CN101587204B - 单模光纤 - Google Patents

单模光纤 Download PDF

Info

Publication number
CN101587204B
CN101587204B CN200910140806XA CN200910140806A CN101587204B CN 101587204 B CN101587204 B CN 101587204B CN 200910140806X A CN200910140806X A CN 200910140806XA CN 200910140806 A CN200910140806 A CN 200910140806A CN 101587204 B CN101587204 B CN 101587204B
Authority
CN
China
Prior art keywords
optical fiber
wavelength
radius
fiber
nanometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910140806XA
Other languages
English (en)
Other versions
CN101587204A (zh
Inventor
L-A·德蒙莫里永
S·里夏尔
D·莫兰
M·比戈-阿斯特吕克
P·西亚尔
D·布瓦万
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Original Assignee
Alcatel CIT SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40029012&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101587204(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alcatel CIT SA filed Critical Alcatel CIT SA
Publication of CN101587204A publication Critical patent/CN101587204A/zh
Application granted granted Critical
Publication of CN101587204B publication Critical patent/CN101587204B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture

Abstract

一种单模光纤,从中央到周边包括,中央纤芯、中间包层、凹陷槽和外部光包层。中央纤芯具有半径r1和与光包层之间的正折射率差Δn1;中间包层具有半径r2和与光包层之间的正折射率差Δn2,其中Δn2小于纤芯的折射率差Δn1。凹陷槽具有半径r3和与光包层之间的负折射率差Δn3。该光纤在1310纳米波长处具有在8.6μm到9.5μm之间的标称模场直径(MFD),并且该光纤对于1550纳米波长以及对于5毫米的曲率半径具有小于0.15dB/圈的弯曲损耗,以及小于或等于1260纳米的缆线截止波长,该缆线截止波长被测量为这样的波长:在该波长处,LP11模在传播超过22米光纤之后,该LP11模的衰减大于或等于19.3dB。这样的光纤可以用于诸如微型化光盒的不同环境中。

Description

单模光纤
技术领域
本发明涉及光纤传输领域,而且更具体地,涉及弯曲损耗显著降低的光纤。
背景技术
对于光纤,通常根据关联光纤半径和折射率的函数图上的两点之间的差值来表达折射率分布。传统地,沿着该分布的x轴示出到光纤中央的距离r。沿着y轴示出距离r处的折射率和外部光纤包层的折射率差(图2,标号21-24)。外部包层作为光包层而且具有基本上恒定的折射率;该光包层通常包括纯二氧化硅(silica),但是还可以包含一种或多种掺杂物。光纤折射率分布涉及“阶跃”分布、“梯形”分布或“三角形”分布,其图形分别具有阶跃、梯形或三角形的形状。这些曲线通常表示光纤的理论或参照折射率分布(也就是,设置分布)。光纤制造约束条件可能导致在实际光纤中的分布略有不同。
传统地,光纤包括(i)光纤芯,具有传输和可选地放大光信号的功能,以及(ii)光包层,具有将光信号限制在光纤芯中的功能。为此目的,纤芯的折射率(nc)和包层的折射率(ng)满足nc>ng。正如本领域所公知,光信号在单模光纤中的传播被划分为在纤芯内引导的基模(公知为LP01),以及在纤芯-包层组件内的某半径内引导的二次模。
传统地,阶跃折射率光纤,也称为SMF光纤(“单模光纤”)用作光纤传输系统的线路光纤。这些光纤呈现出对应于特定电信建议的色散和色散斜率。
为了满足来自不同制造商的光学系统的兼容性需求,国际电信联盟(ITU)定义了具有标准单模光纤(SSMF)必须满足的称为ITU-TG.652规范的建议。
除其他之外,用于传输光纤的G.652建议推荐:在1310纳米波长处,模场直径(MFD)在8.6微米到9.5微米的标称范围,由于制造容限其可以变化±0.4μm;缆线截止波长最大值为1260纳米;色散消除波长(用λ0表示)在1300纳米到1324纳米的范围;以及最大色散斜率为0.092ps/(nm2.km)(也就是,ps/nm2/km)。
传统上,将以下波长作为缆线截止波长进行测量,在该波长处,光信号通过光纤传播22米后不再是单模的,比如国际电工委员会的86A子委员会在IEC 60793-1-44标准中定义的那样。
在大部分情形中,对弯曲损耗最具抵抗力的二次模是LP11模。因此,缆线截止波长是这样的波长,超出该波长,则LP11模在通过光纤传播22米后都被充分减弱。该标准提出的方法包括,当LP11模的衰减大于或等于19.3dB时,认为光信号是单模的。
而且,对于给定的光纤,所谓的MAC值被定义为1550纳米处光纤的模场直径与有效截止波长λceff的比值。正如国际电工委员会的86A子委员会在IEC 60793-1-44中定义的那样,在传统上将以下波长作为截止波长进行测量,在该波长处,光信号通过光纤传播超过2米后不再是单模的。MAC构建了用于评估光纤性能的参数,特别用于在模场直径、有效截止波长和弯曲损耗之间找到折衷的参数。
欧洲专利申请No.1,845,399和欧洲专利申请No.1,785,754阐述了申请人的实验结果。这些在前申请建立了在标准阶跃折射率光纤SSMF中曲率半径为15毫米时的1550纳米波长处的MAC值与1625纳米波长处的弯曲损耗之间的关系。在此通过参考而将每个欧洲专利申请整体引入于此。而且,每个申请都指出MAC值影响光纤的弯曲损耗,以及降低MAC会降低这些弯曲损耗。降低模场直径和/或增加有效截止波长降低MAC值,但是可能导致不符合G.652建议,使得光纤与一些传输系统在商业上不兼容。
降低弯曲损耗同时保持某些光传输参数,对于针对光纤系统到用户的光纤应用(称为FTTH,光纤到户)构成了挑战。
国际电信联盟(ITU)还定义了称为ITU-T G.657A和ITU-TG.657B的建议,针对FTTH应用的光纤必须满足该标准,特别是在对弯曲损耗的抵抗力方面。G.657A建议对弯曲损耗值设定了限制,但是首先寻求与G.652建议保持兼容,特别是在模场直径MFD和色散放面。另一方面,G.657B建议设定严格的弯曲损耗限制,特别对于(i)对于15毫米的曲率半径,在1550纳米的波长处小于0.003dB/圈(dB/turn)的弯曲损耗,以及(ii)对于15毫米的曲率半径,在1625纳米的波长处小于0.01dB/圈的弯曲损耗。
欧洲专利申请No.1,845,399和欧洲专利申请No.1,785,754提出具有有限弯曲损耗的光纤分布,特别对应于G.657A和G.657B建议中的规范。然而,这些欧洲专利申请中描述的分布,仅可能满足由G.657B建议设定的弯曲损耗限制。
美国专利No.7,164,835和美国专利申请公开号No.2007/0147756中的每个都通过参考而整体引入于此,它们也描述了呈现出有限弯曲损耗的光纤分布。然而,这些美国专利的光纤仅仅对应于G.657A和G.657B建议的规范,特别是在模场直径MFD和色散方面。
在目前,对于某些应用,降低弯曲损耗是必须的,特别是当旨在将光纤布设(staple)或绕在微型化的光盒中时。
孔助光纤技术使得实现关于弯曲损耗的优良性能成为可能,但是这个技术复杂而且实施昂贵并且不能用于旨在低成本系统的FTTH系统中使用的光纤。
申请人以BendBright-XS为商标来销售对于弯曲损耗具有良好抵抗性的弯曲不敏感光纤。这种范围的光纤完全服从ITU-T G.652和G.657B建议,并提出在1550nm处5毫米的曲率半径的典型弯曲损耗是0.3dB/圈。针对光纤存在以下需求:即,光纤需要对弯曲损耗具有典型的抵抗力,针对5毫米的曲率半径,该典型的抵抗力要明显优于上述销售的光纤的典型水平。满足这个规范的光纤还应该在传输分布方面,特别是在模场直径和缆线截止方面,保持完全服从G.652建议。倘若(i)直接的高次LP11模被充分衰减,以及(ii)LP11模在1260纳米波长处的衰减达到19.3dB所需要的光纤长度小于22米,从而确保缆线截止低于或等于1260nm,那么弯曲损耗的这种可观改进可以实现对更高截止波长的损害。满足这种规范的光纤还必需保持完全服从G.657B建议。
发明内容
为了上述目的,本发明包括一种光纤,该光纤具有中央纤芯,中间包层和被外部光包层围绕的凹陷槽(depressed trench)。折射率分布被优化,以相比G.657B建议所设定的限制,十倍级地改善弯曲损耗,同时保持模场直径与G.652建议兼容,并且确保LP11模的充分衰减。
特别地,纤芯的表面以及凹陷槽的表面和体积被优化,以显著改善弯曲损耗。在本发明的上下文中,纤芯的表面或凹陷槽的表面不能几何学地延伸,但应该对应于考虑了二维的值-半径与折射率差的积。类似地,凹陷槽的体积对应于考虑了三维的值-半径的平方与折射率差的积。
更具体地,本发明提出一种单模光纤,从中央到周边,包括中央纤芯、中间包层、凹陷槽以及外部光包层。中央纤芯具有半径r1并且与外部光包层之间具有正折射率差Δn1。中间包层具有半径r2并且与外部光包层之间具有正折射率差Δn2。差Δn2小于纤芯的折射率差Δn1。凹陷槽具有半径r3并且与外部光包层之间具有负折射率差Δn3。本发明的光纤进一步特征在于,它(i)在1310纳米波长处具有在8.6μm到9.5μm之间的标称模场直径(MFD);(ii)在1550纳米的波长处,对于5毫米曲率半径具有小于0.15×10-3dB/圈的弯曲损耗,以及小于或等于1260纳米的缆线截止波长,该缆线截止波长测量被测量为这样的波长:在该波长处,LP11模在传播超过22米光纤之后,该LP11模的衰减大于或等于19.3dB,该光纤被调整为平直或者被调整为围绕140nm的曲率半径心轴(mandrel)。
根据这个发明的光纤的一个实施方式,该中央纤芯的面积分(V01)被定义为
V 01 = ∫ 0 r 1 Δn ( r ) . dr ≈ r 1 × Δ n 1
其在19.0×10-3μm和23.0×10-3μm之间,优选在20.0×10-3μm和23.0×10-3μm之间。在另一个优选实施例中,中央纤芯的面积分(V01)在20.0×10-3μm和21.5×10-3μm之间,因为这引起当前光纤的最优光学特性。
根据本发明的光纤的一个实施例,凹陷槽的面积分(V03)定义为
V 03 = ∫ r 2 r 3 Δn ( r ) . dr ≈ ( r 3 - r 2 ) × Δ n 3
其在-55.0×10-3μm和-30.0×10-3μm之间。在另一个优选实施例中,凹陷槽的面积分(V03)在-42.5×10-3μm和-32.5×10-3μm之间,因为这引起当前光纤的最优光学特性。
根据本发明的光纤的一个实施例,凹陷槽的体积分(V13)定义为
V 13 = 2 . ∫ r 2 r 3 Δn ( r ) . r . dr ≈ ( r 3 2 - r 2 2 ) × Δ n 3
其在-1200×10-3μm2和-750×10-3μm2之间。在另一个优选实施例中,凹陷槽的体积分(V13)在-1000×10-3μm2和-750×10-3μm2之间,因为这引起当前光纤的最优光学特性。
在优选实施方式中,该光纤具有弯曲损耗抵抗力得到改善的物理属性和可操作参数。例如,该光纤具有大于1300纳米的有效截止波长λceff,将以下波长作为有效截止波长λceff进行测量,在该波长处,光信号进行超过2米的光纤传输后变为是单模的。对于1550纳米波长,对于15毫米的曲率半径,该光纤具有小于或等于0.003dB/圈的弯曲损耗,优选地,对于10毫米的曲率半径,该光纤具有小于或等于7.5×10-3dB/圈的弯曲损耗,对于7.5毫米的曲率半径,该光纤具有小于或等于0.05dB/圈的弯曲损耗,以及对于5毫米的曲率半径,该光纤具有小于0.15dB/圈的弯曲损耗,优选具有小于0.10dB/圈的弯曲损耗。
这里公开的光纤还在更大的波长处表现出降低的弯曲损耗。例如,在1625纳米波长处,对于15毫米的曲率半径,该光纤具有小于10-2dB/圈的弯曲损耗,优选小于1.5×10-3dB/圈的弯曲损耗,对于10毫米的曲率半径,该光纤具有小于或等于0.1dB/圈的弯曲损耗,优选小于或等于25×10-3dB/圈的弯曲损耗,对于7.5毫米的曲率半径,该光纤具有小于或等于0.15dB/圈的弯曲损耗,优选小于或等于0.08dB/圈的弯曲损耗,对于5毫米的曲率半径,该光纤具有小于或等于0.25dB/圈的弯曲损耗。因此,在优选实施方式中,该光纤具有在1240纳米和1310纳米之间的截止波长,将以下波长作为截止波长进行测量,在该波长处,光信号传播超过5米的光纤后不再是单模的。截止波长与缆线截止不同,将以下波长作为截止波长进行测量,在该波长处,在进行超过22米的光纤传播后LP11模的衰减大于或等于19.3dB。光纤具有小于或等于1260纳米的缆线截止波长。
在此讨论的第四截止定义是理论截止波长,该理论截止波长被定义为LP11模自此以泄漏模进行传播的波长。在一个实施方式中,该光纤具有小于或等于1250纳米的理论截止波长。在1260纳米波长处,该光纤在传播超过22米光纤后LP11模的衰减大于5dB。
上述可操作参数由光纤的优选物理属性所致。在一个实施方式中,光纤的中央纤芯具有在3.8μm和4.35μm之间的半径;该中间包层具有包含在8.5μm和9.7μm之间的半径;该凹陷槽具有包含在13.5μm和16μm之间的半径,可以小于或等于15μm。优选地,中央纤芯与外部光包层之间具有的折射率差(Δn3)在4.9×10-3和5.7×10-3之间。
如上所述,根据外部光包层和光纤半径上的点的折射率差值绘制光纤的折射率分布。中间包层与光包层之间具有在-0.1×10-3和0.6×10-3之间的折射率差。该凹陷槽与光包层之间具有在-10.0×10-3和-5.0×10-3之间的折射率差。该光纤在1300纳米和1324纳米之间具有零色散波长;该光纤在零色散波长处具有小于0.092ps/(nm2.km)的色散斜率值。
本发明还涉及接纳此处公开光纤的至少一部分的光盒。在这样的盒子中,该光纤可以布置为半径曲率小于15毫米,其可以处于5毫米的级别。该发明还涉及包括根据本发明的光纤的至少一部分的光纤到户(FTTH)系统。
在下面的详细描述及其附图中,进一步详述本发明上述与其它特性和优点及其实现的方式。
附图说明
图1描述单模光纤的横截面,该单模光纤具有在从中央延伸的各半径处的包层。
图2描述根据本发明的图1的示例性单模光纤的标称折射率分布。
具体实施方式
本发明的光纤(10)具有中央纤芯(11)、中间包层(12)和凹陷包层(13)。为了此处目的以及不超出本发明的范围,凹陷包层表示光纤(10)中具有的折射率小于外部光包层(14)的折射率的径向部分。典型地,通过硅管中进行化学汽相沉积来获取中央纤芯(11)、中间包层(12)和凹陷包层(13)。外部光包层(14)包括硅管以及该管上的外包层(overcladding)。在优选实施方式中,外包层通常是天然的或掺杂硅,还可以通过其它沉积技术(轴向汽相沉积(“VAD”)或外汽相沉积(“OVD”))来获取。
图2示出了图1的传输光纤(10)的折射率分布。图2的分布为设置分布,也就是,表示光纤的理论分布,但是在对预制棒进行光纤拉制后获得的光纤可能具有稍微不同的分布。
通过本领域本身已知的方式,通过预制棒拉制而获取光纤(10)。作为实例,预制棒可以是最终形成外部光包层(14)的一部分的非常高质量的玻璃管(纯二氧化硅)。外部光包层(14)包围光纤(10)的中央纤芯(11)和内部包层(12,13)。继而该管可以被外包(overclad),以在进行到光纤拉制塔的光纤拉制操作之前增加其直径。对于预制棒的制造,该管通常水平安装,并且在其两端被玻璃棒(glass bar)保持在车床上;接着旋转并且局部加热该管用于沉积过程,从而确定该预制棒的构成。该构成确定未来光纤的光学特性。
该光纤包括与作为光包层的外部包层(14)之间具有折射率差Δn1的中央纤芯(11)。该光纤(10)进一步包括与外部光包层(14)之间具有折射率差Δn2的中间包层(12),以及与外部光包层(14)之间具有折射率差Δn3的凹陷槽包层(13)。中央纤芯(11)、中间包层(12)和凹陷槽(13)中的折射率在他们各自的整个宽度中基本上恒定,如图2所示。图1示出纤芯(11)的宽度由其半径r1限定并且包层的宽度由其各自外部半径r2和r3限定。外部光包层由r4表示。
为了定义针对光纤的设置折射率分布,外部光包层的折射率值通常为标号(ng)。接着在图2中通过折射率差Δn1,2,3表示中央纤芯(11)、中间包层(12)和凹陷槽包层(13)的折射率值。通常,外部光包层(14)由二氧化硅构成,但是该包层可能被掺杂以便增加或降低其折射率,例如,以便修改信号的传播特性。
基于联系折射率变量和光纤(10)的每个部分的半径的积分,还可以定义图2中示出的每个光纤分布部分(21-24)。因此,可以为本发明的光纤(10)定义三个面积分,表示纤芯表面V01、中间包层表面V02以及凹陷槽表面V03。术语“表面”不应该按照几何学来理解,而应该对应于考虑了2维的值。这三个面积分可以通过下列表示:
V 01 = ∫ 0 r 1 Δn ( r ) . dr ≈ r 1 × Δ n 1
V 02 = ∫ r 1 r 2 Δn ( r ) . dr ≈ ( r 2 - r 1 ) × Δ n 2
V 03 = ∫ r 2 r 3 Δn ( r ) . dr ≈ ( r 3 - r 2 ) × Δ n 3 .
类似地,可以为本发明的光纤(10)定义三个体积分,表示纤芯体积V11、中间包层体积V12以及凹陷槽体积V13。术语“体积”不应该按照几何学来理解,而应该对应于考虑了3维的值。这三个体积分可以通过下列表示:
V 11 = 2 . ∫ 0 r 1 Δn ( r ) . r . dr ≈ r 1 2 × Δ n 1
V 12 = 2 . ∫ r 1 r 2 Δn ( r ) . r . dr ≈ ( r 2 2 - r 1 2 ) × Δ n 2
V 13 = 2 . ∫ r 2 r 3 Δn ( r ) . r . dr ≈ ( r 2 2 - r 1 2 ) × Δ n 3 .
表I(下面)示出根据本发明优选实施方式,与3个SSMF光纤分布和1个对应于G.657A建议和G.657B建议的光纤分布(标记为“BIF”弯曲不敏感光纤)相比较的9个光纤分布例子以及13个比较例子。申请人在BendBright的商标范围内销售对于弯曲损耗具有良好抵抗性的弯曲不敏感光纤。表中的值对应于每个光纤的设置分布。
所有分布都被设计为确保多径干扰(MPI)水平低于-30dB,这确保与适当安装的系统网络(包括接入网和光纤到户)完全兼容。MPI在W.Zheng等人的“Measurement and System Impact of MultipathInterference From Dispersion Compensating Fiber Modules”(IEEETransactions on Instrumentation and Measurement,2004,53,pp 15-23)中定义,并且其具体测量问题在S.Ramachandran等人的“Measurement of Multipath Interference in the Coherent CrosstalkRegime”(IEEE Photonics Technology Letters,2003,15,pp1171-1173)中详细描述。
表I的第1列为每个例子指定参考符号(例如,Ex针对根据本发明的例子,而C.Ex针对比较例子);接下来的3列分别给出了纤芯(11)、中间包层(12)和凹陷槽(13)的半径值。接下来的3列给出了与外部光包层(14)的折射率差的对应值。折射率值在633纳米波长处测量。表I还示出如上定义的纤芯(11)、中间包层(12)和凹陷槽(13)的面积分和体积分值。
表I
Figure G200910140806XD00101
根据本发明的图1和图2的实施例的光纤(10)是阶跃光纤,包括中央纤芯(11)、中间包层(12)和凹陷槽(13)。从表I可以注意到,中央纤芯(11)具有在3.8μm和4.35μm之间的半径r1,半径r1优选在3.8μm和4.05μm之间,也就是,比SSMF光纤的纤芯要更窄。光纤(10)与外部光包层之间具有折射率差Δn1(21)在4.9×10-3和5.7×10-3之间,也就是,处于SSMF光纤的量级或大于SSMF光纤。纤芯的面积分V01在19.0×10-3μm和23.0×10-3μm之间,纤芯的体积分V11在75×10-3μm2和91×10-3μm2之间。
从表I还可以注意到,根据本发明的光纤具有凹陷槽(13)。凹陷槽(13)具有大体积,而且使得显著降低弯曲损耗成为可能。因此,表I示出了凹陷槽(13)具有13.5μm和16μm之间的半径r3以及与外部光包层(14)具有-10.0×10-3和-5.0×10-3之间的折射率差Δn3(23)。表I还示出如上定义的凹陷槽的面积分V03在-55.0×10-3μm和-30.0×10-3μm之间,而且如上定义的凹陷槽的体积分V13在-1200×10-3μm2和-750×10-3μm2之间。
根据优选实施方式,凹陷包层的半径r3可以限定到15μm以进一步降低光纤制造成本,并且所有根据例子的光纤都服从它。实际上,可以通过等离子体化学汽相沉积(PCVD)来制造凹陷槽(13),使得将大量氟结合到二氧化硅中以形成深度凹陷包层成为可能。然而,光纤(10)对应于管和PCVD沉积的部分是最昂贵的,因此希望尽可能地限制这部分。可以设想通过结合微孔或微泡而不是通过氟掺杂来产生凹陷槽(13)。然而,对于工业生产,氟掺杂比结合微泡更容易控制。
对应于上面定义的表面和体积规范的凹陷槽(13),使得可以在相比现有光纤显著降低弯曲损耗和在1260纳米波长处LP11模的充分一致的泄漏体制(regime)之间实现折衷。
由表I还可以注意到,光纤的优选实施方式在中央纤芯(11)和凹陷槽(13)之间具有中间包层(12)。这个中间包层(12)使得限制凹陷槽(13)对纤芯中光信号的传播的影响成为可能。表I示出中间包层(12)具有的半径r2在8.5μm和9.7μm之间,以及与光包层之间的折射率差Δn2(22)在-0.1×10-3和0.6×10-3之间。表I示出了如上定义的中间包层的面积分V02在-0.5×10-3μm和3.0×10-3μm之间。如上定义的中间包层的体积分V12在6×10-3μm2和40×10-3μm2之间。
结合中间包层(12)优化了根据本发明的光纤(10)的中央纤芯(11),从而保证光纤中的光传输参数与G.652和G.657A建议相一致,特别是在模场直径和色散方面。这还有助于确保与其它光系统的光纤的兼容性。
表II(下面)示出根据本发明的光纤的光传输特性。第一列重复表I的参考符号。随后的列针对每种光纤分布来提供针对1310纳米和1550纳米波长的模场直径(MFD)值,零色散波长(ZDW)和零色散斜率(ZDS)。
表II
BIFSSMF1SSMF2SSMF3   MFD1310(μm)8.809.149.279.18  MFD1550(μm)9.9010.3110.3910.25   ZDW(nm)1320131413091306   ZDSps/(nm2·km)0.08780.08550.08710.088
  C.Ex1C.Ex2   8.678.65  9.689.59   13171310   0.09080.0917
  C.Ex3C.Ex4   8.668.64  9.629.65   13121317   0.09140.0897
  C.Ex5   8.95  10.01   1317   0.0905
  C.Ex6C.Ex7   8.968.80  10.029.81   13171314   0.09050.0906
  C.Ex8C.Ex9   8.898.88  9.919.91   13151314   0.09130.0909
  C.Ex10   8.94  9.97   1315   0.0914
  C.Ex11C.Ex12   8.978.95  10.009.99   13141315   0.09170.0911
  C.Ex13Ex1   8.929.00  9.9510.10   13141318   0.09110.0906
  Ex2   8.75  9.81   1318   0.0895
  Ex3Ex4   8.758.60  9.819.64   13181318   0.08950.0888
  Ex5Ex6   8.608.91  9.649.94   13181315   0.08880.0913
  Ex7   8.92  9.95   1315   0.0914
  Ex8Ex9   8.838.93  9.849.95   13131314   0.09080.0915
由表II注意到,根据本发明的光纤(10)与对应于G.652建议的规范的光纤相兼容。特别地,在1310纳米波长处,此处公开的光纤具有在从8.6μm到9.5μm的值的标准化范围之间的模场直径MFD,在1300纳米和1324纳米之间的零色散波长,以及小于0.092ps/(nm2.km)的零色散斜率。这些值中的每一个都是按照建议G.652的。
另一方面,如表III(下面)所示,光纤的有效截止波长λceff(或者标准光纤截止,表III的第3列)大于1300纳米,甚至大于1350纳米。如上讨论,正如国际电工委员会的86A子委员会在IEC6-793-1-44标准中所定义的那样,将以下波长作为有效截止波长进行测量,在该波长处,光信号通过光纤传播超过2米后不再是单模的。增加的有效截止波长值导致缆线截止波长值λcc(或者标准缆线截止,表III的第5列)在1200纳米和1260纳米之间。正如国际电工委员会的86A子委员会在IEC 6-793-1-44标准中所定义,通过以下方式测量截止波长缆线截止波长,在该波长处,光信号通过光纤传播超过22米后不再是单模的。当LP11模的衰减大于或等于19.3dB时,光信号是单模的。G.652和G.657建议对于缆线截止波长都设定最大值为1260纳米。
此处公开的发展的一个目的,是生产在光学系统采用的所有传输带宽上都能够使用的光纤,也就是,可以在单模传输中使用的光纤,该单模传输从原始带宽(OB)(其从1260纳米延伸到1360纳米)到超过1625纳米的超长(UL)带宽。低的有效截止波长使得可以在所有可用带宽上使用该光纤。
然而,表III(下面)的仿真示出从1260纳米波长根据泄漏模传播直接更高次LP11模。因此,这里公开的光纤可以使用在原始带宽(OB:1260纳米到1360纳米)的单模传输中。
表III(下面)示出根据本发明的光纤的一些截止波长值。表III的第一列重复表I的参考符号。
“Fiber Cutoff(theory)(理论光纤截止)”列提供理论截止波长值,其对应于在LP11模的引导传播和该LP11模的泄漏模传播之间的跃迁波长。对于超过该有效截止波长的工作波长,在泄漏模中传播LP11模。
“Standard Fiber Cutoff(标准光纤截止)”列对应于由国际电工委员会的86A子委员会在IEC 60793-1-44标准中定义的有效截止波长λceff
“5m Fiber Cutoff(5m光纤截止)”列对应于通过以下方式测量得到的波长,超出该波长,光信号在传播超过5米光纤后不再是多模的。因此,该值对应于传播超过5米光纤而不是2米光纤后测量的有效截止波长。
“Standard Cable Cutoff(标准缆线截止)”列对应于由国际电工委员会的86A子委员会在IEC 60793-1-44标准中定义的缆线截止波长λcc。根据国际电工委员会的86A子委员会在IEC 60793-1-44标准中的建议,通过将光纤定位在2个40毫米半径环中并且将该光纤的剩余部分(也就是,21.5米的光纤)布置在具有140毫米半径的心轴上,从而确定缆线截止波长λcc。根据本发明,该截止应该是1260nm或更小。比较例子7是按照该要求的,但是比以上的平直缆线截止稍微过高,因此落在本发明的范围之外。
通过将光纤定位到两个各具有40毫米半径的环中,以及通过布置基本平直的缆线的剩余部分(也就是,21.5米的光纤),“StraightCable Cutoff(平直缆线截止)”列对应于缆线截止波长。根据本发明,该截止应该是1260nm或更小。比较例子9、10和12是按照该要求的,但是比标准缆线截止稍微过高,因此落在本发明的范围之外。所有的比较例子都落在本发明的范围之外,因为这些例子给出的标准截止稍高于1260nm或者平直缆线截止稍高于1260nm。
“LP11LL1260after 22m(22m之后的LP11LL1260)”列,表示在传播超过22米的基本平直的光纤后LP11模的泄漏损耗。
“Length-19.3dBLP11LL1260nm(长度-19.3dB LP11 LL1260nm)”列,表示通过基本保持平直的光纤来实现LP11模的泄漏损耗等于19.3dB所需要的光纤长度。这表示在该距离处,基本平直布置的光纤在G.652和G.657建议的涵义内为单模。
表III
Fiber Cutoff(theory) StdFiberCutoff 5-mFiberCutoff StdCableCutoff StraightCableCutoff   LP11LL1260nmafter22m Length-19.3dBLP11LL1260nm
  (nm)   (nm)   (nm)   (nm)   (nm)   (dB)   (m)
  BIF   1197   1270   1234   1196   1208   180   2
  SSMF1 1287 1226 1226 1151 1151 2 212
  SSMF2 1334 1267 1267 1188 1188 0 >1000
  SSMF3 1381 1311 1311 1231 1231 0 >1000
  C.Ex1 1250 1379 1321 1271 1268 10 41
  C.Ex2 1243 1383 1323 1271 1266 16 27
  C.Ex3 1232 1397 1333 1271 1265 16 26
  C.Ex4 1239 1392 1331 1272 1267 15 28
  C.Ex5 1242 1382 1322 1268 1264 18 24
  C.Ex6   1247   1376   1319   1267   1266   15   28
  C.Ex7 1249 1351 1302 1259 1262 18 23
  C.Ex8 1246 1378 1319 1268 1264 17 25
  C.Ex9 1235 1373 1317 1264 1260 18 24
  C.Ex10 1243 1371 1313 1263 1260 22 20
  C.Ex11 1246 1367 1310 1263 1263 17 25
  C.Ex12   1244   1371   1314   1264   1260   20   21
  C.Ex13 1240 1375 1319 1267 1263 17 24
  Ex1   1175   1316   1255   1204   1201   88   5
  Ex2   1171   1316   1246   1205   1198   83   5
  Ex3   1171   1366   1271   1225   1205   44   10
  Ex4   1171   1316   1244   1207   1195   75   6
  Ex5   1171   1366   1269   1226   1200   40   11
  Ex9   1243   1360   1304   1257   1258   26   16
  Ex7   1238   1362   1305   1256   1255   24   17
  Ex8   1247   1350   1300   1257   1260   22   19
  Ex9   1245   1362   1306   1259   1259   24   18
由表III注意到,标准有效截止波长λceff,也就是,如根据国际电工委员会的86A子委员会在IEC 60793-1-44标准中建议所测量的那样,大于1300纳米。类似地,由表III注意到,标准缆线截止波长λcc,也就是,如根据国际电工委员会的86A子委员会在IEC6-793-44标准中的建议所测量的那样,在1200纳米和1260纳米之间,也就是,按照由G.652和G.657建议设定的1260纳米的限制。
由表III注意到,LP11模从1260纳米严重衰减。实际上,“理论”光纤截止波长小于或者等于1250纳米。因此,更高次LP11模在原始带宽中以泄漏模机制传播,并且在本发明的光纤中只有基模从1260纳米波长起保持引导。
类似地,由表III注意到,在光纤中仅进行5米的传播后,光纤截止波长显著地降低。因此,对于根据本发明的光纤,截止波长在1240纳米到1310纳米之间,其中将以下波长作为截止波长进行测量,在该波长处,光信号传输超过5米的光纤后不再是单模的。
而且,表III清楚表明,22米的传播后,LP11模已经大幅衰减。特别注意到,当光纤基本平直布置时,LP11模在根据本发明的光纤(10)中的衰减大于LP11模在SSMF光纤中的衰减。实际上,在SSMF光纤中,弯曲使得高度衰减LP11模成为可能。因此,对于1260纳米波长,在平直光纤中进行超过22米的传播后,该光纤的LP11模衰减大于5dB。
而且,表III还表明,根据建议设定的缆线截止,在不到22米之后,相对迅速地实现至少19.3dB的LP11模衰减。
而且,有效截止波长的增加,使得可以增加如上定义的MAC值,并且最终降低弯曲损耗。
表IV(下面)报告了这里公开的光纤的优选实施方式的弯曲损耗值。表IV的第1列重复表I的参考符号。接下来的4列表明1550纳米波长处15毫米、10毫米、7.5毫米和5毫米曲率半径的各自弯曲损耗值PCC。接下来的4列给出1625纳米波长处15毫米、10毫米、7.5毫米和5毫米曲率半径的各自弯曲损耗值PCC。
最后1列具有品质因子FOM,其表示根据本发明的光纤相对于G.657B的标准设定的限制在弯曲损耗方面改进的幅度级。因此,表IV的FOM被定义为,对于每个测量的曲率半径,G.657B建议设定的上限与本发明的光纤中弯曲损耗的比率的平均值。所有例子都给出低于或等于1的FOM,这意味着这些例子都符合G.657B弯曲损耗建议。
表IV在第一行描述,G.657B建议为每个曲率半径以及1550纳米和1625纳米波长所设定的弯曲损耗限制值。
表IV
Figure G200910140806XD00191
由表IV可以注意到,对应于根据本发明分布的光纤的弯曲损耗明显小于G.657标准设定的限制。仅在例子1(Ex1)中,在1625纳米处,15毫米的曲率半径的弯曲损耗等于建议的弯曲损耗。
因此,对于1550纳米波长,与G.657B建议设定的3×10-3dB/圈的限制相对比,对于15毫米曲率半径,光纤的弯曲损耗小于3×10-3dB/圈,优选小于0.25×10-3dB/圈。与G.657B建议设定的0.1dB/圈的限制相对比,对于10毫米曲率半径光纤的弯曲损耗小于或等于3×10-2dB/圈,优选小于或等于7.5×10-3dB/圈。与G.657B建议设定的0.5dB/圈的限制相对比,对于7.5毫米曲率半径,光纤的弯曲损耗小于或等于0.05dB/圈,以及对于5毫米曲率半径,光纤的弯曲损耗小于或等于0.15dB/圈,优选小于或等于0.10dB/圈。
类似地,对于1625纳米波长,与G.657B建议设定的10-2dB/圈的限制相对比,根据本发明的光纤对于15毫米的曲率半径展现出的弯曲损耗小于10-2dB/圈,优选小于1.5×10-3dB/圈。与G.657B建议设定的0.2dB/圈的限制相对比,对于10毫米的曲率半径,弯曲损耗小于或等于0.1dB/圈,优选小于或等于25×10-3dB/圈。与G.657B标准设定的1dB/圈的限制相对比,该光纤对于7.5毫米的曲率半径展现出的弯曲损耗小于或等于0.15dB/圈,优选小于或等于0.08dB/圈,以及对于5毫米的曲率半径,弯曲损耗小于0.25dB/圈。
这里公开的光纤非常适于在安装到用户家庭的FTTH类型的光学系统中使用,在这种情况中由于光盒微型化或用钉将光纤保持,光纤容易遭受显著弯曲应力。光纤可以布置在部分紧密的光盒中。实际上,光纤可以被设置为具有小于15毫米的曲率半径,例如,大约5毫米的曲率半径。该光纤与现有系统的光纤保持兼容,特别是在良好的光纤到光纤耦合的模场直径方面。由于LP11模从1260纳米波长显著衰减,截止波长的增加并没有害处。
如关于抗微弯曲光纤(Microbend Resistant Optical Fiber)的共同受让美国专利申请No.60/986,737(Overton)和关于抗微弯曲光纤(Microbend Resistant Optical Fiber)的共同受让美国专利申请No.61/041,484(Overton)中所阐述(每个都通过参考而整体引入),将弯曲不敏感的玻璃光纤(例如,Draka Comteq的商标名为
Figure G200910140806XD00211
的可用单模玻璃光纤)和具有非常低模数的一次涂覆层(例如,DSM Desotech的以商标名
Figure G200910140806XD00212
DF 1011提供的UV-可固化聚氨酯丙烯酸酯产品)配对,实现了具有非常低损耗的光纤(例如,与采用传统涂覆层系统的单模光纤相比,降低了至少10倍的微弯曲灵敏度)。因此,美国专利申请No.60/986,737和美国专利申请No.61/041,484中公开的涂覆层应用到本发明的单模光纤也是在本发明的范围内的。
在这点上,根据IEC固定直径砂纸鼓(fixed-diameter sandpaperdrum)测试(其,即使在室温下也提供影响单模光纤的微弯曲压力情形)(也就是,IEC TR62221,方法B,40微米等级砂纸),可以分析微弯曲。IEC TR62221微弯曲-灵敏性技术报告和标准测试过程(例如,IEC TR62221,方法B(固定直径砂纸鼓)和方法D(竹篮式织法))在此通过参考而整体引入。
本申请进一步通过参考而整体引入以下共同受让专利、专利申请和专利申请公开,每一个分别讨论光纤如下:关于用于光纤光学引导应用的单模弯曲不敏感光纤(Single Mode Bend Insensitive Fiberfor Use in Fiber Optic Guidance Applications)的美国专利No.4,838,643(Hodges及其他人);美国专利申请公开号No.US2007/0127878A1及其相关的关于单模光纤的美国专利申请No.11/556,895(de Montmorillon及其他人);美国专利申请公开号No.US 2007/0280615A1及其相关的关于单模光纤(Single ModeOptical Fiber)的美国专利申请No.11/697,994(de Montmorillon及其他人);美国专利号No.7,356,234及其相关的关于色散补偿光纤(Chromatic Dispersion Compensating Fiber)的美国专利申请(deMontmorillon及其他人);美国专利申请公开号US 2008/0152288A1及其相关的关于光纤(Optical Fiber)的美国专利申请No.11/999,333(Flammer及其他人);以及关于单模光纤(Single Mode OpticalFiber)的美国专利申请No.61/101,337(de Montmorillon及其他人)。
根据本发明的光纤可以进一步包括一个或多个涂覆层(例如,一次涂覆层和二次涂覆层)。涂覆层中的至少一个(通常为二次涂覆层)可以着色和/或拥有其它标记以帮助标识单独的光纤。可选地,第三墨色层可以包围一次涂覆层和二次涂覆层。
根据本发明的光纤可以布置在各种结构中,诸如下面公开的这些示例性结构。
例如,可以在缓冲管内装进本发明的一个或多个光纤。例如,光纤可以布置在单光纤松散缓冲管中或者多光纤松散缓冲管中。对于后者,可以在缓冲管或其它结构中卷或绞多个光纤。在这点上,在多光纤松散缓冲管的内部,光纤的子束可以与包扎件分离(例如,每个光纤子束封套在包扎件中)。而且,扇出管可以安装在这样的松散缓冲管的终端处,从而直接用现场组装的连接器端接被松散缓冲的光纤。
在其它实施方式中,缓冲管可以紧固地包围最外面的光纤涂覆层(也就是,紧缓冲光纤)或包围最外面的光纤涂覆层或墨色层以提供示例性的大约50到100微米的径向间隙(也就是,半紧缓冲光纤)。
关于先前的紧缓冲光纤,通过用固化成分(curable composition)(例如,UV-可固化材料)或热塑材料涂覆光纤可以形成缓冲。紧缓冲管的外直径典型的小于1,000微米(例如,大约500微米或大约900微米),而无论该缓冲管由可固化或非可固化材料形成。
关于后面的半紧缓冲光纤,可以在光纤和缓冲管之间包括润滑剂(例如,提供滑动层)。
正如本领域普通技术人员所知,可以由聚烯烃(例如,聚乙烯或聚丙烯),包括氟化的聚烯烃、聚脂(例如,聚对苯二甲酸丁二醇酯)、聚酰胺(例如,尼龙)以及其它聚合材料和合成物,形成在此公开的包含光纤的示例性缓冲管。通常,可以由一层或多层形成缓冲管。这些层可以是同性质的或者可以在每层内包括各种材料的混合物或合成物。
在此处的上下文中,缓冲管可以被挤压(extrude)(例如,受挤压的聚合材料)或拉挤(pultrude)(例如,被拉挤的光纤增强塑料)。例如,缓冲管可以包括抗高温和抗化学的材料(例如,芳族材料或聚砜材料)。
虽然缓冲管典型具有圆形截面,但可选地,缓冲管可以具有不规则或非圆形形状(例如,椭圆或梯形截面)。
可选地,一个或多个本发明的光纤可以简单地由外部保护外壳环绕,或者封装在密封金属管中。在每个结构中,并不必然需要中间缓冲管。
这里公开的多种光纤,可以被夹持、封装,和/或粘边,以形成光纤带。光纤带可以被分成子单元(例如,12光纤带可以分成6个光纤子单元)。而且,可以聚集多个这种光纤带,以形成可以具有各种尺寸和形状的带垛(ribbon stack)。
例如,可以形成矩形带垛,或者最上面和最下面的光纤带比朝向垛中央的光纤带具有更少光纤的带垛。这种结构可以有助于增加缓冲管和/或缆线中的光学元件(例如,光纤)密度。
通常,由于遭受其它的约束(例如,缆线或中跨距衰减),期望在缓冲管和/或缆线中增加传播元件的填充。光学元件自身可以被设计用于增加的填充密度。例如,光纤可以具有修改的属性,比如改进的折射率分布、纤芯或包层尺寸,或一次涂覆层厚度和/或模数,以改进微弯曲和宏弯曲(macrobending)特性。
例如,可以通过或可以不通过中央绞线(twist)(即“一次绞线”)来形成矩形带垛。本领域普通技术人员将意识到,带垛通常使用旋转绞线来制造,从而允许管或缆线弯曲,而在缠绕、安装和使用期间不会将过量的机械应力施加于光纤上。在结构变形中,绞绕的(或没有绞绕的)矩形带垛可以进一步形成盘绕(coil)状配置(例如,螺旋)或波状配置(例如,正弦)。换句话说,带垛可以具有规则的“二次”变形。
正如本领域普通技术人员将意识到,可以将这种光纤带定位到缓冲管或其它包围结构中,比如缓冲-管-自由缆线。由于遭受某种约束(例如,衰减),期望增加诸如缓冲管和/或光纤缆线中的光纤或光纤带之类的元件的密度。
容纳光纤的多个缓冲管(例如,松散的或者带化的光纤)可以外部定位在中央加强部件附近且股绞(strand)环绕中央加强部件。可以在一个方向螺旋地实现该股绞,公知为“S”或“Z”股绞,或者反向摆动层股绞,公知为“S-Z”股绞。当在安装和使用中出现缆线应变时,环绕中央加强部件的股绞降低了光纤应变。
本领域普通技术人员将理解,在安装或操作状态下将针对拉伸缆线应变和纵向压缩缆线应变二者的光纤应变最小化的优点。
关于可能发生在安装过程中的拉伸缆线应变,缆线将变得更长而光纤可以移动到更接近缆线的中轴,以降低(假如不消除)转移到光纤的应变。关于可能在低操作温度下由于缆线部件的收缩而发生的纵向压缩应变,光纤将更加远离缆线的中轴移动,以降低(假如不消除)变换到光纤的压缩应变。
在一种变形中,缓冲管的两个或更多基本上同心的层可以定位在中央加强部件的周围。在进一步的变形中,多个股绞元件(例如,股绞环绕加强部件的多个缓冲管)自身可以相互股绞环绕,或环绕一次中央加强部件。
可选地,包含光纤的多个缓冲管(例如,松散的或带化的光纤),可以简单在外部邻近中央加强部件布置(也就是,不以特定方式有意地将缓冲管股绞或布置环绕中央,而且缓冲管基本上与中央加强部件平行)。
还是可选地,可以用中央缓冲管定位本发明的光纤(也就是,中央缓冲管缆线具有中央缓冲管而不是中央加强部件)。这样的中央缓冲管缆线可以在别处布置加强部件。例如,金属或非金属(例如,GRP)加强部件可以布置在缆线外壳自身内部,和/或高强度纱(例如,聚芳基酰胺线或非聚芳基酰胺线)的一层或多层可以被定位为平行于或卷绕(例如,反向螺旋)中央缓冲管(也就是,在缆的内部空间中)。同样地,加强部件可以包括在缓冲管的外套内。
在其它实施方式中,光纤可以布置在开槽纤芯缆线中。在开槽纤芯缆线中,光纤(独自地或者作为光纤带)可以布置在中央加强部件表面上预制形状的螺旋槽(即,沟道)中,从而形成开槽纤芯单元。开槽纤芯单元可以被缓冲管包绕。一个或多个这种开槽纤芯单元可以布置在开槽纤芯缆线中。例如,多个开槽纤芯单元可以螺旋股绞在中央加强部件周围。
可选地,可以用双保险钩(maxitube)缆线设计方式来股绞光纤,从而光纤在大的多光纤松散缓冲管内股绞环绕自身,而不是股绞环绕中央加强部件。换句话说,大的多光纤松散缓冲管中央地布置在双保险钩缆线内。例如,这样的双保险钩缆线可以部署在光纤地线(OPGW)中。
在其它布线实施方式中,多个缓冲管可以股绞环绕自身,而无需存在中央部件。这些股绞缓冲管可以被保护管包围。保护管可以作为光纤缆线的外部壳,或者进一步被外壳包围。保护管可以紧密或松散环绕被股绞的缓冲管。
正如本领域普通技术人员公知,可以在缆线纤芯内包括附加部件。例如,铜缆或者其它有源传输元件可以被股绞或被捆扎在缆外壳内。无源元件也可以布置在缆芯内,比如在缓冲管的内壁和封闭的光纤之间。可选地,例如,无源元件还可以布置在缓冲管的外面,在缓冲管各外壁和缆线护套的内壁之间,或者,在缓冲-管-自由缆线的内部空间内。
例如,可以采用纱、非纺织品、织品(例如,带子)、泡沫,或包含遇水膨胀材料和/或涂覆有遇水膨胀材料(例如,包括高吸水性树脂(SAP),比如SAP粉)的其它材料,以提供水阻(waterblocking)和/或将光纤耦合到环绕缓冲管和/或缆线护套(例如,经由粘结、摩擦和/或压缩)。示例性的遇水膨胀元件公开于共同受让的美国专利申请公开号US2007/0019915A1及其相关的美国专利申请号11/424112“Water-Swellable Tape,Adhesive-Backed fbr couplingwhen Used Inside a Buffer Tube(Overton等人)”中,其中每个在此都通过参考而整体引入。
而且,可以在一个或多个无源元件(例如,遇水膨胀材料)上提供胶粘剂(例如,热熔胶粘剂或可固化胶粘剂,比如通过暴露到光化辐射而交联的聚硅酮丙烯酸酯),以将该元件粘结到缓冲管。还可以使用胶粘剂材料,以在缓冲管内将遇水膨胀部件粘结到光纤。在关于“Gel-Free Buffer Tube with Adhesively Coupled OpticalElement(Overton等人)”的共同受让美国专利申请公开号No.US2008/0145010A1中公开了这种元件的示例性布置,其在此通过参考而整体引入。
缓冲管(或缓冲-管-自由缆)还可以在光纤和缓冲管的内壁之间包含触变(thixotropic)成分(例如,脂肪或类脂胶)。例如,用水阻的油基填充脂填充缓冲管的自由空间,有助于阻止水的进入。另外,触变填充脂机械地(例如,粘性地)将光纤耦合到围绕的缓冲管。
这种触变填充脂相对较重和混乱,从而妨碍连接和接合(slice)操作。因此,本发明的光纤可以部署到干的缆线结构中(也就是,无脂缓冲管)。
在2008年6月26日递交的关于“Coupling Composition forOptical fiber Cables”的共同受让美国专利申请No.12/146,588(Parris及其他人)中,公开了无触变填充脂的示例性缓冲管结构,在此通过参考整体引入。这种缓冲管采用由高分子重量弹性聚合物(例如,在重量方面约占百分之35或更少)和在低温流动的油(例如,在重量方面约占百分之65或更多)的混合物所形成的耦合成分。不同于触变填充脂,该耦合成分(例如,用为粘胶或泡沫)通常是干的,因此在接合过程中不太混乱。
正如本领域普通技术人员理解,此处公开的包围光纤的缆线可以具有根据各种设计由各种材料所形成的外壳。可以由聚合材料形成缆线外壳,比如,例如,聚乙烯,聚丙烯,聚氯乙烯(PVC),聚酰胺(例如,尼龙),聚酯(例如,PBT),氟化塑料(例如,丙烯,聚氟乙烯或聚乙二烯二氟化物),以及乙烯-醋酸乙烯。外壳和/或缓冲管材料还可以包含其它添加物,比如成核剂,阻燃剂,耐烟剂,抗氧化剂,UV吸收剂,和/或增塑剂。
缆线外壳可以是由绝缘材料(例如,非导电聚合物)形成的单个外壳,具有或者不具有可以用于改进保护(例如,防止被侵蚀)和由缆线外壳提供的强度的补充结构元件。例如,随同一个或多个绝缘外套,一个或多个金属(例如,钢)带层可以形成缆线外壳。金属或玻璃纤维的加固杆(例如,GRP)还可以结合到外壳中。另外,还可以在各种外壳材料下采用芳族聚酰胺、玻璃纤维或涤纶纱(例如,在缆线外壳和缆线纤芯之间),和/或可以例如在缆线外壳内定位剥离绳(ripcord)。
类似于缓冲管,光纤缆线外壳通常具有圆形横截面,但是缆线外壳可选地可以是不规则的或非圆形的(例如,椭圆,梯形或扁平横截面)。
例如,根据本发明的光纤可以结合到单光纤引出缆线(singlefiber drop cable)中,比如那些在多住户单元(MDU)应用中采用的缆线。在这样部署中,缆线外套必须呈现建筑规范所要求的抗压性、耐磨性、抗穿刺性、热稳定性和耐火性。这种缆线外套的示例性材料是机械地保护光纤而且足够有弹性以促进容易MDU安装的热稳定的阻燃聚氨酯(PUR)。可选地,可以使用阻燃聚烯烃或聚氯乙烯外壳。
通常,正如本领域普通技术人员所知,加强部件典型为棒或股绕/螺旋绕线或光纤的形式,然而其它配置在本领域普通技术人员的知识范围内。
可以不同地部署包含所公开光纤的光纤缆线,包括作为引出缆线、配电缆线、馈电缆线、干线缆线和连接(stub)缆线,这些中的每一个都可以具有变化的操作需求(例如,温度范围,抗压性,抗紫外线和最小弯曲半径)。
这样的光纤缆线可以安装在管道、微管道、气室(plenum)或气口(riser)中。例如,光纤缆线通过牵拉和吹制(blowing)(例如,使用压缩空气)可以安装在现有的管道或微管道中。在关于“Communication Cable Assembly and Installation Method”的共同受让美国专利申请公开号No.2007/0263960(Lock及其他人),以及2008年8月28日递交的、关于“Modified Pre-FerrulizedCommunication Cable Assembly and Installation Method”的美国专利申请No.12/200,095(Griffioen及其他人)中公开了示例性缆线安装方法,它们中每一个在此通过参考而整体引入。
注意的是,包含光纤的缓冲管(例如,松散的或带化光纤)可以被股绞(例如,环绕中央加强部件)。在这样的配置中,光纤缆线的保护性外壳可以具有带纹路(textured)的外表面,其沿着缆线的长度方向以重复下面的缓冲管的股绞形状的方式周期性地改变。保护外壳的纹路分布可以改进光纤缆线的吹制性能。带纹路的表面降低了缆线与管道或微管道之间的接触面,并增加了吹制介质(例如,空气)和缆线之间的摩擦。可以由能够促进吹制安装的低摩擦系数材料生成保护性外壳。而且,可以向保护性外壳提供润滑剂以进一步促进吹制安装。
通常,为了实现满意的长距离吹制性能(例如,大约3000到5000英尺之间或更长),光纤缆线的外部缆线直径应该不超过管道或微管道内部直径的大约百分之70到80。
在空气吹制光纤系统中,压缩空气还可以用于安装根据本发明的光纤。在空气吹制光纤系统中,未填充的缆线或微管道的网络在光纤安装之前被安装。随后,光纤可以在需要时被吹到安装缆线中,以支持该网络变化的需求。
而且,光纤缆线可以直接埋在地下,或作为悬架在支柱或支撑塔的架空缆线。架空缆线可以是自支撑的或固定或缠挂到支撑体上(例如,吊线或其它缆线)。示例性的架空光纤缆线包括架空地线(OPGW)、全介质自承式缆线(ADSS)、全介质捆绑式缆线(AD-Lash)以及8字缆线,本领域普通技术人员良好地理解这些中的每个缆线。(8字缆线以及其它设计可以直接埋在或安装到管道中,而且可选的包括调色(toning)元件,比如金属线,从而可以用金属探测器发现它们)。
另外,虽然可以用外部缆线外壳进一步保护光纤,但光纤自身可以进一步被加强,从而光纤可以包含在允许单独光纤的单独路由的分支(breakout)缆线中。
为了在传输系统中有效地采用本发明的光纤,网络的各点处需要连接。典型通过熔接、机械接合或机械连接器形成光纤连接。
在安装到网络上之前,连接器的匹配端部可以在现场(例如在网络位置处)或者在工厂中安装到光纤端部。连接器的端部在现场进行匹配,从而将光纤连接在一起,或者将光纤连接到无源或有源部件。例如,特定的光纤缆线组件(例如分叉组件)可以以保护性方式将单独的光纤从通往连接器的多个光纤缆线中分离并转移。
这种光纤缆线的部署可以包括补充装备。例如,可以包括放大器以改进光信号。可以安装色散补偿模块,以降低色散和偏振模色散的效果。类似地,可以包括通过围绕而受到保护的接合盒、基座和配线框。例如,附加元件包括远程终端交换机、光网络单元、分光器和中心局交换机。
包含根据本发明的光纤的缆线可以部署用在通信系统(例如,网络或电信)中。通信系统可以包括光纤缆线架构,比如光纤到节点(FTTN)、光纤到局(FTTE)、光纤到配线盒(FTTC)、光纤到楼(FTTB)和光纤到户(FTTH),以及长距离或城域架构。
而且,根据本发明的光纤可以用在其它应用中,包括但是不局限于光纤传感器或照明应用(例如,发光)。
在说明书和附图中,已经公开了本发明的典型实施方式。本发明并不局限于这些示例性实施方式。除非另行表明,否则以通称和描述意义来使用特定术语,并不用于限制目的。

Claims (17)

1.一种具有降低的弯曲损耗的单模光纤,具有从该光纤的中央到外部光包层延伸的半径处测量的折射率分布,该光纤包括:
中央纤芯,被外部光包层围绕,所述中央纤芯具有半径r1和与光包层之间的正折射率差Δn1
中间包层,位于所述中央纤芯与所述外部光包层之间,所述中间包层具有半径r2和与光包层之间的折射率差Δn2,其小于该纤芯的折射率差Δn1,其中,Δn2在-0.1×10-3和0.6×10-3之间;
凹陷槽,位于所述中间包层与所述外部光包层之间,所述凹陷槽具有半径r3和与光包层之间的负折射率差Δn3,其中所述凹陷槽的体积分(V13)被定义为
V 13 = 2 . ∫ r 2 r 3 Δn ( r ) . r . dr ≈ ( r 3 2 - r 2 2 ) × Δn 3
所述体积分在-1200×10-3μm2和-750×10-3μm2之间,并且其中所述凹陷槽的面积分(V03)被定义为
V 03 = ∫ r 2 r 3 Δn ( r ) . dr ≈ ( r 3 - r 2 ) × Δn 3 ,
所述面积分在-55.0×10-3μm和-30.0×10-3μm之间;
其中该光纤在1310纳米波长处具有在8.6μm到9.5μm之间的标称模场直径(MFD),而且,该光纤对于1550纳米波长以及对于5毫米的曲率半径具有小于0.15dB/圈的弯曲损耗;以及
小于或等于1260纳米的缆线截止波长,该缆线截止波长被测量为这样的波长:在该波长处,LP11模在传播超过22米光纤之后,该LP11模的衰减大于或等于19.3dB。
2.根据权利要求1的光纤,其中:
所述中央纤芯的面积分(V01)被定义为
V 01 = ∫ 0 r 1 Δn ( r ) . dr ≈ r 1 × Δn 1 ,
其在19.0×10-3μm和23.0×10-3μm之间。
3.根据权利要求2的光纤,其中所述中央纤芯的面积分(V01)在20.0×10-3μm和23.0×10-3μm之间。
4.根据权利要求1的光纤,其中所述凹陷槽的面积分(V03)在-42.5×10-3μm和-32.5×10-3μm之间。
5.根据权利要求1的光纤,其中所述凹陷槽的体积分(V13)在-1000×10-3μm2和-750×10-3μm2之间。
6.根据权利要求1-5中任一项的光纤,进一步包括大于1300纳米的有效截止波长λceff,该有效截止波长被测量为这样的波长:在该波长处,光信号进行超过2米的光纤传输后不再是单模的。
7.根据权利要求1-5中任一项的光纤,进一步包括在1240纳米和1310纳米之间的截止波长,在该波长处,光信号传播超过5米的光纤后不再是单模的。
8.根据权利要求1-5中任一项的光纤,进一步包括小于或等于1250纳米的理论截止波长,该理论截止波长是LP11模自此以泄漏模进行传播的波长。
9.根据权利要求1-5中任一项的光纤,其中该中央纤芯具有在3.8μm和4.35μm之间的半径(r1),和/或其中该中央纤芯与光包层之间具有在4.9×10-3和5.7×10-3之间的折射率差(Δn1)。
10.根据权利要求1-5中任一项的光纤,其中该中间包层具有包含在8.5μm和9.7μm之间的半径(r2)。
11.根据权利要求1-5中任一项的光纤,其中该凹陷槽具有在13.5μm和16μm之间的半径(r3),和/或该凹陷槽与光包层之间具有包含在-10.0×10-3和-5.0×10-3之间的折射率差(Δn3)。
12.根据权利要求1-5中任一项的光纤,进一步包括在1300纳米和1324纳米之间的零色散波长(ZDW)。
13.根据权利要求1-5中任一项的光纤,进一步包括在零色散波长(ZDW)处的小于0.092ps/(nm2.km)的零色散斜率值。
14.一种光盒,接纳有根据前述权利要求中任一项的光纤的至少一部分。
15.根据权利要求14所述的光盒,其中所述光纤具有小于15毫米的曲率半径。
16.根据权利要求14所述的光盒,其中所述光纤具有约为5毫米的曲率半径。
17.一种光纤到户(FTTH)系统,包括根据权利要求1-13中任一项的光纤的至少一部分。
CN200910140806XA 2008-05-06 2009-05-06 单模光纤 Active CN101587204B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
FR08/02503 2008-05-06
FR0802503A FR2930997B1 (fr) 2008-05-06 2008-05-06 Fibre optique monomode
US10133708P 2008-09-30 2008-09-30
US61/101,337 2008-09-30
US11200608P 2008-11-06 2008-11-06
US61/112,006 2008-11-06
US11237408P 2008-11-07 2008-11-07
US61/112,374 2008-11-07

Publications (2)

Publication Number Publication Date
CN101587204A CN101587204A (zh) 2009-11-25
CN101587204B true CN101587204B (zh) 2013-11-06

Family

ID=40029012

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2009101408036A Active CN101576631B (zh) 2008-05-06 2009-05-06 弯曲不敏感单模光纤
CN200910140806XA Active CN101587204B (zh) 2008-05-06 2009-05-06 单模光纤

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2009101408036A Active CN101576631B (zh) 2008-05-06 2009-05-06 弯曲不敏感单模光纤

Country Status (12)

Country Link
US (4) US7889960B2 (zh)
EP (2) EP2116878B1 (zh)
KR (2) KR101614943B1 (zh)
CN (2) CN101576631B (zh)
AT (2) ATE538402T1 (zh)
BR (2) BRPI0903858B1 (zh)
DK (2) DK2116878T3 (zh)
ES (1) ES2377531T3 (zh)
FR (1) FR2930997B1 (zh)
PL (1) PL2116877T3 (zh)
PT (1) PT2116877E (zh)
RU (2) RU2489740C2 (zh)

Families Citing this family (352)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893149B1 (fr) * 2005-11-10 2008-01-11 Draka Comteq France Fibre optique monomode.
BRPI0819166B1 (pt) 2007-11-09 2019-03-06 Draka Comteq, B.V. Fibra óptica, e caixa óptica
US8081853B2 (en) 2007-11-09 2011-12-20 Draka Comteq, B.V. Single-fiber drop cables for MDU deployments
US8041167B2 (en) 2007-11-09 2011-10-18 Draka Comteq, B.V. Optical-fiber loose tube cables
US8041168B2 (en) 2007-11-09 2011-10-18 Draka Comteq, B.V. Reduced-diameter ribbon cables with high-performance optical fiber
US8031997B2 (en) 2007-11-09 2011-10-04 Draka Comteq, B.V. Reduced-diameter, easy-access loose tube cable
US8467650B2 (en) 2007-11-09 2013-06-18 Draka Comteq, B.V. High-fiber-density optical-fiber cable
US8145026B2 (en) 2007-11-09 2012-03-27 Draka Comteq, B.V. Reduced-size flat drop cable
US8165439B2 (en) 2007-11-09 2012-04-24 Draka Comteq, B.V. ADSS cables with high-performance optical fiber
FR2930997B1 (fr) 2008-05-06 2010-08-13 Draka Comteq France Sa Fibre optique monomode
FR2931253B1 (fr) * 2008-05-16 2010-08-20 Draka Comteq France Sa Cable de telecommunication a fibres optiques
FR2932932B1 (fr) 2008-06-23 2010-08-13 Draka Comteq France Sa Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes
FR2933779B1 (fr) * 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
US8826973B2 (en) 2008-08-20 2014-09-09 Foro Energy, Inc. Method and system for advancement of a borehole using a high power laser
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US7970247B2 (en) * 2008-09-12 2011-06-28 Draka Comteq B.V. Buffer tubes for mid-span storage
US7974507B2 (en) * 2008-09-12 2011-07-05 Draka Comteq, B.V. High-fiber-density optical fiber cable
FR2938389B1 (fr) * 2008-11-07 2011-04-15 Draka Comteq France Systeme optique multimode
DK2344911T3 (en) 2008-11-07 2015-07-13 Draka Comteq Bv Reduced diameter optical fiber
ES2487443T3 (es) * 2008-11-12 2014-08-20 Draka Comteq B.V. Fibra óptica de amplificación y procedimiento para fabricarla
FR2939246B1 (fr) * 2008-12-02 2010-12-24 Draka Comteq France Fibre optique amplificatrice et procede de fabrication
FR2939522B1 (fr) * 2008-12-08 2011-02-11 Draka Comteq France Fibre optique amplificatrice resistante aux radiations ionisantes
FR2939911B1 (fr) * 2008-12-12 2011-04-08 Draka Comteq France Fibre optique gainee, cable de telecommunication comportant plusieurs fibres optiques et procede de fabrication d'une telle fibre
NL1036343C2 (nl) * 2008-12-19 2010-06-22 Draka Comteq Bv Werkwijze en inrichting voor het vervaardigen van een optische voorvorm.
ES2573329T3 (es) 2008-12-30 2016-06-07 Draka Comteq B.V. Cable de fibra óptica que comprende un elemento de bloqueo al agua perforado
US8314408B2 (en) 2008-12-31 2012-11-20 Draka Comteq, B.V. UVLED apparatus for curing glass-fiber coatings
FR2940839B1 (fr) * 2009-01-08 2012-09-14 Draka Comteq France Fibre optique multimodale a gradient d'indice, procedes de caracterisation et de fabrication d'une telle fibre
EP2209029B1 (en) 2009-01-19 2015-03-11 Sumitomo Electric Industries, Ltd. Optical fiber
CN102282488B (zh) * 2009-01-19 2014-04-23 住友电气工业株式会社 多芯光纤
FR2941539B1 (fr) * 2009-01-23 2011-02-25 Draka Comteq France Fibre optique monomode
FR2941540B1 (fr) * 2009-01-27 2011-05-06 Draka Comteq France Fibre optique monomode presentant une surface effective elargie
FR2941541B1 (fr) * 2009-01-27 2011-02-25 Draka Comteq France Fibre optique monomode
US8489219B1 (en) 2009-01-30 2013-07-16 Draka Comteq B.V. Process for making loose buffer tubes having controlled excess fiber length and reduced post-extrusion shrinkage
US9360647B2 (en) * 2009-02-06 2016-06-07 Draka Comteq, B.V. Central-tube cable with high-conductivity conductors encapsulated with high-dielectric-strength insulation
US8582941B2 (en) * 2009-02-16 2013-11-12 Corning Cable Systems Llc Micromodule cables and breakout cables therefor
FR2942571B1 (fr) * 2009-02-20 2011-02-25 Draka Comteq France Fibre optique amplificatrice comprenant des nanostructures
FR2942551B1 (fr) * 2009-02-23 2011-07-15 Draka Comteq France Cable comportant des elements a extraire, procede d'extraction desdits elements et procede de fabrication associe
US8625945B1 (en) 2009-05-13 2014-01-07 Draka Comteq, B.V. Low-shrink reduced-diameter dry buffer tubes
US8625944B1 (en) 2009-05-13 2014-01-07 Draka Comteq, B.V. Low-shrink reduced-diameter buffer tubes
FR2946436B1 (fr) * 2009-06-05 2011-12-09 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
US20110026889A1 (en) * 2009-07-31 2011-02-03 Draka Comteq B.V. Tight-Buffered Optical Fiber Unit Having Improved Accessibility
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US9845652B2 (en) 2011-02-24 2017-12-19 Foro Energy, Inc. Reduced mechanical energy well control systems and methods of use
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
FR2953029B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2953030B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2957153B1 (fr) 2010-03-02 2012-08-10 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
US9014525B2 (en) 2009-09-09 2015-04-21 Draka Comteq, B.V. Trench-assisted multimode optical fiber
FR2949870B1 (fr) 2009-09-09 2011-12-16 Draka Compteq France Fibre optique multimode presentant des pertes en courbure ameliorees
FR2953605B1 (fr) 2009-12-03 2011-12-16 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953606B1 (fr) * 2009-12-03 2012-04-27 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
US8306380B2 (en) * 2009-09-14 2012-11-06 Draka Comteq, B.V. Methods and devices for cable insertion into latched-duct conduit
FR2950156B1 (fr) 2009-09-17 2011-11-18 Draka Comteq France Fibre optique multimode
FR2950443B1 (fr) * 2009-09-22 2011-11-18 Draka Comteq France Fibre optique pour la generation de frequence somme et son procede de fabrication
FR2951282B1 (fr) * 2009-10-13 2012-06-15 Draka Comteq France Fibre optique monomode a tranchee enterree
US8805143B2 (en) * 2009-10-19 2014-08-12 Draka Comteq, B.V. Optical-fiber cable having high fiber count and high fiber density
FR2952634B1 (fr) * 2009-11-13 2011-12-16 Draka Comteq France Fibre en silice dopee en terre rare a faible ouverture numerique
US9042693B2 (en) 2010-01-20 2015-05-26 Draka Comteq, B.V. Water-soluble water-blocking element
EP2352047B1 (en) * 2010-02-01 2019-09-25 Draka Comteq B.V. Non-zero dispersion shifted optical fiber having a large effective area
EP3399357A1 (en) * 2010-02-01 2018-11-07 Draka Comteq B.V. Non-zero dispersion shifted optical fiber having a short cutoff wavelength
EP2369379B1 (en) * 2010-03-17 2015-05-06 Draka Comteq B.V. Fibre optique monomode ayant des pertes par courbures réduites
WO2011118293A1 (ja) * 2010-03-23 2011-09-29 株式会社フジクラ 光ファイバ型光学素子、レーザダイオードモジュール、及びファイバレーザ
EP2558892A2 (en) 2010-04-16 2013-02-20 ADC Telecommunications, Inc. Fiber optic cable assembly and method of making the same
US8693830B2 (en) 2010-04-28 2014-04-08 Draka Comteq, B.V. Data-center cable
US8855454B2 (en) 2010-05-03 2014-10-07 Draka Comteq, B.V. Bundled fiber optic cables
US9097868B2 (en) 2010-05-07 2015-08-04 Prysmian S.P.A Method for checking the correct installation of a bend-insensitive optical cable and optical cable suitable for the method thereof
DK2388239T3 (da) 2010-05-20 2017-04-24 Draka Comteq Bv Hærdningsapparat, der anvender vinklede UV-LED'er
US8625947B1 (en) 2010-05-28 2014-01-07 Draka Comteq, B.V. Low-smoke and flame-retardant fiber optic cables
US8871311B2 (en) 2010-06-03 2014-10-28 Draka Comteq, B.V. Curing method employing UV sources that emit differing ranges of UV radiation
FR2962230B1 (fr) * 2010-07-02 2012-07-27 Draka Comteq France Fibre optique monomode
US8682123B2 (en) 2010-07-15 2014-03-25 Draka Comteq, B.V. Adhesively coupled optical fibers and enclosing tape
FR2963787B1 (fr) * 2010-08-10 2012-09-21 Draka Comteq France Procede de fabrication d'une preforme de fibre optique
DK2418183T3 (en) 2010-08-10 2018-11-12 Draka Comteq Bv Method of curing coated glass fibers which provides increased UVLED intensity
CA2808214C (en) 2010-08-17 2016-02-23 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US8571369B2 (en) 2010-09-03 2013-10-29 Draka Comteq B.V. Optical-fiber module having improved accessibility
FR2966256B1 (fr) * 2010-10-18 2012-11-16 Draka Comteq France Fibre optique multimode insensible aux pertes par
US8824845B1 (en) 2010-12-03 2014-09-02 Draka Comteq, B.V. Buffer tubes having reduced stress whitening
US9207395B2 (en) * 2010-12-03 2015-12-08 Ofs Fitel, Llc Large mode area optical fibers with bend compensation
FR2971061B1 (fr) 2011-01-31 2013-02-08 Draka Comteq France Fibre optique a large bande passante et a faibles pertes par courbure
DK2482106T5 (da) 2011-01-31 2014-09-22 Draka Comteq Bv Multimode-fiber
EP2678728B1 (en) 2011-02-21 2018-04-18 Draka Comteq B.V. Optical-fiber interconnect cable
WO2012116153A1 (en) 2011-02-24 2012-08-30 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
JP2014509411A (ja) * 2011-02-24 2014-04-17 オーエフエス ファイテル,エルエルシー 空間多重化のためのステップインデックス・少数モード・ファイバ設計
EP2495589A1 (en) 2011-03-04 2012-09-05 Draka Comteq B.V. Rare earth doped amplifying optical fiber for compact devices and method of manufacturing thereof
EP2503368A1 (en) 2011-03-24 2012-09-26 Draka Comteq B.V. Multimode optical fiber with improved bend resistance
EP2506044A1 (en) * 2011-03-29 2012-10-03 Draka Comteq B.V. Multimode optical fiber
EP2518546B1 (en) 2011-04-27 2018-06-20 Draka Comteq B.V. High-bandwidth, radiation-resistant multimode optical fiber
ES2438173T3 (es) * 2011-05-27 2014-01-16 Draka Comteq Bv Fibra óptica de modo único
EP2715887A4 (en) 2011-06-03 2016-11-23 Foro Energy Inc PASSIVELY COOLED HIGH ENERGY LASER FIBER ROBUST OPTICAL CONNECTORS AND METHODS OF USE
DK2533082T3 (en) 2011-06-09 2014-03-24 Draka Comteq Bv Optical single-mode fiber
DK2541292T3 (en) 2011-07-01 2014-12-01 Draka Comteq Bv A multimode optical fiber
EP2729834A4 (en) * 2011-07-07 2015-12-02 Ofs Fitel Llc VULNERABLE NONLINEAR FIBER
US8412012B2 (en) * 2011-09-06 2013-04-02 Ofs Fitel, Llc Compact, low-cost outside plant or indoor/outdoor cables
KR101273801B1 (ko) * 2011-10-17 2013-06-11 에쓰이에이치에프코리아 (주) 구부림 손실 강화 광섬유
EP2584340A1 (en) 2011-10-20 2013-04-24 Draka Comteq BV Hydrogen sensing fiber and hydrogen sensor
NL2007831C2 (en) 2011-11-21 2013-05-23 Draka Comteq Bv Apparatus and method for carrying out a pcvd deposition process.
KR101285500B1 (ko) * 2011-11-24 2013-07-12 에쓰이에이치에프코리아 (주) 초저손실 광섬유
JP5668708B2 (ja) 2012-02-14 2015-02-12 住友電気工業株式会社 光プローブ
US8929701B2 (en) 2012-02-15 2015-01-06 Draka Comteq, B.V. Loose-tube optical-fiber cable
KR101990337B1 (ko) * 2012-02-16 2019-06-18 엘에스전선 주식회사 Mpi특성이 개선된 굴곡 강화 광섬유를 위한 mpi 평가 시스템
KR101436723B1 (ko) * 2012-04-26 2014-09-01 신에쓰 가가꾸 고교 가부시끼가이샤 광섬유
WO2013160714A1 (en) 2012-04-27 2013-10-31 Draka Comteq Bv Hybrid single and multimode optical fiber for a home network
US9500830B2 (en) 2012-09-28 2016-11-22 Commscope Technologies Llc Splice-on cable breakout assembly
CN103257393B (zh) * 2012-10-30 2015-03-04 长飞光纤光缆股份有限公司 一种大有效面积光纤
US9611585B2 (en) 2012-11-05 2017-04-04 Oceaneering International, Inc. Method and apparatus for curing of pre impregnated synthetic components in situ
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
CN103021555B (zh) * 2013-01-05 2015-11-18 长飞光纤光缆股份有限公司 一种光电复合缆
US9146346B2 (en) 2013-01-31 2015-09-29 Institut National D'optique Optical fiber for Coherent Anti-Stokes Raman scattering endoscopes
US9188754B1 (en) 2013-03-15 2015-11-17 Draka Comteq, B.V. Method for manufacturing an optical-fiber buffer tube
US9057817B2 (en) * 2013-04-15 2015-06-16 Corning Incorporated Low diameter optical fiber
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
NL2011075C2 (en) 2013-07-01 2015-01-05 Draka Comteq Bv Pcvd process with removal of substrate tube.
CN104297869A (zh) * 2013-07-15 2015-01-21 昆山联滔电子有限公司 线缆
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
CN105899982B (zh) * 2013-12-20 2019-11-22 德拉克通信科技公司 表现出损耗降低的具有梯形纤芯的单模光纤
US20150331181A1 (en) * 2014-05-16 2015-11-19 Corning Incorporated Multimode optical fiber and system including such
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10505249B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a cable with a plurality of stranded uninsulated conductors forming interstitial areas for guiding electromagnetic waves therein and method of use
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US10505248B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication cable having a plurality of uninsulated conductors forming interstitial areas for propagating electromagnetic waves therein and method of use
US10554454B2 (en) 2014-11-20 2020-02-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing electromagnetic waves in a cable
US10516555B2 (en) 2014-11-20 2019-12-24 At&T Intellectual Property I, L.P. Methods and apparatus for creating interstitial areas in a cable
US10505250B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a cable with a plurality of stranded uninsulated conductors forming interstitial areas for propagating guided wave modes therein and methods of use
US10411920B2 (en) 2014-11-20 2019-09-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing electromagnetic waves within pathways of a cable
US10505252B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a coupler for guiding electromagnetic waves through interstitial areas formed by a plurality of stranded uninsulated conductors and method of use
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US11025460B2 (en) 2014-11-20 2021-06-01 At&T Intellectual Property I, L.P. Methods and apparatus for accessing interstitial areas of a cable
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
WO2016114514A1 (ko) * 2015-01-12 2016-07-21 한국과학기술원 소형화된 단일모드 광섬유로 구성된 리본 광섬유
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
CA2981516C (en) 2015-04-01 2023-09-19 Afl Telecommunications Llc Ultra-high fiber density micro-duct cable with extreme operating performance
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US20160341923A1 (en) * 2015-05-20 2016-11-24 Corning Optical Communications LLC Pushable fiber optic cable for small ducts
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
WO2017048820A1 (en) 2015-09-16 2017-03-23 Corning Incorporated Low-loss and low-bend-loss optical fiber
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
ES2889949T3 (es) * 2016-05-25 2022-01-14 Corning Optical Communications LLC Cable de fibra óptica, alta densidad de fibra, baja pérdida por curvatura
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
WO2018136141A1 (en) * 2016-11-17 2018-07-26 Corning Research & Development Corporation High density, low bend loss optical fiber ribbon cable
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
WO2018102292A1 (en) * 2016-11-30 2018-06-07 Corning Optical Communications LLC Low attenuation optical fiber cable with small sized active particles
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
JP6360929B1 (ja) 2017-02-15 2018-07-18 株式会社フジクラ 光ファイバセンサ
US10162107B2 (en) 2017-02-16 2018-12-25 Institut National D'optique Multicore optical fiber for multipoint distributed sensing and probing
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
WO2018159146A1 (ja) * 2017-03-03 2018-09-07 住友電気工業株式会社 光ファイバ
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10591667B2 (en) * 2017-05-19 2020-03-17 Ofs Fitel, Llc Optical fiber with specialized figure-of-merit and applications therefor
US11300746B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Fiber optic port module inserts, assemblies and methods of making the same
US10359577B2 (en) 2017-06-28 2019-07-23 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US11187859B2 (en) 2017-06-28 2021-11-30 Corning Research & Development Corporation Fiber optic connectors and methods of making the same
WO2019005202A1 (en) 2017-06-28 2019-01-03 Corning Optical Communications LLC MULTIPLE PORTS HAVING CONNECTION PORTS FORMED IN THE SHELL AND FASTENING ELEMENTS THEREFOR
US11668890B2 (en) 2017-06-28 2023-06-06 Corning Research & Development Corporation Multiports and other devices having optical connection ports with securing features and methods of making the same
US11131816B2 (en) 2017-07-11 2021-09-28 Prysmian S.P.A. Optical fiber ribbon assembly and a method of producing the same
AU2017423261B2 (en) 2017-07-11 2023-07-20 Prysmian S.P.A. An optical fiber ribbon and a method of producing the same
DK3729151T3 (da) 2017-12-21 2022-07-11 Draka Comteq France Singlemodefiber, som er ufølsom over for bøjningstab, med en lav rende og tilsvarende optisk system
RU2759664C1 (ru) 2018-01-15 2021-11-16 Призмиан С.П.А. Способ изготовления гибкой волоконно-оптической ленты и лента
US11256051B2 (en) 2018-01-15 2022-02-22 Prysmian S.P.A. Flexible optical-fiber ribbon
MX2020007411A (es) 2018-01-15 2020-09-14 Prysmian Spa Una cinta de fibra optica y un metodo y sistema para producir la misma.
US10871621B2 (en) * 2018-03-27 2020-12-22 Ofs Fitel, Llc Rollable ribbon fibers with water-swellable coatings
US11584041B2 (en) 2018-04-20 2023-02-21 Pella Corporation Reinforced pultrusion member and method of making
US11371280B2 (en) 2018-04-27 2022-06-28 Pella Corporation Modular frame design
EP3857275A4 (en) 2018-09-28 2022-10-12 Corning Research & Development Corporation SMALL DIAMETER FIBER OPTIC CABLES WITH LOW FRICTION COATS AND OPTICAL FIBERS WITH REDUCED COAT AND COATING DIAMETER
US10768382B2 (en) 2018-11-29 2020-09-08 Corning Research & Development Corporation Multiport assemblies including access apertures and a release tool
US11262522B2 (en) * 2018-12-18 2022-03-01 Sterlite Technologies Limited Multi loose tube ribbon cable
US11714227B2 (en) * 2019-06-17 2023-08-01 Sterlite Technologies Limited Universal optical fiber
US11294133B2 (en) 2019-07-31 2022-04-05 Corning Research & Development Corporation Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation
WO2021025858A1 (en) 2019-08-07 2021-02-11 Corning Incorporated Single mode optical fiber with low bend loss at small and large bend diameters
CN111694088B (zh) * 2019-09-29 2022-06-14 法尔胜泓昇集团有限公司 一种单模光纤及其制备方法
US11487073B2 (en) 2019-09-30 2022-11-01 Corning Research & Development Corporation Cable input devices having an integrated locking feature and assemblies using the cable input devices
EP3805827A1 (en) 2019-10-07 2021-04-14 Corning Research & Development Corporation Fiber optic terminals and fiber optic networks having variable ratio couplers
US10884213B1 (en) * 2019-11-14 2021-01-05 Prysmian S.P.A. Optical-fiber ribbon with distorted sinusoidal adhesive pattern and method therefor
US11650388B2 (en) 2019-11-14 2023-05-16 Corning Research & Development Corporation Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal
US11536921B2 (en) 2020-02-11 2022-12-27 Corning Research & Development Corporation Fiber optic terminals having one or more loopback assemblies
US11675124B2 (en) 2020-06-26 2023-06-13 Corning Incorporated Optical fiber with increased bend performance
WO2022010667A1 (en) 2020-07-07 2022-01-13 Corning Incorporated Optical fiber with inverse triangular trench design
CN111897045B (zh) * 2020-09-17 2022-08-02 长飞光纤光缆股份有限公司 一种抗弯曲多芯光纤
US11604320B2 (en) 2020-09-30 2023-03-14 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US11880076B2 (en) 2020-11-30 2024-01-23 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release housing
US11686913B2 (en) 2020-11-30 2023-06-27 Corning Research & Development Corporation Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same
US11927810B2 (en) 2020-11-30 2024-03-12 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release member
EP4259025A1 (en) * 2020-12-09 2023-10-18 Smith & Nephew, Inc. Fiber optic cable for less invasive bone tracking
US11860429B2 (en) 2020-12-22 2024-01-02 Prysmian S.P.A. Optical-fiber ribbon with spaced optical-fiber units
US11442238B2 (en) 2020-12-22 2022-09-13 Prysmian S.P.A. Optical-fiber ribbon with spaced optical-fiber units
US11460652B2 (en) 2020-12-22 2022-10-04 Prysmian S.P.A. Optical-fiber ribbon with adhesive-free gaps
US11947167B2 (en) 2021-05-26 2024-04-02 Corning Research & Development Corporation Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal
CN113588066A (zh) * 2021-07-22 2021-11-02 武汉理工大学 一种基于弱导光纤宏弯效应的微振动传感装置
WO2023081039A1 (en) * 2021-11-03 2023-05-11 Corning Research & Development Corporation Optical fiber ribbon configured to maintain orientation of polarization-maintaining and multicore optical fibers
CN114847955B (zh) * 2022-07-05 2022-10-11 诺尔医疗(深圳)有限公司 脑电极制造方法及脑电极

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694079B1 (en) * 1999-07-27 2004-02-17 Fujikura Ltd. Disperson-shifted optical fiber employing dual shape core profile
US7164835B2 (en) * 2003-04-11 2007-01-16 Fujikura, Ltd. Optical fiber
CN1982928A (zh) * 2005-11-10 2007-06-20 德雷卡通信技术公司 单模光纤
CN101055331A (zh) * 2006-04-10 2007-10-17 德雷卡通信技术公司 单模光纤

Family Cites Families (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2444100C3 (de) 1974-09-14 1979-04-12 Philips Patentverwaltung Gmbh, 2000 Hamburg Verfahren zur Herstellung von innenbeschichteten Glasrohren zum Ziehen von Lichtleitfasern
US4114980A (en) 1976-05-10 1978-09-19 International Telephone And Telegraph Corporation Low loss multilayer optical fiber
DE2718228C2 (de) 1977-04-23 1983-10-13 WOCO Franz-Josef Wolf & Co, 6483 Bad Soden-Salmünster Kondensatorabdeckscheibe
DE2929166A1 (de) 1979-07-19 1981-01-29 Philips Patentverwaltung Verfahren zur herstellung von lichtleitfasern
US4385802A (en) 1980-06-09 1983-05-31 Corning Glass Works Long wavelength, low-loss optical waveguide
AU535343B2 (en) 1981-02-27 1984-03-15 Associated Electrical Industries Limited Manufacture of optical fibre preform
US4750806A (en) * 1985-06-17 1988-06-14 Alcatel Usa Corporation Glass fibers and capillaries with high temperature resistant coatings
US4641917A (en) * 1985-02-08 1987-02-10 At&T Bell Laboratories Single mode optical fiber
US4836640A (en) * 1986-06-27 1989-06-06 American Telephone And Telegraph Company, At&T Bell Laboratories Depressed cladding optical fiber cable
US4852968A (en) * 1986-08-08 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber comprising a refractive index trench
DE3700565A1 (de) 1987-01-10 1988-07-28 Licentia Gmbh Lichtwellenleiter
DE3731604A1 (de) 1987-09-19 1989-03-30 Philips Patentverwaltung Verfahren zur herstellung einer monomode-lichtleitfaser
DE3804152A1 (de) 1988-02-11 1989-08-24 Rheydt Kabelwerk Ag Lichtwellenleiter
US4838643A (en) 1988-03-23 1989-06-13 Alcatel Na, Inc. Single mode bend insensitive fiber for use in fiber optic guidance applications
GB2228585A (en) 1989-02-28 1990-08-29 Stc Plc Silica optical fibre having two cladding layers
US5044724A (en) 1989-12-22 1991-09-03 At&T Bell Laboratories Method of producing optical fiber, and fiber produced by the method
US5032001A (en) 1990-03-09 1991-07-16 At&T Bell Laboratories Optical fiber having enhanced bend resistance
US5175785A (en) * 1991-05-02 1992-12-29 Ensign-Bickford Optical Technologies, Inc. Optical waveguides having reduced bending loss and method of making the same
US5235660A (en) 1992-07-10 1993-08-10 Peachtree Fiberoptics, Inc. Graded polymer optical fibers and process for the manufacture thereof
US5448674A (en) * 1992-11-18 1995-09-05 At&T Corp. Article comprising a dispersion-compensating optical waveguide
GB2273389B (en) 1992-12-14 1996-07-17 Pirelli Cavi Spa Rare earth doped optical fibre amplifiers
DE4312121B4 (de) * 1993-04-14 2004-04-15 CCS Technology, Inc., Wilmington Optisches Kabel mit mehreren in einer vorgegebenen Struktur angeordneten Lichtwellenleitern
JPH07261048A (ja) 1994-03-23 1995-10-13 Sumitomo Electric Ind Ltd 分散補償ファイバ
US5483612A (en) * 1994-10-17 1996-01-09 Corning Incorporated Increased capacity optical waveguide
US5917109A (en) 1994-12-20 1999-06-29 Corning Incorporated Method of making optical fiber having depressed index core region
US5574816A (en) * 1995-01-24 1996-11-12 Alcatel Na Cable Sytems, Inc. Polypropylene-polyethylene copolymer buffer tubes for optical fiber cables and method for making the same
CA2170815C (en) 1995-03-10 2002-05-28 Youichi Akasaka Dispersion compensating optical fiber
US5586205A (en) * 1995-04-10 1996-12-17 National Science Council Apparatus for selecting waveguide modes in optical fiber and the method of manufacturing the same
TW342460B (en) * 1996-01-16 1998-10-11 Sumitomo Electric Industries A dispersion shift fiber
EP1607778B1 (en) 1996-03-28 2009-05-13 Mitsubishi Rayon Co., Ltd. Graded index type optical fibres and method of making the same
US5802236A (en) * 1997-02-14 1998-09-01 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber
US5717805A (en) 1996-06-12 1998-02-10 Alcatel Na Cable Systems, Inc. Stress concentrations in an optical fiber ribbon to facilitate separation of ribbon matrix material
US5851259A (en) 1996-10-30 1998-12-22 Lucent Technologies Inc. Method for making Ge-Doped optical fibers having reduced brillouin scattering
ZA9711125B (en) 1996-12-12 1998-09-22 Sumitomo Electric Industries Single-mode optical fiber
US7322122B2 (en) 1997-01-15 2008-01-29 Draka Comteq B.V. Method and apparatus for curing a fiber having at least two fiber coating curing stages
US6181858B1 (en) 1997-02-12 2001-01-30 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
DE69837506T2 (de) 1997-02-26 2007-12-27 Nippon Telegraph And Telephone Corp. Optische Faser
FR2760540B1 (fr) * 1997-03-10 1999-04-16 Alsthom Cge Alcatel Cable a fibres optiques serrees dans une gaine
US5966490A (en) 1997-03-21 1999-10-12 Sdl, Inc. Clad optic fiber, and process for production thereof
GB9713422D0 (en) 1997-06-26 1997-08-27 Secr Defence Single mode optical fibre
US5852690A (en) * 1997-06-30 1998-12-22 Minnesota Mining And Manufacturing Company Depressed cladding fiber design for reducing coupling to cladding modes in fiber gratings
US5911023A (en) 1997-07-10 1999-06-08 Alcatel Alsthom Compagnie Generale D'electricite Polyolefin materials suitable for optical fiber cable components
KR20010021886A (ko) 1997-07-15 2001-03-15 알프레드 엘. 미첼슨 광섬유 내에서 자극받은 브릴로인 산란의 억제방법
WO1999022258A1 (fr) * 1997-10-29 1999-05-06 Sumitomo Electric Industries, Ltd. Fibre optique a dephasage dispersif
US6535665B1 (en) 1998-02-12 2003-03-18 Novera Optics, Inc. Acousto-optic devices utilizing longitudinal acoustic waves
US6066397A (en) 1998-03-31 2000-05-23 Alcatel Polypropylene filler rods for optical fiber communications cables
US6175677B1 (en) * 1998-04-17 2001-01-16 Alcatel Optical fiber multi-ribbon and method for making the same
US6085009A (en) * 1998-05-12 2000-07-04 Alcatel Water blocking gels compatible with polyolefin optical fiber cable buffer tubes and cables made therewith
WO1999067178A1 (en) * 1998-06-25 1999-12-29 Samsung Electronics Co., Ltd. Optical fiber preform having oh barrier and manufacturing method thereof
KR100322131B1 (ko) 1999-01-28 2002-02-04 윤종용 오.에이치.차단층을 구비한 광섬유 모재 및 그 제조방법
DE19839870A1 (de) 1998-09-02 2000-03-09 Deutsche Telekom Ag Optische Single-Mode-Lichtleitfaser
FR2790107B1 (fr) 1999-02-18 2001-05-04 Cit Alcatel Fibre de ligne pour systemes de transmission a fibre optique a multiplexage en longueurs d'onde
US6535676B1 (en) 1998-09-17 2003-03-18 Alcatel Optical fibre with optimized ratio of effective area to dispersion scope for optical fibre transmission system with wavelength multiplexing
FR2783609B1 (fr) 1998-09-17 2002-08-30 Cit Alcatel Fibre optique monomode optimisee pour les hauts debits
EP1122562A4 (en) 1998-09-18 2005-08-31 Sumitomo Electric Industries DISPERSION COMPENSATING FIBER
KR100636332B1 (ko) 1998-09-21 2006-10-19 피렐리 카비 에 시스테미 소시에떼 퍼 아찌오니 확장 파장 밴드용의 광파이버
KR100642035B1 (ko) 1998-11-26 2006-11-03 스미토모덴키고교가부시키가이샤 광 파이버 및 이를 포함하는 광 전송 시스템
AU745736B2 (en) 1998-12-03 2002-03-28 Sumitomo Electric Industries, Ltd. Dispersion equalization optical fiber and optical transmission line including the same
US6546180B1 (en) * 1999-01-06 2003-04-08 Sumitomo Electric Industries, Ltd. Coiled optical assembly and fabricating method for the same
US6215931B1 (en) 1999-01-26 2001-04-10 Alcatel Flexible thermoplastic polyolefin elastomers for buffering transmission elements in a telecommunications cable
US6134363A (en) * 1999-02-18 2000-10-17 Alcatel Method for accessing optical fibers in the midspan region of an optical fiber cable
JP2000338353A (ja) 1999-03-24 2000-12-08 Furukawa Electric Co Ltd:The 分散シフト光ファイバおよびその製造方法
US6381390B1 (en) 1999-04-06 2002-04-30 Alcatel Color-coded optical fiber ribbon and die for making the same
JP4080164B2 (ja) * 1999-04-13 2008-04-23 住友電気工業株式会社 光ファイバ及びそれを含む光通信システム
BR0010012A (pt) 1999-04-26 2002-01-15 Corning Inc Fibra ótica e um método para fabricação de uma fibra ótica de dispersão de modo de polarização baixa e baixa atenuação
CN1235820C (zh) * 1999-04-26 2006-01-11 康宁股份有限公司 低水峰光导纤维及其制造方法
US6181857B1 (en) 1999-05-12 2001-01-30 Alcatel Method for accessing optical fibers contained in a sheath
US6314224B1 (en) 1999-06-18 2001-11-06 Alcatel Thick-walled cable jacket with non-circular cavity cross section
US6334016B1 (en) 1999-06-30 2001-12-25 Alcatel Optical fiber ribbon matrix material having optimal handling characteristics
CN100353192C (zh) * 1999-07-12 2007-12-05 株式会社藤仓 色散位移光纤
US6466721B1 (en) * 1999-07-19 2002-10-15 Sumitomo Electric Industries, Ltd. Dispersion compensating optical fiber and optical transmission line
CN1237356C (zh) 1999-07-27 2006-01-18 康宁股份有限公司 具有功率限制凹陷的光纤
US6321012B1 (en) 1999-08-30 2001-11-20 Alcatel Optical fiber having water swellable material for identifying grouping of fiber groups
FR2799006B1 (fr) * 1999-09-02 2002-02-08 Cit Alcatel Fibre optique pour la compensation en ligne de la dispersion chromatique d'une fibre optique a dispersion chromatique positive
US6493491B1 (en) * 1999-09-28 2002-12-10 Alcatel Optical drop cable for aerial installation
US6490396B1 (en) 1999-09-29 2002-12-03 Corning Incorporated Optical waveguide fiber
JP2003511736A (ja) 1999-10-12 2003-03-25 コーニング・インコーポレーテッド より長い波長に最適化された光ファイバ導波路
US6321014B1 (en) 1999-11-01 2001-11-20 Alcatel Method for manufacturing optical fiber ribbon
CA2293132C (en) * 1999-12-24 2007-03-06 Jocelyn Lauzon Triple-clad rare-earth doped optical fiber and applications
AU1585301A (en) 1999-12-28 2001-07-09 Corning Incorporated Low water peak optical waveguide and method of manufacturing same
FR2809499B1 (fr) * 2000-05-29 2003-10-03 Cit Alcatel Peau de protection pour fibres optiques
US6418258B1 (en) * 2000-06-09 2002-07-09 Gazillion Bits, Inc. Microstructured optical fiber with improved transmission efficiency and durability
AU2001281741A1 (en) 2000-07-21 2002-02-18 Crystal Fibre A/S Dispersion manipulating fibre
US6603908B2 (en) 2000-08-04 2003-08-05 Alcatel Buffer tube that results in easy access to and low attenuation of fibers disposed within buffer tube
US6587623B1 (en) 2000-08-14 2003-07-01 The Board Of Trustees Of The University Of Illinois Method for reducing stimulated brillouin scattering in waveguide systems and devices
US6941054B2 (en) 2000-08-31 2005-09-06 Pirelli S.P.A. Optical transmission link with low slope, raman amplified fiber
JP2002082250A (ja) 2000-09-07 2002-03-22 Hitachi Cable Ltd 低非線形単一モード光ファイバ
IT1318846B1 (it) * 2000-09-11 2003-09-10 Pirelli Cavi E Sistemi Spa Rete di distribuzione di segnali ad una pluralita' di apparecchiatureutente.
JP3764040B2 (ja) * 2000-10-03 2006-04-05 株式会社フジクラ 光ファイバ
AU2000278139A1 (en) 2000-10-04 2002-04-15 I.L.C. Lasercomm Ltd. Limited mode dispersion compensating optical fiber
KR20020029529A (ko) * 2000-10-13 2002-04-19 이계철 큰 음의 분산 값을 갖는 분산 평탄 광섬유의 구조 및 제조방법
GB2384323B (en) 2000-11-10 2004-12-29 Crystal Fibre As Microstructured optical fibres
US6922515B2 (en) 2000-12-20 2005-07-26 Alcatel Method and apparatus to reduce variation of excess fiber length in buffer tubes of fiber optic cables
US6618538B2 (en) 2000-12-20 2003-09-09 Alcatel Method and apparatus to reduce variation of excess fiber length in buffer tubes of fiber optic cables
US6904772B2 (en) 2000-12-22 2005-06-14 Corning Incorporated Method of making a glass preform for low water peak optical fiber
US6498887B1 (en) 2001-02-21 2002-12-24 Fitel Usa Corp. Dispersion-compensating fiber having a high relative dispersion slope
US6490398B2 (en) 2001-02-21 2002-12-03 Fitel Usa Corp. Dispersion-compensating fiber having a high figure of merit
US6687440B2 (en) * 2001-02-28 2004-02-03 The Boeing Company Optical fiber having an elevated threshold for stimulated brillouin scattering
US7346244B2 (en) 2001-03-23 2008-03-18 Draka Comteq B.V. Coated central strength member for fiber optic cables with reduced shrinkage
AU2002258144A1 (en) 2001-04-30 2002-11-11 Sterlite Optical Technologies Limited Dispersion shifted fiber having low dispersion slope
CA2389498A1 (en) * 2001-06-13 2002-12-13 Fumio Takahashi Method of winding optical fiber on reel
US6687445B2 (en) 2001-06-25 2004-02-03 Nufern Double-clad optical fiber for lasers and amplifiers
JP3986842B2 (ja) 2001-07-26 2007-10-03 株式会社フジクラ ノンゼロ分散シフト光ファイバ用光ファイバ母材の製法
JP2003114350A (ja) 2001-07-31 2003-04-18 Furukawa Electric Co Ltd:The 光ファイバ、光ファイバ部品および光伝送方法
FR2828939B1 (fr) * 2001-08-27 2004-01-16 Cit Alcatel Fibre optique pour un systeme de transmission a multiplexage en longueurs d'onde
US7045010B2 (en) 2001-09-06 2006-05-16 Alcatel Applicator for high-speed gel buffering of flextube optical fiber bundles
US6749446B2 (en) 2001-10-10 2004-06-15 Alcatel Optical fiber cable with cushion members protecting optical fiber ribbon stack
RU2234723C2 (ru) * 2001-10-24 2004-08-20 Ковшик Александр Петрович Способ спектрально-селективного преобразования мод оптического излучения в волноводе и устройство для его реализации
US6650814B2 (en) * 2001-12-11 2003-11-18 Corning Incorporated Single mode dispersion compensating optical fiber
US6856744B2 (en) * 2002-02-13 2005-02-15 The Furukawa Electric Co., Ltd. Optical fiber and optical transmission line and optical communication system including such optical fiber
JP2003241000A (ja) 2002-02-19 2003-08-27 Furukawa Electric Co Ltd:The 光ファイバおよびその光ファイバを用いた光増幅器ならびに光伝送システム
US7116887B2 (en) 2002-03-19 2006-10-03 Nufern Optical fiber
US6771865B2 (en) * 2002-03-20 2004-08-03 Corning Incorporated Low bend loss optical fiber and components made therefrom
KR100419418B1 (ko) * 2002-04-03 2004-02-21 삼성전자주식회사 분산 제어 광섬유
US6947652B2 (en) * 2002-06-14 2005-09-20 3M Innovative Properties Company Dual-band bend tolerant optical waveguide
JP2004061741A (ja) 2002-07-26 2004-02-26 Sumitomo Electric Ind Ltd 光ファイバ、光伝送路および光通信システム
JP4073806B2 (ja) 2002-08-09 2008-04-09 株式会社フジクラ 光ファイバ及び該光ファイバを用いた光伝送路
US6928839B2 (en) 2002-08-15 2005-08-16 Ceramoptec Industries, Inc. Method for production of silica optical fiber preforms
US6707976B1 (en) 2002-09-04 2004-03-16 Fitel Usa Corporation Inverse dispersion compensating fiber
US20040052486A1 (en) 2002-09-13 2004-03-18 Fitel Usa Corp. Optical fibers and modules for dispersion compensation with simultaneous raman amplification
GB0221858D0 (en) 2002-09-20 2002-10-30 Southampton Photonics Ltd An optical fibre for high power lasers and amplifiers
CN1310045C (zh) 2002-10-01 2007-04-11 古河电气工业株式会社 光纤、光传送线路以及光纤的制造方法
US6912347B2 (en) 2002-11-15 2005-06-28 Alcatel Optimized fiber optic cable suitable for microduct blown installation
KR100496143B1 (ko) 2002-12-10 2005-06-17 삼성전자주식회사 수산화기 차단층을 포함하는 광섬유 모재
US6901197B2 (en) 2003-01-13 2005-05-31 Sumitomo Electric Industries, Ltd. Microstructured optical fiber
CN100507621C (zh) 2003-04-17 2009-07-01 日本电信电话株式会社 带空孔型单模光纤
US6952519B2 (en) 2003-05-02 2005-10-04 Corning Incorporated Large effective area high SBS threshold optical fiber
US6904218B2 (en) 2003-05-12 2005-06-07 Fitel U.S.A. Corporation Super-large-effective-area (SLA) optical fiber and communication system incorporating the same
US6917740B2 (en) 2003-05-30 2005-07-12 Corning Incorporated Optical fiber having reduced viscosity mismatch
US6959137B2 (en) 2003-06-11 2005-10-25 Fitel U.S.A. Corporation Large-effective-area inverse dispersion compensating fiber, and a transmission line incorporating the same
US6941049B2 (en) 2003-06-18 2005-09-06 Alcatel Fiber optic cable having no rigid strength members and a reduced coefficient of thermal expansion
JP2005017694A (ja) 2003-06-26 2005-01-20 Furukawa Electric Co Ltd:The 光ファイバおよび光ファイバケーブル
CN1300609C (zh) * 2003-10-28 2007-02-14 长飞光纤光缆有限公司 高性能色散补偿光纤及其制造方法
US7444838B2 (en) 2003-10-30 2008-11-04 Virginia Tech Intellectual Properties, Inc. Holey optical fiber with random pattern of holes and method for making same
US6985662B2 (en) 2003-10-30 2006-01-10 Corning Incorporated Dispersion compensating fiber for moderate dispersion NZDSF and transmission system utilizing same
US7162128B2 (en) 2004-01-26 2007-01-09 Drake Comteq B.V. Use of buffer tube coupling coil to prevent fiber retraction
US7292762B2 (en) 2004-04-14 2007-11-06 Fujikura Ltd. Hole-assisted holey fiber and low bending loss multimode holey fiber
US7187833B2 (en) 2004-04-29 2007-03-06 Corning Incorporated Low attenuation large effective area optical fiber
KR100848960B1 (ko) 2004-08-10 2008-07-29 가부시키가이샤후지쿠라 싱글 모드 광파이버
JP4444177B2 (ja) 2004-08-11 2010-03-31 古河電気工業株式会社 光ファイバ、光ファイバテープおよび光インターコネクションシステム
EP2348344B1 (en) * 2004-08-30 2013-02-20 Fujikura Ltd. Single-mode optical fiber
JP2006133314A (ja) 2004-11-02 2006-05-25 Fujikura Ltd 光ファイバ及び伝送システム並びに波長多重伝送システム
US7171074B2 (en) 2004-11-16 2007-01-30 Furakawa Electric North America Inc. Large mode area fibers using higher order modes
JP2006154421A (ja) 2004-11-30 2006-06-15 Fujikura Ltd シングルモード光ファイバ、光ファイバケーブル、光ファイバコード及び光ファイバの耐用年数保証方法
US7072552B2 (en) 2004-12-02 2006-07-04 Nufern Optical fiber with micro-structured cladding
JP4400454B2 (ja) 2004-12-27 2010-01-20 住友電気工業株式会社 光ファイバ
JP4664703B2 (ja) 2005-02-24 2011-04-06 昭和電線ケーブルシステム株式会社 誘導ブリユアン散乱抑制光ファイバ
JP4477555B2 (ja) 2005-03-01 2010-06-09 古河電気工業株式会社 光ファイバおよび光インターコネクションシステム
JP2006293117A (ja) * 2005-04-13 2006-10-26 Furukawa Electric Co Ltd:The 光ファイバおよびそれを用いた光通信システム
US20070003198A1 (en) 2005-06-29 2007-01-04 Lance Gibson Low loss optical fiber designs and methods for their manufacture
US7171090B2 (en) 2005-06-30 2007-01-30 Corning Incorporated Low attenuation optical fiber
US7567739B2 (en) 2007-01-31 2009-07-28 Draka Comteq B.V. Fiber optic cable having a water-swellable element
US8135252B2 (en) 2005-07-20 2012-03-13 Draka Comteq B.V. Grease-free buffer optical fiber buffer tube construction utilizing a water-swellable, texturized yarn
US7599589B2 (en) 2005-07-20 2009-10-06 Draka Comteq B.V. Gel-free buffer tube with adhesively coupled optical element
US7515795B2 (en) 2005-07-20 2009-04-07 Draka Comteq B.V. Water-swellable tape, adhesive-backed for coupling when used inside a buffer tube
EP1764633A1 (en) 2005-09-09 2007-03-21 Draka Comteq B.V. Optical fiber with reduced stimulated brillouin scattering
US7272289B2 (en) 2005-09-30 2007-09-18 Corning Incorporated Low bend loss optical fiber
US7450806B2 (en) 2005-11-08 2008-11-11 Corning Incorporated Microstructured optical fibers and methods
WO2007091879A1 (en) 2006-02-08 2007-08-16 Draka Comteq B.V. Optical fiber cable suited for blown installation or pushing installation in microducts of small diameter
US7406237B2 (en) 2006-02-21 2008-07-29 Corning Incorporated Multiband optical fiber
FR2900739B1 (fr) 2006-05-03 2008-07-04 Draka Comteq France Fibre de compensation de la dispersion chromatique
NL1031792C2 (nl) 2006-05-11 2007-11-13 Draka Comteq Bv Kabelsamenstel alsmede werkwijze voor het installeren van een dergelijk kabelsamenstel.
US7665902B2 (en) 2006-05-11 2010-02-23 Draka Comteq, B.V. Modified pre-ferrulized communication cable assembly and installation method
US7505660B2 (en) 2006-06-30 2009-03-17 Corning Incorporated Microstructured transmission optical fiber
WO2008013627A2 (en) 2006-06-30 2008-01-31 Corning Incorporated Low bend loss optical fiber with high modulus coating
FR2904876B1 (fr) 2006-08-08 2008-11-21 Draka Comteq France Cable de telecommunication a fibres optiques
US7620282B2 (en) * 2006-08-31 2009-11-17 Corning Incorporated Low bend loss single mode optical fiber
US7450807B2 (en) 2006-08-31 2008-11-11 Corning Incorporated Low bend loss optical fiber with deep depressed ring
JP2008058664A (ja) 2006-08-31 2008-03-13 Furukawa Electric Co Ltd:The 光ファイバおよび光ファイバテープならびに光インターコネクションシステム
US7315677B1 (en) 2006-09-14 2008-01-01 Corning Incorporated Dual dopant dual alpha multimode optical fiber
FR2908250B1 (fr) 2006-11-03 2009-01-09 Draka Comteq France Sa Sa Fibre de compensation de la dispersion chromatique
US7526169B2 (en) 2006-11-29 2009-04-28 Corning Incorporated Low bend loss quasi-single-mode optical fiber and optical fiber line
EP1930753B1 (en) * 2006-12-04 2015-02-18 Draka Comteq B.V. Optical fiber with high Brillouin threshold power and low bending losses
US7283714B1 (en) 2006-12-15 2007-10-16 Ipg Photonics Corporation Large mode area fiber for low-loss transmission and amplification of single mode lasers
US7787731B2 (en) 2007-01-08 2010-08-31 Corning Incorporated Bend resistant multimode optical fiber
US7526166B2 (en) 2007-01-31 2009-04-28 Corning Incorporated High numerical aperture fiber
WO2008106033A2 (en) 2007-02-28 2008-09-04 Corning Incorporated Optical fiber with large effective area
FR2915002B1 (fr) 2007-04-11 2009-11-06 Draka Comteq France Procede d'acces a une ou plusieurs fibres optiques d'un cable de telecommunication
WO2008136918A2 (en) 2007-05-07 2008-11-13 Corning Incorporated Large effective area fiber
DE602008005157D1 (de) * 2007-05-08 2011-04-07 Nxp Bv Kalibrationsfreie lokale oszillatorsignalerzeugung für einen oberwellenunterdrückungsmischer
US8374472B2 (en) 2007-06-15 2013-02-12 Ofs Fitel, Llc Bend insensitivity in single mode optical fibers
US8107784B2 (en) 2007-06-15 2012-01-31 Ofs Fitel, Llc Reduced bend sensitivity and catastrophic bend loss in single mode optical fibers and method of making same
US7724998B2 (en) 2007-06-28 2010-05-25 Draka Comteq B.V. Coupling composition for optical fiber cables
US7639915B2 (en) 2007-06-28 2009-12-29 Draka Comteq B.V. Optical fiber cable having a deformable coupling element
BRPI0819166B1 (pt) 2007-11-09 2019-03-06 Draka Comteq, B.V. Fibra óptica, e caixa óptica
US8020410B2 (en) 2007-11-15 2011-09-20 Corning Incorporated Methods for making optical fiber preforms and microstructured optical fibers
US20090169163A1 (en) 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
PT2175295E (pt) 2008-02-22 2013-05-07 Sumitomo Electric Industries Cabo ótico e cabo de fibra ótica
US20090214167A1 (en) 2008-02-25 2009-08-27 Draka Comteq B.V. Optical Cable Buffer Tube with Integrated Hollow Channels
FR2929716B1 (fr) 2008-04-04 2011-09-16 Draka Comteq France Sa Fibre optique a dispersion decalee.
FR2930997B1 (fr) 2008-05-06 2010-08-13 Draka Comteq France Sa Fibre optique monomode
DK2344911T3 (en) 2008-11-07 2015-07-13 Draka Comteq Bv Reduced diameter optical fiber
US8081854B2 (en) * 2008-12-19 2011-12-20 Sehf-Korea Co., Ltd. Low bend loss optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694079B1 (en) * 1999-07-27 2004-02-17 Fujikura Ltd. Disperson-shifted optical fiber employing dual shape core profile
US7164835B2 (en) * 2003-04-11 2007-01-16 Fujikura, Ltd. Optical fiber
CN1982928A (zh) * 2005-11-10 2007-06-20 德雷卡通信技术公司 单模光纤
CN101055331A (zh) * 2006-04-10 2007-10-17 德雷卡通信技术公司 单模光纤

Also Published As

Publication number Publication date
BRPI0903197A2 (pt) 2010-05-25
US20090279835A1 (en) 2009-11-12
EP2116878A1 (en) 2009-11-11
KR20090116650A (ko) 2009-11-11
US7889960B2 (en) 2011-02-15
FR2930997A1 (fr) 2009-11-13
ES2377531T3 (es) 2012-03-28
EP2116877B1 (en) 2011-12-21
EP2116878B1 (en) 2011-12-21
EP2116877A1 (en) 2009-11-11
RU2009117161A (ru) 2010-11-10
ATE538401T1 (de) 2012-01-15
KR20090116651A (ko) 2009-11-11
PT2116877E (pt) 2012-02-29
BRPI0903858B1 (pt) 2020-09-29
US20110135264A1 (en) 2011-06-09
DK2116877T3 (da) 2012-02-27
US20090279836A1 (en) 2009-11-12
DK2116878T3 (da) 2012-03-05
RU2491237C2 (ru) 2013-08-27
BRPI0903858A2 (pt) 2010-07-20
CN101576631A (zh) 2009-11-11
FR2930997B1 (fr) 2010-08-13
RU2009117160A (ru) 2010-11-20
BRPI0903197B1 (pt) 2019-12-24
KR101605897B1 (ko) 2016-03-23
US20120183268A1 (en) 2012-07-19
ATE538402T1 (de) 2012-01-15
PL2116877T3 (pl) 2012-04-30
KR101614943B1 (ko) 2016-04-22
CN101576631B (zh) 2012-10-10
US8145025B2 (en) 2012-03-27
CN101587204A (zh) 2009-11-25
US8428414B2 (en) 2013-04-23
RU2489740C2 (ru) 2013-08-10
US8131125B2 (en) 2012-03-06

Similar Documents

Publication Publication Date Title
CN101587204B (zh) 单模光纤
US9671553B2 (en) Bend-resistant multimode optical fiber
US8428411B2 (en) Single-mode optical fiber
US8340488B2 (en) Multimode optical fiber
US8639079B2 (en) Multimode optical fiber
US8520993B2 (en) Multimode optical fiber having improved bending losses
US8406593B2 (en) Multimode optical fiber with low bending losses and reduced cladding effect
US8867879B2 (en) Single-mode optical fiber
US8483535B2 (en) High-bandwidth, dual-trench-assisted multimode optical fiber
US8391661B2 (en) Multimode optical fiber
US8385704B2 (en) High-bandwidth multimode optical fiber with reduced cladding effect
US8385705B2 (en) Microbend-resistant optical fiber
US9563012B2 (en) Hybrid single-mode and multimode optical fiber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant