CN101563525A - 低堆积密度支撑剂及其制备方法 - Google Patents

低堆积密度支撑剂及其制备方法 Download PDF

Info

Publication number
CN101563525A
CN101563525A CNA2007800394618A CN200780039461A CN101563525A CN 101563525 A CN101563525 A CN 101563525A CN A2007800394618 A CNA2007800394618 A CN A2007800394618A CN 200780039461 A CN200780039461 A CN 200780039461A CN 101563525 A CN101563525 A CN 101563525A
Authority
CN
China
Prior art keywords
calcining
kaolinton
proppant
piller
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800394618A
Other languages
English (en)
Inventor
B·A·威尔逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbo Ceramics Inc
Original Assignee
Carbo Ceramics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbo Ceramics Inc filed Critical Carbo Ceramics Inc
Publication of CN101563525A publication Critical patent/CN101563525A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

用于制备能够在地下压力下提供渗透性的低堆积密度支撑剂的材料和方法。该低堆积密度支撑剂由高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种制备。

Description

低堆积密度支撑剂及其制备方法
背景
本公开涉及用于制备能够在地下压力下提供渗透性的低堆积密度支撑剂的方法和材料。
油和天然气从具有多孔的和可渗透的地层的井产生。该构造的多孔性允许该构造贮藏油和气,而该构造的渗透性允许油或气流移动穿过该构造。该构造的渗透性对允许油和气流到它可以从井泵出的位置是必须的。有时保持气或油的该构造的渗透性不足以油和气的经济回收。在其它情况下,在井的操作期间,该构造的渗透性下降至进一步的回收变得不经济的程度。在这样的情况下,必需断裂该构造并通过支撑材料或支撑剂在开放的条件下支撑断裂。这样的断裂通常由流体压力来实现,而支撑材料或支撑剂是颗粒材料,例如砂、玻璃珠或陶瓷颗粒(所有这些均可以被称为″支撑剂″),这些颗粒材料通过流体或凝胶(这两者均可以被称为″断裂流体″)载入断裂。随着支撑剂的密度降低,用于运载支撑剂进入断裂的断裂流体可以具有较低的粘度,这降低断裂流体的成本以及降低所谓的″凝胶损害″。凝胶损害由保留在该构造中的粘性断裂流体引起,并阻断气或油流至井孔。此外,随着支撑剂的密度降低,将支撑剂泵入断裂变得更容易和更廉价,且支撑剂还可以被载入增加井的油或气产生的断裂中。
附图简述
图1显示用于制备能够在地下压力下提供渗透性的低堆积密度支撑剂的方法的流程图。
图2是按照本文所述的一个实施方案,用煅烧的高岭土和煅烧的硅藻土制备的支撑剂的横截面的光学显微照片。
图3是图2所示的显微照片的高倍放大的光学显微照片。
图4是按照本文所述的另一个实施方案,用煅烧的高岭土和煅烧的硅藻土制备的支撑剂的横截面的光学显微照片。
图5是图4所示的显微照片的高倍放大的光学显微照片。
图6是按照已知的方法,由煅烧的高岭土制备的支撑剂的压碎部分的光学显微照片。
图7是按照本文公开的一个实施方案,由煅烧的高岭土和煅烧的硅藻土制备的支撑剂的压碎部分的光学显微照片。
图8是按照本文公开的另一个实施方案,由煅烧的高岭土和烧制的高岭土制备的支撑剂的压碎部分的光学显微照片。
图9是闭合压力-支撑剂渗透率的函数图,该支撑剂渗透率在短期传导装置中测试,该函数图显示按照本文所述的实施方案制备的支撑剂的增加的渗透性。
详述
本公开涉及用于制备能够在地下压力下提供渗透性的低堆积密度支撑剂的方法和材料。
当用于本文时,″堆积密度″是每单位体积的材料质量或重量,该体积包括考虑的体积、颗粒之间的空隙空间。
当用于本文时,″低堆积密度″指低于常规支撑剂例如砂和陶瓷支撑剂的堆积密度的堆积密度。在某些实施方案中,低堆积密度支撑剂指堆积密度小于约1.60g/cc、小于约1.50g/cc、小于约1.40g/cc、小于约1.30g/cc、小于约1.20g/cc、小于1.10g/cc、或小于1.00g/cc的支撑剂。在某些其它的实施方案中,由本文所述方法形成的低堆积密度支撑剂的堆积密度可小于硅砂、或主要由粘土制备的传统的重量轻的陶瓷支撑剂。其它的实施方案提供堆积密度比硅砂或主要由粘土制备的传统的重量轻的陶瓷支撑剂小15%、20%、25%或30%的支撑剂。硅砂的堆积密度为约1.55-1.65g/cc,主要由粘土制备的传统的重量轻的陶瓷支撑剂的堆积密度为约1.50-1.60g/cc。
在某些实施方案中,低堆积密度支撑剂由高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种制备。在一些实施方案中,低堆积密度支撑剂由高岭粘土和煅烧的硅藻土制备。在其它这样的实施方案中,低堆积密度支撑剂由高岭粘土和烧制的高岭粘土制备。在还其它这样的实施方案中,低堆积密度支撑剂由高岭粘土、煅烧的硅藻土和烧制的高岭粘土制备。
其它的实施方案提供涂层,该涂层基本上覆盖支撑剂的所有表面孔隙,以形成表观比重小于无涂层支撑剂的表观比重的涂布的支撑剂。
支撑剂的渗透性是涉及在不同的闭合应力下的流体传导性的重要特性。渗透率测试可以在支撑剂上进行,以测定当在支撑剂包装上的垂直压力(或闭合应力)增加时,通过支撑剂样品的流体流速的降低。在短期渗透率测试(美国石油学会推荐的实践61)中,测得量例如每平方英尺2磅的支撑剂被置于池内,将流体(通常为去离子水)以不同的流速通过支撑剂包装。当压力在支撑剂包装上增加时,它引起支撑剂断裂,因此降低被测量的流量。支撑剂的渗透性提供关于支撑剂将如何在地层中起作用的有价值的信息。本发明的支撑剂的短期渗透率大于堆积密度小于1.60g/cc,由小丸制备的支撑剂的短期渗透率,该小丸由水和煅烧的、部分煅烧的或未煅烧的高岭土组成。在其它的实施方案中,支撑剂的短期渗透率比堆积密度小于约1.60g/cc,由小丸制备的支撑剂的短期渗透率大10%-50%,该小丸由水和煅烧的、部分煅烧的或未煅烧的高岭土组成。在其它的某些实施方案中,支撑剂是堆积密度小于约1.60g/cc,4Kpsi短期渗透率大于187达西的烧结的基本上圆形和球形的颗粒。
粘土指由各种页硅酸盐矿物组成的粘土矿物。高岭石、蒙脱石、伊利石和绿泥石是页硅酸盐矿物的几种主要类型。高岭粘土在全球的许多地方被发现,并主要由高岭石(Al2Si2O5(OH)4)与石英、长石、氢氧化铝和氢氧化铁的混合物组成。高岭石是羟基键合的八面配位的铝和四面配位的硅的交替片形成的层状硅酸盐。高岭石具有低收缩-膨胀能力和低阳离子交换能力(1-15meq/100g)。
按照包括高岭粘土的本发明的某些实施方案,高岭粘土可以是未煅烧的、部分煅烧的或煅烧的形式或这些形式的混合物,只要该高岭粘土具有小于5%重量的莫来石。本领域的那些普通技术人员将术语″未煅烧的高岭粘土″理解为指其天然、″作为矿物的″条件下的高岭粘土。未煅烧的高岭粘土没有经过导致化学或矿物学变化的任何类型的处理,也可以称为″生的″高岭粘土。未煅烧的高岭粘土典型地包含大多数的高岭石(Al2Si2O4(OH)4)和少数的无定形形式和各种结晶多晶型物形式的硅石和/或水铝矿和/或水铝石。未煅烧的高岭粘土不包括任何偏高岭土(Al2Si2O6)或莫来石(3·Al2O32·SiO2)或纯矾土(来自水铝石或水铝矿),因为需要施加热量将高岭石转变成偏高岭土或莫来石。
术语″部分煅烧的高岭粘土″和″煅烧的高岭粘土″被本领域的那些普通技术人员理解为指已经在一定时间和550℃以上-约800℃,优选约550℃-约600℃下经过热处理,以从粘土(或水铝矿或水铝石)中除去一些(部分煅烧的)或基本上所有的(煅烧的)有机物质和结合水的高岭粘土。部分煅烧或煅烧高岭粘土导致粘土中的一些(部分煅烧的)或基本上所有的(煅烧的)高岭石转变成偏高岭土,偏高岭土是无定形的火山灰材料。
当用于本文时,术语″烧制的高岭粘土″指已经在足以使高岭石转变成莫来石,并致使烧制的高岭粘土包括至少5%重量莫来石的时间和温度下经过热处理的未煅烧的高岭粘土、部分煅烧的高岭粘土或煅烧的高岭粘土。与非烧制的高岭粘土相比,当烧制的高岭粘土与其它组分混合时具有增强的化学键合性质。烧制的高岭粘土经过基本上除去有机物质和结合水,并在存在于粘土中的高岭土、偏高岭土或硅石(石英)中引起结晶学变化的热处理。该热处理包括在至少800℃以上,优选约900℃-约1100℃将高岭粘土加热,以使一部分偏高岭土不可逆地转变成莫来石和以使一部分硅石转变成方石英。莫来石和方石英分别是氧化铝和硅石的结晶形式。
在其中低堆积密度支撑剂由高岭粘土和烧制的高岭粘土制备的本发明的某些实施方案中,烧制的高岭粘土包含至少约10%重量莫来石,而在其它这样的实施方案中,烧制的高岭粘土包含至少约50%重量莫来石、至少约65%重量莫来石、至少约80%重量莫来石、至少约90%重量莫来石或至少约95%重量莫来石。在其它的实施方案中,烧制的高岭土包含至少65%重量的莫来石和至少15%重量的方石英。在还其它这样的实施方案中,烧制的高岭粘土包含约65%重量莫来石、约15%-约25%重量方石英和约10%-约20%重量无定形硅石。
本发明的实施方案提供用于制备低堆积密度支撑剂的方法,该方法包括充分加热高岭粘土以制备含至少5%重量莫来石的烧制的高岭粘土,共碾磨高岭粘土和烧制的高岭粘土以形成共碾磨的混合物,由共碾磨的混合物和水形成基本上圆形和球形的生小丸,并烧结小丸以形成堆积密度小于约1.60g/cc的支撑剂。该支撑剂的短期渗透率大于堆积密度小于1.60g/cc但由小丸制备的支撑剂的短期渗透率,该小丸由水和煅烧的、部分煅烧的或未煅烧形式的高岭粘土组成。在其它的实施方案中,烧制的高岭粘土包含至少50%重量的莫来石和方石英中的至少一种。在某些其它的实施方案中,烧制的高岭粘土包含至少65%重量的莫来石和至少15%重量的方石英。
按照本发明的某些实施方案,许多小丸由高岭粘土和烧制的高岭粘土的混合物制备。由该小丸形成的支撑剂的堆积密度小于1.60g/cc。在其它的实施方案中,高岭粘土和烧制的高岭粘土的混合物包括约70%-约90%重量的高岭粘土和约10%-约30%重量的烧制的高岭粘土。在某些其它的实施方案中,高岭粘土和烧制的高岭粘土的混合物包括约80%-约85%重量的高岭粘土和约15%-约20%重量的烧制的高岭粘土。还其它的实施方案提供烧制的高岭粘土包含至少5%重量的莫来石。在还另一个实施方案中,烧制的高岭粘土包含至少50%重量的莫来石。在某些其它的实施方案中,烧制的高岭粘土包含至少65%重量的莫来石和至少15%重量的方石英。
当用于本文时,术语″煅烧的硅藻土″指已经在足以从硅藻土中除去足量的有机物质和结合水以减少硅藻土的灼烧失量至小于约4%重量的时间和温度下经过热处理的硅藻土。
按照本发明的实施方案,许多小丸由高岭粘土和煅烧的硅藻土的混合物制备。由该小丸制备的支撑剂的堆积密度小于约1.60g/cc。在某些实施方案中,高岭粘土和煅烧的硅藻土的混合物包括约70%-约92.5%重量的高岭粘土和约7.5%-约30%重量的煅烧的硅藻土。在其它的实施方案中,高岭粘土和煅烧的硅藻土的混合物包括约80%-约90%重量的高岭粘土和约10%-约20%重量的煅烧的硅藻土。
按照本发明的实施方案,提供包含许多烧结的、球形小丸的支撑剂,该小丸由高岭粘土、煅烧的硅藻土和烧制的高岭粘土的混合物制备。在其它的实施方案中,高岭粘土、煅烧的硅藻土和烧制的高岭粘土的混合物包括约75%-约90%重量的高岭粘土、约5%-约10%重量的煅烧的硅藻土和约5%-约15%重量的烧制的高岭粘土。
本发明的实施方案提供用于制备低堆积密度支撑剂的方法,该方法包括共碾磨高岭粘土和煅烧的硅藻土,以形成共碾磨的混合物,由共碾磨的混合物和水形成基本上圆形和球形的生小丸,并烧结该小丸以形成堆积密度小于约1.60g/cc的支撑剂。形成的支撑剂的短期渗透率大于堆积密度小于约1.60g/cc,但由小丸制备的支撑剂的短期渗透率,该小丸由水和煅烧的、部分煅烧的或未煅烧形式的高岭粘土组成。
本发明的实施方案提供用于支撑地层中的断裂的方法,该方法包括混合流体和支撑剂,并将该混合物引入地层中的断裂。支撑剂包含由高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种制备的许多烧结的基本上圆形和球形的颗粒,且堆积密度小于约1.60g/cc,4Kpsi短期渗透率大于187达西。在某些实施方案中,涂布支撑剂以形成涂布的支撑剂,该涂布的支撑剂的表观比重低于无涂层支撑剂的表观比重。
本发明的实施方案提供形成低堆积密度支撑剂的方法,该方法包括由原料形成基本上圆形和球形的生小丸,该原料包括水、高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种,并烧结小丸以形成堆积密度小于约1.60g/cc的支撑剂。该支撑剂的短期渗透率大于堆积密度小于约1.60g/cc,但由小丸制备的支撑剂的短期渗透率,该小丸由水和煅烧的、部分煅烧的或未煅烧形式的高岭粘土组成。
在本发明的其它某些实施方案中,形成低堆积密度支撑剂的方法包括用材料涂布支撑剂以形成涂布的支撑剂,该涂布的支撑剂的表观比重低于无涂层支撑剂的表观比重。
在本发明的其它实施方案中,形成低堆积密度支撑剂的方法包括共碾磨高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种。
现在参考图1,其中显示用于由高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种,制备低堆积密度支撑剂的方法。
操作102是任选的,但被包括于本发明的某些实施方案中。在操作102中,将高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种一起碾磨以形成共碾磨的混合物。当用于本文时,当它们在足以制备共碾磨混合物的条件下一起碾磨时,其中在共混物中99%的颗粒的尺寸小于50微米,在共混物中90%的颗粒的尺寸小于10微米,则高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种被认为是共碾磨的。用于共碾磨的各种合适的方法和装置为本领域的那些普通技术人员熟知,例如喷射碾磨和球磨均合适。
在操作104中,由包括高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种的原料形成基本上圆形和球形的生小丸。按照某些实施方案,由本领域的那些普通技术人员已知的任何合适的混合方法形成基本上圆形和球形的生小丸。在一些实施方案中,由被称为″干″法的方法形成基本上圆形和球形的生小丸,而在其它的实施方案中,由被称为″湿″法的方法形成基本上圆形和球形的生小丸。
作为合适的”干”法的实例,将高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种共碾磨以形成微粒混合物,然后将该微粒混合物在高强度混合机中与水混合。合适的可市购的强力搅拌或混合装置具有可旋转的水平的或倾斜的圆形平板和可旋转的撞击叶轮,例如在Brunner的美国专利第3,690,622号中所述的装置,该专利的全部内容通过引用结合到本文中。将足够的水加入至混合物以引起基本上圆形和球形的小丸的形成。一般而言,足以引起基本上圆形和球形的小丸形成的水的总量占微粒混合物约15%-约30%重量。本领域的那些普通技术人员将理解如何确定加入至混合机致使基本上圆形和球形的小丸形成的合适量的水。除水和微粒混合物之外,粘合剂可加入至初始混合物,以改善小丸的形成和增加未烧结小丸的生坯强度。合适的粘合剂包括但不限于各种树脂或蜡、膨润土、玉米淀粉、聚乙烯醇或硅酸钠溶液或其共混物。将水和微粒混合物混合以形成基本上圆形和球形的生小丸的时间可以由目视观察形成的小丸来确定,但典型的为约2分钟-约15分钟。
“干”法与适用于本文所述方法的上述“干”法相似,且也为本领域的那些普通技术人员熟知,包括在以下专利中所述的那些:美国专利第4,427,068号;美国专利第4,879,181号;美国专利第4,895,284号;和美国专利第7,036,591号,这些专利的全部内容通过引用结合到本文中。
合适的“湿”法的实例为流化床方法,其中加入高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种,以形成微粒混合物,并在搅拌机(或相似的装置)中与足够量的水混合,以形成固体含量约40%-约60%重量的浆料。本领域的那些普通技术人员将理解如何确定足量的水以形成固体含量约40%-约60%重量的浆料。本领域的那些普通技术人员也理解浆料制备,并因此理解在“湿”法中与微粒混合物混合的水量大于在“干”法中与微粒混合物混合的水量。一般而言,淤浆法需要行为象液体的水和固体(原料)的组合,而干法需要行为象固体的水和固体(原料)的组合。粘合剂可加入至初始混合物以改善小丸的形成和增加未烧结小丸的生坯强度。合适的粘合剂包括但不限于聚乙酸乙烯酯、聚乙烯醇(PVA)、甲基纤维素、糊精和糖蜜。
可在搅拌机中与水混合之前,将高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种共碾磨,或可在搅拌机中进行共碾磨并加入水。此外,可以将分散剂、pH调节剂、消泡剂和粘合剂中的一种或多种加入至搅拌机中的浆料中。
可以加入分散剂和pH调节剂以调节浆料的粘度,以至于达到目标粘度。目标粘度是可以通过以后的流化器的给定类型和/或尺寸的压力喷嘴加工,而不会阻塞的粘度。一般而言,浆料的粘度越低,则它可以越好地通过给定的流化器加工。然而,在分散剂的一些浓度下,分散剂可以引起浆料的粘度增加至不可以满足通过给定的流化器加工的点。本领域的普通技术人员可以通过常规试验来确定分散剂的合适量和给定流化器类型的目标粘度。如果使用pH调节剂,那么加入至浆料的pH调节剂的量应该是使浆料pH在约8-约11的量。本领域的那些普通技术人员可以通过常规试验来选择达到目标粘度和/或pH的合适分散剂或pH调节剂。
可以将消泡剂加入至搅拌机中的浆料中,以减少或防止由浆料发泡引起的装置问题。本领域的那些普通技术人员可以通过常规试验来鉴别和选择用于本文所述方法的消泡剂的合适类型和量。
可以将粘合剂加入至搅拌机中的浆料中,或优选可在加入粘合剂之前使浆料从搅拌机进料至分离罐。如果将粘合剂加入至搅拌机中的浆料中,那么优选在加入粘合剂之前降低搅拌机的混合速度,以减少或防止可能发生的过度发泡和/或粘度增加。以高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种的总干重计,粘合剂可以按约0.25%-约5.0%重量的量加入至浆料。合适的粘合剂包括但不限于聚乙酸乙烯酯、聚乙烯醇(PVA)、甲基纤维素、糊精和糖蜜。在某些实施方案中,粘合剂为分子量约20,000-100,000Mn的PVA粘合剂。″Mn″是本领域的那些普通技术人员已知的单位,表示用于确定链型分子的分子量的数目长度均值。无论将粘合剂(如果有的话)加入至搅拌机中的浆料中,或如优选的那样加入至分离罐中的浆料中,在加入粘合剂之后浆料均连续搅拌,持续足以允许粘合剂变得在整个浆料中彻底混合的时间。在某些实施方案中,在已经加入粘合剂之后浆料的搅拌时间长达约30分钟或更长时间。
使浆料从搅拌机,或如果使用粘合剂,则优选从分离罐进料至热交换器,该热交换器将浆料加热至约25℃-约90℃。将浆料从热交换器进料至泵系统,该泵系统在压力下将浆料进料至流化器。由于搅拌机,和/或在罐中发生的搅拌,浆料中的任何颗粒被减小到小于约230目的目标尺寸,致使可以将浆料进料至流化器,而没有流化器喷嘴的阻塞或其它装置问题。在某些实施方案中,颗粒的目标尺寸小于325目、小于270目、小于200目或小于170目。颗粒的目标尺寸受将浆料雾化而不会阻塞的后续流化器中压力喷嘴的类型和/或尺寸的能力影响。在一些实施方案中,可通过研磨机和/或筛分系统之一或两者将浆料进料,以帮助打碎和/或除去任何较大尺寸的材料至适合进料至流化器的尺寸。
本领域的那些普通技术人员熟知热交换器、泵系统和流化器及其操作方法,因此本文无需详述。然而,为了方便外行,提供适用于本文所述方法的流化器的一般描述。流化器具有一个或多个雾化喷嘴和包含″种子(seed)″的颗粒床。浆料在压力下通过雾化喷嘴喷雾,且雾化的浆料涂布颗粒床中的种子。
将热空气引入流化器中,并按约0.9-约1.5米/秒的速度通过颗粒床,颗粒床的深度为约2-约60厘米。当引入流化器时热空气的温度为约250℃-约650℃。当它流出流化器时热空气的温度小于约250℃,并优选小于约100℃。
基本上圆形和球形的生小丸积聚在颗粒床中,并响应颗粒床中的产物水平而通过出口回收,以在颗粒床中维持给定的深度。从颗粒床回收的基本上圆形和球形的生小丸可以被分成一个或多个部分,例如尺寸过大部分、产物部分和尺寸过小部分。尺寸过小部分和尺寸过大部分可以再循环进入浆料中,有或没有干燥的含产物部分的基本上圆形和球形的生小丸可以经过烧结操作106。在某些实施方案中,颗粒在烧结操作106之前干燥至水分含量小于约18%重量、小于约15%重量、小于约12%重量、小于约10%重量、小于约5%重量或小于约1%重量。如果基本上圆形和球形的生小丸在烧结操作106之前干燥,那么这样的干燥也可包括部分煅烧或煅烧基本上圆形和球形的生小丸。
“湿”法类似于适用于本文所述方法的上述”湿”法,也为本领域的那些普通技术人员熟知,包括在美国专利第4,440,866号和美国专利第5,120,455号中所述的那些,这些专利的全部内容均通过引用结合到本文中。
用于形成基本上圆形和球形的生小丸的合适”湿”法的另一个实例为喷雾干燥方法,其中加入高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种以形成微粒混合物,并在搅拌机(或相似的装置)中与足量的水混合以形成固体含量约50%-约75%重量的浆料。本领域的那些普通技术人员将理解如何确定足量的水以形成固体含量约50%-约75%重量的浆料。高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种可在搅拌机中与水混合之前共碾磨,或可在搅拌机中进行共碾磨并且加入水。
此外,可以将分散剂、消泡剂和粘合剂中的一种或多种加入至搅拌机中的浆料中。可以将消泡剂加入至搅拌机中的浆料中,以减少或防止由浆料发泡引起的装置问题。本领域的那些普通技术人员可以通过常规试验,鉴别和选择用于本文所述方法的消泡剂的合适类型和量。
合适的分散剂包括但不限于胶体、聚合电解质、焦磷酸四钠、焦磷酸四钾、聚磷酸盐、柠檬酸铵、柠檬酸铁铵和六偏磷酸钠。在喷雾干燥方法中,可以加入分散剂以调节浆料的粘度,以便达到使用的喷雾干燥装置的目标粘度。此外,在喷雾干燥方法中,分散剂可以影响形成″固体″基本上圆形和球形的小丸的能力,因此使包括于浆料中的分散剂(如果有的话)的量最小化,如本文将进一步讨论的那样。在浆料包含分散剂的某些实施方案中,以高岭粘土和煅烧的硅藻土与烧制的高岭粘土中的至少一种计,分散剂的量小于约0.3%重量、小于约0.5%重量或小于约1.0%重量。
合适的粘合剂包括但不限于聚乙烯醇、聚乙酸乙烯酯、甲基纤维素、糊精和糖蜜。可将粘合剂加入至搅拌机中的浆料中,或优选在加入粘合剂之前可将浆料从搅拌机给料至分离罐。如果将粘合剂加入至搅拌机中的浆料中,那么优选在加入粘合剂之前降低搅拌机的混合速度,以减少或防止可能发生的过度发泡和/或粘度增加。在喷雾干燥方法中,将粘合剂加入至浆料可以影响形成″固体″基本上圆形和球形的小丸的能力,因此使包括于浆料中的粘合剂/分散剂(如果有的话)的量最小化,如本文将进一步讨论的那样。在浆料包含粘合剂的某些实施方案中,以高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种计,粘合剂的量小于约0.5%重量或小于约1.0%重量。
无论将粘合剂(如果有的话)加入至搅拌机中的浆料中,或如优选的那样加入至分离罐中的浆料中,在加入粘合剂之后浆料均连续搅拌,持续足以允许粘合剂变得在整个浆料中彻底混合的时间。在某些实施方案中,在已经加入粘合剂之后浆料的搅拌时间长达约30分钟或更长时间。
浆料从搅拌机,或如果使用粘合剂,则优选从分离罐进料至包含雾化装置和干燥室的喷雾干燥装置。合适的雾化装置包括但不限于旋转轮雾化器、压力喷嘴雾化器和双流体喷嘴雾化器,所有这些雾化器均为本领域的那些普通技术人员熟知。一般而言,旋转轮雾化器产生细颗粒,而压力喷嘴和在压力下操作的双流体喷嘴可以产生相对大的颗粒。
雾化装置使浆料喷雾进入干燥室,其中浆料小滴在干燥室中与热空气相遇。小滴和热空气普遍作为同向流、逆流或其组合移动穿过干燥室。例如,浆料小滴以同向流和逆流的组合,按向上的方向从雾化装置喷雾进入干燥室,而热空气则从浆料喷雾进入干燥室的那点之上的点进料至干燥室。因此,相对于浆料小滴,热空气普遍按向下的方向流入室。浆料小滴的向上流动和热空气的向下流动形成逆向流动。然而,在一些点上,小滴将耗尽它们的向上轨道,开始普遍按向下的方向流入室,因此与热空气建立同向流。或者,浆料小滴普遍按向下的方向喷雾进入干燥室,热空气也普遍按向下的方向进料至干燥室,因此建立同向流。干燥室的圆筒高度影响小丸尺寸。例如,用于制备30/50支撑剂尺寸的小丸(大约765微米的生小丸平均尺寸)的干燥室高度估计为19.8米。在干燥室内,随着水分从小滴蒸发,基本上圆形和球形的固体生小丸形成。当用于本文时,基本上圆形和球形的″固体″小丸描述了内部空隙以颗粒的体积计小于约10%的小丸。在某些实施方案中,基本上圆形和球形的固体小丸的内部空隙以小丸的体积计可以小于约5%。因为当小滴被喷射通过干燥室时一般不旋转,所以小滴的一侧可以暴露至入口的空气,该空气比小滴的另一侧暴露的空气更热(本文分别称为″热侧″和″冷侧″)。在这样的情况下,在热侧蒸发得更快,在小滴表面上形成的膜在热侧比在冷侧上更快变厚。在小滴中的液体和固体移至热侧。在这点上,期望冷侧将被朝内拉,这将导致具有小凹的中空生颗粒,而不是本文所述的基本上圆形和球形的固体生小丸。然而,按照本文所述的方法,因为以下因素中的一个或多个,小丸是固体的而不是中空的:在本文所述重量百分比内的固体含量、在本文所述重量百分比内的可溶物含量(分散剂和/或粘合剂)和在本文所述范围内的进气口温度。
关于固体含量,固体含量大于约50%重量的浆料用于制备本文所述的固体基本上圆形和球形的颗粒。在某些实施方案中,浆料的固体含量为约50%-约75%重量,而在其它的实施方案中,浆料的固体含量为约50%-约60%重量,或约60%-约70%重量。
关于可溶物含量,粘合剂增加浆料粘度,这可以导致需要减少固体含量以维持可以被雾化的浆料。然而,较低的固体含量可以导致不是固体的颗粒。关于分散剂,分散剂允许固体更快速的移动至颗粒的表面,这也可以导致不是固体的颗粒。因此,浆料中的可溶物含量(添加剂例如粘合剂和分散剂的量)与浆料的固体含量平衡。优选,使用最少量的粘合剂和/或分散剂,该最少量根据调节浆料粘度的需要确定。
关于进气口温度,按照本文所述方法控制进入干燥室的空气温度。因此,在某些实施方案中,进气口温度为约100℃-约400℃,或约100℃-约200℃,或约200℃-约300℃,或约300℃-约400℃,或约400℃-约500℃。在其它的实施方案中,进气口温度为约150℃-约200℃或约200℃-约250℃。优选,为了减慢颗粒的干燥速度,使用该范围的下限温度,这又有助于可以被烧结以制备基本上圆形和球形的固体陶瓷颗粒的生陶瓷颗粒的制备。
因此,在喷雾干燥方法中,基本上圆形和球形的固体生小丸在重力的影响下从干燥室放出至少一部分。然后可以使基本上圆形和球形的固体生小丸经过烧结操作106。
再参考图1,将由″湿″法或″干″法制备的基本上圆形和球形的生小丸烧结成其最终形式的低堆积密度支撑剂(操作106)。烧结可以在回转窑、箱式窑或可以提供合适烧结条件的其它合适装置中进行。烧结和进行烧结的设备为本领域的那些普通技术人员熟知。按足以烧结小丸至低堆积密度的温度和时间进行烧结。在某些实施方案中,在约1200℃-约1350℃下,在峰温度下持续约20-约45分钟进行烧结。
本文所述的低堆积密度支撑剂可以被涂布,这将致使涂布的支撑剂的表观比重(ASG)小于由同样材料制备的无涂层低堆积密度支撑剂(例如未涂布的支撑剂)的ASG。按照某些实施方案,涂布支撑剂的基本上所有的表面孔隙以形成涂布的支撑剂,其中涂布的支撑剂的表观比重小于无涂层支撑剂的表观比重。当用于本文时,术语″表观比重″(″ASG″)是无单位的数,并在数字上等于每立方厘米体积(排除连接至支撑剂表面的和用于确定支撑剂小丸体积的任何和所有开放孔隙)的克重量除以水的密度(大约1g/cc)。支撑剂的合适的涂层包括但不限于聚合物树脂和丙烯酸树脂。用于涂布支撑剂的各种常规方法和设备为本领域的那些普通技术人员熟知,例如但不限于浸涂、喷涂、化学蒸汽淀积、物理蒸汽淀积或浸渍涂层。
以下实施例举例说明上述方法。
用于实施例1-4的原料
用于按实施例1-4所述,制备低堆积密度支撑剂的原料的化学分析和灼烧失量按%重量报告于表1中。报告于表1中的煅烧的高岭粘土和烧制的高岭粘土可购自CE Minerals,Andersonville,GA。煅烧的高岭粘土在足以基本上除去有机物质和结合水的时间和温度下加热。煅烧或烧制高岭粘土所需的时间和温度可以由本领域的普通技术人员无需不适当的试验确定。例如,可选择缓慢的加热速率,在峰温度下维持长时间,或急剧的加热速率或高的峰温度,在该温度下维持较短时间。煅烧的高岭粘土和烧制的高岭粘土购自CE Minerals,已经被煅烧和被烧制。适用于形成如本文所定义的煅烧的高岭粘土或烧制的高岭粘土的热处理可以由本领域的普通技术人员无需不适当的试验确定。
表1报告的煅烧的硅藻土以商品名FW-60购自EaglePicherFiltration & Minerals,Reno,NV。得自EaglePicher的FW-60级的煅烧的硅藻土被制造商描述为熔化煅烧的硅藻土,然而适用于本发明实施方案的煅烧的硅藻土可以与或不与助熔剂一起煅烧。例如,适用于本发明实施方案的其它等级的煅烧的硅藻土可以以商品名FW-14(熔化煅烧的硅藻土)和FP-2(煅烧的硅藻土)购自EaglePicher Filtration &Minerals。
煅烧的硅藻土购自EaglePicher,已经被煅烧。适用于形成如本文定义的煅烧的硅藻土的热处理可以由本领域的普通技术人员无需不适当的试验确定。
Figure A20078003946100211
表1报告的煅烧的高岭粘土、烧制的高岭粘土和煅烧的硅藻土的各氧化物的%重量由电感耦合等离子体(ICP)测定,该方法是本领域的那些普通技术人员已知的分析方法。″其它″表示各种氧化物例如ZrO2、SrO、MnO、ZnO、BaO或P2O5。在热处理之后,从粘土或硅藻土中烧掉碳酸盐。当发生该变化时,有被称为灼烧失量(″LOI″)的材料重量变化,该材料重量变化是材料干重的百分比。具有不同于在表1中报告的化学分析的煅烧的高岭粘土、烧制的高岭粘土和煅烧的硅藻土也适用于制备如本文所述的低堆积密度支撑剂,只要该煅烧的高岭粘土、烧制的高岭粘土和煅烧的硅藻土在本文提供的该术语的定义内。
实施例1:由干混的煅烧的高岭土和DE粉制备小丸
使用高岭粘土(在该实施例1中该高岭粘土是表1报告的煅烧的高岭粘土)和煅烧的硅藻土(DE)(也在表1中报告),用“干”法制备4批小丸。
高岭粘土和煅烧的硅藻土可以以散装形式或以粉末形式购得。如果以散装形式,则该材料优选碾磨成粉末形式,例如,碾磨成平均粒度约2-约5微米的形式,然后在高强度混合机中干混。在该实施例中,高岭粘土和煅烧的硅藻土被分别研磨成粉末形式,然后按高岭粘土对DE之比为85∶15加入至Eirich混合机。该Eirich混合机具有可以为水平的或从水平面倾斜0-35度的圆形台子,并可以按约10-约60转/分钟(rpm)的速度旋转。混合机也具有可旋转的撞击叶轮,该撞击叶轮可以按约5-约50米/秒的尖端速度旋转。台子的旋转方向与叶轮相反,这导致加入至该混合机的材料以逆流方式流过自身。撞击叶轮的中轴一般位于混合机内,在偏离可旋转台子的中轴中心的位置。
对于该实施例1,从水平面倾斜约30度,按约20-约40rpm旋转Eirich混合机的台子。撞击叶轮最初按约25-35米/秒(约1014-1420rpm)旋转,同时将高岭粘土和煅烧的硅藻土混合。在高岭粘土和煅烧的硅藻土视觉可见被彻底混合之后,增加撞击叶轮的速度,并如下所述将水加入至混合机。
按足以导致基本上圆形和球形的小丸的形成的量将水加入至混合机。在该特别实施例中,水是新鲜自来水,以混合机中高岭粘土和煅烧的硅藻土的重量计,按足以提供百分数约18%-约22%重量的量加入至混合机,虽然该量可以变化。一般而言,用于本发明方法的水量是足以引起基本上圆形和球形的小丸在混合后形成的量。
水加入至混合机的速率不是关键的。强烈的混合作用使水分散在整个混合物。在首先加入一半量的水期间,撞击叶轮按约16米/秒(约568rpm)旋转,此后按较高的尖端速度约32米/秒(约1136rpm)旋转。任选叶轮的初始旋转。如果利用,初始旋转为约5-约20米/秒,接着为较高的尖端速度约25-约35米/秒。本领域的那些普通技术人员可以确定是否调整叶轮和/或盘的转速至大于或小于在该实施例1中所述的那些值,以便形成基本上圆形和球形的小丸。
高岭粘土和煅烧的硅藻土与水混合约11分钟,以形成目标生小丸尺寸的基本上圆形和球形的生小丸。形成该小丸所需要的混合时间根据许多因素而变化,包括但不限于混合机中材料的量、混合机的运行速率、加入至混合机的水量和目标生小丸的尺寸。按照落在20目筛-40目筛的材料的90%的API标准,在该实施例1中的目标烧结小丸尺寸为20/40目。为了补偿在烧结期间发生的收缩,实施例1的目标生小丸尺寸比20/40目大大约1-2美国目尺寸。
从混合机中卸出基本上圆形和球形的生小丸并干燥。在该实施例中,将生小丸倒入不锈钢盘中,并置于110℃干燥烘箱中过夜,导致干燥的生小丸的水分含量小于约1%重量。在从干燥器取出之后的小丸被称为″生的″,因为它们没有被烧结成其最终状态。
将形成的生小丸置于氧化铝舟皿中,将舟皿装入在表2A中所述条件下运行的盒式窑中。″HR″表示窑的大约加热速率,单位为℃/小时。″浸透(soak)温度″表示窑的大约峰烧成温度,″浸透时间″表示小丸在浸透温度下在窑中的停留时间。
Figure A20078003946100231
评估了由各共混物制备的烧结小丸的各种性质。结果报告于表2B中。报告为″n/a″的结果表示该性质未被测定。
Figure A20078003946100232
按照用于测试支撑剂的API推荐的实践RP60,通过液体(水)置换的阿基米德方法测定表2B报告的ASG值,该实践RP60文本为本领域的那些普通技术人员已知并可利用。
表2B报告的整个小丸比重(SG)表示小丸的密度,包括密闭孔隙率,并用商标为Micromeritics的氦气比重计按照制造商的规程操作来测定。
表2B报告的堆积密度(BD)包括作为体积的一部分的小丸之间的空隙空间,并通过ANSI测试方法B74.4-1992(R 2002)测定,本领域的那些普通技术人员熟知并可利用该ANSI测试方法B74.4-1992(R 2002)的文本。
烧结小丸的压碎率表达为在4,000psi的应力下细粉(即对于20/40材料,它将是压碎成比40目更细的材料)的%重量。表2B报告的压碎率值按照用于测试支撑剂的API推荐的实践RP60测定,该实践RP60的文本为本领域的那些普通技术人员熟知。
尽管表2B显示4批中的每1批均达到低堆积密度,但是4k压碎率值高于预期。现在参考图2和图3,使用Zeiss Combizoom 400显微镜系统,从批号4取得小丸样品的光学显微照片,该显微镜系统是立体显微镜(10倍-106倍)和复式显微镜(40倍-660倍)的组合。
为了获得图2和图3的显微照片,将小丸的样品装到环氧树脂内,碾磨以便小丸厚度的一半被碾磨掉,然后打磨成1微米的终成品。通过将小丸置于1.25″塑料安装杯的底部来将样品小丸装到环氧树脂内。然后该杯充满约1/2″的环氧树脂,放置固化。在固化后,从塑料安装杯中取出安装入环氧树脂圆柱体内的小丸并将该小丸放置入自动打磨机(带向量动力头的Buehlerβ碾磨机/打磨机)上的试样架内。然后使用60粗砂碳化硅将小丸碾磨至约一半。然后使用钻石抛光剂将碾磨的小丸打磨成1微米的终成品。抛光制陶术是本领域的那些普通技术人员已知的方法。放大64倍取得图2显示的显微照片,并放大200倍取得图3显示的显微照片。
显微照片显示在小丸中存在″大孔″。为了易于参照,示例性大孔在图2和图3中记为10和12。如图2和图3所显示,大孔10的直径为约40微米,虽然小丸中的其它大孔可大于或小于大孔10。当用于本文时,术语″大孔″描述直径大于约5微米的烧结的小丸中的内部空隙。
已知陶瓷制品至少部分基于其最大尺寸的瑕疵而失败。因此,瑕疵越大,则使支撑剂小丸破裂所需的应力越小。理论上认为大孔是促成高于预期的压碎率值的瑕疵,因此要考虑如何降低或消除大孔的尺寸和/或存在。这样考虑的结果是以下理论:在它们经过形成生小丸的″干″法之前改善在高岭粘土和煅烧的硅藻土之间混合的程度将降低或消除大孔的尺寸和/或存在。
实施例2:由共碾磨的煅烧的高岭土和DE粉制备小丸
为了试验以下理论:改善高岭粘土和煅烧的硅藻土的混合将改善形成的小丸的压碎强度,由高岭粘土(它是表1报告的煅烧的高岭粘土)和煅烧的硅藻土(DE)(也在表1中报告)制备3批小丸,其中首先按高岭粘土对DE之比为85∶15,使粉末形式的高岭粘土和煅烧的硅藻土在Eirich混合机中干混,直至它们视觉可见被彻底混合,如实施例1所述。一旦高岭粘土和煅烧的硅藻土视觉可见被混合,则从Eirich混合机中取出干混物,并通过使用约1磅/小时的给料速度,在Sturtevant Inc.4″开放式多功能微粉磨机中喷射碾磨而共碾磨。用于共碾磨原料例如本文所述的煅烧的高岭粘土和DE的其它合适的装置和方法为本领域的那些普通技术人员熟知。
如上面的实施例1所述,按照″干″法使用Eirich混合机,并加入水,由共碾磨的高岭粘土和煅烧的硅藻土形成基本上圆形和球形的生小丸。也如实施例1,目标烧结小丸尺寸为20/40目。因此,目标生小丸尺寸增大约1-2目尺寸。
将形成的基本上圆形和球形的生小丸置于氧化铝舟皿中,该氧化铝舟皿被装入在表3A所述的条件下操作的盒式窑中。
评估由3批中的每1批制备的烧结小丸的各种性质。结果报告于表3B中。报告为″n/a″的结果表示该性质未被测定。烧结小丸的4Kpsi和6Kpsi短期渗透率按照用于测试支撑剂的API推荐的实践RP61测定,该实践RP61的文本为本领域的那些普通技术人员熟知。
Figure A20078003946100261
表3B显示3批中的每1批均达到低堆积密度。表3B也显示与实施例1的烧结小丸相比,由共碾磨的材料制备的烧结小丸具有较高的强度,如较低的压碎率值所证明。
现在参考图4和图5,按照图2和图3所述的方法获取从该实施例2的批号2小丸取得的光学显微照片,显示在实施例1中观察到的大孔已经被消除,因此验证理论:共碾磨高岭粘土和煅烧的硅藻土将降低或消除大孔的尺寸和/或存在,并因此改善最终产物的压碎强度。放大64倍取得图4显示的显微照片,并放大200倍取得图5显示的显微照片。
实施例3:由共碾磨的煅烧的高岭土制备对照小丸
当用于水压断裂操作时具有较高压碎强度的支撑剂与具有较低压碎强度的支撑剂相比一般提供改善的渗透性。因此,理论上认为由本文所述的高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种制备的支撑剂将显示与已知支撑剂产物相比改善的渗透性,与用高岭粘土但没有加入煅烧的硅藻土和烧制的高岭粘土中的至少一种制备的相似尺寸和堆积密度。
由表1报告的煅烧的高岭粘土制备对照支撑剂。煅烧的高岭粘土首先在Eirich混合机中干混,然后如实施例2所述喷射碾磨,但不加入煅烧的硅藻土和烧制的高岭粘土。按照如上面的实施例1所述的方法,使用高强度混合机,由喷射碾磨的高岭粘土粉形成基本上圆形和球形的生小丸。
将形成的基本上圆形和球形的生小丸置于氧化铝舟皿中,该氧化铝舟皿被装入在表4A所述的条件下操作的盒式窑中。
Figure A20078003946100271
评估了由各共混物制备的烧结小丸的各种性质。结果报告于表4B。报告为″n/a″的结果表示该性质未被测定。
表4B显示三批对照支撑剂中的各批均达到了低堆积密度。另外,批次2和批次3达到了可与实施例2的批次相比的4Kpsi压碎强度。然而,与在相同压力下在对照支撑剂(实施例3,批号2)中测量的渗透率相比,测试渗透率的实施例2的批次(实施例2,批号2)具有出乎意料地高的4Kpsi和6Kpsi短期渗透率。在表3B和表4B中短期渗透率的比较显示,实施例2的批号2的支撑剂具有比实施例3的对照支撑剂的批号2高18%的4Kpsi渗透率和高42%的6Kpsi渗透率。
图6是来自在实施例3中制备的对照支撑剂的批号2(浸透温度1265℃)的压碎支撑剂的光学显微照片。通过首先在4,000psi下在样品上进行压碎试验,然后保留通过40目筛下的材料,取得图6所示的显微照片。然后按照图2和图3所述方法获得保留的材料(即40目下材料)的显微照片。放大25.6倍取得图6显示的显微照片。
图7是压碎的支撑剂的光学显微照片,该支撑剂来自由实施例2中的共碾磨的高岭粘土和煅烧的硅藻土制备的支撑剂的批号2(浸透温度1300℃)。通过首先在4,000psi下在样品上进行压碎试验,然后保留通过40目筛下的材料,取得图7所示的显微照片。然后按照图2和图3所述方法获得保留的材料(即40目下材料)的显微照片。放大25.6倍取得图7显示的显微照片。
如图6和图7所示,对照支撑剂在断裂后断裂成大量的小块,而用高岭粘土和煅烧的DE制备的支撑剂断裂成更大的块。更大的块更小可能迁移至支撑的井中,因此将导致改善的渗透性,并因此增加油或气的产量。
理论上认为由高岭粘土和煅烧的硅藻土制备的支撑剂比仅由高岭粘土制备的支撑剂断裂成更大的块的现象由高岭土基质强度的增加所引起,由于与由100%高岭粘土(实施例3)制备的支撑剂相比,在由15%煅烧的DE(实施例2)制备的支撑剂中达到同样的堆积密度需要更高的烧结温度(浸透温度)。基本上,为了达到相等的堆积密度,当存在煅烧的DE时比不存在煅烧的DE时需要更高的浸透温度。
实施例4:由共碾磨的煅烧的和烧制的高岭土粉制备小丸
对于该实施例4,3批支撑剂由共碾磨的高岭粘土(表1报告的煅烧的高岭粘土)和烧制的高岭粘土(表1报告的烧制的高岭粘土)制备。
如实施例1所述,将高岭粘土和烧制的高岭粘土分别研磨成粉末形式,然后按高岭粘土对烧制的高岭粘土之比为85∶15在Eirich混合机中干混,直至该粉末视觉可见被彻底混合。如实施例2所述,干混的高岭粘土和烧制的高岭粘土在喷射碾磨机中共碾磨。按照上面的实施例1所述方法,使用高强度混合机,由喷射碾磨的高岭粘土和烧制的高岭粘土形成基本上圆形和球形的生小丸。
将形成的基本上圆形和球形的生小丸置于氧化铝舟皿中,该氧化铝舟皿被装入在表5A所述的条件下操作的盒式窑中。
Figure A20078003946100291
评估了由各共混物制备的烧结小丸的各种性质。结果报告于表5B。报告为″n/a″的结果表示该性质未被测定。
表5B显示三批中的各批均达到了低堆积密度。表5B也显示由共碾磨的高岭粘土和烧制的高岭粘土制备的烧结小丸的4Kpsi压碎强度一般可与由共碾磨的高岭粘土和煅烧的硅藻土制备的烧结小丸(实施例2)的4Kpsi压碎强度相当。
图8是该实施例4的批号3(浸透温度1295℃)的压碎的支撑剂的光学显微照片。通过首先在4,000psi下在样品上进行压碎试验,然后保留通过40目筛下的材料,取得图8所示的显微照片。然后按照图2和图3所述方法获得保留的材料(即40目下材料)的显微照片。放大25.6倍取得图8显示的显微照片。
比较图8与图6,显然用高岭粘土和烧制的高岭粘土制备的支撑剂比对照支撑剂断裂成更大的块。该更大的块在支撑的井内可能更少迁移,因此将导致改善的渗透性并因此增加油或气的产量。
实施例2-4和砂的短期渗透率的比较
图9显示实施例2的批号2、实施例3的批号2和实施例4的批号3的短期渗透率为闭合压力的函数。图9也显示了得自Badger Mining且堆积密度为1.57g/cc的20/40目断裂砂(fracture sand)的样品的短期渗透率。关于实施例2、3和4,如上所述获得断裂砂的短期渗透率。
图9显示由高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种制备的支撑剂具有比用高岭粘土而不用煅烧的硅藻土和烧制的高岭粘土中的至少一种制备的等同低堆积密度支撑剂更好的短期渗透率,和比相当尺寸的断裂砂更好的短期渗透率。特别说明,用高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种制备的支撑剂达到比Badger断裂砂更好的短期渗透率,并具有比Badger断裂砂更低的堆积密度,因此按照目前的实施方案制备支撑剂特别有用。用高岭粘土与煅烧的硅藻土和烧制的高岭粘土中的至少一种制备的支撑剂具有比Badger断裂砂大25%的短期渗透率。
通过在材料的含量或制备方法方面作微小的变化,可以基本上重复本文所述的发明,这对本领域的技术人员来讲将是显而易见的。在此类材料或方法基本上等同的程度上,它们将包括在权利要求内。

Claims (21)

1.一种形成低堆积密度支撑剂的方法,所述方法包括:
由原料形成基本上圆形和球形的生小丸,所述原料包含水;煅烧的、部分煅烧的或未煅烧的高岭粘土;和选自煅烧的硅藻土和烧制的高岭粘土中的至少一种材料;和
将小丸烧结,形成堆积密度小于约1.60g/cc的支撑剂;
其中所述支撑剂的短期渗透率比从由以下组分组成的小丸制备的堆积密度小于约1.60g/cc的支撑剂的大:水和煅烧的、部分煅烧的或未煅烧的高岭粘土。
2.权利要求1的方法,所述方法还包括:
用材料涂布所述支撑剂,形成涂布的支撑剂,所述涂布的支撑剂的表观比重低于无涂层支撑剂的表观比重。
3.权利要求1的方法,所述方法还包括:
将所述高岭粘土和选自煅烧的硅藻土和烧制的高岭粘土中的至少一种材料共碾磨。
4.权利要求1的方法,其中所述支撑剂的短期渗透率比由以下组分组成的小丸制备的堆积密度小于约1.60g/cc的支撑剂的短期渗透率大10%-50%:水和煅烧的、部分煅烧的或未煅烧的高岭土。
5.一种制备低堆积密度支撑剂的方法,所述方法包括:
将高岭粘土充分加热,以产生含有至少5%重量的莫来石的烧制的高岭粘土;
共碾磨煅烧的、部分煅烧的或未煅烧的高岭粘土和烧制的高岭粘土,形成共碾磨的混合物;
由所述共碾磨的混合物和水形成基本上圆形和球形的生小丸;和
将所述小丸烧结,形成堆积密度小于约1.60g/cc的支撑剂;
其中所述支撑剂的短期渗透率比从由以下组分组成的小丸制备的堆积密度小于约1.60g/cc的支撑剂的大:水和煅烧的、部分煅烧的或未煅烧的高岭粘土。
6.权利要求5的方法,其中所述烧制的高岭粘土包含至少50%重量的莫来石。
7.权利要求5的方法,其中所述烧制的高岭粘土包含至少65%重量的莫来石和至少15%重量的方石英。
8.一种制备低堆积密度支撑剂的方法,所述方法包括:
共碾磨煅烧的、部分煅烧的或未煅烧的高岭粘土和煅烧的硅藻土,形成共碾磨的混合物;
由所述共碾磨的混合物和水形成基本上圆形和球形的生小丸;和
将所述小丸烧结,形成堆积密度小于约1.60g/cc的支撑剂;
其中所述支撑剂的短期渗透率比从由以下组分组成的小丸制备的堆积密度小于约1.60g/cc的支撑剂的大:水和煅烧的、部分煅烧的或未煅烧的高岭土。
9.一种支撑地层中的断裂的方法,所述方法包括:
将流体和支撑剂混合,该支撑剂含有许多烧结的基本上圆形和球形的颗粒,该颗粒由煅烧的、部分煅烧的或未煅烧的高岭粘土和选自煅烧的硅藻土和烧制的高岭粘土中的至少一种材料制备,且具有小于约1.60g/cc的堆积密度和大于187达西的4Kpsi短期渗透率;和
将所述混合物引入地层中的断裂。
10.权利要求9的方法,其中所述支撑剂的基本上所有的表面孔隙均被涂布,形成涂布的支撑剂,其中所述涂布的支撑剂的表观比重低于无涂层支撑剂的表观比重。
11.一种支撑剂,所述支撑剂包含:
煅烧的、部分煅烧的或未煅烧的高岭粘土和选自煅烧的硅藻土和烧制的高岭粘土中的至少一种材料,其中所述支撑剂包含烧结的基本上圆形和球形的颗粒,所述颗粒的堆积密度小于约1.60g/cc且4Kpsi短期渗透率大于187达西。
12.权利要求11的支撑剂,所述支撑剂还包含:
涂层,该涂层覆盖所述支撑剂的基本上所有的表面孔隙,以形成涂布的支撑剂,其中所述涂布的支撑剂的表观比重小于无涂层支撑剂的表观比重。
13.许多由混合物制备的小丸,所述混合物包含:
煅烧的、部分煅烧的或未煅烧的高岭粘土和选自煅烧的硅藻土和烧制的高岭粘土中的至少一种材料,
其中由所述小丸制备的支撑剂的堆积密度小于约1.60g/cc。
14.权利要求13的小丸,其中所述混合物包含煅烧的、部分煅烧的或未煅烧的高岭粘土和烧制的高岭粘土,且所述混合物包含约70%-约90%重量的高岭粘土和约10%-约30%重量的烧制的高岭粘土。
15.权利要求13的小丸,其中所述混合物包含煅烧的、部分煅烧的或未煅烧的高岭粘土和烧制的高岭粘土,且所述混合物包含约80%-约85%重量的高岭粘土和约15%-约20%重量的烧制的高岭粘土。
16.权利要求13的小丸,其中所述烧制的高岭粘土包含至少5%重量的莫来石。
17.权利要求13的小丸,其中所述烧制的高岭粘土包含至少50%重量的莫来石。
18.权利要求13的小丸,其中所述烧制的高岭粘土包含至少65%重量的莫来石和至少15%重量的方石英。
19.权利要求13的小丸,其中所述混合物包含煅烧的、部分煅烧的或未煅烧的高岭粘土和煅烧的硅藻土,且所述混合物包含约70%-约92.5%重量的高岭粘土和约7.5%-约30%重量的煅烧的硅藻土。
20.权利要求13的小丸,其中所述混合物包含煅烧的、部分煅烧的或未煅烧的高岭粘土和煅烧的硅藻土,且所述混合物包含约80%-约90%重量的高岭粘土和约10%-约20%重量的煅烧的硅藻土。
21.权利要求13的小丸,其中所述混合物包含煅烧的、部分煅烧的或未煅烧的高岭粘土;煅烧的硅藻土;和烧制的高岭粘土,且所述混合物包含约75%-约90%重量的高岭粘土、约5%-约10%重量的煅烧的硅藻土和约5%-约15%重量的烧制的高岭粘土。
CNA2007800394618A 2006-08-30 2007-08-30 低堆积密度支撑剂及其制备方法 Pending CN101563525A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84098706P 2006-08-30 2006-08-30
US60/840,987 2006-08-30

Publications (1)

Publication Number Publication Date
CN101563525A true CN101563525A (zh) 2009-10-21

Family

ID=39136910

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800394618A Pending CN101563525A (zh) 2006-08-30 2007-08-30 低堆积密度支撑剂及其制备方法

Country Status (5)

Country Link
US (1) US8063000B2 (zh)
CN (1) CN101563525A (zh)
CA (1) CA2661799A1 (zh)
EA (1) EA015865B1 (zh)
WO (1) WO2008028074A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234504A (zh) * 2010-05-07 2011-11-09 北京仁创科技集团有限公司 一种支撑剂及其制备方法
CN102899017A (zh) * 2012-10-17 2013-01-30 宜兴市腾飞陶粒制造有限公司 一种超低密度陶粒支撑剂及其制备方法
CN105038759A (zh) * 2015-08-06 2015-11-11 太原理工大学 一种用于低渗透石油、煤层气和页岩气水力压裂的超低密度支撑剂及其制备方法
CN105189919A (zh) * 2013-03-12 2015-12-23 弗雷特等离子实验室公司 用于烧结支撑剂的设备和方法
CN107109919A (zh) * 2014-09-30 2017-08-29 卡博陶粒有限公司 由浆滴形成的支撑剂颗粒及其使用方法
CN108219768A (zh) * 2017-12-12 2018-06-29 常州莱尚纺织品有限公司 一种陶粒石油压裂支撑剂及其制备方法

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981250B2 (en) 2001-07-16 2015-03-17 Foret Plasma Labs, Llc Apparatus for treating a substance with wave energy from plasma and an electrical Arc
US10188119B2 (en) 2001-07-16 2019-01-29 Foret Plasma Labs, Llc Method for treating a substance with wave energy from plasma and an electrical arc
US7857972B2 (en) 2003-09-05 2010-12-28 Foret Plasma Labs, Llc Apparatus for treating liquids with wave energy from an electrical arc
US8764978B2 (en) 2001-07-16 2014-07-01 Foret Plasma Labs, Llc System for treating a substance with wave energy from an electrical arc and a second source
US7622693B2 (en) 2001-07-16 2009-11-24 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
EA010944B1 (ru) * 2004-07-09 2008-12-30 Карбо Керамикс, Инк. Способ производства твердых спеченных керамических частиц и полученные этим способом частицы
AU2005284787A1 (en) * 2004-09-14 2006-03-23 Carbo Ceramics Inc. Sintered spherical pellets
ATE531895T1 (de) * 2005-02-04 2011-11-15 Oxane Materials Inc Zusammensetzung und verfahren zur herstellung eines stützmittels
US7491444B2 (en) * 2005-02-04 2009-02-17 Oxane Materials, Inc. Composition and method for making a proppant
US8012533B2 (en) 2005-02-04 2011-09-06 Oxane Materials, Inc. Composition and method for making a proppant
US7867613B2 (en) * 2005-02-04 2011-01-11 Oxane Materials, Inc. Composition and method for making a proppant
MX2007010667A (es) * 2005-03-01 2007-11-08 Carbo Ceramics Inc Metodos para producir particulas sinterizadas a partir de una suspension espesa de una materia prima que contiene alumina.
US20070023187A1 (en) * 2005-07-29 2007-02-01 Carbo Ceramics Inc. Sintered spherical pellets useful for gas and oil well proppants
WO2008008104A2 (en) 2006-04-05 2008-01-17 Foret Plasma Labs, Llc System, method and apparatus for treating liquids with wave energy from plasma
US7828998B2 (en) 2006-07-11 2010-11-09 Carbo Ceramics, Inc. Material having a controlled microstructure, core-shell macrostructure, and method for its fabrication
US9145510B2 (en) 2007-05-30 2015-09-29 Baker Hughes Incorporated Use of nano-sized phyllosilicate minerals in viscoelastic surfactant fluids
US7721804B2 (en) * 2007-07-06 2010-05-25 Carbo Ceramics Inc. Proppants for gel clean-up
US9230777B2 (en) 2007-10-16 2016-01-05 Foret Plasma Labs, Llc Water/wastewater recycle and reuse with plasma, activated carbon and energy system
US10267106B2 (en) 2007-10-16 2019-04-23 Foret Plasma Labs, Llc System, method and apparatus for treating mining byproducts
US8810122B2 (en) 2007-10-16 2014-08-19 Foret Plasma Labs, Llc Plasma arc torch having multiple operating modes
US9445488B2 (en) 2007-10-16 2016-09-13 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
US9516736B2 (en) 2007-10-16 2016-12-06 Foret Plasma Labs, Llc System, method and apparatus for recovering mining fluids from mining byproducts
US9761413B2 (en) 2007-10-16 2017-09-12 Foret Plasma Labs, Llc High temperature electrolysis glow discharge device
US9051820B2 (en) 2007-10-16 2015-06-09 Foret Plasma Labs, Llc System, method and apparatus for creating an electrical glow discharge
US8278810B2 (en) 2007-10-16 2012-10-02 Foret Plasma Labs, Llc Solid oxide high temperature electrolysis glow discharge cell
US11806686B2 (en) 2007-10-16 2023-11-07 Foret Plasma Labs, Llc System, method and apparatus for creating an electrical glow discharge
US9560731B2 (en) 2007-10-16 2017-01-31 Foret Plasma Labs, Llc System, method and apparatus for an inductively coupled plasma Arc Whirl filter press
US9185787B2 (en) 2007-10-16 2015-11-10 Foret Plasma Labs, Llc High temperature electrolysis glow discharge device
US20090118145A1 (en) * 2007-10-19 2009-05-07 Carbo Ceramics Inc. Method for producing proppant using a dopant
CA2715973C (en) 2008-02-12 2014-02-11 Foret Plasma Labs, Llc System, method and apparatus for lean combustion with plasma from an electrical arc
US8904749B2 (en) 2008-02-12 2014-12-09 Foret Plasma Labs, Llc Inductively coupled plasma arc device
US10244614B2 (en) 2008-02-12 2019-03-26 Foret Plasma Labs, Llc System, method and apparatus for plasma arc welding ceramics and sapphire
US8336624B2 (en) 2008-10-30 2012-12-25 Baker Hughes Incorporated Squeeze process for reactivation of well treatment fluids containing a water-insoluble adsorbent
US7686081B1 (en) 2008-10-30 2010-03-30 Bj Services Company Squeeze process for reactivation of well treatment fluids containing diatomaceous earth
CN101880524A (zh) * 2010-04-27 2010-11-10 福建省宁德市俊杰瓷业有限公司 一种超轻密度陶粒支撑剂及其制备方法
CN102575515B (zh) * 2009-07-25 2015-06-24 美国瑞博公司 一种超轻密度陶粒支撑剂及其制造方法
US9845427B2 (en) 2009-10-20 2017-12-19 Self-Suspending Proppant Llc Proppants for hydraulic fracturing technologies
MX2012007248A (es) 2009-12-22 2012-07-30 Oxane Materials Inc Un consolidante que tiene un material de vidrio-ceramica.
IT1400247B1 (it) * 2010-05-14 2013-05-24 Novamont Spa Granuli biodegradabili espandibili per irraggiamento
US9976070B2 (en) 2010-07-19 2018-05-22 Baker Hughes, A Ge Company, Llc Method of using shaped compressed pellets in well treatment operations
US9010430B2 (en) * 2010-07-19 2015-04-21 Baker Hughes Incorporated Method of using shaped compressed pellets in treating a well
US10822536B2 (en) 2010-07-19 2020-11-03 Baker Hughes, A Ge Company, Llc Method of using a screen containing a composite for release of well treatment agent into a well
EP2627727A4 (en) 2010-10-13 2015-10-28 Oxane Materials Inc IMPROVED RESISTANCE LIGHTWEIGHT SUPPORT AGENT AND METHODS OF MAKING THE SAME
US9175210B2 (en) * 2011-03-11 2015-11-03 Carbo Ceramics Inc. Proppant particles formed from slurry droplets and method of use
US8865631B2 (en) * 2011-03-11 2014-10-21 Carbo Ceramics, Inc. Proppant particles formed from slurry droplets and method of use
US8883693B2 (en) * 2011-03-11 2014-11-11 Carbo Ceramics, Inc. Proppant particles formed from slurry droplets and method of use
US10077395B2 (en) * 2011-03-11 2018-09-18 Carbo Ceramics Inc. Proppant particles formed from slurry droplets and methods of use
US9670400B2 (en) * 2011-03-11 2017-06-06 Carbo Ceramics Inc. Proppant particles formed from slurry droplets and methods of use
US20140000891A1 (en) 2012-06-21 2014-01-02 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
CA2845840C (en) 2011-08-31 2020-02-25 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US9297244B2 (en) 2011-08-31 2016-03-29 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer
US9868896B2 (en) 2011-08-31 2018-01-16 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US10538381B2 (en) 2011-09-23 2020-01-21 Sandbox Logistics, Llc Systems and methods for bulk material storage and/or transport
US9718610B2 (en) 2012-07-23 2017-08-01 Oren Technologies, Llc Proppant discharge system having a container and the process for providing proppant to a well site
US10464741B2 (en) 2012-07-23 2019-11-05 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US8622251B2 (en) 2011-12-21 2014-01-07 John OREN System of delivering and storing proppant for use at a well site and container for such proppant
US9809381B2 (en) 2012-07-23 2017-11-07 Oren Technologies, Llc Apparatus for the transport and storage of proppant
WO2013184558A1 (en) * 2012-06-04 2013-12-12 Imerys Oilfield Minerals, Inc. Proppants and anti-flowback additives comprising flash calcined clay, methods of manufacture, amd methods of use
US20190135535A9 (en) 2012-07-23 2019-05-09 Oren Technologies, Llc Cradle for proppant container having tapered box guides
US9421899B2 (en) 2014-02-07 2016-08-23 Oren Technologies, Llc Trailer-mounted proppant delivery system
US9340353B2 (en) 2012-09-27 2016-05-17 Oren Technologies, Llc Methods and systems to transfer proppant for fracking with reduced risk of production and release of silica dust at a well site
US9745507B2 (en) 2012-08-01 2017-08-29 Halliburton Energy Services, Inc. Synthetic proppants and monodispersed proppants and methods of making the same
USD688350S1 (en) 2012-11-02 2013-08-20 John OREN Proppant vessel
USD688351S1 (en) 2012-11-02 2013-08-20 John OREN Proppant vessel
CN105143413B (zh) 2012-12-11 2017-07-04 弗雷特等离子实验室公司 高温逆流涡动反应器系统、方法和装置
US9446801B1 (en) 2013-04-01 2016-09-20 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
USD688597S1 (en) 2013-04-05 2013-08-27 Joshua Oren Trailer for proppant containers
US10161236B2 (en) 2013-04-24 2018-12-25 Halliburton Energy Services, Inc. Methods for fracturing subterranean formations
MX361833B (es) * 2013-08-02 2018-12-18 Imerys Oilfield Minerals Inc Agentes de sostén y aditivos anti-reflujo que incluyen arcilla de caolín.
US9932521B2 (en) 2014-03-05 2018-04-03 Self-Suspending Proppant, Llc Calcium ion tolerant self-suspending proppants
US20170198209A1 (en) * 2014-06-27 2017-07-13 Imerys Oilfield Minerals, Inc. Proppant-based chemical delivery system
EP3186331B1 (en) 2014-07-23 2022-05-04 Baker Hughes Holdings LLC Composite comprising well treatment agent and/or a tracer adhered onto a calcined substrate of a metal oxide coated core and a method of using the same
US11873160B1 (en) 2014-07-24 2024-01-16 Sandbox Enterprises, Llc Systems and methods for remotely controlling proppant discharge system
US9676554B2 (en) 2014-09-15 2017-06-13 Oren Technologies, Llc System and method for delivering proppant to a blender
WO2016044688A1 (en) * 2014-09-19 2016-03-24 Imerys Oilfield Minerals, Inc. Addition of mineral-containing slurry for proppant formation
US10538696B2 (en) 2015-01-12 2020-01-21 Southwestern Energy Company Proppant and methods of using the same
US20180030337A1 (en) * 2015-02-27 2018-02-01 Imerys Oilfield Minerals, Inc. Low density ceramic proppant and method for production thereof
EP3400188A4 (en) 2016-01-06 2019-08-07 Oren Technologies, LLC CONVEYOR WITH INTEGRATED DUST COLLECTOR SYSTEM
EP3444233A4 (en) * 2016-04-12 2019-12-04 Suministros de Colombia S.A.S. CERAMIC SPHERES OBTAINED FROM ALUMINOSILICATES
US10641083B2 (en) 2016-06-02 2020-05-05 Baker Hughes, A Ge Company, Llc Method of monitoring fluid flow from a reservoir using well treatment agents
US10518828B2 (en) 2016-06-03 2019-12-31 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
US10479929B2 (en) * 2016-06-06 2019-11-19 Baker Hughes, A Ge Company, Llc Spherical high temperature high closure tolerant cashew nut shell liquid based proppant, methods of manufacture, and uses thereof
US10413966B2 (en) 2016-06-20 2019-09-17 Baker Hughes, A Ge Company, Llc Nanoparticles having magnetic core encapsulated by carbon shell and composites of the same
US10190041B2 (en) 2016-08-02 2019-01-29 University Of Utah Research Foundation Encapsulated porous proppant
US11254861B2 (en) 2017-07-13 2022-02-22 Baker Hughes Holdings Llc Delivery system for oil-soluble well treatment agents and methods of using the same
US11053432B2 (en) 2017-08-09 2021-07-06 First Bauxite Llc Ultra high strength proppant and method of preparing the same
US11254850B2 (en) 2017-11-03 2022-02-22 Baker Hughes Holdings Llc Treatment methods using aqueous fluids containing oil-soluble treatment agents
WO2020106655A1 (en) 2018-11-21 2020-05-28 Self-Suspending Proppant Llc Salt-tolerant self-suspending proppants made without extrusion
US10961444B1 (en) 2019-11-01 2021-03-30 Baker Hughes Oilfield Operations Llc Method of using coated composites containing delayed release agent in a well treatment operation

Family Cites Families (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1942431A (en) * 1934-01-09 Refractory brick and process of
US3126056A (en) * 1964-03-24 Hydraulic fracturing of earth formations
US2799074A (en) * 1957-07-16 qarloni
GB578424A (en) 1943-05-13 1946-06-27 Gen Motors Corp Improved method of making ceramic materials intended more particularly as insulators for spark plugs
US2566117A (en) 1947-06-14 1951-08-28 Babcock & Wilcox Co Refractory heat transfer bodies and process of manufacture
US2586818A (en) 1947-08-21 1952-02-26 Harms Viggo Progressive classifying or treating solids in a fluidized bed thereof
US2699212A (en) * 1948-09-01 1955-01-11 Newton B Dismukes Method of forming passageways extending from well bores
GB715882A (en) 1950-04-21 1954-09-22 Ici Ltd Improvements in and relating to refractory bodies adapted for use as heat transfer media and/or as supports for catalytic materials
US2966457A (en) 1956-05-08 1960-12-27 Swift & Co Gelled fracturing fluids
US2950247A (en) 1957-05-16 1960-08-23 Atlantic Refining Co Increasing permeability of subsurface formations
GB886342A (en) 1957-08-13 1962-01-03 United States Steel Corp Refractory body and method of manufacture thereof
US3026938A (en) * 1958-09-02 1962-03-27 Gulf Research Development Co Propping agent for a fracturing process
US3079243A (en) * 1959-10-19 1963-02-26 Norton Co Abrasive grain
US3075581A (en) * 1960-06-13 1963-01-29 Atlantic Retining Company Increasing permeability of subsurface formations
US3242032A (en) * 1961-11-24 1966-03-22 Charles W Schott Glass spheres and underground proppants and methods of making the same
US3245866A (en) * 1961-11-24 1966-04-12 Charles W Schott Vitreous spheres of slag and slag-like materials and underground propplants
US3241613A (en) * 1962-02-19 1966-03-22 Atlantic Refining Co Shutting off water in vertical fractures
BE630290A (zh) 1962-03-28
US3350482A (en) 1962-04-18 1967-10-31 Sun Oil Co Method of producing spherical solids
BE634464A (zh) 1962-07-03
DE1278411B (de) 1963-06-14 1968-09-26 Basf Ag Verfahren zur Herstellung von Katalysatoren oder Katalysatortraegern in Form von Hohlkugeln
US3399727A (en) 1966-09-16 1968-09-03 Exxon Production Research Co Method for propping a fracture
US3437148A (en) * 1967-01-06 1969-04-08 Union Carbide Corp Method and article for increasing the permeability of earth formations
US3486706A (en) 1967-02-10 1969-12-30 Minnesota Mining & Mfg Ceramic grinding media
US3491492A (en) * 1968-01-15 1970-01-27 Us Industries Inc Method of making alumina abrasive grains
US3497008A (en) * 1968-03-05 1970-02-24 Exxon Production Research Co Method of propping fractures with ceramic particles
CH490110A (de) 1969-02-28 1970-05-15 Spemag Ag Mischmaschine
US3663165A (en) * 1970-02-09 1972-05-16 Engelhard Min & Chem Zeolitic catalyst and preparation
US3598373A (en) 1970-03-26 1971-08-10 Coors Porcelanin Co Method and apparatus for making small ceramic spheres
US3856441A (en) 1970-10-30 1974-12-24 Ube Industries Apparatus for pelletizing powdered solid substance in a fluidized bed
US3758318A (en) 1971-03-29 1973-09-11 Kaiser Aluminium Chem Corp Production of mullite refractory
US4052794A (en) 1971-06-18 1977-10-11 Struthers Scientific And International Corporation Fluidized bed process
DE2144220C3 (de) 1971-08-31 1974-04-25 Mannesmann Ag, 4000 Duesseldorf Verfahren und Vorrichtung zum Herstellen von sauerstoffarmen Metallpulvern
GB1421531A (en) 1971-12-15 1976-01-21 Atomic Energy Authority Uk Separation of molecules and materials therefor
DK131326C (da) 1971-12-29 1976-01-05 Niro Atomizer As Fremgangsmade til fremstilling af et grovkornet produkt med relativt stort fugtighedsindhold
US3810768A (en) * 1972-04-06 1974-05-14 Chicago Fire Brick Co Refractory composition comprising coarse particles of clay or bauxite and carbon
US4166147A (en) 1973-04-16 1979-08-28 Minnesota Mining And Manufacturing Company Shaped and fired articles of tio2
US4051603A (en) 1973-07-02 1977-10-04 Struthers Scientific And International Corporation Fluidized bed apparatus
US3890072A (en) * 1973-09-04 1975-06-17 Norton Co Apparatus for forming solid spherical pellets
US3939246A (en) * 1974-03-29 1976-02-17 Mobil Oil Corporation Manufacture of crystalline aluminosilicate zeolites
US3976138A (en) 1974-08-01 1976-08-24 Union Carbide Corporation Method of increasing permeability in subsurface earth formation
US4061596A (en) 1974-12-02 1977-12-06 Mitsubishi Chemical Industries Ltd. Process for preparing titanium oxide shaped carrier
US4077908A (en) * 1974-12-27 1978-03-07 Hoechst Aktiengesellschaft Production of material consisting of solid hollow spheroids
FR2306327A1 (fr) * 1975-03-19 1976-10-29 Inst Francais Du Petrole Procede de soutenement de fractures dans les parois d'un puits traversant des formations geologiques
CA1045027A (en) * 1975-09-26 1978-12-26 Walter A. Hedden Hydraulic fracturing method using sintered bauxite propping agent
GB1541928A (en) 1975-12-23 1979-03-14 Sakai Chemical Industry Co Production of shaped catalysts or carriers comprising titanium oxide
US4053375A (en) 1976-07-16 1977-10-11 Dorr-Oliver Incorporated Process for recovery of alumina-cryolite waste in aluminum production
US4303204A (en) 1976-10-28 1981-12-01 Reynolds Metals Company Upgrading of bauxites, bauxitic clays, and aluminum mineral bearing clays
US4195010A (en) * 1977-07-06 1980-03-25 Burns & Russell Company of Baltimore City Ceramic coated quartz particles
US4191720A (en) * 1977-10-06 1980-03-04 General Electric Company Method for making porous, crushable core having an integral outer barrier layer
US4140773A (en) * 1978-02-24 1979-02-20 Continental Oil Company Production of high pore volume alumina spheres
JPS5857430B2 (ja) 1978-10-23 1983-12-20 四国化成工業株式会社 顆粒状ジクロロイソシアヌル酸アルカリ金属塩の製法
CA1117987A (en) 1978-12-13 1982-02-09 Robert J. Seider Sintered high density spherical ceramic pellets for gas and oil well proppants and their process of manufacture
US4371481A (en) * 1979-02-06 1983-02-01 Phillips Petroleum Company Iron-containing refractory balls for retorting oil shale
US4407967A (en) 1979-08-16 1983-10-04 Frenchtown American Corp. Method for producing spheroidal ceramics
US4268311A (en) * 1979-11-01 1981-05-19 Anchor Hocking Corporation High strength cordierite ceramic
US4442897A (en) * 1980-05-23 1984-04-17 Standard Oil Company Formation fracturing method
DK155781C (da) 1982-01-07 1989-10-09 Niro Atomizer As Fremgangsmaade til fremstilling af sintrede smaakugler af bauxit eller bauxitholdig bjergart, samt middel til udoevelse af fremgangsmaaden
US4440866A (en) * 1980-07-07 1984-04-03 A/S Niro Atomizer Process for the production of sintered bauxite spheres
GB2079261B (en) 1980-07-07 1983-06-08 Niro Atomizer As Process for the production of sintered bauxite spheres
US4343751A (en) 1980-09-15 1982-08-10 Lowe's, Inc. Clay agglomeration process
US4547468A (en) 1981-08-10 1985-10-15 Terra Tek, Inc. Hollow proppants and a process for their manufacture
US4732920A (en) * 1981-08-20 1988-03-22 Graham John W High strength particulates
AU551409B2 (en) 1982-01-07 1986-05-01 A/S Niro Atomizer High strength propping agent
US4522731A (en) * 1982-10-28 1985-06-11 Dresser Industries, Inc. Hydraulic fracturing propping agent
US4396595A (en) 1982-02-08 1983-08-02 North American Philips Electric Corp. Method of enhancing the optical transmissivity of polycrystalline alumina bodies, and article produced by such method
US4894285B1 (en) * 1982-02-09 1994-01-11 Carbo Ceramics Inc. Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4658899A (en) * 1982-02-09 1987-04-21 Standard Oil Proppants Company, L.P. Use of uncalcined/partially calcined ingredients in the manufacture of sintered pellets useful for gas and oil well proppants
US4879181B1 (en) 1982-02-09 1994-01-11 Carbo Ceramics Inc. Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4623630A (en) 1982-02-09 1986-11-18 Standard Oil Proppants Company Use of uncalcined/partially calcined ingredients in the manufacture of sintered pellets useful for gas and oil well proppants
US4427068A (en) 1982-02-09 1984-01-24 Kennecott Corporation Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4450184A (en) * 1982-02-16 1984-05-22 Metco Incorporated Hollow sphere ceramic particles for abradable coatings
US4439489A (en) * 1982-02-16 1984-03-27 Acme Resin Corporation Particles covered with a cured infusible thermoset film and process for their production
US4462466A (en) * 1982-03-29 1984-07-31 Kachnik Joseph E Method of propping fractures in subterranean formations
AU547407B2 (en) 1982-07-23 1985-10-17 Norton Co. Low density proppant for oil and gas wells
US5120455A (en) * 1982-10-28 1992-06-09 Carbo Ceramics Inc. Hydraulic fracturing propping agent
CA1217319A (en) 1983-02-07 1987-02-03 Arup K. Khaund Low density proppant
US4521475A (en) * 1983-04-01 1985-06-04 Riccio Louis M Method and apparatus for applying metal cladding on surfaces and products formed thereby
DD242325A3 (de) * 1983-05-27 1987-01-28 Reiner Kinder Verfahren zur herstellung hochporoeser mineralischer koerper mit polyformer struktur
US4555493A (en) 1983-12-07 1985-11-26 Reynolds Metals Company Aluminosilicate ceramic proppant for gas and oil well fracturing and method of forming same
US4493875A (en) * 1983-12-09 1985-01-15 Minnesota Mining And Manufacturing Company Proppant for well fractures and method of making same
US4618504A (en) 1983-12-20 1986-10-21 Bosna Alexander A Method and apparatus for applying metal cladding on surfaces and products formed thereby
US4680230A (en) 1984-01-18 1987-07-14 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
US4652411A (en) * 1984-05-23 1987-03-24 The United States Of America As Represented By The United States Department Of Energy Method of preparing thin porous sheets of ceramic material
CA1228226A (en) 1984-07-05 1987-10-20 Arup K. Khaund Sintered low density gas and oil well proppants from a low cost unblended clay material of selected compositions
US4668645A (en) * 1984-07-05 1987-05-26 Arup Khaund Sintered low density gas and oil well proppants from a low cost unblended clay material of selected composition
US4744831A (en) * 1984-07-30 1988-05-17 Minnesota Mining And Manufacturing Company Hollow inorganic spheres and methods for making such spheres
US4601997A (en) * 1984-12-14 1986-07-22 Engelhard Corporation Porous mullite
US5654246A (en) 1985-02-04 1997-08-05 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
US4714623A (en) 1985-02-28 1987-12-22 Riccio Louis M Method and apparatus for applying metal cladding on surfaces and products formed thereby
US4713203A (en) 1985-05-23 1987-12-15 Comalco Aluminium Limited Bauxite proppant
US4632876A (en) 1985-06-12 1986-12-30 Minnesota Mining And Manufacturing Company Ceramic spheroids having low density and high crush resistance
US4639427A (en) * 1985-06-28 1987-01-27 Norton Company Stress-corrosion resistant proppant for oil and gas wells
US4654266A (en) * 1985-12-24 1987-03-31 Kachnik Joseph L Durable, high-strength proppant and method for forming same
JPS6379777A (ja) * 1986-09-24 1988-04-09 科学技術庁金属材料技術研究所長 セラミツクス基板上への被覆体の製造法
US4840729A (en) * 1987-01-02 1989-06-20 Atlantic Richfield Company Oil spill recovery apparatus
GB8711005D0 (en) * 1987-05-09 1987-06-10 British Petroleum Co Plc Chemical process
ES2029297T3 (es) 1988-05-13 1992-08-01 Sarea A.G. Empleo de una composicion para el tratamiento de las superficies de los suelos.
US5030603A (en) 1988-08-02 1991-07-09 Norton-Alcoa Lightweight oil and gas well proppants
US4921820A (en) * 1989-01-17 1990-05-01 Norton-Alcoa Proppants Lightweight proppant for oil and gas wells and methods for making and using same
US4921821A (en) * 1988-08-02 1990-05-01 Norton-Alcoa Proppants Lightweight oil and gas well proppants and methods for making and using same
US4993491A (en) * 1989-04-24 1991-02-19 Amoco Corporation Fracture stimulation of coal degasification wells
US5188175A (en) * 1989-08-14 1993-02-23 Carbo Ceramics Inc. Method of fracturing a subterranean formation with a lightweight propping agent
ES2056394T3 (es) 1989-12-22 1994-10-01 Comalco Alu Microesferas ceramicas.
US5266243A (en) 1992-07-16 1993-11-30 Kneller James F Method for preparing a ceramic oxide material
RU2014281C1 (ru) 1992-09-02 1994-06-15 Симановский Борис Абрамович Шихта для производства гранул и способ их получения
US5422183A (en) * 1993-06-01 1995-06-06 Santrol, Inc. Composite and reinforced coatings on proppants and particles
RU2079471C1 (ru) 1994-05-05 1997-05-20 Акционерное общество открытого типа "Боровичский комбинат огнеупоров" Огнеупорный мертель
FR2732328B1 (fr) 1995-03-29 1997-06-20 Rhone Poulenc Chimie Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant de l'aluminium et leur utilisation au renforcement des elastomeres
RU2083528C1 (ru) 1994-10-11 1997-07-10 Акционерное общество открытого типа "Боровический комбинат огнеупоров" Легковесный огнеупор и способ его производства
RU2090537C1 (ru) 1995-01-27 1997-09-20 Акционерное общество открытого типа "Боровичский комбинат огнеупоров" Шихта для изготовления огнеупоров с прерывистым зерновым составом
RU2147564C1 (ru) 1995-02-13 2000-04-20 Бердичевский Иосиф Моисеевич Огнеупорный керамический материал
GB9503949D0 (en) 1995-02-28 1995-04-19 Atomic Energy Authority Uk Oil well treatment
US5656568A (en) * 1995-08-11 1997-08-12 Advanced Minerals Corporation Highly purified biogenic silica product
US5972835A (en) 1995-09-13 1999-10-26 Research Triangle Institute Fluidizable particulate materials and methods of making same
US6528157B1 (en) * 1995-11-01 2003-03-04 Borden Chemical, Inc. Proppants with fiber reinforced resin coatings
RU2098387C1 (ru) 1995-11-24 1997-12-10 Акционерное общество открытого типа "Боровичский комбинат огнеупоров" Шихта для изготовления огнеупоров с прерывистым зерновым составом
RU2107674C1 (ru) 1995-11-27 1998-03-27 Акционерное общество открытого типа "Боровичский комбинат огнеупоров" Шихта для изготовления огнеупоров с прерывистым зерновым составом
RU2112761C1 (ru) 1995-11-27 1998-06-10 Акционерное общество открытого типа "Боровичский комбинат огнеупоров" Шихта для изготовления огнеупоров с прерывистым зерновым составом
RU2098618C1 (ru) 1995-12-27 1997-12-10 Татьяна Николаевна Жаркова Способ получения расклинивающего агента
RU2099661C1 (ru) 1996-01-18 1997-12-20 Акционерное общество открытого типа "Боровичский комбинат огнеупоров" Способ сжигания природного газа в высокотемпературной промышленной печи
US5985312A (en) 1996-01-26 1999-11-16 Brown University Research Foundation Methods and compositions for enhancing the bioadhesive properties of polymers
US5649596A (en) 1996-02-27 1997-07-22 Nalco/Exxon Energy Chemicals, L.P. Use of breaker chemicals in gelled hydrocarbons
JP3193294B2 (ja) 1996-05-24 2001-07-30 財団法人ファインセラミックスセンター 複合セラミックス粉末とその製造方法、固体電解質型燃料電池用の電極及びその製造方法
RU2112189C1 (ru) 1996-05-27 1998-05-27 Акционерное общество открытого типа "Боровичский комбинат огнеупоров" Высокотемпературная муфельная вращающаяся печь с комбинированной футеровкой
RU2121988C1 (ru) 1996-10-18 1998-11-20 Открытое акционерное общество "Боровичский комбинат огнеупоров" Огнеупорный материал
DE19647038B4 (de) * 1996-11-14 2007-02-22 Ferro Gmbh Kugelförmige Pigmente, Verfahren zu ihrer Herstellung und deren Verwendung
DE19647037A1 (de) * 1996-11-14 1998-05-28 Degussa Kugelförmige Farbpigmente, Verfahren zu ihrer Herstellung und deren Verwendung
US6330916B1 (en) 1996-11-27 2001-12-18 Bj Services Company Formation treatment method using deformable particles
US6059034A (en) * 1996-11-27 2000-05-09 Bj Services Company Formation treatment method using deformable particles
US6364018B1 (en) * 1996-11-27 2002-04-02 Bj Services Company Lightweight methods and compositions for well treating
US6772838B2 (en) 1996-11-27 2004-08-10 Bj Services Company Lightweight particulate materials and uses therefor
US20050028979A1 (en) * 1996-11-27 2005-02-10 Brannon Harold Dean Methods and compositions of a storable relatively lightweight proppant slurry for hydraulic fracturing and gravel packing applications
US7426961B2 (en) * 2002-09-03 2008-09-23 Bj Services Company Method of treating subterranean formations with porous particulate materials
US6749025B1 (en) * 1996-11-27 2004-06-15 Bj Services Company Lightweight methods and compositions for sand control
US20060147369A1 (en) 1997-07-21 2006-07-06 Neophotonics Corporation Nanoparticle production and corresponding structures
RU2133716C1 (ru) 1997-11-10 1999-07-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ производства высокопрочных сферических керамических гранул
RU2129987C1 (ru) 1998-01-09 1999-05-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ переработки алюмокремниевого сырья
AR019461A1 (es) 1998-07-22 2002-02-20 Borden Chem Inc UNA PARTíCULA COMPUESTA, UN MÉTODO PARA PRODUCIRLA, UN MÉTODO PARA TRATAR UNA FRACTURA HIDRÁULICAMENTE INDUCIDA EN UNA FORMACIoN SUBTERRÁNEA, Y UN MÉTODO PARA LA FILTRACIoN DE AGUA.
US6582819B2 (en) 1998-07-22 2003-06-24 Borden Chemical, Inc. Low density composite proppant, filtration media, gravel packing media, and sports field media, and methods for making and using same
RU2150442C1 (ru) 1998-08-31 2000-06-10 Сибирский химический комбинат Керамическая масса
RU2140875C1 (ru) 1998-10-02 1999-11-10 ОАО "Боровичский комбинат огнеупоров" Алюмокремниевая шихта для производства гранул
RU2168484C2 (ru) 1998-10-02 2001-06-10 ОАО "Боровичский комбинат огнеупоров" Способ изготовления модифицирующей добавки
RU2151124C1 (ru) 1998-10-02 2000-06-20 ОАО "Боровичский комбинат огнеупоров" Углеродсодержащий огнеупор
RU2151987C1 (ru) 1998-10-02 2000-06-27 ОАО "Боровичский комбинат огнеупоров" Плазменно-дуговая печь постоянного тока для плавки оксидных материалов
RU2147565C1 (ru) 1998-10-02 2000-04-20 ОАО "Боровичский комбинат огнеупоров" Способ изготовления антиоксиданта
RU2140874C1 (ru) 1998-10-02 1999-11-10 ОАО "Боровичский комбинат огнеупоров" Способ переработки алюмокремниевого сырья
KR20010078396A (ko) 1998-11-20 2001-08-20 알프레드 엘. 미첼슨 저열팽창, 고강도 코디어라이트 구조물의 제조방법
RU2151125C1 (ru) 1998-11-30 2000-06-20 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ приготовления огнеупорной массы
RU2147717C1 (ru) 1998-11-30 2000-04-20 Открытое акционерное общество "Боровичский комбинат огнеупоров" Печь с подвижным подом
RU2155735C1 (ru) 1998-12-10 2000-09-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Безобжиговый высокотемпературный теплоизоляционный материал и способ его производства
RU2154042C1 (ru) 1998-12-10 2000-08-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Высокотемпературный теплоизоляционный материал и способ его производства
CN1189475C (zh) 1999-01-26 2005-02-16 Ibsa生物化学研究股份有限公司 分离和纯化促卵泡激素和黄体生成激素的方法
US6217646B1 (en) * 1999-04-26 2001-04-17 Daubois Inc. Sculptable and breathable wall coating mortar compound
RU2166079C1 (ru) 1999-12-23 2001-04-27 Закрытое акционерное общество "Уралсервис" Проппант
DE60120553T2 (de) * 2000-04-28 2007-06-06 Ricoh Co., Ltd. Toner, externes Additiv, und Bilderzeugungsverfahren
RU2163227C1 (ru) 2000-07-11 2001-02-20 Шмотьев Сергей Федорович Способ изготовления керамических изделий из алюминиевых шлаков
RU2183739C2 (ru) 2000-07-12 2002-06-20 Общество с ограниченной ответственностью "ТюменНИИгипрогаз" Способ гидроразрыва пласта
US6372678B1 (en) * 2000-09-28 2002-04-16 Fairmount Minerals, Ltd Proppant composition for gas and oil well fracturing
RU2180397C1 (ru) 2000-11-17 2002-03-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Проппант
RU2196675C2 (ru) 2000-12-18 2003-01-20 Открытое акционерное общество "Боровичский завод "Полимермаш" Нагревательное устройство вулканизационного пресса
RU2178924C1 (ru) 2001-04-02 2002-01-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Шихта для получения материала, обеспечивающего локализацию расплава активной зоны ядерных реакторов
RU2183370C1 (ru) 2001-04-12 2002-06-10 ЗАО Индепендент Пауэр Технолоджис "ИПТ" Модуль топливных элементов и батарея на его основе
RU2191167C1 (ru) 2001-04-16 2002-10-20 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Шихта для изготовления огнеупорных изделий
RU2198860C2 (ru) 2001-05-18 2003-02-20 Закрытое акционерное общество "Научно-технический центр "Бакор" Способ изготовления изделий из корундовой керамики
RU2196889C1 (ru) 2001-05-21 2003-01-20 Открытое акционерное общество "Научно-производственное объединение Восточный институт огнеупоров" Проппанты и способ их изготовления
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
DE10138574A1 (de) * 2001-08-06 2003-02-27 Degussa Granulate auf Basis von pyrogen hergestelltem Aluminiumoxid, Verfahren zu ihrer Herstellung und ihre Verwendung
US7041250B2 (en) * 2001-08-23 2006-05-09 Powdermet, Inc. Combined liquid phase and activated sintering of refractory metals
RU2192053C1 (ru) 2001-10-12 2002-10-27 Закрытое акционерное общество "Комплект-Атом-Ижора" Оксидный материал ловушки расплава активной зоны ядерного реактора
RU2191436C1 (ru) 2001-10-12 2002-10-20 Открытое акционерное общество "Боровичский комбинат огнеупоров" Оксидный материал ловушки расплава активной зоны ядерного реактора
RU2212719C2 (ru) 2001-10-12 2003-09-20 Закрытое акционерное общество "Комплект-Атом-Ижора" Оксидный материал ловушки расплава активной зоны ядерного реактора
US6753299B2 (en) * 2001-11-09 2004-06-22 Badger Mining Corporation Composite silica proppant material
RU2211198C2 (ru) 2001-11-13 2003-08-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Шихта для изготовления огнеупорных высокопрочных сферических гранул и способ их производства
RU2191169C1 (ru) 2001-11-23 2002-10-20 Закрытое акционерное общество "Тригорстроймонтаж" Шихта и способ получения гранулированного шамота, используемого в качестве расклинивающего агента
US6810959B1 (en) * 2002-03-22 2004-11-02 Bj Services Company, U.S.A. Low residue well treatment fluids and methods of use
RU2206930C1 (ru) 2002-04-02 2003-06-20 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ получения керамических материалов для ловушки расплава активной зоны ядерного реактора, содержащих оксиды железа, алюминия и диоксид кремния
RU2229456C2 (ru) 2002-04-02 2004-05-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Шихта для изготовления огнеупорных высокопрочных сферических гранул и способ их производства
US6725930B2 (en) * 2002-04-19 2004-04-27 Schlumberger Technology Corporation Conductive proppant and method of hydraulic fracturing using the same
RU2203248C1 (ru) 2002-06-14 2003-04-27 Закрытое акционерное общество "Тригорстроймонтаж" Способ получения легковесных высокопрочных керамических пропантов
RU2229458C2 (ru) 2002-06-28 2004-05-27 Открытое акционерное общество "Свердловский научно-исследовательский институт химического машиностроения" Способ упрочнения и гидрофобизации керамических гранул
US20040023818A1 (en) * 2002-08-05 2004-02-05 Nguyen Philip D. Method and product for enhancing the clean-up of hydrocarbon-producing well
US7244398B2 (en) 2003-03-21 2007-07-17 S. C. Johnson & Son, Inc. Device for dispensing a volatile liquid using a wick in an ambient air stream
US7036591B2 (en) * 2002-10-10 2006-05-02 Carbo Ceramics Inc. Low density proppant
US7285255B2 (en) 2002-12-10 2007-10-23 Ecolab Inc. Deodorizing and sanitizing employing a wicking device
RU2215712C1 (ru) 2003-01-05 2003-11-10 Закрытое акционерное общество "Тригорстроймонтаж" Шихта для получения легковесных высокопрочных керамических пропантов
US6780804B2 (en) 2003-01-24 2004-08-24 Saint-Gobain Ceramics & Plastics, Inc. Extended particle size distribution ceramic fracturing proppant
CN1839034A (zh) * 2003-04-15 2006-09-27 氦克逊特种化学品公司 含有热塑性高弹体的微粒物质及其制备和使用方法
US7135231B1 (en) 2003-07-01 2006-11-14 Fairmont Minerals, Ltd. Process for incremental coating of proppants for hydraulic fracturing and proppants produced therefrom
US7021379B2 (en) * 2003-07-07 2006-04-04 Halliburton Energy Services, Inc. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
US20050028976A1 (en) * 2003-08-05 2005-02-10 Nguyen Philip D. Compositions and methods for controlling the release of chemicals placed on particulates
CN1984769A (zh) * 2004-04-12 2007-06-20 卡博陶粒有限公司 涂敷和/或处理水力压裂支撑剂以改善润湿性、支撑剂润滑和/或减少由压裂液和储集层流体引起的损害
EA010944B1 (ru) 2004-07-09 2008-12-30 Карбо Керамикс, Инк. Способ производства твердых спеченных керамических частиц и полученные этим способом частицы
AU2005284787A1 (en) * 2004-09-14 2006-03-23 Carbo Ceramics Inc. Sintered spherical pellets
WO2006034298A2 (en) 2004-09-20 2006-03-30 Hexion Specialty Chemicals Inc. Particles for use as proppants or in gravel packs, methods for making and using the same
EP2380661A3 (en) * 2004-12-20 2012-02-01 Celanese International Corporation Modified support materials for catalysts
GB2437869B (en) 2005-01-21 2010-06-16 Fairmount Minerals Ltd Soluble diverting agents
US20060162929A1 (en) * 2005-01-26 2006-07-27 Global Synfrac Inc. Lightweight proppant and method of making same
US7867613B2 (en) * 2005-02-04 2011-01-11 Oxane Materials, Inc. Composition and method for making a proppant
US7491444B2 (en) * 2005-02-04 2009-02-17 Oxane Materials, Inc. Composition and method for making a proppant
ATE531895T1 (de) * 2005-02-04 2011-11-15 Oxane Materials Inc Zusammensetzung und verfahren zur herstellung eines stützmittels
MX2007010667A (es) * 2005-03-01 2007-11-08 Carbo Ceramics Inc Metodos para producir particulas sinterizadas a partir de una suspension espesa de una materia prima que contiene alumina.
EA200501165A1 (ru) 2005-07-27 2006-06-30 Карбо Керамикс Инк. Проппанты, способ их изготовления и применения
US20070023187A1 (en) * 2005-07-29 2007-02-01 Carbo Ceramics Inc. Sintered spherical pellets useful for gas and oil well proppants
EA200600415A1 (ru) 2006-03-14 2007-02-27 Карбо Керамикс Инк. Проппанты и способ их изготовления
US7569199B1 (en) 2006-05-10 2009-08-04 Oxane Materials, Inc. Method to remove sulfur or sulfur-containing species from a source
US7828998B2 (en) * 2006-07-11 2010-11-09 Carbo Ceramics, Inc. Material having a controlled microstructure, core-shell macrostructure, and method for its fabrication
US8198505B2 (en) * 2006-07-12 2012-06-12 The Procter & Gamble Company Disposable absorbent articles comprising non-biopersistent inorganic vitreous microfibers
EA008825B1 (ru) 2006-08-15 2007-08-31 Карбо Керамикс Инк. Проппанты и способ их изготовления
US7721804B2 (en) * 2007-07-06 2010-05-25 Carbo Ceramics Inc. Proppants for gel clean-up
WO2009012455A1 (en) * 2007-07-18 2009-01-22 Oxane Materials, Inc. Proppants with carbide and/or nitride phases
US20090118145A1 (en) * 2007-10-19 2009-05-07 Carbo Ceramics Inc. Method for producing proppant using a dopant
US8100177B2 (en) 2008-02-20 2012-01-24 Carbo Ceramics, Inc. Method of logging a well using a thermal neutron absorbing material
MX2010012463A (es) 2008-05-20 2010-12-07 Oxane Materials Inc Metodo de fabricacion y uso de un agente de sustentacion funcional para la determinacion de geometrias subterraneas de fractura.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234504A (zh) * 2010-05-07 2011-11-09 北京仁创科技集团有限公司 一种支撑剂及其制备方法
CN102234504B (zh) * 2010-05-07 2013-06-12 北京仁创科技集团有限公司 一种支撑剂及其制备方法
CN102899017A (zh) * 2012-10-17 2013-01-30 宜兴市腾飞陶粒制造有限公司 一种超低密度陶粒支撑剂及其制备方法
CN102899017B (zh) * 2012-10-17 2015-04-01 宜兴市腾飞陶粒制造有限公司 一种超低密度陶粒支撑剂及其制备方法
CN105189919A (zh) * 2013-03-12 2015-12-23 弗雷特等离子实验室公司 用于烧结支撑剂的设备和方法
CN107109919A (zh) * 2014-09-30 2017-08-29 卡博陶粒有限公司 由浆滴形成的支撑剂颗粒及其使用方法
CN105038759A (zh) * 2015-08-06 2015-11-11 太原理工大学 一种用于低渗透石油、煤层气和页岩气水力压裂的超低密度支撑剂及其制备方法
CN108219768A (zh) * 2017-12-12 2018-06-29 常州莱尚纺织品有限公司 一种陶粒石油压裂支撑剂及其制备方法

Also Published As

Publication number Publication date
US8063000B2 (en) 2011-11-22
WO2008028074A2 (en) 2008-03-06
US20080058228A1 (en) 2008-03-06
WO2008028074A3 (en) 2008-06-26
CA2661799A1 (en) 2008-03-06
EA200900376A1 (ru) 2010-02-26
EA015865B1 (ru) 2011-12-30

Similar Documents

Publication Publication Date Title
CN101563525A (zh) 低堆积密度支撑剂及其制备方法
CN104685023B (zh) 合成支撑剂和单分散支撑剂以及其制备方法
KR101501293B1 (ko) 프로판트 조성물 및 제조 방법
US8178477B2 (en) Proppants with carbide and/or nitride phases
CN101171091B (zh) 由含氧化铝的原料的浆液制备烧结颗粒的方法
CN100344570C (zh) 宽粒径分布的陶瓷压裂支撑剂
RU2279966C2 (ru) Абразивные изделия и абразивный материал с покрытием
US7491444B2 (en) Composition and method for making a proppant
CN101115906B (zh) 制备支撑剂的组合物及方法
CN105555734A (zh) 铺路石和砌块复合材料以及其制备方法
US8283271B2 (en) High strength proppants
CN102256913B (zh) 陶瓷物品以及用于制造它们的方法
CN1774488A (zh) 磨粒、磨料制品及其制造和使用方法
US20140274818A1 (en) Spherical pellets containing common clay particulate material useful as a proppant in hydraulic fracturing of oil and gas wells
CN106795062A (zh) 制造陶瓷支撑剂的方法
JPH05117636A (ja) α−三酸化アルミニウムを基礎とする多結晶性の焼結研磨粒子、この研磨粒子からなる研磨剤、研磨粒子の製造法および耐火性セラミツク製品の製造法
AU2013200446B2 (en) A composition and method for making a proppant
JP6502495B2 (ja) 制御されたサイズ分布を有するセラミック粉末
CA2475668A1 (en) Lightweight proppant and method of making same
JPH02269292A (ja) 油及びガス井戸用軽量プロッパント並びにその製造及び使用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20091021