CN101836363A - 锁相回路中的电压控制振荡器的动态偏置 - Google Patents

锁相回路中的电压控制振荡器的动态偏置 Download PDF

Info

Publication number
CN101836363A
CN101836363A CN200880112920A CN200880112920A CN101836363A CN 101836363 A CN101836363 A CN 101836363A CN 200880112920 A CN200880112920 A CN 200880112920A CN 200880112920 A CN200880112920 A CN 200880112920A CN 101836363 A CN101836363 A CN 101836363A
Authority
CN
China
Prior art keywords
vco
pll
bias current
change
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880112920A
Other languages
English (en)
Other versions
CN101836363B (zh
Inventor
孙博
居坎瓦尔·辛格·萨霍塔
吴越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN101836363A publication Critical patent/CN101836363A/zh
Application granted granted Critical
Publication of CN101836363B publication Critical patent/CN101836363B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • H03J7/06Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers
    • H03J7/065Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers the counter or frequency divider being used in a phase locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0802Details of the phase-locked loop the loop being adapted for reducing power consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • H03L7/0895Details of the current generators
    • H03L7/0898Details of the current generators the source or sink current values being variable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/107Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth
    • H03L7/1075Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth by changing characteristics of the loop filter, e.g. changing the gain, changing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • H03L2207/06Phase locked loops with a controlled oscillator having at least two frequency control terminals

Abstract

本发明提供一种本机振荡器,其包括锁相回路。所述锁相回路包括电压控制振荡器(VCO)及新颖的VCO控制电路。所述VCO控制电路可为可编程的且可配置的。在一个实例中,将改变所述VCO的功率状态的指令接收到所述VCO控制电路上。所述指令是由其它电路响应于蜂窝式电话中所检测到的RF信道条件变化(例如,信噪比确定的变化)而发布的。作为响应,所述VCO控制电路输出控制信号,所述控制信号逐渐加宽所述PLL的回路带宽,接着逐渐改变VCO偏置电流以改变所述VCO功率状态,且接着将所述PLL的所述回路带宽缩窄回到其原始带宽。加宽所述PLL带宽、改变所述VCO功率状态及缩窄所述PLL带宽的整个过程在所述PLL保持锁定的同时发生。

Description

锁相回路中的电压控制振荡器的动态偏置
技术领域
所揭示的实施例涉及本机振荡器,且更明确地说,涉及RF通信装置中的本机振荡器。
背景技术
例如蜂窝式电话等RF通信装置通常使用本机振荡器。蜂窝式电话的接收器电路可(例如)使用第一本机振荡器来产生特定频率的第一参考信号。改变所述第一参考信号的频率以将蜂窝式电话的接收器调谐到所要的操作频率或改变操作频带。类似地,蜂窝式电话的发射器电路可使用第二本机振荡器来产生特定频率的第二参考信号。改变第二参考信号的频率以设定蜂窝式电话发射所处的发射频率。
通常使用称作锁相回路(PLL)的电路来实现蜂窝式电话内的此类本机振荡器。在PLL的控制回路内,电压控制振荡器(VCO)产生信号,其频率由供应到VCO的电压信号确定。所述VCO所输出的信号的质量通常依据某些因素(包括组成VCO的组件的大小及VCO的功率消耗)而改变。举例来说,如果VCO在较高功率下操作,则VCO可将较少相位噪声引入到VCO输出信号中。另一方面,如果VCO在较低功率下操作,则VCO可将较多相位噪声引入到VCO输出信号中。
可容许的相位噪声的量并非为恒定的,而是依据许多因素而改变。如果蜂窝式电话接收器正在具有频率接近于待接收信号的干扰源的环境中操作,则接收器需要VCO输出信号具有较少相位噪声。如果不存在干扰源,则对VCO输出信号质量的要求就较放松。在宽带码分多址(WCDMA)通信系统中,例如,蜂窝式电话可在其正在发射的同时进行接收。为了防止正被发射的信号干扰正被接收的信号,需要具有低相位噪声的接收器VCO输出信号。在WCDMA系统的其它操作模式中(其中发射器未开启),接收器VCO输出信号具有较多相位噪声是可接受的。当不存在强干扰源时,较低质量的VCO输出信号可为足够的。
蜂窝式电话内的VCO电路可消耗大量功率。在例如蜂窝式电话等移动通信装置中,延长蜂窝式电话可依靠单次电池充电来操作的时间量是合乎需要的。第7,151,915号美国专利揭示了确定正被接收到RF通信装置上的信号的信噪比(SNR)。如果发现SNR超过阈值,则降低供应到接收器的VCO的偏置电压,使得将VCO设定到较低功率消耗模式中。然而,如果发现SNR正随时间而降级,则增加供应到接收器的VCO的偏置电压且VCO在较高功率消耗模式中操作。因此,针对所检测的RF信道条件而将VCO功率消耗设定在其最低可接受电平处或接近其最低可接受电平。
发明内容
本机振荡器包括锁相回路。所述锁相回路包括电压控制振荡器(VCO)及新颖的VCO控制电路。所述电压控制电路可作为数字状态机、执行指令的数字处理器、模拟电路或以上各项的组合来实现。在一个新颖方面中,将改变所述VCO的功率状态的指令接收到所述VCO控制电路上。所述指令可由其它电路响应于所检测的RF信道条件变化(例如,信噪比确定的变化)而发布。
响应于接收到所述指令,所述VCO控制电路输出逐渐加宽所述PLL的回路带宽的控制信号。一旦所述PLL的所述回路带宽已被加宽,所述VCO控制电路便逐渐改变供应到所述VCO的VCO偏置电流,且进而改变所述VCO的功率状态。在一个实例中,所述VCO的功率消耗有所增加。在另一实例中,所述VCO的功率消耗有所减少。一旦所述VCO的功率状态已被改变,所述VCO控制电路便将所述PLL的回路带宽逐渐缩窄回到其原始带宽。加宽所述PLL回路带宽、改变所述VCO功率状态及缩窄所述PLL回路带宽的整个过程在所述PLL保持锁定的同时发生。
在一些实例中,用于改变所述VCO的功率状态的动力并不是接收到所述VCO控制电路上的指令,而是所述动力为所述VCO输入电压低于最小下限或高于最大上限。如果所述VCO输入电压经检测为在这些极限中的一者之外,则所述VCO控制电路改变所述VCO功率状态以将所述VCO输入电压移动朝向或移动到所述VCO输入信号电压的操作范围的中心。所述VCO功率状态在将所述PLL维持于锁定时改变。所述PLL回路带宽逐渐被加宽,所述VCO功率逐渐被改变以便使所述VCO输入电压居中,且所述PLL回路带宽逐渐被缩窄回到其原始带宽。
在一个实例中,所述VCO随温度而经特征化以确定VCO输出信号的频率如何作为温度的函数而变化,VCO输出信号如何作为电源电压的函数而变化,及VCO输出信号如何作为VCO偏置电流的函数而变化。在操作中,所述VCO控制信号调整所述VCO偏置电流以补偿所检测的温度改变及所检测的电源电压改变。
前述内容为概述且因此必然含有对细节的简化、概括及省略;因此,所属领域的技术人员将了解,所述概述仅为说明性的且不意味着为限制性的。如仅由权利要求书界定的本文所描述的装置及/或过程的其它方面、发明性特征及优点将在本文陈述的非限制性具体实施方式中变得显而易见。
附图说明
图1是根据一个新颖方面的移动通信装置的高级框图。
图2是图1的移动通信装置内的RF收发器集成电路4的较详细框图。
图3是图2的RF收发器集成电路4内的本机振荡器6的较详细图。
图4是图3的VCO控制电路27的较详细电路图。VCO控制电路27的函数确定块35可作为数字状态机、执行指令的数字处理器、模拟电路或以上各项的组合来实现。
图5是展示一个用于实现图4的VCO 23的适合电路的电路图。
图6是以简化方式展示在假定VCO输入信号的电压为恒定的情况下VCO输出信号的频率如何作为供应到VCO的偏置电流的函数而变化的图表。
图7是说明涉及图3的本机振荡器6的新颖方法的简化波形图。
图8是说明在图7的波形图中陈述的新颖方法中的步骤的流程图。
具体实施方式
图1是根据一个新颖方面的一种特定类型的移动通信装置1的极简化的高级框图。在此实例中,移动通信装置1是使用WCDMA蜂窝式电话通信协议的3D蜂窝式电话。蜂窝式电话包括(除未说明的若干其它部件以外)天线2及两个集成电路3、4。集成电路3被称作“数字基带集成电路”或“基带处理器集成电路”。集成电路4是RF收发器集成电路。RF收发器集成电路4因其包括发射器以及接收器而被称作“收发器”。
图2是图1的RF收发器集成电路4的较详细框图。收发器包括所谓的“接收链”5以及本机振荡器(LO)6。当蜂窝式电话正在接收时,在天线2上接收高频率RF信号7。来自信号7的信息穿过接收链5。信号7由低噪声放大器8放大且由混频器9下变频转换。所得的经下变频转换的信号由基带滤波器10滤波且被传递到数字基带集成电路3。数字基带集成电路3中的模/数转换器将信号转换成数字形式,且所得的数字信息由数字基带集成电路3中的数字电路处理。数字基带集成电路3通过控制由本机振荡器6供应到混频器9的本机振荡器信号(LO)34的频率来调谐接收器。
如果蜂窝式电话正在发射,则待发射的信息由数字基带集成电路3中的数/模转换器转换成模拟形式,且被供应到“发射链”11。由于数/模转换过程,基带滤波器12滤出噪声。受本机振荡器14控制的混频器块13接着将信号上变频转换成高频率信号。驱动器放大器15及外部功率放大器16放大高频率信号以驱动天线2,使得从天线2发射高频率RF信号17。
图3是图2的接收器的本机振荡器6的较详细框图。发射器的本机振荡器14具有相同构造。
本机振荡器6包括晶体振荡器模块20、锁相回路(PLL)21及分频器22。锁相回路21有时被称为频率合成器。锁相回路21包括电压控制振荡器(VCO)23、相位检测器24、电荷泵25、回路滤波器26、分频器24及新颖的VCO控制电路27。PLL21通过将由分频器24所输出的信号28的相位与由晶体振荡器模块20所输出的参考信号REFCLK 29进行比较而操作。从相位检测器24输出的信号30指示相位差。电荷泵25及回路滤波器26操作以将信号30转换成在VCO 23的输入引线55上的控制电压VV信号31。控制电压信号VV控制由VCO 23所输出的PLL OUT信号32的频率。信号PLL OUT32的频率由分频器24划分以产生反馈信号28。当PLL 21锁定时,PLL OUT信号32的频率为REF CLK信号29的倍数,且此倍数由分频器24所划分的数目来确定。数字基带集成电路3通过控制分频器24所划分的数目而控制PLLOUT的频率。数字基带集成电路3将控制信息传送到RF收发器集成电路4,且此控制信息经由控制线33而传送到分频器24,以便改变所述数目。通过分频器22而使PLL OUT信号32在频率上降低固定量。分频器22的输出为本机振荡器输出信号(LO)34。
图4是图3的VCO控制电路27的一个特定实例的较详细图。VCO控制电路27包括函数确定块35、偏置电流设定电路36、温度测量电路37及可变电抗器输入电压测量电路38。
偏置电流设定电路36包括电压参考39及缓冲器40。缓冲器40驱动节点N1以使得1.25伏的稳定参考存在于节点N1上。如果开关S1为闭合的,则节点N2上的电压VN2由从节点N1、流过电阻器R1、流过开关S1并流过电流源41且流到接地导体42的电流的量来确定。电流源41供应由函数确定块35经由导体43所设定的固定电流I1。电阻器R1具有由函数确定块35经由导体44所设定的电阻。函数确定块35可使用导体45来闭合或断开开关SW1。电流源41可经设定以传导具有从0.375微安到0.625微安的量值的电流,其中步长为0.03125。函数确定块35可因此通过导体43到45上的控制信号来将电压VN2的量值设定在约1.06伏到约0.938伏的范围内,其中步长为0.0156伏。如果函数确定块35改变电流I1,则电压VN2的变化通过电容器C1而变平稳。电压VN2由RC低通滤波器加以滤波,所述RC低通滤波器包含电阻器R2及电容器C2。函数确定块35可经由导体46来设定电阻器R2的值。节点N3上的所得的经滤波的电压信号由电压到电流调节器47转换成VCO偏置电流(IVCO)48。函数确定块35可因此设定供应到VCO 23的IVCO偏置电流48的量值。
温度测量电路37将指示所检测温度的数字信号(T)经由导体49供应到函数确定块35。可变电抗器输入电压测量电路38接收VCO输入控制信号31,且将指示信号31的电压量值的数字信号(VV)经由导体50供应到函数确定块35。
图5是VCO 23的一个实例的电路图。VCO 23包括一对交叉耦合的场效应晶体管51及52以及谐振电路,所述谐振电路包括可变电抗器53及电感器54。VCO偏置电流(IVCO)48经由电流镜56来设定VCO 23的电流消耗。
图6是展示VCO 23的理想化性能的图表。所述图表展示在假定VCO控制输入信号31的电压为恒定的情况下VCO输出信号VCO OUT的频率如何作为VCO偏置电流48的函数而变化。
现结合图7的简化波形图及图8的流程图中所陈述的方法100来解释图3的本机振荡器6的PLL 21的操作。最初,数字基带IC 3周期性地或连续地监视RF信道条件。在本实例中,RF信道条件是所接收的信号7的信噪比(SNR)。在另一实例中,RF信道条件是所接收的信号7的RSSI(相对信号强度指示符)。在一段时期内,SNR低于预定值。数字基带IC 3确定RF信道SNR低于预定值,因此数字基带IC 3不改变功率控制指令57。VCO控制电路27继续控制VCO偏置电流48以使其具有高量值。在图7所说明的实例中,此高量值是最大0.375微安量。VCO 23因此经控制以在其高功率状态中操作。此操作周期由图7中的参考标号58来表示。
接下来,数字基带IC 3检测到SNR超过预定值。在本实例中,所检测的SNR为极佳的,使得VCO可在其最小功率状态中操作。此检测发生于图7的时间59处。数字基带IC 3经由控制线60来将改变功率状态的指令57传送到VCO控制电路27。VCO控制电路27接收(图8的步骤101)改变功率状态的指令,且作为响应,逐渐加宽(图8的步骤102)PLL控制回路的回路带宽。回路带宽被逐渐加宽的时间由图7中的标号61来识别。在一个实例中,VCO控制电路27内的函数确定块35通过改变回路滤波器26的电阻值来加宽PLL的回路带宽。回路滤波器是包括电容器及数字控制的可变电阻器的RC滤波器。可变电阻器的电阻通过导体62上的多位数字控制信号BWC1而降低。在另一实例中,VCO控制电路27内的函数确定块35通过增加电荷泵25中的电荷泵电流来加宽PLL的回路带宽。电荷泵25包括多个电荷泵电流源。选择哪些电荷泵由导体63上的多位数字控制信号BWC2来确定。增加电荷泵电流导致加宽PLL的回路带宽。
加宽PLL回路带宽增加了PLLOUT信号中的噪声,但其还允许PLL较快地从回路中断及扰动中恢复。假如PLL回路带宽未被加宽,且假如VCO偏置电流被改变,则由于VCO偏置电流的改变,PLL控制回路可能不能够足够快地从回路扰动中恢复,且PLL可能失掉锁定。加宽PLL回路带宽有助于防止当VCO偏置电流被改变时回路失掉锁定。
接下来,在时间64处开始,VCO控制电路27内的函数确定块35逐渐降低VCO偏置电流48(图8的步骤103)以降低VCO功率消耗。函数确定块35通过步升由电流源41供应的电流I1来进行此。步升电流I1的结果为节点N2及N3上的电压的步降及由调节器47输出的VCO偏置电流48的步降。在一个新颖方面中,函数确定块35是由时钟信号CLK计时的数字逻辑状态机。函数确定块35在离散时间处改变电流I1,使得电流I1由图7中所说明的递增式阶梯状波形来表示。偏置电流IVCO 48足够慢地改变以使得在不少于十微秒内使功率状态从其最大值改变到其最小值。此时间周期在图7中由参考标号65来识别。
一旦VCO正在其低功率状态中操作,VCO控制电路27内的函数确定块35便逐渐缩窄(图8的步骤104)PLL控制回路的回路带宽。此逐渐缩窄与上文描述的图8的步骤102的加宽相反。所述逐渐缩窄可通过增加RC回路滤波器26中的电阻器的电阻及/或通过降低电荷泵25内的电荷泵电流来实行。图7中的参考标号66识别PLL的回路带宽被缩窄的时间周期。如图8左方的插图说明所指示,加宽PLL回路带宽、逐渐改变VCO功率及接着再次缩窄PLL回路带宽的整个过程在PLL 21未失掉锁定的情况下发生。
尽管图7的实例涉及降低VCO的功率状态,但VCO最初本可在低功率状态中操作,且指令57本可用以增加VCO的功率状态。尽管VCO功率状态在图7中展示为在其最小值与最大值之间改变,但此实例仅出于说明性的目的而呈现。在真实的操作实例中,可控制VCO功率状态以从除最小VCO功率或最大VCO功率外的功率电平改变或改变到所述功率电平。在VCO控制电路27的一个实施例中,电容器C1经大小设定以使得节点N2上的电压VN2中的阶梯变平稳,且节点N2上的电压VN2看起来如虚线67所指示。
在一个实例中,用于改变VCO的功率状态的动力并不是来自数字基带IC 3的指令,而是使VCO输入引线55上的信号31的电压居中的确定。结果可为将信号31的电压居中于操作范围内,或可为将电压移动得更接近于中心。可变电抗器输入电压测量电路38检测并数字化引线55上的电压,且经由导体50将所得的数字值VV供应到函数确定块35。数字值VV指示信号31的电压的量值。如果函数确定块35经配置以实现此居中功能,且如果如所检测到的引线55上的所检测电压下降到最小极限以下或上升到最大极限以上,则函数确定块35改变VCO的功率状态,以便使VCO输入电压更接近于信号31的操作电压范围的中心。在一个实例中,信号31的操作电压范围是从0.5伏到1.0伏。0.50伏的VCO输入电压对应于大约4.05GHz的PLLOUT(VCO输出信号)频率;0.75伏的VCO输入电压对应于大约4.00GHz的PLL OUT(VCO输出信号)频率;且1.00伏的VCO输入电压对应于大约3.95GHz的PLL OUT(VCO输出信号)频率。最小极限及最大极限分别为大约0.6伏及大约0.9伏。通过将VCO输入电压居中,当温度变化改变可变电抗器的电容时,VCO内的可变电抗器可具有用于停留于操作电压范围内的较多容限。
在一个实例中,函数确定块35是数字状态机或数字处理器,其依据许多输入变量(包括所检测的可变电抗器电压、所检测的温度、电源电压VDD、时间、配置信息及从数字基带集成电路3接收的改变功率状态的指令57)而改变电流I1。除控制导体43上的电流源控制信号以外,函数确定块35还根据所述函数而控制导体44、45、46、62及63上的控制信号。如果检测到电源电压降到超出预定低电池电压电平,则函数确定块降低VCO功率且牺牲一些PLL性能,以便与假如将VCO功率维持于其最佳VCO功率状态处相比较多地延长电池寿命。
在一个实例中,VCO随温度而经特征化以确定VCO OUT频率如何作为温度的函数而变化,VCO OUT频率如何作为VDD的函数而变化,及VCO OUT频率如何作为VCO偏置电流的函数而变化。函数确定块35接着调整VCO偏置电流48以便补偿所检测的温度变化及所检测的电源电压VDD变化。配置信息可包括启用位,其启用或停用确定VCO偏置电流IVCO的总函数的某些方面。配置信息被写入到一个或一个以上配置寄存器64中。举例来说,一个位可断开或闭合开关SW1。一个位可启用或停用VCO输入电压居中功能。一个位可启用或停用温度补偿功能。位可确定BWC1及BWC2中的哪些是用来加宽及缩窄PLL回路带宽,且其它位集合可确定多快地改变回路带宽。位可确定导体44及46上的信号的值。其它位可确定多快地改变VCO偏置电流。当正在使用移动通信装置1时可改变储存于配置寄存器64中的配置位。函数确定块35可能能够实施多个不同函数以用于确定电流I1。储存于配置寄存器64中的位可确定所述可能函数中的哪一者正被使用。
尽管上文出于指导的目的而描述某些特定实施例,但此专利文献的教示具有一般适用性且不限于上文描述的特定实施例。尽管结合模拟锁相回路来揭示新颖的VCO控制电路,但此专利文献中所揭示的VCO控制电路教示可延伸以与数字锁相回路及数字控制振荡器(DCO)一起使用。因此,可在不脱离上文所陈述的权利要求书的范围的情况下实践所描述的特定实施例的各种特征的各种修改、改编及组合。

Claims (25)

1.一种方法,其包含:
(a)接收改变本机振荡器内的锁相回路(PLL)的电压控制振荡器(VCO)的功率状态的指令,其中所述本机振荡器为RF通信装置的一部分,其中所述PLL具有回路带宽,且其中将偏置电流供应到所述VCO;
(b)响应于在(a)中接收到所述指令,加宽所述PLL的所述回路带宽;
(c)在(b)的所述加宽之后,改变供应到所述VCO的所述偏置电流;及
(d)在(c)的所述改变之后,缩窄所述PLL的所述回路带宽,其中在所述PLL保持锁定的同时执行步骤(a)到(d)。
2.根据权利要求1所述的方法,其中在(c)中以一定数目的阶梯变化所述偏置电流,其中所述数目超过四。
3.根据权利要求1所述的方法,其中在(c)中在超过十微秒的周期内变化所述偏置电流,其中所述RF通信装置为蜂窝式电话,且其中所述VCO输出具有大于一千兆赫的频率的信号。
4.根据权利要求1所述的方法,其进一步包含:
检测供应到所述VCO的输入电压,其中供应到所述VCO的所述偏置电流为至少所述所检测的输入电压与所述指令的函数。
5.根据权利要求1所述的方法,其进一步包含:
检测温度,其中供应到所述VCO的所述偏置电流为至少所述温度与所述指令的函数。
6.根据权利要求1所述的方法,其进一步包含:
将配置信息传送到VCO控制电路,其中所述VCO控制电路将所述偏置电流供应到所述VCO,且其中配置信息至少部分地确定所述VCO控制电路如何在(c)中改变所述偏置电流。
7.根据权利要求6所述的方法,其中所述配置信息包括在(a)中所接收的所述指令。
8.根据权利要求6所述的方法,其进一步包含:
将数字时钟信号接收到所述VCO控制电路中,其中所述VCO控制电路使用所述数字时钟信号来控制(c)中的所述偏置电流的所述改变的时序。
9.一种锁相回路(PLL),其包含:
电压控制振荡器(VCO),其接收VCO偏置电流;及
VCO控制电路,其中所述VCO控制电路输出所述VCO偏置电流且还输出控制所述PLL的回路带宽的信号,其中所述PLL为移动RF通信装置的一部分。
10.根据权利要求9所述的PLL,其中所述VCO控制电路在至少十微秒的周期内将所述VCO偏置电流从第一VCO偏置电流值平稳地改变到第二VCO偏置电流值,使得所述PLL保持锁定。
11.根据权利要求9所述的PLL,其中所述VCO控制电路接收改变所述VCO的功率状态的指令。
12.根据权利要求9所述的PLL,其进一步包含:
回路滤波器,其中控制所述PLL的所述回路带宽的所述信号是由所述VCO控制电路供应到所述回路滤波器。
13.根据权利要求9所述的PLL,其进一步包含:
电荷泵,其中控制所述PLL的所述回路带宽的所述信号是由所述VCO控制电路供应到所述电荷泵。
14.根据权利要求9所述的PLL,其进一步包含:
回路滤波器,其中所述回路滤波器将电压信号供应到所述VCO,且其中所述VCO控制电路接收所述电压信号且至少部分地基于所述电压信号来控制所述VCO偏置电流。
15.一种属于RF通信装置的本机振荡器的锁相回路(PLL),所述PLL包含:电压控制振荡器(VCO),其接收VCO偏置电流;及
用于以下操作的装置:加宽所述PLL的回路带宽,接着在至少十微秒的周期内将所述VCO偏置电流从第一VCO偏置电流值平稳地改变到第二VCO偏置电流值,且接着缩窄所述PLL的所述回路带宽,其中所述VCO偏置电流的所述改变在所述PLL未失掉锁定的情况下发生。
16.根据权利要求15所述的PLL,其中所述装置可通过将数字配置信息写入到所述装置中来配置。
17.一种方法,其包含:
(a)检测供应到电压控制振荡器(VCO)的VCO输入电压,其中所述VCO包括可变电抗器,且其中所述VCO为RF通信装置的本机振荡器内的锁相回路(PLL)的一部分;及
(b)基于所述检测而改变供应到所述VCO的偏置电流,其中在整个(a)的所述检测及(b)的所述改变中所述PLL始终保持锁定。
18.根据权利要求17所述的方法,其进一步包含:
确定在(a)中所检测的所述VCO输入电压是否接近于输入电压范围的输入电压极限,且如果所述VCO输入电压被确定为接近于所述输入电压极限,则在(b)中改变所述VCO的所述偏置电流,使得所述VCO输入电压居中于所述范围中。
19.根据权利要求17所述的方法,其进一步包含:
检测温度,其中依据所述所检测的VCO输入电压及所述所检测的温度两者而在(b)中改变所述偏置电流。
20.根据权利要求17所述的方法,其进一步包含:
接收时钟信号,且在(b)中的所述偏置电流的所述改变中使用所述时钟信号。
21.根据权利要求17所述的方法,其中(b)的所述改变涉及:
(b1)加宽所述PLL的回路带宽;
(b2)在(b1)的所述加宽之后,改变供应到所述VCO的所述偏置电流;及
(b3)缩窄所述PLL的所述回路带宽。
22.根据权利要求21所述的方法,其中以一定数目的阶梯改变供应到所述VCO的所述偏置电流,其中所述数目超过四。
23.根据权利要求17所述的方法,其进一步包含:
确定RF信道条件,且至少部分地基于所述所确定的RF信道条件来确定应改变所述VCO的功率状态,其中响应于所述确定应改变所述VCO的所述功率状态而在(b)中改变所述偏置电流。
24.根据权利要求23所述的方法,其中所述RF信道条件是取自由信噪比(SNR)值及所接收的信号强度指示符(RSSI)值所组成的群组。
25.根据权利要求17所述的方法,其中由VCO控制电路执行(a)中的所述VCO输入电压的所述检测及(b)中的所述偏置电流的所述改变,所述VCO控制电路将控制信号供应到所述PLL的回路滤波器。
CN2008801129205A 2007-10-25 2008-10-23 锁相回路中的电压控制振荡器的动态偏置 Expired - Fee Related CN101836363B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/924,318 US8073416B2 (en) 2007-10-25 2007-10-25 Method and apparatus for controlling a bias current of a VCO in a phase-locked loop
US11/924,318 2007-10-25
PCT/US2008/081033 WO2009055622A2 (en) 2007-10-25 2008-10-23 Dynamic biasing of a vco in a phase-locked loop

Publications (2)

Publication Number Publication Date
CN101836363A true CN101836363A (zh) 2010-09-15
CN101836363B CN101836363B (zh) 2013-12-18

Family

ID=40092007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801129205A Expired - Fee Related CN101836363B (zh) 2007-10-25 2008-10-23 锁相回路中的电压控制振荡器的动态偏置

Country Status (7)

Country Link
US (1) US8073416B2 (zh)
EP (1) EP2203978A2 (zh)
JP (2) JP2011502403A (zh)
KR (1) KR101207822B1 (zh)
CN (1) CN101836363B (zh)
TW (1) TW200935746A (zh)
WO (1) WO2009055622A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378852A (zh) * 2012-04-24 2013-10-30 义隆电子股份有限公司 动态调整振荡源起振电流的控制电路及方法
CN105794109A (zh) * 2013-12-11 2016-07-20 高通股份有限公司 面积有效的基带滤波器
CN112385174A (zh) * 2018-06-26 2021-02-19 美高森美半导体无限责任公司 具有状态机控制器的时钟恢复设备
CN116260405A (zh) * 2023-03-30 2023-06-13 北京安超微电子有限公司 一种nfc读写芯片数字功率放大器的实现方法及系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8149813B2 (en) * 2008-08-13 2012-04-03 Research In Motion Limited Wireless device having fast-receive mode for measuring received signal strength (RSSI) for higher time division multiple access (TDMA) multislot classes
US7928779B2 (en) * 2009-06-17 2011-04-19 Integrated Device Technology, Inc. Methods and apparatuses for incremental bandwidth changes responsive to frequency changes of a phase-locked loop
US8248167B2 (en) * 2010-06-28 2012-08-21 Mstar Semiconductor, Inc. VCO frequency temperature compensation system for PLLs
US9154143B2 (en) 2011-01-26 2015-10-06 Renesas Electronics Corporation Semiconductor device
CN103392365A (zh) * 2011-03-01 2013-11-13 瑞典爱立信有限公司 无线通信系统中的信道估计
KR101053824B1 (ko) 2011-04-26 2011-08-03 삼성탈레스 주식회사 스위칭루프필터를 이용하는 자동이득장치 및 방법
EP2632053B1 (en) * 2012-02-21 2014-08-27 ST-Ericsson SA PLL frequency selection
US8918070B2 (en) * 2012-05-04 2014-12-23 Analog Devices, Inc. Frequency tuning for LC circuits
US10110270B2 (en) * 2013-03-14 2018-10-23 Tarana Wireless, Inc. Precision array processing using semi-coherent transceivers
CN104601168B (zh) * 2013-10-31 2018-07-10 中芯国际集成电路制造(上海)有限公司 自偏置锁相环
US10200189B1 (en) * 2016-05-25 2019-02-05 Spatiallink Corporation Dual-mode low-power low-jitter noise phased locked loop system
TWI625946B (zh) * 2016-08-19 2018-06-01 瑞昱半導體股份有限公司 傳收電路以及接收電路控制方法
KR102618561B1 (ko) 2018-07-16 2023-12-27 삼성전자주식회사 로컬 오실레이터를 포함하는 rf 집적 회로 및 그 동작 방법
KR20200144396A (ko) 2019-06-18 2020-12-29 삼성전자주식회사 지터 특성 및 동작 전력을 조절하는 클록 생성기, 이를 포함하는 반도체 장치 및 클록 생성기의 동작방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175884A (en) * 1990-06-01 1992-12-29 Motorola, Inc. Voltage controlled oscillator with current control
JPH0964730A (ja) * 1995-08-24 1997-03-07 Mitsubishi Electric Corp Pll回路
US5802450A (en) * 1996-04-19 1998-09-01 Ericsson Inc. Transmit sequencing
JP3230652B2 (ja) * 1997-01-31 2001-11-19 日本電気株式会社 回線切替装置
US5894246A (en) * 1997-09-29 1999-04-13 Motorola, Inc. Automatically tuning a voltage controlled oscillator for minimum side band noise
US6163184A (en) * 1998-12-09 2000-12-19 Lucent Technologies, Inc. Phase locked loop (PLL) circuit
JP3017212B1 (ja) * 1999-01-22 2000-03-06 日本電気アイシーマイコンシステム株式会社 逓倍pll回路及びその制御方法
JP2002271193A (ja) * 2001-03-06 2002-09-20 Fujitsu Ltd 位相同期発振器および通信装置
US7151915B2 (en) * 2001-09-26 2006-12-19 Nokia Corporation Dual mode voltage controlled oscillator having controllable bias modes and power consumption
US20050134336A1 (en) 2002-10-31 2005-06-23 Goldblatt Jeremy M. Adjustable-bias VCO
US7149914B1 (en) * 2003-09-26 2006-12-12 Altera Corporation Clock data recovery circuitry and phase locked loop circuitry with dynamically adjustable bandwidths
JP3840468B2 (ja) * 2003-09-29 2006-11-01 松下電器産業株式会社 Pll周波数シンセサイザ
US7116183B2 (en) * 2004-02-05 2006-10-03 Qualcomm Incorporated Temperature compensated voltage controlled oscillator
JP2005236431A (ja) * 2004-02-17 2005-09-02 Matsushita Electric Ind Co Ltd 周波数シンセサイザー
JP2007142680A (ja) * 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd 送信装置
JP2007228493A (ja) * 2006-02-27 2007-09-06 Renesas Technology Corp 通信用半導体集積回路
US8781426B2 (en) * 2006-05-15 2014-07-15 Qualcomm Incorporated Techniques for controlling operation of control loops in a receiver
US8044723B2 (en) * 2007-09-14 2011-10-25 Qualcomm Incorporated Oscillator signal generation with spur mitigation in a wireless communication device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378852A (zh) * 2012-04-24 2013-10-30 义隆电子股份有限公司 动态调整振荡源起振电流的控制电路及方法
CN105794109A (zh) * 2013-12-11 2016-07-20 高通股份有限公司 面积有效的基带滤波器
CN105794109B (zh) * 2013-12-11 2018-10-09 高通股份有限公司 面积有效的基带滤波器
CN112385174A (zh) * 2018-06-26 2021-02-19 美高森美半导体无限责任公司 具有状态机控制器的时钟恢复设备
CN112385174B (zh) * 2018-06-26 2022-08-05 美高森美半导体无限责任公司 具有状态机控制器的时钟恢复设备
CN116260405A (zh) * 2023-03-30 2023-06-13 北京安超微电子有限公司 一种nfc读写芯片数字功率放大器的实现方法及系统
CN116260405B (zh) * 2023-03-30 2024-02-13 北京安超微电子有限公司 一种nfc读写芯片数字功率放大器的实现方法及系统

Also Published As

Publication number Publication date
WO2009055622A2 (en) 2009-04-30
JP2013062845A (ja) 2013-04-04
WO2009055622A3 (en) 2009-10-01
EP2203978A2 (en) 2010-07-07
KR101207822B1 (ko) 2012-12-04
CN101836363B (zh) 2013-12-18
KR20100071109A (ko) 2010-06-28
JP2011502403A (ja) 2011-01-20
US20090111409A1 (en) 2009-04-30
TW200935746A (en) 2009-08-16
US8073416B2 (en) 2011-12-06

Similar Documents

Publication Publication Date Title
CN101836363B (zh) 锁相回路中的电压控制振荡器的动态偏置
US7190933B2 (en) Method and apparatus for automatic tuning of a resonant loop antenna in a transceiver circuit
US7058372B1 (en) Method and apparatus for automatic tuning of a resonant loop antenna
US8130046B2 (en) Frequency calibration of radio frequency oscillators
US6483391B1 (en) System for controlling the amplitude of an oscillator
EP2797234B1 (en) Local oscillator signal generator with automatic quadrature phase imbalance compensation
CN100426674C (zh) 频率快速锁定装置、频率合成器以及频率快速锁定方法
US7474159B2 (en) Frequency calibration for frequency synthesizers
US8873682B2 (en) Hybrid AFC using DCXO and RF PLL
EP1676366B1 (en) A multiband pll arrangement and a method of controlling such arrangement
US8008979B2 (en) Frequency synthesizer and radio transmitting apparatus
US20080220733A1 (en) Fast frequency range selection in ranged controlled oscillators
US7103127B2 (en) System for controlling the frequency of an oscillator
EP3641135B1 (en) Frequency drift detector, communication unit and method therefor
US7312665B2 (en) Oscillation control apparatus
US9300305B1 (en) Frequency synthesizer and related method for improving power efficiency
US20040023625A1 (en) Frequency synthesizer and a method for synthesizing a frequency
KR100952526B1 (ko) 이득을 자동으로 세팅하는 위상 고정 루프
CN113381756B (zh) 一种自动频率控制电路及锁相环电路
US20080090542A1 (en) Method for interference-free frequency change in a receiving system with a plurality of parallel operated recevers
EP1900094A1 (en) Signal level adjuster with incremental gain adjustments, for rf communication equipment.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131218

Termination date: 20141023

EXPY Termination of patent right or utility model