CN101855013A - 用于在催化裂化过程中降低汽油硫含量的催化剂组合物 - Google Patents

用于在催化裂化过程中降低汽油硫含量的催化剂组合物 Download PDF

Info

Publication number
CN101855013A
CN101855013A CN200780013542A CN200780013542A CN101855013A CN 101855013 A CN101855013 A CN 101855013A CN 200780013542 A CN200780013542 A CN 200780013542A CN 200780013542 A CN200780013542 A CN 200780013542A CN 101855013 A CN101855013 A CN 101855013A
Authority
CN
China
Prior art keywords
carrier
catalyst
vanadium
metal
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200780013542A
Other languages
English (en)
Other versions
CN101855013B (zh
Inventor
X·高
J·付
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Catalysts LLC
Original Assignee
BASF Catalysts LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Catalysts LLC filed Critical BASF Catalysts LLC
Publication of CN101855013A publication Critical patent/CN101855013A/zh
Application granted granted Critical
Publication of CN101855013B publication Critical patent/CN101855013B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/106Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/19
    • B01J35/397
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Abstract

适用于降低裂化石油产品中硫水平的减硫催化剂,包括金属钒酸盐化合物。该金属钒酸盐化合物可以负载在分子筛如沸石上,其中该金属发酸盐化合物主要位于沸石孔结构的外表面上和用于粘合或支撑该沸石的任意基质材料的表面上。

Description

用于在催化裂化过程中降低汽油硫含量的催化剂组合物
相关申请的交叉引用
本申请要求美国临时申请601782,943(2006年3月15日提交)的优先权。
发明领域
本发明涉及通过催化裂化工艺制得的汽油和其它石油产品中硫的减少。本发明提供了用于降低产物硫的催化组合物和使用该组合物降低产物硫的方法。
发明背景
催化裂化是商业上广泛应用的石油精炼工艺。在美国大部分精炼汽油混合油料通过该工艺生产,几乎全部是采用流体催化裂化(FCC)工艺生产的。在催化裂化工艺中通过在升高的温度下催化剂的存在下发生的反应将重烃馏分转化为更轻的产物,大部分转化或者裂化在蒸气相中发生。由此将进料转化为汽油、馏出物和其它液体裂化产品以及每分子4个或更少碳原子的轻质气体裂化产品。气体部分由烯烃和部分由饱和烃组成。
裂化反应期间一些重物质,公知为焦炭,沉积在催化剂上,这样降低了催化剂的活性并期望再生。在从消耗的裂化催化剂中除去吸留的烃之后,通过烧掉焦炭实现再生以恢复催化剂活性。由此催化裂化的三个特征步骤可以识别为:裂化步骤,其中将烃转化为更轻的产物;汽提步骤,以除去催化剂上吸收的烃;和再生步骤,以从催化剂中烧掉焦炭。随后该再生催化剂在裂化步骤中再次使用。
催化裂化进料通常含有有机硫化合物如巯醇、硫化物和噻吩形式的硫。裂化工艺的产物相应地趋于含有硫杂质,即使在裂化工艺期间约一半的硫转化为硫化氢,主要通过非-噻吩的硫化合物的催化分解。裂化产物中硫的分布取决于许多因素,包括进料、催化剂类型、存在的添加剂、转化率和其它操作条件,但是,无论如何,一定部分的硫趋于进入轻质或重质汽油馏分并通入到产物油料中。随着对石油产品施加的日益增加的环境法规,例如,在重组汽油(reformulated gasoline,RFG)法规中,通常已减少了产物的硫含量,以响应对燃烧过程之后硫氧化物和其它硫化合物排放到气体中的关注。
已采取一种途径在引发裂化之前通过加氢处理从FCC进料中除去硫。虽然非常有效,但是该途径在设备投资成本方面以及操作上趋于昂贵,因为氢消耗大。已采取另一途径通过加氢处理从硫化产物中除去硫。同样,虽然有效,但该方案存在的缺陷是,在使高辛烷烯烃饱和时可能损失有价值的产物辛烷。
从经济角度来看,期望在裂化工艺自身中实现硫去除,因为这样将有效地使汽油混合油料的大部分组分脱硫,无需额外的处理。已开发出各种催化剂材料用于在FCC催化循环期间除去硫,但是,迄今大多数开发集中在从再生器烟道气中除去硫。Chevron早期开发的途径使用氧化铝化合物作为用于裂化催化剂的添加剂以在FCC再生器中吸附硫氧化物;进料中进入该工艺的被吸附的硫化合物,在循环的裂化部分期间以硫化氢释放并通到该单元的产物回收段,在此将它们除去。参见Krishna等,AdditivesImprove FCC Process,Hydrocarbon Processing,1991年11月,第59-66页。从再生器中烟道气中除去硫,但是更本上并未显著影响产物硫水平。
用于从再生器烟道气中除去硫氧化物的替换技术是基于镁-铝尖晶石作为添加剂用于FCCU中循环催化剂。以名称DESOXTM用于该工艺中的添加剂,该技术实现了显著的商业成功。公开这类硫去除催化剂的实例专利包括US4,963,520、4,957,892、4,957,718、4,790,982和其它。但是,同样,产物硫水平并未显著降低。
Wormsbecher和Kim在US5,376,608和5,525,210中提出了用于降低液体裂化产物中硫水平的催化剂添加剂,使用氧化铝-负载的Lewis酸的裂化催化添加剂用于生产减硫的汽油。
US6,482,315公开了单独的颗粒添加剂形式的、用于减硫的负载型钒催化剂。该载体材料可以在性能上可以是有机或无机的,且可以是多孔的或非-孔的。优选地,该载体材料为无定形或次晶无机氧化物如,例如,Al2O3、SiO2、粘土或其混合物。该减硫添加剂以单独的颗粒添加剂与传统催化裂化催化剂(通常为八面沸石如沸石Y)组合用于在流体催化裂化(FCC)单元中处理烃进料以制得低硫汽油和其它液体裂化产物,如,例如,可以用作低硫柴油混合组分或者用作加热油的轻质循环油。优选的载体为氧化铝。该减硫添加剂具有2~20重量%的高V含量。
出版的专利申请,US2004/0099573有意地在FCC单元的操作期间将钒加到进料流中。加入进料的钒化合物的量将依据诸如所用进料的性能、采用的裂化催化剂和期望的结果的因素而不同。通常,以足以提高平衡催化剂之中或之上的钒浓度的速率将钒化合物加到进料中,相对于催化剂之中或之上最初存在的钒的量为约100~约20000ppm、优选约300~约5000ppm、最优选约500~约2000ppm。优选的钒化合物选自草酸钒、硫酸钒、环烷酸钒、钒卤化物、及其混合物。
US专利6,635,169公开了,位于沸石孔结构内部的金属组分(即V)在其氧化状态下在汽油减硫中更有效地发挥作用。该改进包括通过进一步氧化处理提供再生裂化催化剂的金属组分的平均氧化态。
共同授予Mobil和W.R.Grace的三个专利(US6,846,403、US6,923,903和US6,974,787),公开了使用含金属的沸石催化剂降低汽油硫的方法,其中使氧化态大于0的第一金属(优选钒),与稀土金属组分的第二金属(优选铈)一起,位于沸石内部孔结构之内。催化剂上钒和稀土金属二者的存在相对于单独的钒带来了更好的汽油减硫,可能是由于稀土金属具有的高活性位点保持力。
发明概述
依据本发明,提供了包含金属钒酸盐化合物的减硫催化剂。该减硫催化剂可以以单独的颗粒加到裂化催化剂中,或者可以是包含分子筛如沸石和基质材料的催化裂化组分所包含的,由此制得具有降低的硫含量的液体裂化产物。该金属钒酸盐化合物包括氧化态大于0的钒和阳离子形式的其它金属。
附图说明
图1为作为参照化合物的CeVO4、载体(REUSY)、V/REUSY(样品A)和Ce+V/REUSY(样品B)的UV-拉曼光谱。
图2为参照化合物CeVO4的UV-可见光谱。
图3为Ce/REUSY(样品D)、V/REUSY(样品A)和Ce+V/REUSY(样品B和C)的在200到800nm的UV-可见光谱。
图4为Ce/REUSY(样品D)、V/REUSY(样品A)和Ce+V/REUSY(样品B和C)的在400到700nm的UV-可见光谱。
发明详述
依据本发明,通过在本发明包含金属钒酸盐化合物的新型减硫催化剂的存在下进行催化裂化,有效地使烃进料的催化裂化期间形成的液体裂化产物的汽油部分的硫含量达到更低和更加可接受的水平。该金属钒酸盐化合物或金属-钒氧化物络合物(MxVyOz)(如果负载在分子筛上)主要位于载体结构的外部上。如果负载在分子筛如沸石上,使MxVyOz化合物主要提供在沸石孔结构的外部上和与该催化剂成一体的任意基质材料的表面上。对于MxVyOz,M为一种或多种金属,x为0.5~10,y为1~10,且z为使电荷平衡的值。
术语“分子筛”在本文中用于表示一类多晶材料,其显示基于分子大小和形状差异分离混合物的组分的选择吸附性能,且具有均匀尺寸的孔隙,即约
Figure G2007800135420D00051
~大约其孔径由晶体的单元结构来独特地确定。参见R.Szostak,Molecular Sieves:Principles of Synthesis and Identification,第1-4页和D.W.Breck,Zeolite Molecular Sieves,第1-30页。分子筛骨架是基于通常含有四面体型-位点的氧原子的大量三维网络。除了组成上定义沸石分子筛的Si4和Al3之外,其它阳离子也可以占据这些位点。这些不必是与Si4或Al3同-电子(iso-electronic)的,但是必须具有占据骨架位点的能力。目前已知占据分子筛结构内这些位点的阳离子包括但并非限定于,Be、Mg、Zn、Co、Fe、Mn、Al、B、Ga、Fe、Cr、Si、Ge、Mn、Ti、和P。适用作为金属钒酸盐化合物的载体的分子筛的非限定性实例包括沸石Y、USY、REY、REUSY、β或ZSM-5。Engelhard开发的原位FCC沸石Y催化剂是特别有用的载体且公开于,例如,US3,932,968、4,493,902、6,656,347、6,673,235、和6,716,338。上述US专利的每一篇的全部内容均引入本文中作为参考。其中沸石晶体覆盖含氧化铝的基质中含有的大孔的壁的大孔载体和含有可分散的勃姆石的催化载体是有用的,且公开于刚才提到的专利中。
也可以将金属钒酸盐化合物(MxVyOz)与FCC裂化组分分开地提供在颗粒上。此时,金属钒酸盐化合物可以负载在任意已知的金属氧化物载体上。有用的载体的非限定性实例包括氧化硅、氧化铝、氧化硅-氧化铝、二氧化钛、氧化锆,及其任意混合物或固体溶液。
FCC工艺
本减硫催化剂如果除了除硫功能之外还含有裂化功能,可以用作催化裂化工艺、FCC工艺中循环的催化剂的部分或者全部裂化组分。为了方便,本发明将参照FCC工艺进行描述,但是本催化剂可以用于更古老的移动床型(TCC)裂化工艺,其中适当调节粒度以适应该工艺的要求。除了将本催化剂加入催化剂中和产品回收段中一些可能的改变之外,操作该工艺的方式将保持不变。如果用作添加剂,将本发明的催化剂加到传统FCC催化剂中,例如,众所周知的具有八面沸石裂化组分的沸石基催化剂。
稍微简要地,通过在循环催化剂再循环裂化工艺中进料与循环可流化催化裂化催化剂(由粒度范围为约20~约100微米的颗粒组成)的接触,发生流体催化裂化工艺,其中含有有机硫化合物的重质烃进料被裂化为更轻的产物。该循环工艺中重要的步骤为:
(i)通过使进料与热源、再生裂化催化剂接触,在催化裂化条件下操作的催化裂化区、通常立管裂化区中使进料催化裂化,由此制得包含裂化产物和含焦炭与可汽提的烃的消耗的催化剂的流出物;
(ii)将该流出物排出并分离,通常在一个或多个旋风器中,分成富裂化产物蒸气相和包含消耗的催化剂的富固体相;
(iii)将蒸气相作为产物回收并在FCC主塔和其相关侧塔中分馏,由此形成包含汽油的液体裂化产物;
(iv)将消耗的催化剂汽提,通常采用蒸汽,由此从催化剂中除去吸留的烃,之后将汽提催化剂氧化再生以制得热的、再生的催化剂,随后将其循环到裂化区用于裂化进一步数量的进料。
本减硫添加剂可以以负载颗粒添加剂(将其加到FCCU中的主裂化催化剂中)的形式来使用。替换地,本发明的催化剂可以同时含有裂化功能和减硫功能(MxVyOz),且可以作为FCCU中的部分或者全部裂化催化剂。如前所述,裂化催化剂通常是基于八面沸石活性裂化组分的,其常规地为一种形式的沸石Y,如煅烧沸石Y(Y)、稀土交换型Y沸石(REY)、或稀土交换或未交换的超稳定型Y沸石(REUSY)或(USY)。其它裂化催化剂可以用作全部或一部分该循环裂化催化剂,如沸石β或ZSM-5等。通常将活性裂化组分与基质材料如氧化铝组合以提供期望的机械特性(耐磨性等)以及对极活泼沸石组分或多种组分的活性控制。可以单一地或组合地使用其它众所周知的金属氧化物以提供该基质组分。由高岭土基基质原位形成的八面沸石Y特别有用。本发明催化剂的粒度范围对于有效流化来说典型地为10~150微米。如果用作与主催化剂分开的裂化组分的颗粒添加剂,通常选择本发明具有减硫功能的催化剂以具有与裂化催化剂相当的粒度,以使得防止在裂化循环期间的组分分离。
裂化和减硫组分催化剂
如文献((Baes,C.F.,Jr.;Mesmer,R.E.The Hydrolysis of Cations;Wiley:New York,1970)中所知,水溶液中钒(V)氧化物物质的形式随pH和V(v)浓度二者变化。在pH水平6~8且V(v)浓度大于0.1M时,钒氧化物物质以V4O12 4-簇存在。在pH2~6之间,水溶液中钒物质主要为十钒酸盐簇如V10O28 6-、HV10O28 5-和H2V10O28 4-,在钒浓度水平大于0.01M时。在pH低于2时,形成V2O5晶体且从溶液中沉淀出来。
本发明使用与其它金属阳离子的络合钒酸盐阴离子,如,例如,十钒酸盐阴离子,以使钒和金属阳离子二者同时加载到载体如FCC催化剂(其包括采用或不采用稀土交换的分子筛如沸石和基质材料)上。金属加载水溶液中钒阴离子的浓度范围为0.01~1M。水溶液中钒阴离子的示例性浓度范围为0.05~0.5M和0.1~0.3M。加载到载体上的阳离子形式的其它金属包括Zn、Mn、Al、Mg、Ni、Cu、稀土。典型地,该金属以金属盐加入,作为盐的非限定性实例,包括氯化物、硝酸盐、硫酸盐。载体上作为金属的钒的水平应为该催化剂的至少0.05重量%。钒的水平也可以范围为至少约0.5重量%~约10重量%,基于该催化剂颗粒的重量。作为金属的其它金属的水平通常范围为该催化剂的至少约0.01重量%、典型地至少约1.0重量%至最高约10重量%。通常,金属钒酸盐将占该催化剂的至少0.1重量%、通常0.1~15重量%、典型地0.5~5重量%。
由于加载到分子筛裂化组分上的钒酸盐物质的尺寸和负电荷,例如,十钒酸盐阴离子,在沸石的孔结构中十钒酸盐阴离子的离子交换不会发生。由此,浸渍之后大的钒阴离子主要存在于分子筛例如沸石孔结构的外侧上,和,基质材料的表面上。由于电荷吸引力,加载到沸石上的其它金属阳离子,如Zn或Ce,同样存在于钒阴离子的附近。这种主要在沸石孔结构外侧和基质材料表面上的钒阴离子和金属阳离子的独特排列,导致在煅烧之后FCC催化剂载体上形成均匀分散的金属钒酸盐。通常,催化剂载体表面上钒与载体主体内钒的原子比大于1.5。V(表面)与V(主体)的比值大于2,且甚至大于3是有用的。进一步发现,在加入钒络合物之前用碱例如氢氧化铵处理载体,有助于在多孔载体的外表面上保持钒络合物。
该金属钒酸盐材料可以用于有效地降低催化裂化工艺中汽油硫含量。另外,沸石孔结构外金属钒酸盐的形成降低了钒的损害作用,因为钒在沸石孔隙内时会发生由于钒导致的沸石分解(1.C.A.Trujillo,U.N.Uribe,P.-P.Knops-Gerrits,L.A.Oviedo A.,P.A.Jacobs,J.Catal.168,1(1997).2.F.Mauge,J.C.Courcella,Ph.Engelhard,P.Gallezot,J.Grosmangin,Stud.Surf.Catal.28,803(1986).3.M.Torrealba,M.R.Golwasser,Appl.Catal.90,35(1992).4.M.Xu,X.Liu,R.J.Madon,J.Catal.207,237(2002))。本发明提供了具有高沸石稳定性和高催化裂化活性的催化裂化产物减硫催化剂。
实验说明
可以采用FCC催化剂作为载体制备该汽油减硫催化剂。典型地,通过用钒(V)阴离子和选自Ce、Zr、Zn、Mn、Mg、Al、Ti等的金属阳离子的均匀混合溶液初始-润湿浸渍加载该载体。可以制备偏钒酸铵和金属盐的混合溶液用于浸渍。在加入一些金属盐之前,如Ce或Zr硝酸盐,必须调节偏钒酸铵溶液到pH2~4,以避免由于在更高pH下Ce或Zn钒酸盐的形成而导致的沉淀。已发现在降低pH之前加入碱如有机碱将减少沉淀。混合溶液中钒浓度也应高于0.01M,且依据FCC催化剂的孔体积和FCC催化剂上目标钒浓度而不同。在干燥和升高的温度下煅烧之后获得最终产物。
金属钒酸盐可以用作缺乏裂化组分如金属氧化物或混合金属氧化物载体的颗粒中的组分。也可以采用如上所述的初始-润湿浸渍将金属钒酸盐结合到金属氧化物载体上。
浸渍载体的煅烧可以在催化裂化工艺期间原位实现,但是优选在将减硫催化剂结合到循环FCC催化剂之前煅烧。
实施例1
催化剂的制备
使用单元孔度2.46nm的FCC催化剂(REUSY)作为载体。通过偏钒酸铵水溶液的初始-润湿浸渍以在载体上获得0.6重量%V,制得V/REUSY催化剂,样品A。通过将偏钒酸铵固体在80~95℃的温度下溶解于水中制得偏钒酸铵溶液,随后在浸渍之前冷却到低于55℃。将该样品进一步干燥并在550℃下煅烧2小时。
通过偏钒酸铵和硝酸铈的混合水溶液的初始-润湿浸渍以在载体上获得0.6重量%V和1重量%Ce,制得Ce+V/REUSY催化剂,样品B。首先通过将偏钒酸铵固体在80~95℃的温度下溶解于水中制得偏钒酸铵溶液,随后冷却到低于55℃。在将硝酸铈(III)加到该溶液之前通过硝酸将偏钒酸铵溶液的pH调节到~3。浸渍之后将该样品进一步干燥并在550℃下煅烧2小时。
类似于样品B制得另一Ce+V/REUSY催化剂,样品C,以在载体上获得0.6重量%V和1.5重量%Ce(V/Ce原子比~1)。将样品干燥并在550℃下煅烧2小时。
通过使用硝酸铈水溶液初始-润湿浸渍方法以在载体上达到1重量%Ce,制得Ce/REUSY参照,样品D。使浸渍的Ce/REUSY干燥并在550℃下煅烧2小时。
在稍微不同于样品B和C的工艺中,通过偏钒酸铵和硝酸铈混合水溶液的初始-润湿浸渍以在载体上获得0.6重量%V和1.4重量%Ce,制得CE+V/REUSY催化剂,样品E。将偏钒酸铵固体在80~95℃的温度下溶解于含四甲基氢氧化铵(25%TMAH)溶液的水,以获得pH~8的钒阴离子溶液。将该溶液冷却到低于55℃,随后在溶液中加入硝酸铈(III)之前加入硝酸以将pH降低到~3。TMAH或其它碱的加入改进了偏钒酸铵的溶解性和钒阴离子的稳定性。通常,已发现有机碱适用于改进钒酸盐阴离子的溶解性。示例的有机碱包括含有1~4个烷基的烷基氢氧化铵,每个烷基含有1~4个碳原子。另外,其它已知的碱可以用于改进溶解性,包括,例如,碱金属氢氧化物,例如,氢氧化钠。浸渍之后将该样品进一步干燥并在550℃下煅烧2小时。
通过N2BET法测量样品A-C的表面积。通过X-射线荧光(PanalyticalP2400)分析V和Ce加载量。结果示于表1中。
表1、煅烧样品的物理和化学性质
 
V加载量(重量%) Ce加载量(重量%) 表面积(m2/g)
样品A 0.62 333
样品B 0.66 1.~0 353
样品C 0.60 1.52 366
实施例2
通过UV-拉曼光谱研究催化剂
采用UV-拉曼光谱表征FCC催化剂载体上的表面物质。使用UV-拉曼光谱仪代替常规可见拉曼是由于在使用可见拉曼光谱仪时FCC载体的强荧光。使用Lexel244nm激发激光和CCD探测器通过Renishaw inVia拉曼显微设备收集UV-拉曼光谱。CeVO4化合物(Ce/V原子比=1)用作参照。通过X-射线衍射证实CeVO4的晶体相为钒钇矿(JCPDS97-004-9427)相。
图1中显示了在环境条件下获得的CeVO4、FCC载体(REUSY)和样品A与B的UV-拉曼光谱。对于V/REUSY(样品A),在950~1000cm-1下观察宽拉曼带,其归因于表面十钒酸盐和偏钒酸盐物质(G.Deo和I.E.Wachs,J.Phys.Chem.95,5889(1991))。对于Ce+V/REUSY(样品B),由于表面钒物质的拉曼信号极弱,而在871em-1下观察到由于FCC催化剂载体上CeVO4晶体相的形成的强拉曼峰。UV-拉曼结果清楚地证实了,在将含钒阴离子和铈阳离子的溶液同时加载到FCC催化剂载体上时形成CeVO4化合物的晶体相。
实施例3
通过UV-可见漫反射光谱(DRS)研究催化剂
采用在Cary300UV-可见光谱仪内部涂覆有BaSO4的积分和参考球的漫反射附件,收集由(Schuster)-Kubelka-Munk函数F(R)表示的UV-可见DRS光谱。图2和3中分别显示了CeVO4和样品A、B、C、D的光谱。对于样品B和C仅观察到由于CeVO4化合物的中线在540nm左右的宽吸附带,而样品C具有更强的吸附,参见图4。由于F(R)的强度与吸收物质的浓度成比例(G.Kortüm,“Reflectance Spectroscopy:Principles,Methods,Applications”,Springer-Verlag NewYork Inc.,Trans.Lohr,10J.E.,1969),UV-可见DRS结果清楚地证实了,样品C上CeVO4的含量高于样品B。
实施例4
通过X-射线光电子光谱(XPS)研究催化剂
XPS可以提供材料表面上5~10nm检测厚度的原子信息(“Handbookof X-ray Photoelectron Spectroscopy”,Moulder,J.F.等,第11页,1995)。通过VG Scientific200i XL X射线光电子光谱仪收集XPS光谱,采用Al kα单色源,pass energy=40eV,关于C1s的结合能=284.6eV,真空=2×10-8或更佳。
表2对比了通过XPS获得的样品B、C和D的表面和主体原子比V/(Si+Al)和Ce/(Si+Al)。表面原子比表示在FCC催化剂载体的表面上5~10nm的XPS检测深度之内相对于基质Al+Si原子的V或Ce元素浓度。主体原子比表示相对于FCC催化剂载体的Al+Si原子的V或Ce元素浓度,其通过将载体微球碾碎/研磨成极细颗粒之后通过XPS获得。虽然样品B和D在载体上具有相同的1重量%Ce,通过XPS检测的样品B的Ce浓度比样品D高10倍。通常预期仅仅Ce阳离子被交换到沸石结构的孔隙中。样品D证实了FCC催化剂微球中沸石孔隙中铈阳离子的离子交换导致通过XPS检测到极低的Ce浓度。另一方面,样品B上显著高的Ce表面浓度证实了在载体外部上形成CeVO4相。具有1.5重量%Ce的样品C在表面上具有比样品B更加高的Ce浓度,清楚地表明了样品C中大部分Ce和V(原子比V/Ce~1)形成CeVO4化合物相。这样的结论与实施例3中UV-可见DRS结果是一致的。
表2证实了在FCC催化剂载体的表面上V和Ce二者浓度大大高于主体浓度,清楚地表明了载体表面富含钒和铈原子。载体表面上作为汽油减硫组分的金属钒酸盐化合物的形成,给硫化合物分子提供了更好的接触,其带来了期望的减硫能力。
表2、V/(Al+Si)和Ce/(Al+Si)的表面和主体原子比
 
V/(AI+Si)原子比表面                        主体 Ce/(Al+Si)原子比表面           主体
样品B 0.045                      0.011 0.022          0.0046
样品C 0.083                      0.0097 0.040          0.0055
样品D 0.0019           无
实施例5
通过流体催化裂化评价催化剂
在与FCC单元中平衡催化剂一起蒸汽钝化之后评价实施例1中在REUSY催化剂上的V和Ce+V。该平衡催化剂具有中等金属水平(1440ppmV和1037ppm Ni)。将20重量%样品催化剂与80重量%ECat混合并随后在流化床汽蒸器中788℃(1450℉)下用90%蒸汽/10%空气钝化4小时。
通过Xytel Corp.制造的商品名为ACE(Advanced Catalyst Evaluation)的商业上可获得的流化床反应器测试该蒸汽钝化混合物。在蒸汽实验方法中采用标准恒定时间,其中通过改变活性催化剂重量的分数获得不同催化剂/油比值(C.P.Kelkar,M.Xu,R.J.Madon,lnd.Eng.Chem.Res.42,426(2003))。进料为具有表3中所示进料性能的FCCU瓦斯油。通过GC-AED在430℉的切断点(cut point)测量汽油硫含量。
表3、进料性质
 
API重力          60℉             23.29
苯胺点            ℉              174
硫              重量%            1.21
碱性N            ppm              380
总N              ppm              1050
Ni               ppm               0.3
V                ppm              0.2
康拉孙炭        重量%            0.25
蒸馏
IBP               ℉              402
5                 ℉              561
10                ℉              617
30                ℉              727
50                ℉              799
70                ℉              F871
90                ℉              F969
FBP               ℉             F1093
表4中在恒定70%转化率下对比了样品A、B和C与ECat的蒸汽钝化混合物的FCC性能。相对于ECat基础,裂化产物分布随20%V/REUSY或Ce+V/REUSY(样品A、B和C)的加入而变化。氢和焦炭产量由于钒的引入而更高。但是,钒酸铈的形成显然通过钒降低了氢和焦炭量。另一方面,钒酸铈的形成显著提高了汽油产量且降低了LPG和C4气体产量。最重要地,CeVO4化合物相的形成带来了更高的汽油减硫能力。相对于参照V/REUSY(样品A)的26%汽油减硫,具有大部分CeVO4化合物相的样品C在汽油减硫方面相对于样品A具有46%改进。这些结果清楚地证实了,钒酸铈相比单独的钒物质对于FCC催化剂载体上汽油减硫效率更高。
表4、催化裂化性能
 
Ecat基础情况 +20%V/REUSY样品A        +20%Ce+V/REUSY样品B           1+20%Ce+V/F样品C       
转化,重量% 70 70 70 70
催化剂/油 5.19 6.18 6.08 5.92
H2产量,重量% 0.08 +0.19 +0.13 +0.15
总C2气体,重量% 1.60 +0.29 +0.18 +0.17
LPG,重量% 15.58 -1.27 -1.37 -1.58
总C4气体,重量% 17.18 -0.99 -1.19 -1.42
汽油产量,重量% 47.67 +0.04 +0.68 +0.96
LCO,重量% 18.83 +0.52 +0.32 +0.54
HCO,重量% 11.17 -0.52 -0.32 -0.54
焦炭,重量% 5.15 +0.94 +0.51 +0.46
汽油S,430℉,ppm 620 456 428 384
%S减少,430℉ 基础 26 31 38

Claims (11)

1.一种用于降低流化催化裂化产品的硫含量的减硫催化剂,其包括:
(i)载体,
(ii)含在载体上的金属钒酸盐化合物。
2.权利要求1的减硫催化剂,其中所述金属钒酸盐化合物中的金属为选自稀土金属、Zn、Mn、Zr、Al、Mg、Ni、和Cu中的一种或多种金属。
3.权利要求1的减硫催化剂,其中该载体为选自Y、USY、REY、REUSY、沸石β、ZSM-5、及其混合物组成的组的沸石。
4.权利要求1的减硫催化剂,其含有最多15重量%的所述金属钒酸盐化合物,基于该催化剂的重量。
5.权利要求3的减硫催化剂,其中载体表面上钒与载体主体中钒的原子比大于1.5。
6.一种制备减硫催化剂组合物的方法,包括将至少一种含钒的阴离子加载在载体上并煅烧所述加载的载体。
7.权利要求6的方法,其中所述含钒的阴离子为偏钒酸铵的水溶液,所述方法进一步包括将碱和/或酸加到所述水溶液中以调节溶液pH。
8.权利要求7的方法,其中所述碱为烷基氢氧化铵。
9.权利要求6的方法,其包括将至少一种钒之外的金属阳离子加载在所述载体上并在所述煅烧期间在所述载体上形成金属钒酸盐。
10.权利要求6的方法,其包括在所述加载之前用碱处理所述载体。
11.一种用于将烃进料催化裂化为含汽油的产物的方法,所述方法包括使所述进料与包含加载在载体上的金属钒酸盐化合物的减硫催化剂接触。
CN2007800135420A 2006-03-15 2007-03-06 用于在催化裂化过程中降低汽油硫含量的催化剂组合物 Expired - Fee Related CN101855013B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US78249306P 2006-03-15 2006-03-15
US60/782,493 2006-03-15
PCT/US2007/005812 WO2007108939A2 (en) 2006-03-15 2007-03-06 Catalyst composition reducing gasoline sulfur content in catalytic cracking process

Publications (2)

Publication Number Publication Date
CN101855013A true CN101855013A (zh) 2010-10-06
CN101855013B CN101855013B (zh) 2013-05-01

Family

ID=38522891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800135420A Expired - Fee Related CN101855013B (zh) 2006-03-15 2007-03-06 用于在催化裂化过程中降低汽油硫含量的催化剂组合物

Country Status (12)

Country Link
US (2) US7960307B2 (zh)
EP (1) EP1993726B1 (zh)
KR (1) KR101444472B1 (zh)
CN (1) CN101855013B (zh)
AU (1) AU2007227684A1 (zh)
BR (1) BRPI0708885B1 (zh)
CA (1) CA2645839C (zh)
MX (1) MX2008011635A (zh)
MY (1) MY146107A (zh)
RU (1) RU2008140381A (zh)
TW (1) TW200800394A (zh)
WO (1) WO2007108939A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298552A (zh) * 2010-12-28 2013-09-11 丰田自动车株式会社 用于分解三氧化硫的催化剂和制氢方法
US8932555B2 (en) 2011-05-25 2015-01-13 Toyota Jidosha Kabushiki Kaisha Catalyst for decomposition of sulfur trioxide and hydrogen production process

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2645839C (en) * 2006-03-15 2016-08-16 Basf Catalysts Llc Catalyst composition for reducilng gasoline sulfur content in catalytic cracking process
US8148290B2 (en) * 2006-06-27 2012-04-03 Basf Corporation Diesel exhaust treatment system catalyst monitoring
JP5008666B2 (ja) * 2006-06-28 2012-08-22 出光興産株式会社 脱硫機能付加流動接触分解触媒及びその製造方法並びに該脱硫機能付加流動接触分解触媒を用いた低硫黄接触分解ガソリンの製造方法
TWI478767B (zh) * 2009-04-23 2015-04-01 Treibacher Ind Ag 用於使廢氣進行選擇性催化還原反應之催化劑組成物
MY161413A (en) 2010-04-16 2017-04-14 Treibacher Ind Ag Catalyst composition for selective catalytic reduction of exhaust gases
SG188753A1 (en) * 2011-09-30 2013-04-30 Bharat Petroleum Corp Ltd Sulphur reduction catalyst additive composition in fluid catalytic cracking and method of preparation thereof
WO2013177388A1 (en) 2012-05-25 2013-11-28 Saudi Arabian Oil Company Catalyst for enhanced propylene in fluidized catalytic cracking
RU2729422C1 (ru) 2019-10-24 2020-08-06 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Катализатор для удаления оксидов серы из дымовых газов электростанций

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092271A (en) * 1976-09-27 1978-05-30 The Lummus Company Supported vanadia catalyst for nitrile production and process for preparing the catalyst
US4394301A (en) * 1980-05-01 1983-07-19 Phillips Petroleum Company Catalytic hydrocracking, hydrodesulfurization, and/or hydrodenitrogenation of organic compounds employing promoted zinc titanate and a zeolite as the catalytic agent
US4824815A (en) * 1985-06-11 1989-04-25 Exxon Research And Engineering Company Cracking catalysts containing strontium carbonate
WO1987006156A1 (en) * 1986-04-07 1987-10-22 Katalistiks International, Inc. Vanadium, rare earth metal-containing spinel composition and process of using same
CA1332402C (en) * 1989-02-21 1994-10-11 Louise Dufresne Catalytic aromatization of olefins and paraffins
US4997799A (en) * 1990-06-20 1991-03-05 Amoco Corporation Process for regenerating spent heavy hydrocarbon hydroprocessing catalyst
US5376608A (en) * 1993-01-27 1994-12-27 W. R. Grace & Co.-Conn. Sulfur reduction in FCC gasoline
US6036847A (en) * 1996-03-26 2000-03-14 W. R. Grace & Co.-Conn. Compositions for use in catalytic cracking to make reduced sulfur content gasoline
US20020153283A1 (en) * 1998-12-28 2002-10-24 Arthur W Chester Gasoline sulfur reduction in fluid catalytic cracking
US6974787B2 (en) * 1998-08-31 2005-12-13 Exxonmobil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US6846403B2 (en) * 1998-12-28 2005-01-25 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US6852214B1 (en) * 1998-08-31 2005-02-08 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
DK176408B1 (da) * 1998-12-28 2007-12-17 Mobil Oil Corp Benzinsvovl-reduktion i fluid-katalytisk krakning
US7803267B2 (en) * 1998-12-28 2010-09-28 W. R. Grace & Co.-Conn. Gasoline sulfur reduction in fluid catalytic cracking
CN1122703C (zh) * 1998-12-29 2003-10-01 中国石油化工集团公司 用于烃类催化裂化的一种助剂及其使用方法
WO2001021732A1 (en) * 1999-09-20 2001-03-29 W. R. Grace & Co.-Conn. Gasoline sulfur reduction in fluid catalytic cracking
US6635169B1 (en) * 1999-09-20 2003-10-21 Mobil Oil Corporation Method for reducing gasoline sulfur in fluid catalytic cracking
US6797155B1 (en) * 1999-12-21 2004-09-28 Exxonmobil Research & Engineering Co. Catalytic cracking process using a modified mesoporous aluminophosphate material
JP2001181576A (ja) * 1999-12-27 2001-07-03 Toyo Aluminium Kk 着色メタリック粉体塗料組成物およびその製造方法
DE10054075A1 (de) * 2000-10-31 2002-05-08 Heidenhain Gmbh Dr Johannes Verfahren zur Positionsbestimmung und Positionsmesseinrichtung
SE522925C2 (sv) * 2001-03-08 2004-03-16 Telewide Ab Mottagning av signaler från flera satelliter i en enda antenn
US6635168B2 (en) * 2001-04-13 2003-10-21 W. R. Grace & Co.-Conn Gasoline sulfur reduction catalyst for fluid catalytic cracking process
US7153413B2 (en) * 2001-07-10 2006-12-26 W.R. Grace &Co.-Conn. Gasoline sulfur reduction in fluid catalytic cracking
US7138358B2 (en) * 2001-11-13 2006-11-21 Sud-Chemie Inc. Catalyzed diesel particulate matter filter with improved thermal stability
CA2490908C (en) 2002-06-28 2011-09-20 Albemarle Netherlands B.V. Fcc catalyst for reducing the sulfur content in gasoline and diesel
US7507686B2 (en) * 2002-12-03 2009-03-24 W. R. Grace & Co. - Conn. Gasoline sulfur reduction in fluid catalytic cracking
CN1261216C (zh) * 2003-05-30 2006-06-28 中国石油化工股份有限公司 一种含分子筛的烃类裂化催化剂及其制备方法
SG145771A1 (en) * 2003-08-21 2008-09-29 Bp Chem Int Ltd Catalyst composition and use thereof in ethane oxidation
US8084383B2 (en) * 2004-03-16 2011-12-27 W.R. Grace & Co.-Conn. Gasoline sulfur reduction catalyst for fluid catalytic cracking process
US20060198774A1 (en) * 2005-03-03 2006-09-07 Cross Joseph B Mercury Removal sorbent
CA2645839C (en) * 2006-03-15 2016-08-16 Basf Catalysts Llc Catalyst composition for reducilng gasoline sulfur content in catalytic cracking process
JP5008666B2 (ja) 2006-06-28 2012-08-22 出光興産株式会社 脱硫機能付加流動接触分解触媒及びその製造方法並びに該脱硫機能付加流動接触分解触媒を用いた低硫黄接触分解ガソリンの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298552A (zh) * 2010-12-28 2013-09-11 丰田自动车株式会社 用于分解三氧化硫的催化剂和制氢方法
US8940270B2 (en) 2010-12-28 2015-01-27 Toyota Jidosha Kabushiki Kaisha Catalyst for decomposition of sulfur trioxide and hydrogen production process
CN103298552B (zh) * 2010-12-28 2015-10-14 丰田自动车株式会社 用于分解三氧化硫的催化剂和制氢方法
US8932555B2 (en) 2011-05-25 2015-01-13 Toyota Jidosha Kabushiki Kaisha Catalyst for decomposition of sulfur trioxide and hydrogen production process

Also Published As

Publication number Publication date
US7960307B2 (en) 2011-06-14
CA2645839A1 (en) 2007-09-27
US8449762B2 (en) 2013-05-28
WO2007108939A2 (en) 2007-09-27
MX2008011635A (es) 2008-10-17
KR20090004963A (ko) 2009-01-12
MY146107A (en) 2012-06-29
BRPI0708885B1 (pt) 2016-07-26
KR101444472B1 (ko) 2014-09-24
AU2007227684A1 (en) 2007-09-27
EP1993726B1 (en) 2013-11-20
TW200800394A (en) 2008-01-01
US20110139684A1 (en) 2011-06-16
WO2007108939A3 (en) 2008-01-24
CA2645839C (en) 2016-08-16
US20070249495A1 (en) 2007-10-25
CN101855013B (zh) 2013-05-01
EP1993726A2 (en) 2008-11-26
BRPI0708885A2 (pt) 2011-06-14
RU2008140381A (ru) 2010-04-20

Similar Documents

Publication Publication Date Title
CN101855013B (zh) 用于在催化裂化过程中降低汽油硫含量的催化剂组合物
JP3545652B2 (ja) 流動接触分解におけるガソリン中の硫黄の低減
EP1827687B1 (en) Catalyst for light olefins and lpg in fluidized catalytic units
AU2005224255B2 (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process
EP2604340B1 (en) Gasoline sulfur reductions catalyst for fluid catalytic cracking process
US6846403B2 (en) Gasoline sulfur reduction in fluid catalytic cracking
CA2293120C (en) Gasoline sulfur reduction in fluid catalytic cracking
KR100863822B1 (ko) 유체 촉매에 의한 분해 방법용 가솔린 황 감소 촉매
WO2011115785A1 (en) High light olefins fcc catalyst compositions
RU2603964C2 (ru) Усовершенствованный пассиватор/ловушка металла для процессов кфк
CN102019198B (zh) 一种抗重金属污染的双功能固体助催化剂的制备和应用
KR101352318B1 (ko) 접촉분해 가솔린용 탈황촉매 및 그 촉매를 이용한 접촉분해가솔린의 탈황방법
CN101117595B (zh) 一种汽油吸附脱硫与烃油催化裂化的组合工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130501

Termination date: 20200306

CF01 Termination of patent right due to non-payment of annual fee