CN101605493B - 三个二极管的光桥系统 - Google Patents

三个二极管的光桥系统 Download PDF

Info

Publication number
CN101605493B
CN101605493B CN2007800354593A CN200780035459A CN101605493B CN 101605493 B CN101605493 B CN 101605493B CN 2007800354593 A CN2007800354593 A CN 2007800354593A CN 200780035459 A CN200780035459 A CN 200780035459A CN 101605493 B CN101605493 B CN 101605493B
Authority
CN
China
Prior art keywords
sample
radiation
wavelength
period
radiation period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800354593A
Other languages
English (en)
Other versions
CN101605493A (zh
Inventor
汉努·哈俊玛
史蒂凡·库恩
瑞贝卡·伯勒尔
乔治·勒恩伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vivascan Corp
Original Assignee
Vivascan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vivascan Corp filed Critical Vivascan Corp
Publication of CN101605493A publication Critical patent/CN101605493A/zh
Application granted granted Critical
Publication of CN101605493B publication Critical patent/CN101605493B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Abstract

本发明提供了一种用于非侵入性测量流经样品溶解于液体中的目标分析物浓度的改进方法。该方法包括指令电磁辐射的探针束穿过样品,该探针束包括不同波长的时间复用组件,其中至少一个时间复用组件由两个不同的同步波长组成,该同步波长的强度关系确定了其组合的有效波长;在不同样品状态下测量时间复用组件辐射的不同吸收。在样品状态变化过程中,样品中含有的目标分析物量是变化的,这改变了样品中目标分析物的总量和样品的吸收性质。例如,通过压缩和不压缩组织样品可产生样品状态。通过连续评估样品中含有目标分析物的液体量,在对目标分析物有明显吸收的波长处测量吸收变化,提高了本发明方法的精确性。该方法尤其用于测量含有血液的组织中目标分析物的浓度,如葡萄糖。本发明还揭示了用于完成该方法的装置。

Description

三个二极管的光桥系统
相关申请
本申请是2006年9月25日提出的美国申请No.11/526,564的继续申请,并要求该申请的权益,11/526,564申请是2006年1月19日提交的美国11/335,833号申请的部分继续申请,11/335,833号申请是2002年4月26日提交的美国申请No.10/134,310的继续申请,目前10/134,310号申请已于2006年2月21日被授予美国专利No.7,003,337。在此引入上述申请的全部内容作为参考。
技术背景
本发明涉及采用电磁辐射的探针束在吸收和混浊基质(如人或动物体组织)中非侵入性测量吸收电磁辐射(如光或红外辐射)的物质的浓度。本发明尤其适用于利用近红外辐射进行人体组织中葡萄糖的测量。然而,它还普遍适用于测量吸收电磁辐射的任何物种的浓度,特别是在强吸收和混浊基质中。
本发明是对授予Harjunmaa的美国专利No.5099123(下称“′123专利”)的一种改进,在此将该专利全部纳入作为参考。′123专利揭露的平衡差分(或“光桥”)方法利用双波长进行目标分析物的浓度测量。选择那些在目标分析物中被高度吸收的波长为第一或主波长。利用平衡过程选择第二或参考波长,以便两种波长在背景基质中具有本质上相同的消光系数。,其在合适的频率下以交替次序产生包含这两种波长的辐射束。当将该辐射束对于测量恰当地平衡时,设置来测量由仅含残留量目标分析物的样品基质所透射或反射的辐射的样品检测器将只检测辐射中很小的变化分量(alternation component),不管样品的厚度。然而,当样品基质中含有相对大量的目标分析物时,检测器将会检测与波长变化同步的明显的变化信号。将该变化信号放大,然后用相敏检测器(或锁相放大器)检测。光桥平衡过程通过系统地改变重复辐射周期的相对强度和/或波长,使来自样品检测器的变化信号归零。
随后,同样在此纳入作为参考的美国专利No.5,178,142(下称“′142专利”)中,Harjunmaa等披露了采用与组织相互作用的双波长交替探针束进行浓度测量的改进的方法和装置。其中一个波长作为参考波长,另一个为主波长。参考波长是可调的,以计算背景光谱的预期变化。来自探测束的检测信号在穿过含给定参考浓度的分析物的基质后,通过控制参考波长和两个波长的强度关系,被平衡或归零。接着,改变样品的血液含量。然后,检测相互作用的探针束的变化分量。样品检测器所提供的信号中,变化分量的振幅与分析物的浓度或与预设的参考分析物的浓度差异成正比。
其它相关专利包括美国专利No.5,112,12、No.5,137,023、No.5,183,042、No.5,277,181和No.5,372,135,在此将其专利全部纳入作为参考。
发明内容
本发明涉及产生用于非侵入性评估样品中目标分析物浓度的电磁辐射束的系统和方法。
本发明涉及用于测量样品中目标分析物浓度的已知平衡差分或“光桥”系统的改进。本文中使用的“光桥”指在一个或多个波长对,对样品很小的吸收差进行准同步差分光学测量的装置和/或方法。根据一个方面,本发明中改进的光桥方法和系统包括:1)样品厚度变化过程中和变化后的时序测量;2)与流入样品的非约束流体(如血液)的同步化测量;以及3)参数的用途,该参数从时序测定中提取以补偿样品背景基质的吸收中的日常和长期变化。本发明的一个优点在于不用可调波长的光源,即可产生所需要的组合束。因此,本发明提供了一种更简单的测量系统,它能够改善目标分析物浓度评估的准确性。
根据本发明的装置包括用于产生电磁辐射束的光源。该光束由所需的窄线宽波长的时间多路复用组件(主或参考)组成,并通过如,三个或多个二极管激光器生成。
在测量过程中,交替波长探针束穿过(或反射自)装在压缩装置中的样品。压缩装置在测量过程中可控制地改变样品的厚度(从而改变非约束流体的含量)。安置一样品检测器,以便在探针束穿过样品后将其接收。然后,样品检测器向模拟信号预处理模块发送信号,该模块包含光桥的硬件实现。然后,将光桥的输出信号馈向处理器,编程该处理器,使其基于从样品检测信号和其它辅助变量和时变信号中所提取的参数,计算非约束性流体中目标分析物的浓度。
本发明的另一个优点是,参考波长区域内的组合光系统和样品的详细光谱结构对平衡过程没有影响。
在计算目标分析物浓度中所用的一个辅助信号为样品中非约束流体(如血液)含量的时变评估。该评估可通过例如,一个独立的测量来自单独光源的光的样品透射(或反射)的辅助血液信号检测器获得,该单独光源提供与目标分析物测量所用的波长截然不同的辐射。优选在血红蛋白吸收的波长进行,尤其优选血红蛋白吸收不依赖其氧化态(即等吸收点)时的波长。在其它实施方式中,可使用激光多普勒流量计测量样品血含量。
根据本发明的用于非侵入性测量基质(如组织)中目标物质(如葡萄糖)浓度的方法包括以下步骤:首先,样品经压缩装置压缩,以挤出包含大部分目标分析物的非约束流体。然后,用电磁辐射的探针束照射样品。优选地,该光束包括一主周期和一参考周期,其中与参考周期中辐射的有效波长相比,主周期中辐射的有效波长更强地被目标分析物如葡萄糖吸收。举例说明,葡萄糖强吸收的波长可介于约1550~1700nm之间,而葡萄糖弱吸收的波长可介于约1350~1430nm之间。
在一种实施方式中,主波长为普遍预先设定,或者单独为每位患者预先设定。在该实施方式中,参考辐射由两个单独的波长混合组成,当在进入样品体积时混合,其有效波长为两部分辐射相对强度的函数。更确切地说,有效波长λR为:
λR=(IR1·λR+IR2·λR2)/(IR1+IR2)
其中IRi=波长λRi的强度。
强度关系可在平衡过程中调整。该平衡过程在测量之前实施。平衡过程包括,例如,调整某个交替辐射周期的强度,同时保持两个分量强度的总和不变,以便在选定的样品厚度/样品压缩装置施加的压力下,获得实质上为零的样品检测信号(即光桥信号)的变化分量。在该实施方式中,两个固定激光器可代替一个可调激光器,可调激光器是典型的比较昂贵的激光器。当样品检测器产生的信号中实质上没有变化分量时,光桥达到“平衡”。一个恰当地平衡的光桥指主波长和有效参考波长被样品基质同等吸收,样品基质只含有残留量的目标分析物。
测量序列包括通过样品和辅助检测器获得的透射/反射探针束波长分量的强度的一系列个别测量。这一系列的测量可在样品厚度变化过程中获得,也可以贯穿跟随样品厚度变化后的样品含量平衡过程。这些测量优选在样品的非约束流体含量变化时进行。
在本发明优选的实施方式中,样品厚度的变化与心跳同步。这样的好处之一是,由于血液流入速度取决于血压,在心动周期的恒定阶段(constant phase)执行解压缩产生形状实质上恒定的血液回充时间曲线。心动阶段可以选择,以便提供尽可能多的血液含量变化。
辅助参数(例如,包括非约束流体含量,样品和检测器的温度,样品厚度,和/或电子控制系统的运行参数)的测量伴随着探针束强度的测量。所记录的数据进一步与相同时间内时变非约束流体含量的相应评估相结合。基于模型的算法可用于从时序曲线中提取特性参数,并将这些参数与其它测量参数相结合以在目标物质浓度的评估中实现特异性和灵敏性的改善。
采用本发明的方法,通过分离和量化光桥信号的分量(component),目标分析物测量的准确性得到提高,其中光桥信号由于目标分析物的存在而产生,而并非其它“寄生”因素。更具体地,目标分析物主要位于非约束性流体内,而不是基质的固定结构中,大部分光桥信号直接取决于样品内的流体量。因此,如果随时间推移,针对大部分光桥信号对样品内变化的非约束流体含量进行评估和标定,结果会产生一条大体上的直线,其斜率与样品中分析物浓度直接相关,假定有助于产生“寄生”信号(包括由于样品厚度变化引起的有效波长的转移)的其它因素在测量过程中保持相对恒定。
附图简要说明
通过以下对本发明实施方式的更具体的说明,上述内容将更加明显。如附图所示,其中不同视图中相同的参考数字代表相同的部件。附图不需要很大比例或重点强调,而只用于说明本发明的实施方式。
图1是用于非侵入性测量目标分析物,具有三个二极管光桥装置的系统的图解。
发明详细说明
以下是对本发明具体实施方式的说明。
本发明方法的特点和其它细节可通过参考附图详细说明,且包含在权力要求书中。应理解的是,本发明所示的具体实施方式仅用于说明,不用于限制本发明。在没有背离本发明范围的情况下,本发明的主要特点可用于不同的实施方式。
共有美国专利申请No.11/335,833和美国专利No.7,003,337揭示和描述了光桥系统的示范实施方式,在此将其内容全部纳入作为参考。图1显示了用于在透射光基础上测量血液中葡萄糖浓度的光桥装置的实施方式。用反射或反向散射光代替透射光可设计得到类似装置。
在优选的实施方式中,三个固定长波的单色光源101、102、103,如激光二极管,可用于产生探针束5-202。
时钟发生器110在理想斩波频率fch下产生定时信号,fch是探针束的主分量和参考分量,以及血液评估分量的时分多路复用所需要的。CPU104产生用于控制探针束202的主强度IP、波长λP和λR和斩波频率fch的信号。
探针束射向扩散板70。在光路中样品前面放置一扩散板70的好处是最大限度地减少样品散射特性变化所产生的影响。优选的扩散板是全像式,其在整个相关的波长范围具有实质上恒定的扩散性质。将样品标本80如患者的耳垂、嘴唇、面颊、鼻中隔、舌头、或手指、脚趾之间的皮肤,置于扩散板70和样品检测镜头92之间,并通过移动装在压缩机构400上的测量头90来压缩。利用样品检测镜头92将穿过样品80的探针束203聚集并射向样品检测器91。样品检测器91检测穿过样品80的探针束205在各个波长段的强度,然后向前置放大器26发送电信号302,并到达多路解调器405,该多路解调器405将血液评估波长信号和平衡对信号分隔开;后者被馈入相敏检测器(或锁相放大器)24。来自相敏检测器204的输出信号308与样品检测器91检测到的主强度和参考强度之间的差异(或比率)成正比。信号308被称为光桥信号。
在该实施方式中,单独的辅助辐射源如红外或可见光发光二极管(LED)44可用于提供对样品血液内容物的评估。该辅助辐射源44产生射在扩散板70上和样品内的血液检测束204。LED在某个波长如525nm(血红蛋白的等吸收波长)上的操作提供了对血液良好的敏感性。当平衡对和血液检测波长被恰当地时间复用时,样品检测器9可用于检测血液检测束204的透过部分,产生血液信号304。
其它可能获得血液内容物评估的技术包括超声和电阻抗体积描记法。
为了进行测量,在扩散板70和样品检测镜头92之间引入样品80。通过压缩机构400可移动测量头90,以轻轻压缩样品80直至施予样品80预先设定的压力。压缩机构400的优选实施方式包括微型直线致动器。它的步长、速度和移动距离由CPU104控制。虽然该实施方式使用了电动致动器,然而液压或气动致动器也可使用,且在压缩机构的压缩上占有优势。
在本说明书中,对三种不同类型的探针束衰减加以区分。首先是背景基质,第二是目标物,而第三是非约束流体衰减。
背景基质的衰减是由于样品成分吸收探针束202,在整个固定的样品舱室中其成分的浓度实质上是固定的。目标分析物衰减是因为目标分析物(如葡萄糖)吸收探针束202,其主要集中于非约束流体(如血液)。当组织被充分压缩,非约束流体随着目标分析物(如葡萄糖)从样品80大量流失。因为目标分析物在非约束流体中的浓度不同于其在背景基质中的浓度(如细胞内浓度),由于压缩,它在光路中的平均浓度发生了变化。这种浓度变化使目标分析物可用本发明方法进行检测。
以这种方式选择探针束202的主波长λP,以获得目标分析物的高衰减。设定主波长强度IP,以实现最佳的发送信号强度。在光桥平衡过程中,选定探针束的有效参考波长λP,其强度IR应在以下测量过程说明中所述的每次测量之前进行调整。
下列内容给出光桥平衡过程的一个简单易懂的实施例。本领域技术人员容易理解的是,也可使用不同的、更复杂的光桥平衡程序,信号处理算法也有相应变化。
在光桥平衡的第一步中,样品80被充分压缩,以除去样品组织中大部分非约束流体。设定主波长参数λP和IP,初始化有效参考波长λP。探针束202射向样品,通过调节探针束参考波长强度IR=IR1+IR2以获得实质为零的光桥信号308,使光桥平衡或归零。在其它实施方式中,设定参考波长强度IR,同时调节主波长强度IP以平衡光桥。接着,将样品压缩压力释放预定的量(通常小于0.1mm),通过用来自CPU的信号控制λR1和λR2的强度比率,调节探针束的有效参考波长λR,以便再次达到实质为零的光桥信号308。选择初始的压缩压力,使得即使数次释放样品80增量厚度,也几乎不会有非约束流体回流到样品。因厚度增加引起的光桥信号308的变化仅缘于背景基质厚度增加,不是缘于流体的任何实质涌入。然后样品80再经过一步厚度解压缩,通过CPU 104再调节参考(或主)波长,以达到最小光桥信号。
这种逐步增加厚度的程序可继续进行,直至获得实质为零的光桥信号。一旦增加了样品厚度,也可利用逐步减少厚度使该程序逆转。当这种平衡程序完成后,样品80在其压缩状态的吸光系数在两个波长λP和λR实质上相等。
在一种实施方式中,平衡仅限于一个周期,以便加快测量和降低对样品的压应力。
这样,光桥平衡阶段完成;此时波长及其强度都已确定。装置已准备好进行测量。测量血液中葡萄糖的典型顺序将在以下文字中参照图中的测量装置加以说明。
一般来说,样品80保持压缩状态,以便在约1-100s的时间周期内排出非约束流体内容物。
接着,时变信号的连续测量开始,包括时变测量光桥输出308、血液信号304和位置传感器输出312。
一旦开始测量,则压缩机构400开始开放测量头90,由CPU 104设定开放量和速率。头部开放量可以是固定的(如,对于人耳为0.5mm),或可以依赖于厚度(如压缩样品厚度的20%)。它可以从用于压缩控制的子程序通过连接365来直接控制。快速开放阶段的目的是允许包含目标分析物的非约束流体返回到样品。
压缩机构的开放引起样品组成的变化,使得样品在主波长和有效参考波长处吸收不相同。这种吸收中的相对变化导致产生非零光桥信号308。测量继续进行,直到被CPU104终止。通常情况下,时变信号系列应包含几百个数据集,其记录于样品解压缩开始后的约0.1至10秒的测量时间段内。
由此测量过程结束,然后进行信号处理。
至此,本发明描述几种具体实施方式后,本领域技术人员很容易做出各种改变、修饰和改进。明显根据本发明揭露内容做出的那些改变、修饰和改进虽然在此没有明确规定,也视为本说明书的一部分,并属于本发明的精神和范围。
例如,此处描述的方法可用于应用非调谐激光器的光桥,它也可用于光桥的不同实现,如配有发光二极管或超发光二极管或其它手段以产生含有所需波长组合的光束。此外,虽然此处主要针对测量血液中的葡萄糖浓度来描述该方法,然而本发明的方法和装置还可用于检测在血液或其它体液中其它物质的浓度,如胆固醇、尿素、重金属、酒精、尼古丁或药物。而且,正弦(而非正方形)调制波形设有180°的反相,导致总强度实质上为常数,它可以交替使用以形成组合辐射束。此外,还可测量经组织反射或反向散射的辐射,而非透射辐射,以获取所需数据。
因此,上述说明只用作举例,不作限制。本发明只用所附的权力要求书及其相应内容进行限制。
虽然本发明已经就示范实施方式进行了具体说明和描述,然而本领域技术人员应理解的是,在不违背本发明所附权力要求书范围的情况下,可在其形式和细节上做出各种变化。

Claims (9)

1.一种产生用于非侵入性测量样品基质内的流体中目标分析物浓度的电磁辐射束的方法,该方法包括:
将电磁辐射的组合束照向样品,该组合束包括至少两个重复辐射周期,其中在第一辐射周期期间的辐射包括单独波长的辐射,在第二辐射周期期间的辐射包括具有不同波长的至少两个辐射的混合,所述第二辐射周期的有效波长等于两部分波长的强度加权平均值;与第一辐射周期的波长相比,所述目标分析物具有对于第二辐射周期的有效波长的不同吸收系数。
2.根据权利要求1的方法,其中样品基质包括生物组织而流体包含血液。
3.根据权利要求1的方法,其中选择第一辐射周期的波长和第二辐射周期的有效波长,以使在一样品状态中测量的各周期之间,所检测的透射或反射差异最小。
4.根据权利要求1的方法,其中当该样品为第一样品流体状态时,调节辐射周期的强度;并且当样品在不同于第一样品流体状态的状态时,选择第二辐射周期的有效波长和第一辐射周期的波长中的至少一个,以使测量的透射或反射差异最小。
5.根据权利要求1的方法,其中所述第一辐射周期的波长范围为1550至1700nm,所述第二辐射周期的有效波长范围为1350至1430nm。
6.根据权利要求1的方法,其中组合束由三个或更多个单色二极管激光器产生。
7.根据权利要求6的方法,其中在第一辐射周期,至少一个激光二极管产生主辐射束,而在第二辐射周期,至少两个激光二极管产生有效参考束。
8.一种非侵入性测量样品基质内的流体中目标分析物浓度的系统,包括:
一电磁辐射光源,将电磁辐射的组合束照向样品,该组合束包括至少两个重复辐射周期,其中在第一辐射周期期间的辐射包括单独波长的辐射,在第二辐射周期期间的辐射包括具有不同波长的至少两个辐射的混合,所述第二辐射周期的有效波长等于两部分波长的强度加权平均值;与第一辐射周期的波长相比,所述目标分析物具有对于第二辐射周期的有效波长的不同吸收系数。
9.根据权利要求8的系统,其中电磁辐射源包括三个或更多个单色激光二极管。
CN2007800354593A 2006-09-25 2007-09-10 三个二极管的光桥系统 Expired - Fee Related CN101605493B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/526,564 2006-09-25
US11/526,564 US8175666B2 (en) 2002-04-26 2006-09-25 Three diode optical bridge system
PCT/US2007/019635 WO2008039299A2 (en) 2006-09-25 2007-09-10 Three diode optical bridge system

Publications (2)

Publication Number Publication Date
CN101605493A CN101605493A (zh) 2009-12-16
CN101605493B true CN101605493B (zh) 2012-03-14

Family

ID=39146866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800354593A Expired - Fee Related CN101605493B (zh) 2006-09-25 2007-09-10 三个二极管的光桥系统

Country Status (10)

Country Link
US (1) US8175666B2 (zh)
EP (1) EP2073697A2 (zh)
JP (1) JP5723098B2 (zh)
KR (1) KR101597310B1 (zh)
CN (1) CN101605493B (zh)
AU (1) AU2007300695B2 (zh)
CA (1) CA2700133C (zh)
HK (1) HK1139294A1 (zh)
IL (1) IL197589A (zh)
WO (1) WO2008039299A2 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398009B2 (ja) * 2010-03-17 2014-01-29 学校法人北里研究所 オプティカル・コヒーレンス・トモグラフィー装置及び断層像の撮影方法
WO2012132768A1 (ja) * 2011-03-31 2012-10-04 テルモ株式会社 血液成分測定装置
EP2543839A1 (fr) * 2011-07-04 2013-01-09 Inergy Automotive Systems Research (Société Anonyme) Dispositif de mesure de la concentration d'urée
US20130267799A1 (en) * 2012-04-06 2013-10-10 Hannu Harjunmaa Noninvasive measurement of analyte concentration using a fiberless transflectance probe
WO2013160780A1 (en) * 2012-04-23 2013-10-31 I.R.Med Ltd. Short-wave infrared imaging and spectroscopy technique for inflammation classification and tumor and inflammation differentiation in human tissues inside the body
JP5859414B2 (ja) * 2012-10-16 2016-02-10 株式会社 堀場アドバンスドテクノ 色度計
WO2014164238A1 (en) * 2013-03-13 2014-10-09 United Technologies Corporation Gas turbine engine hydraulically operated nacelle latch
CN105637333A (zh) * 2013-06-16 2016-06-01 乌尔里克·梅里尔德·尼尔森 检测在液体中的精神活性成分的指标
US9322716B2 (en) * 2014-01-07 2016-04-26 Panasonic Intellectual Property Corporation Of America Component measuring apparatus and moving body
JPWO2015177867A1 (ja) * 2014-05-20 2017-04-20 パイオニア株式会社 パルスオキシメータ
US10709365B2 (en) 2014-08-21 2020-07-14 I. R. Med Ltd. System and method for noninvasive analysis of subcutaneous tissue
US20160051147A1 (en) * 2014-08-21 2016-02-25 Irmed System and method for noninvasive analysis of subcutaneous tissue
US10772541B2 (en) 2014-08-21 2020-09-15 I. R. Med Ltd. System and method for noninvasive analysis of subcutaneous tissue
US9459201B2 (en) 2014-09-29 2016-10-04 Zyomed Corp. Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
CN107923841B (zh) * 2015-08-18 2021-07-13 国立大学法人德岛大学 浓度测定装置
CN105249974A (zh) * 2015-10-15 2016-01-20 华南师范大学 一种基于压力调制光谱技术的无创葡萄糖检测系统与方法
CN105784591A (zh) * 2015-12-26 2016-07-20 深圳市前海安测信息技术有限公司 血糖测试数据采集系统及方法
JP2019506205A (ja) 2015-12-31 2019-03-07 ウェア2ビー リミテッド 生理学的測定値の非侵襲的監視のための装置、システム、および方法
US10088468B2 (en) * 2016-02-04 2018-10-02 Nova Biomedical Corporation Analyte system and method for determining hemoglobin parameters in whole blood
US9554738B1 (en) * 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
US11333602B2 (en) * 2016-10-25 2022-05-17 Pioneer Corporation Fluid measuring apparatus
KR102005832B1 (ko) * 2018-02-21 2019-08-01 주식회사 올리브헬스케어 생체 신호를 분석하는 신호 처리 장치 및 이를 이용한 생체 신호 분석 장치
CN109406492B (zh) * 2018-12-06 2023-12-22 深圳网联光仪科技有限公司 一种能够在强荧光背景下测量物质的拉曼光谱的设备
CN113984663A (zh) * 2021-10-28 2022-01-28 中国人民解放军海军特色医学中心 一种光学检测装置及其工作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267152A (en) * 1989-10-28 1993-11-30 Yang Won S Non-invasive method and apparatus for measuring blood glucose concentration

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE277026C (zh) * 1926-09-04 1900-01-01
US2721942A (en) * 1948-07-15 1955-10-25 Du Pont Infrared analyzer and method
SE341478B (zh) * 1965-04-26 1971-12-27 Autokemi Ab
US3463142A (en) * 1966-07-05 1969-08-26 Trw Inc Blood content monitor
US3638640A (en) * 1967-11-01 1972-02-01 Robert F Shaw Oximeter and method for in vivo determination of oxygen saturation in blood using three or more different wavelengths
US3614450A (en) * 1969-02-17 1971-10-19 Measurex Corp Apparatus for measuring the amount of a substance that is associated with a base material
US3799672A (en) * 1972-09-15 1974-03-26 Us Health Education & Welfare Oximeter for monitoring oxygen saturation in blood
US3926527A (en) * 1974-06-05 1975-12-16 Philco Ford Corp Rotating gas correlation cell
US3958560A (en) * 1974-11-25 1976-05-25 Wayne Front March Non-invasive automatic glucose sensor system
US3963019A (en) * 1974-11-25 1976-06-15 Quandt Robert S Ocular testing method and apparatus
US3957037A (en) * 1975-02-24 1976-05-18 Nasa Readout electrode assembly for measuring biological impedance
US4033330A (en) * 1975-09-08 1977-07-05 Hewlett-Packard Company Transcutaneous pH measuring instrument
DE2606991A1 (de) * 1976-02-20 1977-08-25 Nils Dr Med Kaiser Geraet zur bestimmung des gehaltes von stoffwechselprodukten im blut
US4029085A (en) * 1976-03-26 1977-06-14 Purdue Research Foundation Method for determining bilirubin concentration from skin reflectance
US4281645A (en) * 1977-06-28 1981-08-04 Duke University, Inc. Method and apparatus for monitoring metabolism in body organs
JPS54148586A (en) * 1978-05-15 1979-11-20 Minolta Camera Co Ltd Jaundice meter
US4398541A (en) * 1978-05-25 1983-08-16 Xienta, Inc. Method and apparatus for measuring moisture content of skin
JPS5524004A (en) * 1978-06-22 1980-02-20 Minolta Camera Kk Oxymeter
DE2833356A1 (de) * 1978-07-29 1980-02-14 Max Planck Gesellschaft Verfahren zur optischen messung von stoffkonzentrationen
JPS55118738A (en) * 1979-03-07 1980-09-11 Sumitomo Electric Industries Measuring device for breathing function of internal organ and tissue of living body
DE2934190A1 (de) * 1979-08-23 1981-03-19 Müller, Gerhard, Prof. Dr.-Ing., 7080 Aalen Verfahren und vorrichtung zur molekuelspektroskopie, insbesondere zur bestimmung von stoffwechselprodukten
US4523279A (en) * 1980-11-24 1985-06-11 Oximetrix, Inc. Apparatus for determining oxygen saturation levels in blood
US4447150A (en) * 1981-02-27 1984-05-08 Bentley Laboratories Apparatus and method for measuring blood oxygen saturation
EP0074428B1 (de) 1981-09-15 1987-04-08 Arno Dr. Dipl.-Phys. Müller Verfahren und Vorrichtung zur quantitativen Bestimmung gelöster Substanzen in Ein- und Mehrkomponentensystemen durch Laser-Lichtstreuung
US4490845A (en) * 1982-02-02 1984-12-25 Westinghouse Electric Corp. Automated acousto-optic infrared analyzer system
JPS58143243A (ja) * 1982-02-19 1983-08-25 Minolta Camera Co Ltd 非観血式血中色素測定装置
US4485820A (en) * 1982-05-10 1984-12-04 The Johns Hopkins University Method and apparatus for the continuous monitoring of hemoglobin saturation in the blood of premature infants
US4621643A (en) * 1982-09-02 1986-11-11 Nellcor Incorporated Calibrated optical oximeter probe
US4653498A (en) * 1982-09-13 1987-03-31 Nellcor Incorporated Pulse oximeter monitor
US4570638A (en) * 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
US4768516A (en) * 1983-10-14 1988-09-06 Somanetics Corporation Method and apparatus for in vivo evaluation of tissue composition
US4817623A (en) * 1983-10-14 1989-04-04 Somanetics Corporation Method and apparatus for interpreting optical response data
US4603700A (en) * 1983-12-09 1986-08-05 The Boc Group, Inc. Probe monitoring system for oximeter
NL8400380A (nl) 1984-02-07 1985-09-02 Optische Ind De Oude Delft Nv Inrichting voor het detecteren van kleurverschillen.
EP0160768B1 (en) 1984-05-04 1989-05-03 Kurabo Industries Ltd. Spectrophotometric apparatus for the non-invasive determination of glucose in body tissues
US4725147A (en) * 1984-09-17 1988-02-16 Somanetics Corporation Calibration method and apparatus for optical-response tissue-examination instrument
US4641658A (en) * 1984-10-01 1987-02-10 American Hospital Supply Corp. Cardiac flow monitor
US4655225A (en) * 1985-04-18 1987-04-07 Kurabo Industries Ltd. Spectrophotometric method and apparatus for the non-invasive
DE3541165A1 (de) 1985-11-21 1987-05-27 Hellige Gmbh Vorrichtung zur kontinuierlichen bestimmung von konzentrationsaenderungen in stoffgemischen
US4704029A (en) * 1985-12-26 1987-11-03 Research Corporation Blood glucose monitor
US4750496A (en) * 1987-01-28 1988-06-14 Xienta, Inc. Method and apparatus for measuring blood glucose concentration
US4759369A (en) * 1986-07-07 1988-07-26 Novametrix Medical Systems, Inc. Pulse oximeter
US4714080A (en) * 1986-10-06 1987-12-22 Nippon Colin Co., Ltd. Method and apparatus for noninvasive monitoring of arterial blood oxygen saturation
JPS63111837A (ja) * 1986-10-29 1988-05-17 日本光電工業株式会社 血中吸光物の濃度測定装置
US5190040A (en) * 1986-12-26 1993-03-02 Nihon Kohden Corporation Apparatus for measuring the change in the concentration of a pigment in blood
JPS63252239A (ja) * 1987-04-09 1988-10-19 Sumitomo Electric Ind Ltd 反射型オキシメ−タ
DE3723881A1 (de) * 1987-07-18 1989-01-26 Nicolay Gmbh Verfahren zum ermitteln der sauerstoffsaettigung des blutes eines lebenden organismus und elektronische schaltung sowie vorrichtung zum durchfuehren dieses verfahrens
US4785814A (en) * 1987-08-11 1988-11-22 Cordis Corporation Optical probe for measuring pH and oxygen in blood and employing a composite membrane
US4805623A (en) * 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US4796636A (en) * 1987-09-10 1989-01-10 Nippon Colin Co., Ltd. Noninvasive reflectance oximeter
US4819752A (en) * 1987-10-02 1989-04-11 Datascope Corp. Blood constituent measuring device and method
US4863265A (en) * 1987-10-16 1989-09-05 Mine Safety Appliances Company Apparatus and method for measuring blood constituents
US4854699A (en) * 1987-11-02 1989-08-08 Nippon Colin Co., Ltd. Backscatter oximeter
US4927264A (en) * 1987-12-02 1990-05-22 Omron Tateisi Electronics Co. Non-invasive measuring method and apparatus of blood constituents
US4882492A (en) * 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US4883055A (en) * 1988-03-11 1989-11-28 Puritan-Bennett Corporation Artificially induced blood pulse for use with a pulse oximeter
US5101825A (en) 1988-10-28 1992-04-07 Blackbox, Inc. Method for noninvasive intermittent and/or continuous hemoglobin, arterial oxygen content, and hematocrit determination
CA1331483C (en) * 1988-11-02 1994-08-16 Britton Chance User-wearable hemoglobinometer for measuring the metabolic condition of a subject
US5028787A (en) * 1989-01-19 1991-07-02 Futrex, Inc. Non-invasive measurement of blood glucose
US5178142A (en) * 1989-05-23 1993-01-12 Vivascan Corporation Electromagnetic method and apparatus to measure constituents of human or animal tissue
US5137023A (en) 1990-04-19 1992-08-11 Worcester Polytechnic Institute Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
US5183042A (en) * 1989-05-23 1993-02-02 Vivascan Corporation Electromagnetic method and apparatus to measure constituents of human or animal tissue
US5112124A (en) * 1990-04-19 1992-05-12 Worcester Polytechnic Institute Method and apparatus for measuring the concentration of absorbing substances
ATE80225T1 (de) * 1989-05-23 1992-09-15 Biosensors Technology Inc Verfahren zur bestimmung mittels strahlungsabsorption von substanzen in absorbierenden und streuenden matrixmaterialien.
US4975581A (en) 1989-06-21 1990-12-04 University Of New Mexico Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids
JPH0737991B2 (ja) 1989-07-13 1995-04-26 株式会社京都第一科学 グルコース濃度の測定方法
US5054487A (en) * 1990-02-02 1991-10-08 Boston Advanced Technologies, Inc. Laser systems for material analysis based on reflectance ratio detection
GB9106672D0 (en) 1991-03-28 1991-05-15 Abbey Biosystems Ltd Method and apparatus for glucose concentration monitoring
EP0597878B1 (en) 1991-07-03 1997-08-27 Vivascan Corporation Electromagnetic method and apparatus to measure constituents of human or animal tissue
US5277181A (en) * 1991-12-12 1994-01-11 Vivascan Corporation Noninvasive measurement of hematocrit and hemoglobin content by differential optical analysis
WO1993012712A1 (en) * 1991-12-31 1993-07-08 Vivascan Corporation Blood constituent determination based on differential spectral analysis
US5348002A (en) * 1992-04-23 1994-09-20 Sirraya, Inc. Method and apparatus for material analysis
US5322067A (en) * 1993-02-03 1994-06-21 Hewlett-Packard Company Method and apparatus for determining the volume of a body cavity in real time
US5620000A (en) * 1993-07-02 1997-04-15 Heidelberg Engineering, Optische Messsysteme Gmbh Method and apparatus for measuring flow rate, particularly of blood
US5524617A (en) * 1995-03-14 1996-06-11 Nellcor, Incorporated Isolated layer pulse oximetry
US5638816A (en) * 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
US5827181A (en) * 1995-09-07 1998-10-27 Hewlett-Packard Co. Noninvasive blood chemistry measurement method and system
US6285894B1 (en) * 1997-03-25 2001-09-04 Siemens Aktiengesellschaft Method and device for non-invasive in vivo determination of blood constituents
EP1051106B1 (en) * 1998-01-27 2004-09-15 Lightouch Medical, Inc. Method and device for tissue modulation
AU3754899A (en) * 1998-04-24 1999-11-16 Lightouch Medical, Inc. Apparatus and method for thermal tissue modulation
IL124965A (en) * 1998-06-17 2002-08-14 Orsense Ltd Non-invasive method of optical measurements to diagnose the concentration of a substance in the blood
JP2000126142A (ja) 1998-10-29 2000-05-09 Nippon Colin Co Ltd 非観血連続血圧推定装置
US6615061B1 (en) * 1998-11-23 2003-09-02 Abbott Laboratories Optical sensor having a selectable sampling distance for determination of analytes
US6390984B1 (en) 2000-09-14 2002-05-21 Ge Medical Systems Global Technology Company, Llc Method and apparatus for locking sample volume onto moving vessel in pulsed doppler ultrasound imaging
US7003337B2 (en) * 2002-04-26 2006-02-21 Vivascan Corporation Non-invasive substance concentration measurement using and optical bridge
US7186969B2 (en) * 2003-02-12 2007-03-06 Mitutoyo Corporation Optical configuration for imaging-type optical encoders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267152A (en) * 1989-10-28 1993-11-30 Yang Won S Non-invasive method and apparatus for measuring blood glucose concentration

Also Published As

Publication number Publication date
IL197589A (en) 2014-12-31
WO2008039299A2 (en) 2008-04-03
AU2007300695B2 (en) 2012-10-04
JP5723098B2 (ja) 2015-05-27
WO2008039299A3 (en) 2008-05-29
US20070208238A1 (en) 2007-09-06
EP2073697A2 (en) 2009-07-01
JP2010504148A (ja) 2010-02-12
US8175666B2 (en) 2012-05-08
KR101597310B1 (ko) 2016-02-24
CA2700133A1 (en) 2008-04-03
IL197589A0 (en) 2009-12-24
KR20090086202A (ko) 2009-08-11
HK1139294A1 (en) 2010-09-17
CN101605493A (zh) 2009-12-16
CA2700133C (en) 2016-05-10
AU2007300695A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
CN101605493B (zh) 三个二极管的光桥系统
TWI324686B (en) Noninvasive measurement of glucose through the optical properties of tissue
CA2481981C (en) A non-invasive blood constituent measuring instrument and measuring method
JP5373379B2 (ja) 移植可能製品
JP6283035B2 (ja) 試料中の成分を検出するための装置
US6741875B1 (en) Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths
WO2007072300A2 (en) System for non-invasive measurement of blood glucose concentration
CA2383727A1 (en) Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths
WO1993000856A1 (en) A non-invasive method and apparatus for measuring concentration of analytes in living tissue
JP2000506048A (ja) 生物化合物の後続監視のための校正
CA2485964A1 (en) Non-invasive substance concentration measurement using an optical bridge
JP4472794B2 (ja) グルコース濃度の定量装置
KR100883153B1 (ko) 혈당치의 비침습 측정 장치
CN101179983A (zh) 利用热发射光谱学对血液被分析物的非侵入式测量
WO2005027746A1 (ja) グルコース濃度測定方法及びグルコース濃度測定装置
JP2000131322A (ja) グルコース濃度の定量方法及びその装置
JP2001212116A (ja) 血液成分測定装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1139294

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1139294

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120314

Termination date: 20150910

EXPY Termination of patent right or utility model