CN101765698B - 使用电感性元件感测压力的系统和方法 - Google Patents

使用电感性元件感测压力的系统和方法 Download PDF

Info

Publication number
CN101765698B
CN101765698B CN200880100875.1A CN200880100875A CN101765698B CN 101765698 B CN101765698 B CN 101765698B CN 200880100875 A CN200880100875 A CN 200880100875A CN 101765698 B CN101765698 B CN 101765698B
Authority
CN
China
Prior art keywords
electromagnetic energy
shaped resilient
resilient part
pressure
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880100875.1A
Other languages
English (en)
Other versions
CN101765698A (zh
Inventor
M·C·汤普森
D·W·贝克
D·M·寇茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron USA Inc filed Critical Chevron USA Inc
Publication of CN101765698A publication Critical patent/CN101765698A/zh
Application granted granted Critical
Publication of CN101765698B publication Critical patent/CN101765698B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0089Transmitting or indicating the displacement of pistons by electrical, electromechanical, magnetic or electromagnetic means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/08Means for indicating or recording, e.g. for remote indication
    • G01L19/086Means for indicating or recording, e.g. for remote indication for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0004Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using variations in inductance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/10Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in inductance, i.e. electric circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • H01F21/08Variable inductances or transformers of the signal type continuously variable, e.g. variometers by varying the permeability of the core, e.g. by varying magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder

Abstract

示例性的系统和方法涉及感测装置,并涉及压力感测系统和方法。一种示例性的方法包括将电磁能量提供给换能器,该换能器被配置为以通过该换能器的电感所确定的回响频率来反射电磁能量,其中所述电感响应于所述电感性元件的压缩而变化。将由所述换能器所反射的电磁能量的回响频率与压力值相关联。

Description

使用电感性元件感测压力的系统和方法
技术领域
公开了一种压力换能器,如基于对压力的响应变换反射信号频率的换能器。 
背景技术
已经使用了监控钻井的井下环境的设备,其中环境条件可能是相对严酷的。这些井下条件中包括温度和压力。 
发明内容
公开了一种示例性的感测装置。该感测装置包括成形弹性件和作为分散颗粒嵌入到成形弹性件中的铁磁材料,其中铁磁颗粒的重量百分比被选择为使得成形弹性件的电感针对成形弹性件的给定压缩变化一个预定量。 
还公开了用于感测井洞内压力的示例性系统。该系统包括用于生成电磁能量的装置,以及用于对电磁能量进行调制的装置。调制装置包括电感性元件,该电感性元件包括成形弹性件和作为分散颗粒嵌入到成形弹性件中的铁磁材料,其中铁磁颗粒的重量百分比被选择为使得成形弹性件的电感针对成形弹性件的给定压缩变化一个预定量。 
一种示例性的感测压力的方法使用了换能器,该换能器包括可压缩的电感性元件。该方法包括:将电磁能量提供给换能器,该换能器被配置为在由换能器的电感所确定的回响频率(ring frequency)处反射电磁能量,其中该电感相应于电感性元件的压缩而改变。由换能器所反射的电磁能量的回响频率与一个压力值相关联。 
附图说明
当结合附图阅读下面的详细描述时,这里所描述的其他优点和特征对于本领域技术人员将变得更为清楚,其中: 
图1示出了用于感测压力的示例性电感性传感器; 
图2是示出了用于制造图1所示示例性电感性传感器的示例性方法的流程图; 
图3示出了用于感测井内压力的示例性系统; 
图4是示出了感测井内压力的示例性方法的流程图; 
图5示出了用于感测压力的示例性电感性传感器和外壳;以及 
图6是用于示出了感测可压缩容器内的压力的系统的流程图。 
具体实施方式
图1示出了用于感测压力的示例性电感性传感器。如图1所示,电感性传感器100可以被配置为成形弹性件形式的铁氧体磁芯,其包含铁磁材料,使得电感性元件的电感由于周围环境的压力根据成形弹性件的压缩而变化。铁氧体磁芯可以形成为环形,用于耦合到钻井内的生产管道,或者可以形成为适于实现所希望的响应或性能的任何其他形状。 
电感性传感器100可由铁磁材料形成,其使用弹性填充介质-例如硅树脂橡胶或所希望的任何其它适当的弹性材料-填充而成。电感性传感器100可包括不同铁磁材料(或颗粒)-如氧化铁、铁粉或所希望的任何其它适当的材料-的铁磁性混合物。该铁磁性混合物中每种磁性材料的重量组成决定了电感性传感器100的各种参数,这些参数包括但不限于:阻抗值、磁芯损耗、频率响应、温度响应、品质(Q)因数、功率处理、以及任何其它可控的参数和特性。由于铁磁性混合物的物理属性,电感性传感器100可通过外力、例如压力被压缩,使得传感器100的感应值响应于外力而变化。本领域技术人员将会意识到,铁磁材料不一定要包含铁化合物,而是也可以包含其它金属基陶瓷。 
在步骤200,铁磁材料可以和液态的弹性材料混合,以形成铁磁材料-弹性件混合物。铁磁材料可以包括各种不同的铁磁基磁性材料混合物。这些材料可以以各种不同的重量组成来添加,以得到橡胶合成物的所希望的硬度组成,其决定了电感性传感器100的各种不同参数和特征,例如电感值。 
液态的弹性材料可包括多种已知弹性件中的任一种,如非晶态聚合物或所希望的其它基于硅树脂的材料。 
在步骤202,铁磁材料-弹性件混合物被传递到一个模具,所述模具例如为环形、柱形、或者所希望的任何其它适当的形状。在步骤204,以任何适当的温度(例如室温或者更高的温度)对模具中的铁磁材料-弹性件混合物进行固化,以形成感应结构。固化温度由铁磁材料-弹性件混合物的材料构成决定。固化温度可以根据弹性件是饱和的还是非饱和的材料来决定。例如,饱和的弹性件,如硅树脂、含氟弹性体(例如 
Figure GPA00001010840100031
)和全氟弹性体(例如 
Figure GPA00001010840100032
)可以在室温下被固化,而无需催化剂或用于硫化过程的固化剂。非饱和材料,如聚异戊二烯(例如丁基橡胶)和聚丁二烯(例如腈),可能需要引入诸如硫磺这样的固化剂来促进硫化过程。基于弹性材料的材料构成,电感性传感器100能够适合于高至400°F或者更高的温度。 
在步骤206,感应结构可以被除去空气,以去除气泡。除去空气使得感应模具的膨胀能够得到控制,并且可再现。本领域普通技术人员将会意识到,任何已知的用于除去空气的技术和方法都可以采用。 
如果电感性传感器100被应用在可能出现污染的环境中,则电感性传感器100可以被配置为包括保护性涂层和/或被安装在保护性壳体中。在步骤208,感应模具可以用诸如 
Figure GPA00001010840100033
的保护性材料来封装,和/或被封装在容器中,形成为柱体,或者以所希望的任何其它适当的封装手段而形成。本领域普通技术人员将会意识到,所公开的方法可以通过机器来执行。 
图3示出了用于使用示例性电感性传感器感测井内压力的示例性系统300。该示例性系统300可以是在2006年3月31日提交的美 国专利申请11/394186中所描述的遥感勘测系统,关于这种遥感勘测系统的附加细节可以在该申请中找到,其内容完整并入作为参考。 
遥感勘测系统300包括用于产生电磁(EM)能量并将EM能量施加到诸如井洞管壁或生产管道这样的(未示出的)传输装置的装置,如信号发生器302。信号发生器302可以产生作为脉冲(例如脉冲或线性调频脉冲(chirps)的一个或多个序列)的EM能量。EM能量可以在所希望的低分辨率(例如1个脉冲/秒)和所希望的高分辨率(例如20kHz或更高)的信号之间限定的范围内生成。诸如一个或多个井下换能器304这样的调制装置耦合到生产管道,用于和脉冲EM能量中的至少一些相互作用,并将脉冲EM能量中的至少一些调制到“回响频率”。诸如位于地表处或地表附近的接收器306这样的接收装置接收在回响频率下由换能器304所反射的EM能量。接收器306以比回响频率或者EM能量的频率高得多的速率对EM能量进行采样,从而使原始信号可以被再现。 
在EM能量为EM脉冲形式的实施例中,使用了EM脉冲发生器。用于生成EM脉冲的非核能装置对于核武器专家来说是已知的。这样的EM脉冲发生器典型地被用于通过模拟与核爆冲击波相关的EM脉冲而对电子设备进行测试。例如参见美国专利号3562741(McEvoy等);4430577(Bouquet);4845378(Garbe等);以及5150067(McMillan)。 
如图3所示,所述的一个或多个换能器304可包括诸如电感性传感器100这样的电感性元件308以及电容性元件310。电感性元件100可以被配置为感测通过所观测的压缩范围的钻井的特征,例如压力,并基于该压缩对EM能量的频率进行调制。电容性元件310被耦合到电感性元件308,以形成一个储能电路(tank circuit)。电容性元件310可以被配置为与电感性元件308相比对温度和压力不那么敏感。 
当遥感勘测系统300被配置为包括多个换能器304时,每个换能器304可以被配置为以不同的“回响”频率操作。例如,每个换能器304可包括一个具有不同铁磁材料构成(即重量构成,重量百分比)的电 感性元件308,其在多个换能器304之间导致对压力的不同敏感性。 
接收器306可包括处理装置,如处理器312。本领域普通技术人员将会意识到,处理器312可以被实现为计算机或者所希望的其它适当的硬件和/或软件处理装置。在将换能器304放置到井中之前,换能器304的调制(回响)频率可以用和处理器312相关联的图形用户界面(GUI)进行校准。作为结果,处理器312可被配置为存储将不同回响频率值与所观测的电感性元件308的压缩范围相互关联的信息(例如查找表、文件和/或数据库)。 
图4是示出了使用包括与遥感勘测系统300相关联的示例性电感性元件100的换能器感测压力的示例性方法的流程图。在步骤400,脉冲发生器302生成EM能量,并通过生产管道将EM能量提供给换能器304。耦合到生产管道的换能器304与EM能量相互作用,并以由换能器304的电感性元件308所确定的回响频率反射EM能量。 
电感性元件308的电感可基于电感性元件通过井洞内观测到的压力被压缩的程度而改变。在步骤402,接收器306接收反射的EM能量。基于预先的校准,接收器306的处理器312使用诸如查找表这样的手段将接收到的EM能量的回响频率与压力值相关联(步骤404)。例如,处理器312基于换能器304的回响频率确定电感性元件308的电感值。处理器312将电感性元件308的电感值与电感性元件308的压缩程度相关联。然后处理器312将电感性元件308的压缩与井内压力相关联。 
图5示出了具有安装在外壳内的电感性传感器502的示例性装置500。如图5所示,电感性传感器502被封装在容器504内。电感性传感器502可以被配置为包括如针对图1所示的电感性传感器所描述的物理特性和性能。电感性传感器502也可以被配置为由容器504所确定的任何形状和/或适于实现容器504内期望的响应的形状。容器504还包括负荷承载元件506,如活塞,以及用于将负荷和力施加到负荷承载元件506上的端口508。处理器510可以连接到该容器,以根据电感性传感器502的电感计算容器内的压力。 
图6是示出了使用图5所示的电感性传感器502感测压力的方法的流程图。在步骤600中,压力被施加到容器的诸如活塞的负荷承载元件506上,使得电感性元件502被压缩。在步骤602,处理器510监控并记录电感性传感器502的电感测量值。在步骤604,处理器510基于测得的电感性传感器502的电感确定电感性传感器502的观测到的压缩程度。处理器510将所确定的压缩与容器504内的压力相关联(步骤606)。 
尽管已经参照特定实施例描述了本发明,但本说明书仅仅是通过示例来表述本发明,而不是作为对本发明的限制,还存在许多变化。本领域技术人员可以做出多种修改和应用,而不会背离所附权利要求所限定的本发明的主旨和保护范围。 

Claims (15)

1.一种压力感测装置,包括:
容器,所述容器包括:
端口;
至少部分符合所述容器的形状的成形弹性件;
作为分散颗粒嵌入到成形弹性件中的铁磁材料,其中铁磁颗粒的重量百分比被选择为使得成形弹性件的电感针对成形弹性件的给定压缩变化一个预定量;以及
设置在所述成形弹性件和所述端口之间的负荷承载元件。
2.根据权利要求1的感测装置,还包括:
耦合到所述成形弹性件的电容性元件。
3.根据权利要求2的感测装置,其中所述电容性元件与所述成形弹性件相比对温度和压力不那么敏感。
4.根据权利要求2的感测装置,其中所述成形弹性件和电容性元件构成储能电路。
5.一种用于感测井洞内的压力的系统,包括:
用于产生电磁能量的装置;和
用于对电磁能量进行频率调制的装置,其中调制装置包括远离所述用于产生电磁能量的装置定位的电感性元件,所述电感性元件包括:
成形弹性件;和
作为分散颗粒嵌入到成形弹性件中的铁磁材料,其中铁磁颗粒的重量百分比被选择为使得成形弹性件的电感针对成形弹性件的给定压缩变化一个预定量。
6.根据权利要求5的系统,还包括:
用于接收经过调制的电磁能量的装置;和
用于对经过调制的电磁能量进行处理以确定压力的装置。
7.根据权利要求5的系统,其中所述用于产生电磁能量的装置包括电磁脉冲发生器。
8.根据权利要求5的系统,其中调制装置包括:
耦合到所述电感性元件的电容性元件。
9.根据权利要求8的系统,其中所述电容性元件与所述电感性元件相比对温度和压力不那么敏感。
10.根据权利要求6的系统,其中所述用于接收经过调制的电磁能量的装置包括地表RF接收器。
11.根据权利要求6的系统,其中所述用于对经过调制的电磁能量进行处理以确定压力的装置涉及使用已知压力调制相互关系的查找表。
12.一种使用具有可压缩的电感性元件的换能器感测压力的方法,该方法包括:
将电磁能量提供给换能器,该换能器被配置为以通过该换能器的电感所确定的回响频率来反射电磁能量,其中所述电感响应于所述电感性元件的压缩而变化;并且
将由所述换能器所反射的电磁能量的回响频率与压力值相关联。
13.根据权利要求12的方法,其中所述电磁能量是作为连续波发射的。
14.根据权利要求12的方法,其中所述电磁能量是作为脉冲发射的。
15.根据权利要求12的方法,其中使用查找表将所述回响频率与压力值相关联。
CN200880100875.1A 2007-07-30 2008-07-30 使用电感性元件感测压力的系统和方法 Expired - Fee Related CN101765698B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/882,104 2007-07-30
US11/882,104 US7841234B2 (en) 2007-07-30 2007-07-30 System and method for sensing pressure using an inductive element
PCT/US2008/009161 WO2009017728A1 (en) 2007-07-30 2008-07-30 System and method for sensing pressure using an inductive element

Publications (2)

Publication Number Publication Date
CN101765698A CN101765698A (zh) 2010-06-30
CN101765698B true CN101765698B (zh) 2014-01-22

Family

ID=40304659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880100875.1A Expired - Fee Related CN101765698B (zh) 2007-07-30 2008-07-30 使用电感性元件感测压力的系统和方法

Country Status (8)

Country Link
US (2) US7841234B2 (zh)
EP (1) EP2185793A4 (zh)
CN (1) CN101765698B (zh)
AU (1) AU2008282816B2 (zh)
BR (1) BRPI0814156A2 (zh)
CA (1) CA2693629C (zh)
EA (2) EA019220B1 (zh)
WO (1) WO2009017728A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008031021A2 (en) 2006-09-08 2008-03-13 Chevron U.S.A., Inc. A telemetry apparatus and method for monitoring a borehole
US8106791B2 (en) * 2007-04-13 2012-01-31 Chevron U.S.A. Inc. System and method for receiving and decoding electromagnetic transmissions within a well
WO2009032899A2 (en) * 2007-09-04 2009-03-12 Chevron U.S.A. Inc. Downhole sensor interrogation employing coaxial cable
US10488286B2 (en) * 2009-11-30 2019-11-26 Chevron U.S.A. Inc. System and method for measurement incorporating a crystal oscillator
US8863836B2 (en) 2010-04-06 2014-10-21 Chevron U.S.A. Inc. Systems and methods for logging cased wellbores
US8511373B2 (en) 2011-04-27 2013-08-20 Chevron U.S.A. Inc. Flow-induced electrostatic power generator for downhole use in oil and gas wells
US9556712B2 (en) 2011-04-27 2017-01-31 Chevron U.S.A., Inc. Flow induced electrostatic power generator for tubular segments
US9685890B2 (en) 2011-04-27 2017-06-20 Chevron U.S.A. Inc. Flow induced electrostatic power generator for tubular segments
US8714239B2 (en) 2011-04-27 2014-05-06 Luis Phillipe TOSI Flow-induced electrostatic power generator for downhole use in oil and gas wells
US20150086152A1 (en) * 2013-09-20 2015-03-26 Halliburton Energy Services, Inc. Quasioptical waveguides and systems
US20160266277A1 (en) 2013-11-06 2016-09-15 Fmc Technologies, Inc. Continuous sensor measurement in harsh environments
US10401238B2 (en) 2014-02-26 2019-09-03 3M Innovative Properties Company Force responsive inductors for force sensors
WO2016000033A1 (en) * 2014-07-01 2016-01-07 Waratek Limited Command injection protection for java applications
US10747196B2 (en) 2018-04-16 2020-08-18 Hamilton Sundstrand Corporation Blast wave detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355714A (en) * 1992-02-26 1994-10-18 Nippondenso Co., Ltd. Pressure sensor using a pressure responsive magnetic film to vary inductance of a coil
US5821129A (en) * 1997-02-12 1998-10-13 Grimes; Craig A. Magnetochemical sensor and method for remote interrogation
US6393921B1 (en) * 1999-05-13 2002-05-28 University Of Kentucky Research Foundation Magnetoelastic sensing apparatus and method for remote pressure query of an environment
CN2660121Y (zh) * 2003-12-08 2004-12-01 大庆石油管理局 井底压力采集接头

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320579A (en) * 1966-04-11 1967-05-16 Frank R Abbott Compliant variable reluctance electroacoustic transducer
US3562741A (en) * 1967-04-05 1971-02-09 Burroughs Corp Electromagnetic pulse generating system
DE1694049A1 (de) * 1967-08-31 1971-05-27 Elastomer Ag Zellige Polymere und daraus hergestellte Koerper
US4218507A (en) * 1975-01-13 1980-08-19 Graham Magnetics, Inc. Coated particles and process of preparing same
US4023136A (en) * 1975-06-09 1977-05-10 Sperry Rand Corporation Borehole telemetry system
US4160970A (en) * 1977-11-25 1979-07-10 Sperry Rand Corporation Electromagnetic wave telemetry system for transmitting downhole parameters to locations thereabove
US4308499A (en) * 1978-05-26 1981-12-29 Kali Und Salz A.G. Method utilizing electromagnetic wave pulses for determining the locations of boundary surfaces of underground mineral deposits
US4282487A (en) * 1979-09-26 1981-08-04 Trw Inc. Subsea hydrocarbon sensor system
FR2520951A1 (fr) * 1982-02-04 1983-08-05 Commissariat Energie Atomique Generateur d'impulsions electromagnetiques de haute tension
CH673357A5 (zh) * 1987-03-02 1990-02-28 Bbc Brown Boveri & Cie
US4839644A (en) * 1987-06-10 1989-06-13 Schlumberger Technology Corp. System and method for communicating signals in a cased borehole having tubing
NO163578C (no) 1987-10-23 1990-06-20 Saga Petroleum Fremgangsmaate og innretning for overfoering av maaledata fra en oljebroenn til overflaten.
US5150067A (en) * 1990-04-16 1992-09-22 Mcmillan Michael R Electromagnetic pulse generator using an electron beam produced with an electron multiplier
DE69222207T2 (de) * 1991-03-13 1998-03-05 Westinghouse Electric Corp Verfahren zur Feststellung des Verformungmasses in einem Material, in Reaktion auf eine zusammendrückende Kraft
JPH05267066A (ja) * 1992-03-19 1993-10-15 Sony Corp インダクタンス素子
GB9212685D0 (en) * 1992-06-15 1992-07-29 Flight Refueling Ltd Data transfer
AU685132B2 (en) * 1993-06-04 1998-01-15 Gas Research Institute, Inc. Method and apparatus for communicating signals from encased borehole
US5497147A (en) * 1993-06-21 1996-03-05 Microstrain, Company Differential variable reluctance transducer
US5467083A (en) * 1993-08-26 1995-11-14 Electric Power Research Institute Wireless downhole electromagnetic data transmission system and method
US5451873A (en) * 1993-10-05 1995-09-19 Schlumberger Technology Corporation Method and apparatus for determining the in situ larmor frequency of a wellbore NMR tool to compensate for accumulation of magnetic material on the magnet housing of the tool
US5686779A (en) * 1995-03-01 1997-11-11 The United States Of America As Represented By The Secretary Of The Army High sensitivity temperature sensor and sensor array
DE69610388T2 (de) * 1995-04-28 2001-03-29 Koninkl Philips Electronics Nv Batterieladevorrichtung
US5942991A (en) * 1995-06-06 1999-08-24 Diversified Technologies, Inc. Resonant sensor system and method
USH1744H (en) * 1995-09-21 1998-08-04 Clayton; Stanley R. Wireless remote sensing thermometer
US5852262A (en) * 1995-09-28 1998-12-22 Magnetic Pulse, Inc. Acoustic formation logging tool with improved transmitter
US6025725A (en) * 1996-12-05 2000-02-15 Massachusetts Institute Of Technology Electrically active resonant structures for wireless monitoring and control
US6234257B1 (en) * 1997-06-02 2001-05-22 Schlumberger Technology Corporation Deployable sensor apparatus and method
GB2386691B (en) 1999-06-22 2003-12-24 Axon Instr Ltd Ratio tool
US6633236B2 (en) * 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
US7114561B2 (en) * 2000-01-24 2006-10-03 Shell Oil Company Wireless communication using well casing
US6670880B1 (en) * 2000-07-19 2003-12-30 Novatek Engineering, Inc. Downhole data transmission system
US6434372B1 (en) * 2001-01-12 2002-08-13 The Regents Of The University Of California Long-range, full-duplex, modulated-reflector cell phone for voice/data transmission
JP4164290B2 (ja) 2002-05-20 2008-10-15 古野電気株式会社 超音波送受信装置およびスキャニングソナー
GB2434165B (en) * 2002-12-14 2007-09-19 Schlumberger Holdings System and method for wellbore communication
US7158049B2 (en) * 2003-03-24 2007-01-02 Schlumberger Technology Corporation Wireless communication circuit
GB2399921B (en) * 2003-03-26 2005-12-28 Schlumberger Holdings Borehole telemetry system
US7397388B2 (en) * 2003-03-26 2008-07-08 Schlumberger Technology Corporation Borehold telemetry system
US7234519B2 (en) * 2003-04-08 2007-06-26 Halliburton Energy Services, Inc. Flexible piezoelectric for downhole sensing, actuation and health monitoring
FR2854689B1 (fr) * 2003-05-07 2005-09-02 Commissariat Energie Atomique Dispositif, systeme et procede de mesure de deformations mecaniques et/ou thermiques uniaxiales au moyen d'une fibre optique a reseau de bragg
US7537416B2 (en) * 2003-05-30 2009-05-26 Chevron Usa Inc Riser support system for use with an offshore platform
US7168487B2 (en) * 2003-06-02 2007-01-30 Schlumberger Technology Corporation Methods, apparatus, and systems for obtaining formation information utilizing sensors attached to a casing in a wellbore
JP2005098726A (ja) * 2003-09-22 2005-04-14 Hosiden Corp 振動センサ
WO2005050257A2 (en) * 2003-11-18 2005-06-02 Halliburton Energy Services, Inc. High temperature imaging device
US7256707B2 (en) * 2004-06-18 2007-08-14 Los Alamos National Security, Llc RF transmission line and drill/pipe string switching technology for down-hole telemetry
US7180826B2 (en) * 2004-10-01 2007-02-20 Teledrill Inc. Measurement while drilling bi-directional pulser operating in a near laminar annular flow channel
US7548068B2 (en) * 2004-11-30 2009-06-16 Intelliserv International Holding, Ltd. System for testing properties of a network
GB2421449B (en) * 2004-12-21 2009-06-03 Daniel Stefanini Fluid treatment method and apparatus
US7699770B2 (en) * 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
US7454978B2 (en) 2005-11-16 2008-11-25 Delphi Technologies, Inc. Versatile strain sensor employing magnetostrictive electrical conductors
US8077053B2 (en) * 2006-03-31 2011-12-13 Chevron U.S.A. Inc. Method and apparatus for sensing a borehole characteristic
WO2008031021A2 (en) * 2006-09-08 2008-03-13 Chevron U.S.A., Inc. A telemetry apparatus and method for monitoring a borehole
US8106791B2 (en) * 2007-04-13 2012-01-31 Chevron U.S.A. Inc. System and method for receiving and decoding electromagnetic transmissions within a well
US7583085B2 (en) * 2007-04-27 2009-09-01 Hall David R Downhole sensor assembly
US7530737B2 (en) * 2007-05-18 2009-05-12 Chevron U.S.A. Inc. System and method for measuring temperature using electromagnetic transmissions within a well

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355714A (en) * 1992-02-26 1994-10-18 Nippondenso Co., Ltd. Pressure sensor using a pressure responsive magnetic film to vary inductance of a coil
US5821129A (en) * 1997-02-12 1998-10-13 Grimes; Craig A. Magnetochemical sensor and method for remote interrogation
US6393921B1 (en) * 1999-05-13 2002-05-28 University Of Kentucky Research Foundation Magnetoelastic sensing apparatus and method for remote pressure query of an environment
CN2660121Y (zh) * 2003-12-08 2004-12-01 大庆石油管理局 井底压力采集接头

Also Published As

Publication number Publication date
BRPI0814156A2 (pt) 2015-01-06
EA201200039A1 (ru) 2012-05-30
AU2008282816A1 (en) 2009-02-05
US20110022336A1 (en) 2011-01-27
EP2185793A1 (en) 2010-05-19
EA201070203A1 (ru) 2010-08-30
EA019220B1 (ru) 2014-02-28
EP2185793A4 (en) 2014-07-30
US7841234B2 (en) 2010-11-30
CA2693629A1 (en) 2009-02-05
AU2008282816B2 (en) 2014-07-10
WO2009017728A1 (en) 2009-02-05
US8261607B2 (en) 2012-09-11
CN101765698A (zh) 2010-06-30
EA021214B1 (ru) 2015-04-30
CA2693629C (en) 2016-03-29
US20090031796A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
CN101765698B (zh) 使用电感性元件感测压力的系统和方法
Sergienko et al. Noise and vibration in friction systems
JP2005121649A5 (zh)
US9800057B2 (en) Device for transfer of electrical signals and/or electrical energy
Zhu et al. The use of miniature soil stress measuring cells in laboratory applications involving stress reversals
Alramahi et al. A suction-control apparatus for the measurement of P and S-wave velocity in soils
Staubach et al. Long-term response of piles to cyclic lateral loading following vibratory and impact driving in water-saturated sand
CN105627106A (zh) 一种输气管道泄漏检测的次声传感器
CN102445334B (zh) 用于盘式刹车片上共振频率测量的测量系统
Besharatifard et al. Acoustic based localization of partial discharge inside oil-filled transformers
CN106323513A (zh) 测量设备的差分法向压力的压力传感器设备及相关方法
CN111722026B (zh) 基于磁声系统的绝缘介质空间电荷测量方法及系统
CN114863778A (zh) 一种分离式化爆模拟实验装置及其实施方法
Reyne et al. Magnetic forces and mechanical behavior of ferromagnetic materials. Presentation and results on the theoretical, experimental and numerical approaches
US11156447B2 (en) Continuous gap measurement
Duddi et al. Evaluation of boundary and material influences on the dynamic electromechanical impedance response of the embedded PZT sensor in concrete
Sisemore et al. Project Sterling: Subsurface phenomenology measurements near a decoupled nuclear event
CN202403792U (zh) 一种变压器振动检测传感器
Maksimov et al. Sounds of undersea gas leaks
CN109983365B (zh) 用于地震传感器响应修正的系统和方法
WO2019197949A1 (en) Low power water cut sensing
Seraj et al. Improving sand flow rate measurement of commercial ASDs and comparison with ultrasonic spectral analysis and filtering
Czaszejko et al. Acoustic emission from partial discharges in solid dielectrics
Anwar et al. Design and Implementation of a Piezoelectric Accelerometer Using Arduino Mega for Detection of Vibration on the 20 kV Transformer Tank
Winnicki et al. Geometric factors affecting hydrophone performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140122

Termination date: 20170730