon nitride
US6696332B2 (en) * 2001-12-26 2004-02-24 Texas Instruments Incorporated Bilayer deposition to avoid unwanted interfacial reactions during high K gate dielectric processing
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US6911391B2 (en) * 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
JP3914064B2 (ja) * 2002-02-28 2007-05-16 富士通株式会社 混晶膜の成長方法及び装置
US7105891B2 (en) * 2002-07-15 2006-09-12 Texas Instruments Incorporated Gate structure and method
US6723658B2 (en) * 2002-07-15 2004-04-20 Texas Instruments Incorporated Gate structure and method
US7449385B2 (en) * 2002-07-26 2008-11-11 Texas Instruments Incorporated Gate dielectric and method
US6919251B2 (en) * 2002-07-31 2005-07-19 Texas Instruments Incorporated Gate dielectric and method
US7186630B2 (en) * 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
KR100542736B1 (ko) * 2002-08-17 2006-01-11 삼성전자주식회사 원자층 증착법을 이용한 산화막의 형성방법 및 이를이용한 반도체 장치의 캐패시터 형성방법
US7199023B2 (en) * 2002-08-28 2007-04-03 Micron Technology, Inc. Atomic layer deposited HfSiON dielectric films wherein each precursor is independendently pulsed
US6759286B2 (en) * 2002-09-16 2004-07-06 Ajay Kumar Method of fabricating a gate structure of a field effect transistor using a hard mask
US6998305B2 (en) 2003-01-24 2006-02-14 Asm America, Inc. Enhanced selectivity for epitaxial deposition
JP3872027B2 (ja) 2003-03-07 2007-01-24 株式会社東芝 クリーニング方法及び半導体製造装置
KR20050119662A (ko) * 2003-03-28 2005-12-21 코닌클리즈케 필립스 일렉트로닉스 엔.브이. N-도핑된 규소 층의 에피택시얼 증착 방법
JP4224492B2 (ja) 2003-06-09 2009-02-12 シーケーディ株式会社 圧力制御システム及び流量制御システム
JP2005167064A (ja) 2003-12-04 2005-06-23 Sharp Corp 不揮発性半導体記憶装置
US7045432B2 (en) * 2004-02-04 2006-05-16 Freescale Semiconductor, Inc. Method for forming a semiconductor device with local semiconductor-on-insulator (SOI)
US7071117B2 (en) * 2004-02-27 2006-07-04 Micron Technology, Inc. Semiconductor devices and methods for depositing a dielectric film
US7230274B2 (en) 2004-03-01 2007-06-12 Cree, Inc Reduction of carrot defects in silicon carbide epitaxy
KR100532509B1 (ko) 2004-03-26 2005-11-30 삼성전자주식회사 SiGe를 이용한 트렌치 커패시터 및 그 형성방법
US7396743B2 (en) * 2004-06-10 2008-07-08 Singh Kaushal K Low temperature epitaxial growth of silicon-containing films using UV radiation
US7361563B2 (en) 2004-06-17 2008-04-22 Samsung Electronics Co., Ltd. Methods of fabricating a semiconductor device using a selective epitaxial growth technique
KR100607409B1 (ko) * 2004-08-23 2006-08-02 삼성전자주식회사 기판 식각 방법 및 이를 이용한 반도체 장치 제조 방법
US7312128B2 (en) 2004-12-01 2007-12-25 Applied Materials, Inc. Selective epitaxy process with alternating gas supply
US7682940B2 (en) * 2004-12-01 2010-03-23 Applied Materials, Inc. Use of Cl2 and/or HCl during silicon epitaxial film formation
US7560352B2 (en) * 2004-12-01 2009-07-14 Applied Materials, Inc. Selective deposition
US7235492B2 (en) * 2005-01-31 2007-06-26 Applied Materials, Inc. Low temperature etchant for treatment of silicon-containing surfaces
US7687383B2 (en) * 2005-02-04 2010-03-30 Asm America, Inc. Methods of depositing electrically active doped crystalline Si-containing films
JP2009512196A (ja) * 2005-10-05 2009-03-19 アプライド マテリアルズ インコーポレイテッド エピタキシャル膜形成のための方法及び装置
WO2007112058A2 (en) * 2006-03-24 2007-10-04 Applied Materials, Inc. Carbon precursors for use during silicon epitaxial firm formation
US8029620B2 (en) * 2006-07-31 2011-10-04 Applied Materials, Inc. Methods of forming carbon-containing silicon epitaxial layers

Also Published As

Publication number Publication date
WO2008033186A1 (en) 2008-03-20
DE112007001813T5 (de) 2009-07-09
US20080026549A1 (en) 2008-01-31
US7588980B2 (en) 2009-09-15
CN101496150A (zh) 2009-07-29
KR101369355B1 (ko) 2014-03-04
JP2009545884A (ja) 2009-12-24
JP5175285B2 (ja) 2013-04-03
TWI390606B (zh) 2013-03-21
TW200816280A (en) 2008-04-01
KR20090037481A (ko) 2009-04-15

Similar Documents

Publication Publication Date Title
CN101496150B (zh) 控制外延层形成期间形态的方法
CN101496153A (zh) 形成含碳外延硅层的方法
CN101404250B (zh) 硅碳外延层的选择性形成
CN101069264B (zh) 具有选择性气体供应的选择性外延工艺
CN101401202B (zh) 选择性沉积
CN108878256A (zh) 形成含硅外延层的方法和相关半导体装置结构
JP5115970B2 (ja) 選択エピタキシープロセス制御
KR101074186B1 (ko) 에피택셜 필름 형성을 위한 클러스터 툴
JP2009111368A5 (zh)
KR20170070281A (ko) 저온에서 얇은 에피택셜 필름들을 성장시키는 방법
KR20130044312A (ko) 시클로헥사실란을 이용한 박막 및 이의 제조방법
JP2013531899A (ja) Si−含有材料および置換的にドーピングされた結晶性si−含有材料の選択エピタキシー
CN107430994B (zh) 提高选择性外延生长的生长速率的方法
CN104599945A (zh) 含硅外延层的形成
KR100434698B1 (ko) 반도체소자의 선택적 에피성장법
TW202035773A (zh) 用於金屬矽化物沉積的方法及設備
TW201826351A (zh) 製造半導體元件的方法
CN102017085B (zh) 用于沉积超细晶粒多晶硅薄膜的方法
US9704708B2 (en) Halogenated dopant precursors for epitaxy
CN102017086B (zh) 用于沉积具有超细晶粒的多晶硅薄膜的方法
TWI836199B (zh) 提高選擇性磊晶生長之生長速率的方法
KR20200073452A (ko) 저온 실리콘 절연막 증착 방법
TW202240012A (zh) 膜沉積系統及方法
JP2015053382A (ja) シリコン含有エピタキシャル膜およびその製造方法ならびに半導体装置
TW202405237A (zh) 處理磊晶生長矽膜的表面之方法及系統、膜沉積方法、及磊晶生長矽膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Address after: American California

Applicant after: Applied Materials Inc.

Address before: American California

Applicant before: Applied Materials Inc.

C14 Grant of patent or utility model
GR01 Patent grant