CN101802572B - 光谱计装置 - Google Patents

光谱计装置 Download PDF

Info

Publication number
CN101802572B
CN101802572B CN200880020833.7A CN200880020833A CN101802572B CN 101802572 B CN101802572 B CN 101802572B CN 200880020833 A CN200880020833 A CN 200880020833A CN 101802572 B CN101802572 B CN 101802572B
Authority
CN
China
Prior art keywords
radiation
diverting device
detector
spectrometer arrangement
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880020833.7A
Other languages
English (en)
Other versions
CN101802572A (zh
Inventor
H·贝克-罗斯
M·奥克鲁斯
S·弗洛雷克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Analytische Wissenschaften ISAS eV
Original Assignee
Leibniz Institut fuer Analytische Wissenschaften ISAS eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Analytische Wissenschaften ISAS eV filed Critical Leibniz Institut fuer Analytische Wissenschaften ISAS eV
Publication of CN101802572A publication Critical patent/CN101802572A/zh
Application granted granted Critical
Publication of CN101802572B publication Critical patent/CN101802572B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/22Littrow mirror spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/08Beam switching arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1809Echelle gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector

Abstract

一种光谱计装置(10)具有光谱计,用于在探测器(34)上产生来自辐射源的辐射的光谱,它包含有一个成像的,光学的利特罗装置(18,20),用于使进入光谱计装置里的辐射(16)成像在一个图像平面里,有第一分散装置(28,30),用于对进入光谱计装置里的辐射的第一波长范围进行光谱分解,还有第二分散装置(58,60),用于对进入光谱计装置里的辐射的第二波长范围进行光谱分解,以及有一个共同的布置在成像光学机构的图像平面里的探测器(34),其特征在于,成像的光学机构(18,20)包括有在两个位置(20,50)之间运动的元件(20),其中射入光谱计装置里的辐射在第一位置上通过第一分散装置,而在第二位置上通过第二分散装置进行传导。

Description

光谱计装置
技术领域
本发明涉及一种光谱计装置,它具有一个光谱计,用于在一个探测器上产生来自辐射源的辐射的光谱,它包含有
(a)一个成像的,光学的利特罗装置,用于使进入光谱计装置里的辐射成像在一个图像平面里,
(b)有第一分散装置,用于对进入光谱计装置里的辐射的第一波长范围进行光谱分解,
(c)还有第二分散装置,用于对进入光谱计装置里的辐射的第二波长范围进行光谱分解,
(d)以及有一个共同的布置在成像光学机构的图像平面里的探测器。
光谱计用于对辐射进行光谱分解。其中在利特罗装置里应用了一个成像的光学机构的光谱计装置的一个例子表示在公开出版物“光学测量仪技术手册”中,VEB卡尔-蔡司-耶那,耶那,1963年4月,书号32-038-1,在“反射镜单色仪SPM2”章节中(“Technisches Handbuch für optische
Figure G2008800208337D00011
VEB Carl Zeiss Jena,Jena,April 1963,Durckschriftennummer32-038-1 im Kapitel“Spiegelmonochromator SPM2”gezeigt)。在进入间隙之后布置了一个偏转棱镜。偏转棱镜将辐射引导到一个抛物线反射镜上。这里使发散的辐射平行化。平行的光束在反射镜上从进入间隙平面里出来,反射在一个棱镜装置上,并在这里分散。一个反射镜将分散的辐射自己反射回去并重新通过棱镜。从这里通过抛物线反射镜使辐射引出并聚焦。装置这样来调整,使得分散的辐射略有偏移地射到抛物线反射镜上。它因此在偏转棱镜上在射出间隙方向上发生偏转。
波长光谱及其变化尤其在分析任务中是一种经常的基础。具有高的光谱分辨率的光谱用中阶梯光谱计来达到。
在中阶梯光谱计中应用一个具有一种阶梯状横断面的栅格。通过一个具有相应照耀角的阶梯状结构产生一种衍射图案,该衍射图案使衍射强度集中于高的阶次,例如第50至第100阶次。因此在紧凑布置时可以达到高的光谱分辨率。这些阶次可以根据射入的波长而相互重叠。这些阶次因而再次横向垂直于分散平面被分散,以便使各种不同的出现的阶次分开。人们就得到一种二维的光谱,它可以用表面探测器来检测。
一种这样的具有内部的阶次分离的中阶梯光谱计与具有外部的阶次分离的中阶梯光谱计的区别在于:后者只是使辐射从一个小的光谱范围里进入光谱计里。对于具有内部的阶次分离的中阶梯光谱计来说,在探测器上产生一种二维结构形式的光谱。这种结构由基本平行布置的光谱段,其大小为一个自由光谱范围。具有许多探测器元件的表面探测器允许对一个大的波长范围进行具有高分辨率的同步检测。
横向分散通常选择如此之大,以至于阶次到处都完全分开了。为了在整个光谱范围上保证它,有一些光谱范围,在这些光谱范围里在各个阶次之间产生一个没有利用的中间空间。因此在应用一个棱镜,用于在短波的光谱范围里实现横向分散时,由于较高的折射率而产生比在长波的光谱范围里时更大的中间空间。
在所述的装置时,不利之处在于:如果要用高分辨率和足够的光电导率来检测较大的光谱范围,那么探测器一般必须很大。此外,如果辐射源以很不相同的光谱强度发射的话,那就有问题。因此在光谱学里重要的光谱范围从193nm至852nm虽然被一些辐射器完全遮盖,然而在超过350nm的范围里的强度往往比短波的光谱范围里在200时的强度要高几个数量级。探测器通常没有足够的动态范围,因此只能用灵敏度的损失来模拟检测光谱范围,或者必须相互分开地用不同的曝光时间来测量。
已知有一种装置,其中利用了阶次之间的中间空间。光谱计设有一个装置用于将进入光谱计的辐射进行预分散。辐射在一个棱镜上以很小的角度进行预分散。此外选择一种入射间隙高度,它与短波的光谱范围里的两个阶次之间的中间空间的最大宽度对应一致。通过入射间隙的适合的照射,短波辐射可以完全射入光谱计里。长波辐射范围的辐射通过预分散只是部分地射在入射间隙上。因而在阶次分离不是如此大的范围里,一种较小的入射间隙高度变得有效。按此方式,对于一般强度变弱的短波光谱范围来说,光电导率提高了。
通过这种装置虽然完全地充分利用了探测器表面,但探测器大小保持相同。每个探测器元件的照射强度通过这装置实际上也并不改变。为此在附带的光学元部件上出现总的损失。
另外还已知有一种装置,它提供在整个光谱范围上更加均匀的横向分散,实现了对探测器表面更好的充分利用。这种更加均匀的横向分散通过如下途径来达到:通过两个不同材料的,互相相反的棱镜引起横向分散。分散则由两种材料的分散之差来确定。必须应用大的棱镜角,以便达到足够大的差。在同时只是小的合成的分散时,相应地产生了传输损失。
此外已知一种装置,此处应用了由棱镜和光栅组成的组合用来产生横向分散。棱镜在短波的光谱范围里具有较高的分散,而光栅则在长波的光谱范围里。组合比其中单独一个产生一种更加均匀的横向分散。然而在这种装置中不利之处是:通过不同阶次的横向分散光栅失去了阶次分离的唯一性。如果在宽的范围上要同时地进行测量,那么这里也就有探测器的动态范围方面的困难。
在一种由DE202004 28 001和按标记“ARYELLE”得知的双光谱计中,除了第一光谱计装置之外还应用了第二光谱计装置。两个光谱计装置有一个自身的入射间隙,一个自身的分散装置和一个自身的成像光学机构。这允许对不同波长范围的光学元部件进行单独分开的最优化。光谱计装置用一个共用的探测器工作,这探测器布置在一个公共的图像平面里。根据那个入射间隙被照射,探测器就探测来自一个或者另一个波长范围的辐射。所有的构件都固定地装配。为此例如应用一种削波器或者类似的器件。装置由于有许多光学构件,其调整费钱而费事。
发明内容
本发明的任务是更加简单而经济地设计一种开头所述种类的光谱计装置。
按照本发明这任务如下来解决:成像的光学的装置包括有一个在两个位置之间可运动的元件,其中射入光谱计装置里的辐射在第一位置上通过第一分散装置,而在第二位置上通过第二分散装置进行传导。
与已知的装置相反,只是需要一个入射间隙,在一定条件下也只需要一个削波器。入射间隙的照射相应更简单了。在光谱计之内将辐射分成两个波长范围。共同利用利特罗装置里的成像光学机构使光学构件的数量减少。装置因此成本更低。仅一个成像光学机构的部件设计成可活动的,以便使光路布置在一个或者另一个分散装置。
成像的光学的装置优选包括有一个凹面反射镜,它通过一种旋转运动可以从第一位置运动到第二位置上。通过适合地选择旋转轴线,凹面反射镜可以根据波长范围的不同照射一个或者另一个分散装置。第一分散装置可以布置在一个平面之外,这个平面由入射间隙,凹面反射镜和探测器,或它们的中心点来确定,而第二分散装置则布置在这个平面之外的另一边。辐射通过入射间隙,经过一个偏转反射镜,并在凹面反射镜上,例如向上偏转。在分散之后,除了一个小的侧偏移之外辐射本身返回。通过这种偏移,辐射经过一个偏转反射镜射向了射出间隙方向。如果要测量另一个波长范围,那么可以通过旋转凹面反射镜向下偏转到另一个分散装置上。
凹面反射镜优选是一个偏离轴抛物线反射镜。但是一种环形反射镜或者一种球面反射镜也适合于此目的。用一种偏离轴抛物线反射镜达到一种特别好的成像质量。
偏离轴旋转轴线优选通过凹面反射镜的焦点,因而在一个波长的入射和出射的辐射之间的偏转角的值与在第一和第二位置上相同。因而实现了高成像质量的对称布置。
在本发明的一种特别优选地设计方案中,第一和/或第二分散装置包括有一个中阶梯光栅和另一个横向于中阶梯光栅的分散方向起作用的分散元件。用一个中阶梯光栅和一种横向分散产生一种高分辨的,二维的光谱。因为这光谱只是在一个选出的,也就是有限制的波长范围之上被探测,因此一种较小的表面探测器就足够可以进行探测了。
优选在图像平面里设有一种具有许多探测器元件的二维装置的表面探测器。这可以在选出的波长范围里实现同步测量。通过线周围背景的测量可以使结果标准化并相对于背景进行校正。
分散装置的元件的光学性能关于配属的波长范围进行了优化。这样的优化可以涉及光栅常数,照耀角,棱镜的折射角,棱镜材料和光学部件的涂覆层。此外探测器的动态范围可以匹配于各波长范围。
本发明的设计方案可见从属权利要求。以下按照附图对一个实施例进行详细说明。
附图说明
图1是一个具有可摆动凹面反射镜的双光谱计的立体图。
图2是图1所示双光谱计的一个俯视图。
图3是图1和2所示双光谱计的一个侧视图。
图4表示了在测量较长波的光谱范围时在探测器上的强度分布。
图5表示了在测量较短波的光谱范围时在探测器上的强度分布。
具体实施方式
图1表示了一个共同用10标识的光谱计装置的主要元部件。强制必须的,但对于本发明来说并不重要的构件,例如像辐射源,外壳,保持架和电子装置为了更加一目了然起见没有表示出。
从一个未示出的辐射源出来的辐射12通过入射间隙14进入光谱计里。在一个平面反射镜18上使辐射16在向着一个偏离轴线的抛物线反射镜20的方向上,以一个大约90°角反射。抛物线反射镜首先起准直反射镜的作用。发散的辐射22通过反射镜20的反射镜面24的抛物线状的弯曲而实现平行化。
偏离轴抛物线反射镜这样地布置,使射入的辐射22略为向上偏转。这可以特别好地在侧视图3中在箭头方向3上见到。向上的辐射26在第一中阶梯光栅28上,在主分散方向上,和在一个石英棱镜30上在一个与之垂直的横向分散方向上进行分散。中阶梯光栅28产生一个高分辨的光谱,它具有许多阶次,这些阶次通过横向分散在棱镜30上被“分开”。光栅28如此定向,从而使发散的辐射32对应于利特罗装置基本上自己就返回。辐射重新通过棱镜30,并按此方式在横向分散方向上二次进行分散。
偏离轴抛物线反射镜20布置在利特罗装置里并对于返回的辐射32来说用作为相机镜用于使发散的辐射在一个射出平面34里聚焦。在图2中可见辐射大致偏移一段距离36射在反射镜20上。在反射镜20上,发散的辐射26在探测器34上在一个图像平面里被聚焦。通过偏移,聚焦的辐射38射到另一个平面反射镜40上。平面反射镜40将辐射38反射至在图像平面34里的探测器。平面反射镜40与平面反射镜18布置成直角。按此方式,可以使入射间隙和探测器相互对峙地布置在一个轴线上。这可以很好地在俯视图图2中的箭头2的方向上见到。
具有中阶梯光栅28和棱镜30的分散装置这样来设计,从而使选出的波长范围,例如短波波长范围在350nm和190nm之间,投在探测器上。石英棱镜的分散在这短波范围里比较高。也就是说,只需要一个小的棱镜角用来进行横向分散,这个角足够用于使得在波长范围大约350nm时的阶次在探测器上干净地相互分开。中阶梯光栅的光栅常数这样来选择,以至于在350nm时的阶次正好完全相配于探测器。较低的阶次(它们在这种光栅常数时伸出了探测器)就不需要加以考虑了。这样产生的在190至350之间的光谱因此遮盖了整个探测器表面。因为例如在测量中应用在原子吸收光谱测量法里的连续辐射源,像Xe-高压灯或者氘灯的强度是小的,因此这样调整探测器的动态范围,从而使小的强度也能被测量。
如果要在350nm和852nm之间的波长范围里进行测量,那么使偏离轴抛物线反射镜20围绕一个轴线42旋转180°。这通过箭头44来代表。旋转的偏离轴抛物线反射镜占有第二位置,这位置称为50。因而使辐射22不向上26,而是向下52偏转。
轴线42通过抛物线反射镜的焦点和其对于光束的反射来说必须的轴线外部位的中间。因此这样来设计轴线42,使得辐射的向上偏转的大小46等于在旋转之后辐射向下的偏转的大小48。
这里布置了具有一个中阶梯光栅58和一个棱镜60的另一个分散装置。棱镜60的棱镜角62大于棱镜30的棱镜角64,或者应用另一种具有高分散的棱镜材料。因而使波长范围在350nm和852nm之间的辐射更强烈地在横向分散方向上进行分散,从而即使对于这种波长范围,也使探测器表面得到完全地充分利用。光栅58的光栅常数小于光栅28的光栅常数。因而可以使得在350nm和852nm之间的波长范围里的较低阶次完全射在探测器上。探测器表面在这个方向上也完全被充分利用。在第二分散装置里布置了光栅和棱镜,因此在探测器上的分散方向相比于在第一分散装置旋转了90°。这可以在图4和5中见到。在不是正方形的探测器表面时,变种方案扩展了在光谱几何特征与探测器表面匹配方面的可能性。在这个波长范围里测量时,经常从探测器里读出,以便考虑更高的强度。
在探测器上的两种波长范围的光谱强度分布表示于图4和5中。图4表示了在测量长波光谱范围时的分布。可见,阶次68完全适配于探测器66。这些阶次也完全相互分开。短波范围70并不一起检测。这里阶次通过高的棱镜分散而远远相互分开,并在小的光栅常数时比较短。与此比较,在图5中,长波范围72并不检测。阶次74超出了探测器边缘76和78。此外阶次并不充分地分开。短波范围的阶次由于较小的棱镜分散而相互更紧密。因而使探测器表面更好地得到充分利用。中阶梯光栅上较高的光栅常数导致较长的阶次和更好的分辨率。
由于探测器外形尺寸较小,边缘辐射靠近轴线以小偏转角延伸。因此减小了成像误差。
按照所示的实施例可见:用一个对于所有波长都共用的入射间隙,一个共有的成像光学机构和一个共有的探测器,通过凹面反射镜的旋转可以使两个不同的分散装置得到照射。通过分散元件的匹配可以最佳地利用宝贵的探测器表面。探测器是较小的,并且可以相应更快地读取。当然,实施例只是举例考察了一种波长范围,也可以选择另外的波长范围。
所述的本发明允许有许多变化方案。因此在一个具有中阶梯光栅的二维分散装置和一个一维的分散装置之间进行交换也是合理的,其中表面探测器既可以用于光谱分辨,也用于在长的入射间隙时的位置分辨。在两个分散装置之间的变换也可以通过偏转反射镜18,34围绕一个竖直轴线旋转180°来实现。这里应用另一个对峙布置的抛物线反射镜。那么使辐射从入射反射镜来到达并不像在图2中那样向右,而是向左偏转。在这里射到第二抛物线反射镜上,这反射镜将辐射引到第二分散装置上。

Claims (6)

1.光谱计装置(10),它具有光谱计,用于在探测器(34)上产生来自辐射源的辐射的光谱,它包含有
(a)成像的、光学的利特罗装置(18,20),用于使进入光谱计装置里的辐射(16)成像在图像平面里,
(b)第一分散装置(28,30),用于对进入光谱计装置里的辐射的第一波长范围(72)进行光谱分解,
(c)第二分散装置(58,60),用于对进入光谱计装置里的辐射的第二波长范围(70)进行光谱分解,
(d)共同的布置在成像光学机构的图像平面里的探测器(66),
(e)在两个位置之间可运动的元件(20),其中射入到光谱计装置里的辐射在第一位置上通过第一分散装置、而在第二位置上通过第二分散装置进行传导,
其特征在于,
(f)在两个位置之间可运动的所述元件是偏离轴抛物线反射镜(20),它通过旋转运动可以从第一位置运动到第二位置上,并且
偏离轴线的旋转轴线(42)延伸通过所述偏离轴抛物线反射镜的焦点,其中一个波长在入射和出射的辐射之间的偏转角的值(46,48)在第一和第二位置上相等。
2.按权利要求1所述的光谱计装置,其特征在于,第一分散装置可以布置在由入射间隙、凹面反射镜和探测器、或它们的中心点所确定的平面之外,而第二分散装置则布置在这个平面之外的另一侧。
3.按上述权利要求之一所述的光谱计装置,其特征在于,第一和/或第二分散装置包括有中阶梯光栅(28,58)和另一个横向于中阶梯光栅的分散方向起作用的分散元件(30,60)。
4.按上述权利要求之一所述的光谱计装置,其特征在于,在图像平面(34)里设有表面探测器,该表面探测器具有许多探测器元件的二维装置。
5.按上述权利要求之一所述的光谱计装置,其特征在于,分散装置的元件的光学性能关于配属的波长范围进行了优化。
6.按权利要求1所述的光谱计装置,其特征在于,第一分散装置是具有中阶梯光栅的二维的分散装置,而第二分散装置是一维的分散装置,因此在探测器上除了光谱分辨率之外,也可以在入射间隙处探测位置分辨率。
将来自辐射源的辐射在选出的波长范围里进行光谱分解的方法,具有以下步骤:
(a)对于光谱计装置的入射间隙进行照射;
(b)借助于在利特罗装置里的成像的光学的装置使辐射成像在图像平面上;
(c)采用分散装置使辐射分散,其中取决于波长范围,用第一或第二分散装置使辐射分散;和
(d)在图像平面里,探测所选出的波长范围的辐射,
其中,
(e)在两个位置之间可以活动的元件取决于所选出的波长范围被调整,从而使进入光谱计装置的辐射在第一位置上通过第一分散装置、而在第二位置上通过第二分散装置来导引,
其特征在于,
(f)所述在两个位置之间可以活动的元件是偏离轴抛物线反射镜,它通过旋转运动可以从第一位置运动到第二位置上,并且
(g)偏离轴线的旋转轴线(42)延伸通过所述偏离轴抛物线反射镜的焦点,其中一个波长在入射和出射的辐射之间的偏转角的值(46,48)在第一和第二位置上相等。
CN200880020833.7A 2007-06-18 2008-05-09 光谱计装置 Expired - Fee Related CN101802572B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007028505A DE102007028505A1 (de) 2007-06-18 2007-06-18 Spektrometeranordnung
DE102007028505.3 2007-06-18
PCT/EP2008/055755 WO2008155169A1 (de) 2007-06-18 2008-05-09 Spektrometeranordnung

Publications (2)

Publication Number Publication Date
CN101802572A CN101802572A (zh) 2010-08-11
CN101802572B true CN101802572B (zh) 2012-12-05

Family

ID=39672086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880020833.7A Expired - Fee Related CN101802572B (zh) 2007-06-18 2008-05-09 光谱计装置

Country Status (6)

Country Link
US (1) US8102527B2 (zh)
EP (1) EP2158460B1 (zh)
CN (1) CN101802572B (zh)
AT (1) ATE552482T1 (zh)
DE (1) DE102007028505A1 (zh)
WO (1) WO2008155169A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028505A1 (de) 2007-06-18 2008-12-24 Gesellschaft zur Förderung angewandter Optik, Optoelektronik, Quantenelektronik und Spektroskopie e.V. Spektrometeranordnung
CN102564591B (zh) * 2011-12-29 2014-04-16 聚光科技(杭州)股份有限公司 一种光谱分析仪和光谱分析方法
US10753796B1 (en) * 2016-10-07 2020-08-25 Lockheed Martin Corporation Photonic integrated circuit optical spectrometer
CN110108692B (zh) * 2019-04-16 2022-01-18 徐州旭海光电科技有限公司 高效光程折叠器件及拉曼探测器和系统
DE102019113478A1 (de) * 2019-05-21 2020-11-26 Analytik Jena Ag Spektrometeranordnung
CN110736541A (zh) * 2019-09-19 2020-01-31 杭州远方光电信息股份有限公司 一种光谱仪

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472595A (en) * 1965-06-15 1969-10-14 Shimadzu Corp Diffraction grating spectrophotometer
DE102004028001A1 (de) * 2004-06-09 2006-01-05 Gesellschaft zur Förderung angewandter Optik, Optoelektronik, Quantenelektronik und Spektroskopie e.V. Echelle-Spektrometer mit verbesserter Detektorausnutzung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390604A (en) 1963-12-25 1968-07-02 Shimadzu Corp Apparatus for interchanging diffraction gratings in a grating spectroscope
US4060327A (en) 1976-09-13 1977-11-29 International Business Machines Corporation Wide band grating spectrometer
US4261638A (en) * 1978-10-02 1981-04-14 Bell Laboratories Optical switch with rotating, reflective, concave surface
JPS60207018A (ja) 1984-03-30 1985-10-18 Shimadzu Corp モノクロメ−タ
DD292078A5 (de) 1990-02-15 1991-07-18 ���k���������������@����@�����@���@�������������k�� Fchelle-polychromator
DE19635046A1 (de) 1996-08-29 1998-03-05 Nis Ingenieurgesellschaft Mbh Spektralanalytische Vorrichtung und Verfahren zur Bestimmung von Elementzusammensetzungen und -konzentrationen
US5757483A (en) 1997-08-06 1998-05-26 Stellarnet, Inc. Dual beam optical spectrograph
JPH11230828A (ja) * 1998-02-12 1999-08-27 Shimadzu Corp エシェル分光器
DE19961908C2 (de) 1999-12-20 2002-03-28 Ges Zur Foerderung Angewandter Optik Optoelektronik Quantenelektronik & Spektroskopie Ev Hochauflösendes Littrow-Spektrometer und Verfahren zur quasi-simultanen Bestimmung einer Wellenlänge und eines Linienprofils
DE10205142B4 (de) * 2002-02-07 2004-01-15 Gesellschaft zur Förderung angewandter Optik, Optoelektronik, Quantenelektronik und Spektroskopie e.V. Anordnung und Verfahren zur Wellenlängenkalibration bei einem Echelle-Spektrometer
US6649901B2 (en) 2002-03-14 2003-11-18 Nec Laboratories America, Inc. Enhanced optical transmission apparatus with improved aperture geometry
DE102007028505A1 (de) 2007-06-18 2008-12-24 Gesellschaft zur Förderung angewandter Optik, Optoelektronik, Quantenelektronik und Spektroskopie e.V. Spektrometeranordnung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472595A (en) * 1965-06-15 1969-10-14 Shimadzu Corp Diffraction grating spectrophotometer
DE102004028001A1 (de) * 2004-06-09 2006-01-05 Gesellschaft zur Förderung angewandter Optik, Optoelektronik, Quantenelektronik und Spektroskopie e.V. Echelle-Spektrometer mit verbesserter Detektorausnutzung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张运杰等.利用半球空间反射比实现色度特性计算的方法研究.《量子电子学报》.2004,第21卷(第3期),第292-293页. *

Also Published As

Publication number Publication date
EP2158460A1 (de) 2010-03-03
US8102527B2 (en) 2012-01-24
EP2158460B1 (de) 2012-04-04
CN101802572A (zh) 2010-08-11
US20100171953A1 (en) 2010-07-08
ATE552482T1 (de) 2012-04-15
WO2008155169A1 (de) 2008-12-24
DE102007028505A1 (de) 2008-12-24

Similar Documents

Publication Publication Date Title
US7518722B2 (en) Multi-channel, multi-spectrum imaging spectrometer
CN101802572B (zh) 光谱计装置
US6100974A (en) Imaging spectrometer/camera having convex grating
CN102656431B (zh) 光谱仪装置
EP0129289A2 (en) A slit imaging system using two concave mirrors
JP5517621B2 (ja) 高感度スペクトル分析ユニット
CN109974852B (zh) 快照式光栅光谱仪
CN102538969A (zh) 高分辨率光谱仪及其光学定标方法
CN208270077U (zh) 高通量宽谱段高分辨率的相干色散光谱成像装置
CN108181238A (zh) 一种光谱仪的中阶梯光栅姿态调整方法和校准装置
WO2010048073A2 (en) Spectrometers with aberration-corrected concave diffraction gratings and transmissive aberration correctors
US5384656A (en) Astigmatism corrected gratings for plane grating and spherical mirror spectrographs
Dawson et al. Tunable, all-reflective spatial heterodyne spectrometer for broadband spectral line studies in the visible and near-ultraviolet
US5973780A (en) Echelle spectroscope
CN108051083A (zh) 一种光谱成像装置
CN110501074A (zh) 高通量宽谱段高分辨率的相干色散光谱成像方法及装置
Allington-Smith et al. Integral field spectroscopy with the Gemini near-infrared spectrograph
McGregor et al. Near-infrared integral-field spectrograph (NIFS): An instrument proposed for Gemini
Hosseini et al. Khayyam: a tunable spatial heterodyne spectrometer for observing diffuse emission line targets
US10578488B1 (en) Compact light dispersion system
Reininger Imaging spectrometer/camera having convex grating
Moniez et al. A transmission hologram for slitless spectrophotometry on a convergent telescope beam. 1. Focus and resolution
Fernandez et al. A far infrared spectrometer for SPICA mission: optical E2E of SAFARI
Tondello et al. High‐resolution Czerny–Turner monochromator for application to undulators
Sablowski et al. SILENT: Spectrograph simulation and emulation tool

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121205

Termination date: 20130509