CN101958399B - 相变存储装置及其制造方法 - Google Patents

相变存储装置及其制造方法 Download PDF

Info

Publication number
CN101958399B
CN101958399B CN201010229193XA CN201010229193A CN101958399B CN 101958399 B CN101958399 B CN 101958399B CN 201010229193X A CN201010229193X A CN 201010229193XA CN 201010229193 A CN201010229193 A CN 201010229193A CN 101958399 B CN101958399 B CN 101958399B
Authority
CN
China
Prior art keywords
bottom electrode
memory element
tubular portion
conductive contact
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010229193XA
Other languages
English (en)
Other versions
CN101958399A (zh
Inventor
李明修
陈介方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN101958399A publication Critical patent/CN101958399A/zh
Application granted granted Critical
Publication of CN101958399B publication Critical patent/CN101958399B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8418Electrodes adapted for focusing electric field or current, e.g. tip-shaped
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8822Sulfides, e.g. CuS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Other compounds of groups 13-15, e.g. elemental or compound semiconductors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors

Abstract

一种相变存储装置及其制造方法,包括存储元件、导电接触窗、绝缘元件、下电极以及上电极。存储元件包括位于导电接触窗上的可编程电阻存储材料。绝缘元件包括管状部分,其由导电接触窗延伸至存储元件,且具有近端、远端以及定义出内部的内表面,近端与导电接触窗相邻。下电极接触导电接触窗,且在内部中由近端向上延伸至远端。下电极具有上表面,上表面以第一接触表面接触与远端相邻的存储元件。存储元件使上电极与管状部分的远端分离,且上电极接触以第二接触表面接触存储元件。第二接触表面的表面积大于第一接触表面的表面积。

Description

相变存储装置及其制造方法
【相关申请案】
本申请案主张2009年7月15日申请的美国临时申请案第61/271,010号和2009年8月3申请的美国正式申请案第12/534,599号的权益。
技术领域
本发明是有关于包括相变存储材料的存储装置,其包括硫属化合物的材料(chalogenide based materials)与其它可编程电阻材料(programmable resistance material),以及有关于存储装置的操作方法。
背景技术
相变存储材料,如硫属化合物的材料及类似材料,通过施加适于集成电路操作的电平的电流,可使其在非晶状态与结晶状态之间进行相变。相较于大体结晶状态(generally crystalline state),大体非晶状态(generally amorphous state)的特性是具有较高的电阻率,由于两者之间的电阻率不同,因此易于感测以显示数据。此特性引起关注,因此有人使用可编程电阻材料来形成可随机存取以进行读取及写入的非挥发性存储电路。
从非晶改变为结晶(本文中被称为设定)通常为较低电流操作,也就是电流将相变材料加热到高于转变温度,可使主动区从非晶相转变至结晶相。而从结晶改变为非晶(本文中被称为重设),通常为较高电流操作,其包括一短高电流密度脉冲,以熔化或崩解(breakdown)结晶结构,其后相变材料快速地冷却,以停止(quench)相变过程,使相变材料的主动区的至少一部分稳定于非晶相。可应用技术将主动区变小,以减少发生相变所需的电流量。
减少相变材料元件的尺寸及/或与相变材料元件接触的电极的尺寸可减少所需电流的量值,使得绝对电流值小的电流能在主动区中具有较高的电流密度。
一种控制主动区尺寸的方法是设计非常小的电极来将电流传递至相变材料的主体。此小电极结构将电流集中于接触窗的位置处的小区域(像蘑菇的头部)中。参见Wicker于2002年8月6日公告的题为“Reduced Contact Areas of Sidewall Conductor”的美国专利第6,429,064号;Gilgen于2002年10月8日公告的题为“Method forFabricating a Small Area of Contact Between Electrodes”的美国专利第6,462,353号;Lowrey于2002年12月31日公告的题为“Three-Dimensional(3D)Programmable Device”的美国专利第6,501,111号;Harshfield于2003年7月1日公告的题为“MemoryElements and Methods for Making Same”的美国专利第6,563,156号。
控制主动区尺寸的另一种方法包括将电极间隔开,以使得在电极之间流动的电流通过相变材料的薄层的厚度而集中。参见Czubatyj等人的标题为“Memory Device and Method of Making Same”的美国专利申请公开案第US 2007/0048945号。亦参见由本申请案的受让人共有的以下申请案以及专利:Lung于2007年9月28日申请的题为“Memory Cell Having A Side Electrode Contact”的美国专利申请案第11/864,273号;Lung于2008年12月9日公告的题为“Memory Element with Reduced-Current Phase Change Element”的美国专利第7,463,512号;Lung于2008年8月7日申请的题为“Memory Cell Device with Coplanar Electrode Surface andMethod”的美国申请案第12/023,978号。
习知的相变存储单元结构所存在的问题在于与相变材料接触的电极的散热效应(heat hink effect)。由于相变是经由加热而发生的,所以电极的导热性将会带走主动区的热,以致必须以较高电流来产生所需的相变。
较高的电流电平可能会导致存储单元有电性与机械可靠度的问题。这些问题包括在操作期间,热膨胀以及材料密度改变所引起的机械应力而在相变材料/电极界面处形成空隙。
另外,较高的电流电平亦可能导致一些问题,如局部加热足以引起电极以及相变材料的扩散/反应,及/或造成主动区内的相变材料的组成改变,导致存储单元的电阻切换效能衰退且可能造成故障。
因此,目前已有各种技术用于热隔离主动区,以将发生相变所需的电阻加热(resistive heating)限制于主动区。
改良热隔离的方法包括在相变材料周围设置间隙或空隙。见Chen于2004年11月9日公告的题为“Phase Change Memory DeviceEmploying Thermally Insulating Voids”的美国专利第6,815,704号。
另外,亦有人提出使用热绝缘材料来改良,以将热限制于主动区的方法。请参见(例如)Chen于2007年11月14日申请的题为“Phase Change Memory Cell Including Thermal Protect BottomElectrode and Manufacturing Methods”的美国专利申请案第11/940164号。
改良热隔离的另一种方法包括以隔开主动区与电极的方式来形成相变材料以及电极。请参见由本申请案的受让人共有的以下申请案:Chen等人于2006年9月7日申请的题为“I-Shaped Phase ChangeMemory Cell”的美国专利申请案第11/348,848号;Lung等人于2007年12月7日申请的题为“Phase Change Memory Cell HavingInterface Structures with Essentially Equal thermal Impedancesand Manufacturing Methods”的美国专利申请案第11/952646号;Chen于2005年2月5日申请的题为“Heating Center PCRAMStructure and Methods for Making”的美国申请案第12/026342号。
因此,目前需要一种仅需小量电流就能使主动区发生相变的相变存储单元结构,并提供用于制造此元件的方法。
发明内容
本文描述具有小操作电流的相变存储单元。本文描述的存储单元可以减少由存储元件的主动区所带走的热量,且有效地增加每单位电流值在主动区中所产生的热量,因此减少发生相变所需的电流量。
本文所述的相变存储装置包括导电接触窗、存储元件以及绝缘元件。存储元件包括位于导电接触窗上的可编程电阻存储材料。绝缘元件包括管状部分,管状部分由导电接触窗延伸至存储元件,且管状部分具有近端、远端以及定义出内部的内表面,其中近端与导电接触窗相邻。
存储装置还包括下电极,下电极接触导电接触窗,且在内部中由近端向上延伸至远端。下电极具有上表面,上表面以第一接触表面接触与远端相邻的存储元件。存储装置还包括上电极,存储元件使上电极与管状部分的远端分离,且上电极以第二接触表面接触存储元件。第二接触表面的表面积大于第一接触表面的表面积。
在相变存储元件中,主动区是相变材料可在至少两个固相(solid phase)之间改变的区域。在所述的结构中,可以形成尺寸极小的主动区,因此减少发生相变所需的电流量值。在一实施例中,下电极的宽度小于上电极与存储元件的宽度。下电极的宽度较佳是小于形成存储单元的工艺的最小特征尺寸,此工艺通常是微影工艺。下电极的小宽度与小接触表面将电流集中于主动区,因而减少在主动区中发生相变所需的电流量值,其中主动区与下电极的上表面相邻。
此外,在一些实施例中,下电极具有高电阻,因此下电极可以作为加热器,使给定的电流在主动区中产生比原本大的温度变化,因此改善主动区的相变效率。
再者,下电极的小宽度使下电极为高热阻路径(thermalresistance path),因此限制经由下电极而由存储元件的主动区所带走的热流总量。
由于存储元件包围管状部分的外表面,因此主动区位在存储元件的存储材料的体积内,且隔开主动区与导电接触窗及上电极。因此,存储元件的其余部分可以对主动区提供热隔离,使主动区与基部及上电极热隔离,如此一来减少发生相变所需的电流量。在一实施例中,在最大热传导状态时,存储元件的存储材料的热传导系数(thermalconductivity,k)可以小于绝缘元件的介电材料的热传导系数。
此外,当主动区位在存储材料的体积内时,可以避免主动区发生蚀刻破坏等问题。
在一些实施例中,本文所述的存储单元包括两个或多个下电极以及对应的两个或多个管状部分。
在另一实施例中,下电极为环状且具有定义出内部的内表面,其中内部包含电性绝缘填充材料。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。
附图说明
图1为先前技术的“蘑菇型”存储单元的剖面示意图。
图2为先前技术的“柱型”存储单元的剖面示意图。
图3A与图3B分别为本发明的存储单元的第一实施例的剖面示意图与上视示意图。
图3C为表示一些常用的材料的典型热特性以及GST存储材料的热特性的表。
图4为本发明的存储单元的第二实施例的剖面示意图。
图5A与图5B分别为本发明的存储单元的第三实施例的剖面示意图与上视示意图。
图5C为图5A与图5B的另一实施例的剖面示意图。
图6至图14为图3A与图3B的存储单元的制造方法的步骤流程图。
图15为集成电路的简化方块图,其中包括本发明的存储单元。
图16为图15的集成电路的存储单元阵列的实施例的局部示意图。
【主要元件符号说明】
100、200、300、400、500、1630、1632、1634、1636:存储单元
110、160、210、260:介电层
120、220、320、320a、320b、520:下电极
125、145、275、326、326a、326b、344、528、812、910:宽度
130、230、330、1646、1648、1650、1652:存储元件
140、240、340、:上电极
150、250、335、335a、335b、535:主动区
232:侧壁
305:导电接触窗
324:柱状部分
325、325a、325b、525:上表面
327、527:外表面
333、342:接触表面
350:绝缘元件
351:远端
352、352a、352b:管状部分
353:厚度
354:基部
355、526:内表面
356:近端
580:填充材料
590:实心部分
592:环状部分
700:催化剂
800:下电极材料层
810:罩幕
900:填充材料层
902:开口
920、1100:填充材料层
1000:绝缘材料层
1500:集成电路
1505:存储单元阵列
1510:字符线译码器
1515、1656、1658:字符线
1520:位线译码器
1525、1660、1662:位线
1530:感测电路
1535:数据总线
1540:数据输入线
1545:数据输出线
1550:控制器
1555:偏压电路电压与电流源
1560:总线
1565:其它电路
1530:感测电路
1654:源极线
1655:源极线终端电路
1660、1662:位线
1680:电流路径
具体实施方式
将参照图1至图16,以详述本发明的实施例。
图1为先前技术的“蘑菇型”存储单元100的剖面示意图。“蘑菇型”存储单元100包括下电极120、相变存储元件130以及上电极140。下电极120延伸通过介电层110。相变存储元件130包括位在下电极120上方的相变材料层。上电极140位在相变存储元件130上方。介电层160包围相变存储元件130。如在图1中可见,下电极120的宽度125小于上电极140以及相变存储元件130的宽度145。
在进行操作时,在上电极140以及下电极120施加电压,使电流从上电极140流向下电极120而通过相变存储元件130,或使电流从下电极120流向上电极140而通过相变存储元件130。
在相变存储元件130中,主动区150是相变材料可在至少两个固相之间改变的区域。由于宽度125与宽度145之间具有差异,因此,在进行操作时,电流密度会集中于相变存储元件130中与下电极120相邻的区域,使得主动区150具有如图1所示的“蘑菇”形状。
由于主动区150的相变是因为热而发生,而下电极120与介电层110之间的热传导会带走主动区的热,且产生显著量的热损失(heat loss)。如此,大量的热损失会导致必须提供较高的电流才能使主动区150产生想要的变化。
图2为先前技术的“柱型”存储单元200的剖面示意图。存储单元200包括下电极220、柱状相变存储元件230以及上电极240。下电极220位于介电层210中。柱状相变存储元件230位在下电极220上方。上电极240位在柱状相变存储元件230上方。介电层260包围柱状相变存储元件230。如在图2中可见,上电极240与下电极220具有相同宽度275,且上电极240与下电极220的宽度275等于柱状相变存储元件230的宽度。因此,可以隔开主动区250与上电极240及下电极220,以减少上电极240与下电极220所致的散热效应。然而,由于主动区250与介电层260邻近,因此相变存储元件230的侧壁232与介电层260之间仍有热损失存在。
此外,柱状相变存储元件230的形成方法可能是先在下电极220与介电层210上沉积相变材料层,且接着将相变材料层蚀刻成柱状,以形成柱状相变存储元件230。然而,在存储装置的制造过程中,可能会对柱状相变存储元件230的侧壁232造成蚀刻破坏,以及柱状相变存储元件230与下电极220之间可能有对准限度(alignmenttolerance)的问题。
图3A为存储单元300的第一实施例的剖面示意图,其解决了上述的散热问题且因此仅需小操作电流。
存储单元300包括导电接触窗305与可编程电阻存储元件330,可编程电阻存储元件330位于导电接触窗305上。导电接触窗305使存储单元300与下方的存取电路(未绘示,诸如晶体管或二极管)连接。在本实施例中,导电接触窗305包括诸如钨的耐火金属。其它可用的金属包括钛(Ti)、钼(Mo)、铝(Al)、钽(Ta)、铜(Cu)、铂(Pt)、铱(Ir)、镧(La)、镍(Ni)以及钌(Ru)。当然,也可以使用其它接触窗结构与材料。举例来说,导电接触窗305可以是硅化金属或包括经掺杂的半导体材料,其中经掺杂的半导体材料为存取晶体管的漏极或源极或二极管的端处。
存储元件330包括可编程电阻存储材料,且可能包括锌(Zn)、Tl(铊)、Ge(锗)、锑(Sb)、碲(Te)、硒(Se)、铟(In)、钛(Ti)、镓(Ga)、铋(Bi)、锡(Sn)、铜(Cu)、钯(Pd)、铅(Pb)、银(Ag)、硫(S)、硅(Si)、氧(O)、磷(P)、砷(As)、氮(N)以及金(Au)的族群的一种或多种材料。
存储单元300亦包括绝缘元件350,绝缘元件350包括管状部分352,管状部分352由导电接触窗305延伸至存储元件330。管状部分352具有近端356与远端351,其中近端356与导电接触窗305相邻。管状部分352具有定义出内部的内表面355,且在本实施例中,管状部分352的内部在近端356处与远端351处具有实质上相同的宽度。在本文中,″实质上″是为了涵盖在工艺限度内可能产生的差异。
绝缘元件350还具有基部354,基部354位在管状部分352的近端356处。基部354位在导电接触窗305的上表面上,以使导电接触窗305与存储元件330分离。
绝缘元件350包括介电材料,且本实施例的绝缘元件350包括氧化硅(SiO2)。可选地,绝缘元件350可以包括其它介电材料,诸如氮化硅(SiN)或氧化铝(Al2O3)。
下电极320接触导电接触窗305,且在管状部分352的内部中由近端356向上延伸至远端351。下电极320具有外表面327,其中管状部分352的内表面355包围外表面327。下电极320亦具有上表面325,上表面325以第一接触表面333接触存储元件330中与远端351相邻的存储材料。
下电极320可以包括氮化钛(TiN)或氮化钽(TaN)。在一实施例中,当存储元件330包括GST(请参照后文中描述)时,由于氮化钛与GST之间具有良好的接触,因此下电极320较佳是氮化钛,其中氮化钛是半导体工艺中常使用的材料,其在较高温度下提供良好的扩散阻障能力,其中所谓较高温度也就是GST发生相变的温度,通常是在600-700℃的范围内。可选地,下电极320可以是钨(W)、氮化钨(WN)、氮化铝钛(TiAlN)或氮化铝钽(TaAlN),或在一实施例中,下电极320包括选自由掺杂硅(doped Si)、硅(Si)、锗(Ge)、碳(C)、镓(Ga)、铬(Cr)、钛(Ti)、钨(W)、钼(Mo)、铝(Al)、钽(Ta)、铜(Cu)、铂(Pt)、铱(Ir)、镧(La)、镍(Ni)、氮(N)、氧(O)以及钌(Ru)以及上述的组合所组成的族群中的一种或多种元素。
在一些实施例中,下电极320包括加热材料,加热材料的电阻率大于导电接触窗305的材料的电阻率。下电极320亦可包括电阻率较大的材料,其中电阻率较大的材料是指其电阻率大于存储元件330的材料在最高电阻状态下的电阻率。
在一实施例中,下电极320包括具有第一导电型态的掺杂半导体材料,以及导电接触窗305包括具有第二导电型态的掺杂半导体材料,其中第二导电型态与第一导电型态相反,因而在两者之间形成p-n接面,p-n接面作为二极管储存存储装置或晶体管储存存储装置的一部分。
下电极320的上表面325与管状部分352的上表面在远端351处实质上为共平面。在本文中,″实质上共平面″是为了涵盖在工艺限度(也就是形成下电极320与绝缘元件350的工艺与后续工艺)内可能产生的差异,也就是上表面325与远端351的平整度可能不完全相同。
如图3B所示的上视图,在所述的实施例中,下电极320与管状部分352中的每一者具有环状剖面。然而,在一实施例中,根据用来形成柱状部分320(未图示)与侧壁绝缘元件350的制造技术,下电极320与侧壁绝缘元件350的剖面也可以是圆形、椭圆形、方形、矩形或部分为不规则形。
请参照图3A的剖面图,存储元件330接触下电极320的上表面325,使下电极320电性耦合至上电极340。存储元件330亦在管状部分352的上表面下方延伸,以接触管状部分352的外表面。因此,存储元件330包围绝缘元件350与下电极320。
存储单元300亦包括上电极340,其中存储元件330的存储材料使上电极340与管状部分352的远端351分离。上电极340以第二接触表面342接触存储元件330。第二接触表面342的表面积大于第一接触表面333的表面积。如上文中对下电极320的材料的描述,上电极340亦可包括所述的一种或多种材料,且在一些实施例中,上电极340可以包括多层。举例来说,下电极320可以包括第一材料与第二材料,第一材料接触存储元件330且根据与存储元件的材料的兼容性(compatibility)来选择,第二材料位在第一材料上且根据诸如低电阻率等其它优点来选择。在一些实施例中,上电极340可以包括部分位线。
在操作中,在上电极340以及下电极320施加电压,使电流从上电极340流向下电极320而通过接触表面333、342与存储元件330,或从下电极320流向上电极340。
在存储元件330中,主动区335是存储材料可在至少两个固相之间改变的区域。如预期中,可以在所说明的结构中使主动区335为极小的区域,如此可减少发生相变所需的电流量值。下电极320的宽度326小于上电极340的宽度344,因此第二接触表面342的表面积大于第一接触表面333的表面积。宽度326较佳是小于形成存储单元300的工艺的最小特征尺寸,此工艺通常是微影工艺。在与下电极320的上表面325相邻的主动区335中,小宽度326与小接触表面333能减少在主动区335发生相变所需的电流量值。
此外,在一些实施例中,下电极320具有高电阻,因此下电极320可以作为加热器,使给定的电流在主动区335中产生比原本大的温度变化,因此改善主动区335的相变效率。
再者,下电极320的小宽度326使下电极320为高热阻路径,因此限制经由下电极320而由存储元件330的主动区335所带走的热流总量。
由于存储元件330包围管状部分325的外表面,因此主动区335位在存储元件330的存储材料的体积内,且隔开主动区335与导电接触窗305及上电极340。因此,存储元件330的其余部分可以对主动区335提供热隔离,使主动区335与导电接触窗305及上电极340热隔离,如此一来减少发生相变所需的电流量。在一实施例中,在最大热传导状态时,存储元件330的存储材料的热传导系数(k)可以小于绝缘元件350的介电材料的热传导系数。
此外,当主动区335位在存储材料的体积内时,可以避免主动区335发生如上述的蚀刻破坏等问题。
图3C为表示一些常用的材料的典型热特性以及GST存储材料的热特性的表。由图3C可知,GST具有极佳的热特性,包括具有小的热传导系数、比热与热扩散系数。因此,在一实施例中,通过使主动区335位在存储材料的体积内,存储元件330相较于介电材料可以对主动区335提供较佳的热隔离,因此减少发生相变所需的电流量。
绝缘元件350的管状部分352亦可以对主动区335提供热隔离。此外,在一实施例中,可以使用薄膜沉积技术将绝缘元件350形成于下电极320的外表面上,因此绝缘元件350的厚度353可以非常小。此绝缘元件350可限制由主动区335发散的热流,因而有助于将热流集中在存储元件330的材料中。
图4为存储单元400的第二实施例的剖面示意图。存储单元400包括两个下电极320a、320b以及两个对应的管状部分352a、352b。在其它实施例中,下电极与对应的管状元件的数目也可以是两个以上。
在图4中,存储元件330接触下电极320a、320b的上表面325a、325b,以将导电接触窗305电耦接至上电极340。在操作中,在上电极340以及导电接触窗305施加电压,使电流从上电极340流向导电接触窗305而通过下电极320a、320b的上表面325a、325b与存储元件330,或从导电接触窗305流向上电极340。
在存储元件330中,主动区335a、335b是存储材料可在至少两个固相之间改变的区域。如预期中,可以在所说明的结构中使主动区335a、335b为极小的区域,如此可减少发生相变所需的电流量值。小宽度326a、326b将电流集中于主动区335a、335b,其中主动区335a、335b与下电极320a、320b的上表面325a、325b相邻,因而减少在主动区335a、335b中发生相变所需的电流量值。
此外,在一些实施例中,下电极320a、320b具有高电阻,因此下电极320a、320b可以作为加热器,使给定的电流在主动区335a、335b中产生比原本大的温度变化,因此改善主动区335a、335b的相变效率。
再者,下电极320a、320b的小宽度326a、326b使下电极320a、320b为高热阻路径,因此限制由存储元件330的主动区335a、335b至导电接触窗305所带走的热流总量。
由于存储元件330包围管状部分352a、352b的外表面,且上电极340与管状部分352a、352b的远端间隔开,因此主动区335a、335b位在存储元件330的存储材料的体积内,因此使导电接触窗305与上电极340间隔开。因此,存储元件330的其余部分可以对主动区335a、335b提供热隔离,使主动区335a、335b与导电接触窗305及上电极340热隔离,如此一来减少发生相变所需的电流量。此外,当主动区335a、335b位在存储材料的体积内时,可以避免主动区335a、335b发生蚀刻破坏等问题。
通过使主动区335a、335b位在存储材料的体积内,存储元件330相较于介电材料可以对主动区335a、335b提供较佳的热隔离,因此减少发生相变所需的电流量。
绝缘元件350的管状部分352a、352b亦可以对主动区335a、335b提供热隔离。此外,在一实施例中,可以使用薄膜沉积技术将绝缘元件350形成于下电极320a、320b的外表面上,因此绝缘元件350的厚度可以非常小。此绝缘元件350可限制由主动区335a、335b发散的热流,因而有助于将热流集中在存储元件330的材料中。
图5A与图5B分别为存储单元500的第三实施例的剖面示意图与上视示意图。存储单元500包括环状下电极520,下电极520具有定义出内部的内表面526,其中内部包含填充材料580。如图5A与图5B所示,在本实施例中,填充材料580由导电接触窗305的上表面延伸至下电极520的环状上表面525。如图5C所示,在另一实施例中,下电极520可以包括实心部分590与环状部分592,其中实心部分590位于导电接触窗305附近以及环状部分592位于上表面525附近,以及环状部分592定义出包含填充材料580的内部。
环状下电极520可以包括碳纳米管。在本实施例中,填充材料580为电性绝缘材料,以及填充材料580可能包括热传导系数小于环状下电极520的材料。可选地,填充材料580可以包括导电材料,此导电材料的导电率例如是与下电极520的导电率不同。
如图5B所示的上视图,在本实施例中,下电极520的内表面526与外表面527定义出下电极520的环形剖面。在一实施例中,根据用来形成下电极520的制造技术,下电极520的剖面可以是圆形、椭圆形、方形、矩形或部分为不规则形。因此,本文所述的″环状″上表面525也未必是圆形,而可以是下电极520的形状。
请参照图5A,下电极520的内表面526与外表面527之间具有小宽度528,使得下电极520以小环状上表面525接触存储元件330。小的环状下电极520将电流密度集中于存储元件330的一部分,所述存储元件330的一部分为与上表面525相邻的部分,因而减少发生相变所需的电流量值。下电极520的小宽度528亦增加下电极520的热电阻,因此限制经由存储元件330的主动区535至导电接触窗305所带走的热流总量。
图6至图14为图3A与图3B中的存储单元300的制造方法的步骤流程图。
图6为第一步骤,于导电接触窗305上形成导电接触窗305与形成下电极320。
图7A至图7B为图6的下电极320的制造步骤的第一实施例,其包括使用纳米线成长技术(nano-wire growth technique)。
图7A说明第一步骤,也就是于导电接触窗305上形成催化剂(catalyst)700。催化剂700包括一材料,所述材料有利于在导电接触窗305上成长纳米线下电极320。举例来说,催化剂700可以包括有利于形成下电极320的材料,诸如硅、锗或碳。当成长包括硅的纳米线下电极320时,所沉积的催化剂700的材料可以包括金、镍、钛、铁、钴、镓以及上述金属的各自合金。催化剂700可以通过诸如物理气相沉积技术或化学气相沉积技术来沉积。
图7B说明在催化剂700所在位置成长下电极320。所述成长可以包括使催化剂700暴露于受控的温度、压力以及气体中,其中所述气体包含用以成长纳米线下电极320的材料。在成长多个下电极320的实施例中,可以在导电接触窗上的多处形成催化剂,而下电极320成长在那些位置中的每一个位置。
形成催化剂700与成长下电极320的例示性方法揭露于美国专利第6,831,017号与第6,720,240号以及美国专利公开案第2003/0189202号,其中每一者皆以全文引用的方式并入本文中。
在其它实施例中,可以使用无催化剂的纳米线成长技术(catalyst-free nano wire growth technique)来形成下电极320。在不使用催化剂的情况下成长下电极320的例示性方法包括执行无催化剂的有机金属气相磊晶(MOVPE)技术,此技术揭露于Hersee等人发表于2009年1月1日出版的第45册第1卷的电机电子学会期刊(IEEE Electronic Letters),标题为″GaN nanowire light emittingdiodes based on templated and scalable nanowire growth″,其以全文引用的方式并入本文中。
图8A至图8B为图6的下电极320的制造步骤的第二实施例。
图8A说明第一步骤,也就是于导电接触窗305上形成下电极材料层800,以及于下电极材料层800上形成罩幕810。在成长多个下电极的实施例中,罩幕810包括多个罩幕单元。
在所说明的实施例中,罩幕810包括光阻,罩幕810的形成方法例如是先对光阻层进行图案化且接着修整(trim)图案化的光阻层,如此一来,罩幕810具有次微影宽度(sublithographic width)812。
接着,以罩幕810为蚀刻罩幕,对下电极材料层800进行蚀刻,以于导电接触窗305上形成下电极320,而形成如图8B所示的剖面结构。
图9A至图9C为图6的下电极320的制造步骤的第三实施例。
图9A说明第一步骤,也就是于导电接触窗305上形成具有开口902的填充材料层900。其中,开口902可以具有次微影宽度910,其形成方法如下。首先,例如是在填充材料层900上形成隔离层以及在隔离层上形成牺牲层。接着,于牺牲层上形成具有开口的罩幕,其中开口的尺寸与用以形成罩幕的工艺的最小特征尺寸接近或相等,罩幕的开口位于开口902的上方。接着,以罩幕为蚀刻罩幕,对隔离层与牺牲层进行选择性蚀刻,以于隔离层与牺牲层中形成通孔,且暴露出填充材料层900的上表面。在移除罩幕后,在通孔上进行选择性底切蚀刻(selective undercutting etch),以蚀刻隔离层且不损伤牺牲层与填充材料层900。接着,在通孔中形成填充材料,其中通孔中的填充材料具有孔洞(void),这是因为之前对隔离层进行选择性底切蚀刻工艺所导致的。然后,对通孔中的填充材料进行非等向性蚀刻工艺,以打开孔洞,且持续进行蚀刻至填充材料层900暴露于通孔下方,因而在通孔中形成包括填充材料的侧壁间隙壁。侧壁间隙壁具有开口,其中侧壁间隙壁的开口尺寸实质上由孔洞的尺寸决定,因此可以使侧壁间隙壁的开口尺寸小于微影工艺的最小特征尺寸。接着,以侧壁间隙壁为蚀刻罩幕,对填充材料层900进行蚀刻,以形成具有宽度910的开口902,其中宽度910小于微影工艺的最小特征尺寸。而后,可以通过诸如化学机械研磨工艺(CMP)等平坦化工艺移除隔离层与牺牲层。
接着,于图9A所示的结构上(以及于开口902中)形成下电极材料层920,以形成如图9B所示的剖面结构。下电极材料层920的形成方法例如是化学气相沉积工艺。在所说明的实施例中,下电极材料层920完全填满开口902。可选地,可以在开口902的顶部沉积下电极材料层920,而形成没有空隙存在的下电极材料层920,以产生如图5C所示的具有实心部分590与环状部分592的下电极520。
然后,在填充材料层900上进行诸如化学机械研磨等平坦化工艺,以移除开口902以外的下电极材料层920,接着,以选择性蚀刻工艺移除填充材料层900,以形成如图9C所示的剖面结构。
而后,在图6的结构上形成绝缘材料层1000,以形成如图10所示的剖面结构。如图10所示,绝缘材料层1000与下电极320为共形,以围绕下电极320的外表面327且接触导电接触窗305的上表面。在所说明的实施例中,绝缘材料层1000包括氮化硅。可选地,绝缘材料层1000也可以包括其它材料。
接着,在图10所示的结构上形成填充材料层1100,以形成如图11所示的剖面结构。填充材料层1100包括一材料,此材料与绝缘材料层1000以及下电极320的材料之间具有处理选择性(诸如可进行选择性蚀刻工艺)。在所说明的实施例中,填充材料层1100包括氧化硅。可选地,填充材料层1100也可以包括其它材料。
然后,进行诸如化学机械研磨等平坦化工艺,以暴露下电极320的上表面325且由绝缘材料层1100形成绝缘元件350,以形成如图12所示的剖面结构。
而后,例如是利用等向性蚀刻工艺等工艺,选择性地移除填充材料层1100,以形成如图13A所示的剖面结构。在一实施例中,也可以只移除一部分的填充材料层1100,而另一部分的填充材料层1100仍覆盖导电接触窗305,以形成如图13B所示的剖面结构。
接着,利用在图13B所示的结构上沉积存储材料,以形成存储元件330,以得到如图14所示的剖面结构,其中存储元件330接触下电极320的上表面325。然后,于图14所示的结构上形成上电极340,以形成如图3A至图3B所示的存储单元300。
图15为包括存储单元阵列1505的集成电路1500的简化方块图。存储单元阵列1505的存储单元为本文所述的具有小操作电流的存储单元。存储单元包括相变存储元件,相变存储元件可编程至多个电阻状态,包括较低电阻状态与较高电阻状态。字符线译码器1510具有读取、重设、重设验证、设定验证以及设定模式,其与沿着存储单元阵列1505中的列配置的多个字符线1515耦接并且电性导通。位线(行)译码器1520与沿着存储单元阵列1505中的行配置的多个位线1525电性导通,以读取以及编程存储单元阵列1505中的存储单元(未图标)。
在总线1560上将地址提供至字符线译码器(与驱动器)1510以及位线译码器1520。经由数据总线1535将区块1530中的感测电路(感测放大器)以及数据输入结构(包括用于读取以及编程模式的电压及/或电流源)耦接至位线译码器1520。数据输入线1540将数据自集成电路1500上的输入/输出埠或自集成电路1500内部或外部的其它数据源提供至区块1530中的数据输入结构。集成电路1500上可包括其它电路1565,诸如一般用途处理器或专用应用电路,或提供由存储单元阵列1505支持的系统芯片功能性(system-on-a-chipfunctionality)的模块组合。数据经由数据输出线1545自区块1530中的感测放大器提供至集成电路1500上的输入/输出埠,或供应至集成电路1500内部或外部的其它数据目的地。
集成电路1500包括控制器1550,控制器1550用于存储单元阵列1505的存储单元的读取、重设、重设验证、设定验证以及设定模式。在此实例中,控制器1550是使用偏压配置状态机(biasarrangement state machine)来实施,用以控制偏压电路电压与电流源1555的施加,包括对字符线1515、位线1525以及在一些实施例中对源极线进行读取、设定以及重设的偏压配置的施加。控制器1550可使用此领域中所熟知的专用逻辑电路来实施的。在其它实施例中,控制器1550包括一般用途处理器,其可实施于相同集成电路上,以执行控制元件的操作的计算机程序。再者,在又其它实施例中,可利用专用逻辑电路与一般用途处理器的组合来实施控制器1550。
如图16所示,存储单元阵列1505的各个存储单元包括存取晶体管(或诸如二极管的其它存取装置)以及相变存储元件。在图16中,四个存储单元1630、1632、1634、1636分别具有存储元件1646、1648、1650、1652,其表示具有数百万个存储单元的阵列的一小部分。存储元件可编程至包括较低以及较高电阻状态的多个电阻状态。
存储单元1630、1632、1634、1636的各个存取晶体管中的源极共同连接至源极线1654,此源极线1654终止于源极线终端电路1655,例如接地端。在另一实施例中,存取装置的源极线彼此不电性连接,而是可独立控制。源极线终端电路1655可包括诸如电压源以及电流源的偏压电路,以及包括在一些实施例中用于对源极线1654施加偏压配置(而非接地)的译码电路。
多个字符线,包括字符线1656、1658,沿着第一方向平行延伸。字符线1656、1658与字符线译码器1510电性导通。存储单元1630、1634的存取晶体管的栅极连接至字符线1656,且存储单元1632、1636的存取晶体管的栅极共同连接至字符线1658。
多个位线,包括位线1660、1662,在第二方向上平行延伸,且与位线译码器1520电性导通。在所说明的实施例中,各个存储构件配置于相应存取装置的漏极与相应位线之间。或者,存储构件可在相应存取装置的源极侧上。
应理解,存储单元阵列1505不限于图16所示的阵列构形,且亦可有其它阵列构形。另外,在一些实施例中,可以双极晶体管或二极管代替MOS晶体管,以做为存取装置。
在进行操作时,存储单元阵列1505中各个存储单元依据相应存储构件的电阻来储存数据。举例而言,可通过感测电路1530的感测放大器,将选定存储单元的位在线的电流与合适参考电流比较,以判定数据值。建立参考电流,使得一预定电流范围对应于逻辑「0」,而不同的电流范围则对应于逻辑「1」。在具有三个或三个以上的状态的存储单元中,可建立多个参考电流,使得不同位线电流范围对应于三个或三个以上的状态的各个状态。
对存储单元阵列1505的存储单元进行读取或写入时,可将合适电压施加至字符线1656、1658其中之一,并将位线1660、1662其中的一与一电压耦接,以使得电流流经所选定的存储单元。举例而言,在位线1660、字符线1658以及源极线1654施加电压,此电压足以导通存储单元1632的存取晶体管且使路径1680中的电流从位线1660流向源极线1654或从源极线1654流向位线1660,可建立通过选定存储单元(在此实例中,存储单元1632以及相应存储构件1648)的电流路径1680。所施加的电压的电平以及持续时间与所进行的操作有关。
在存储单元1632的重设(或抹除)操作中,字符线译码器1510有助于提供合适电压至字符线1658,以使存储单元1632的存取晶体管导通。位线译码器1520有助于供应具有合适振幅以及持续时间的一或多个电压脉冲至位线1660,以使电流流经存储构件1648,用以使得至少主动区的温度升高到高于存储构件1648的相变材料的转变温度且亦高于熔化温度,以至少使得主动区处于液态。举例而言,接着终止位线1660上的电压脉冲以及字符线1658上的电压,以终止电流,使得主动区以相对较快的淬熄时间快速地冷却,并稳定在非晶相。
在存储单元1632的读取(或感测)操作中,字符线译码器1510有助于提供合适电压至字符线1658,以导通存储单元1632的存取晶体管。位线译码器1520有助于施加具有合适振幅以及持续时间的电压至位线1660,以产生不会造成存储构件1648的电阻状态发生改变的电流。在位线1660上流经存储构件1648的电流与存储单元1632的存储构件1648的电阻有关,且因此与存储构件1648的数据状态有关。故,存储单元1632的数据状态可以通过感测电路1530的感测放大器将位线1660上的电流与合适参考电流进行比较来判定之。
在存储单元1632的设定(或编程)操作中,字符线译码器1510有助于提供合适电压至字符线1658,以使存储单元1632的存取晶体管导通。位线译码器1520有助于供应具有合适振幅以及持续时间的电压至位线1660,以使电流流经存储构件1648,用以使得主动区的至少一部分的温度升高到高于相变材料的转变温度,以使主动区的至少一部分从非晶相转变至结晶相,此转变使得存储构件1648的电阻下降且可将存储单元1632设定在所要的状态。
本文所述的存储构件的存储材料的实施例包括相变存储的材料,其包括硫属化合物的材料(chalogenide based materials)以及其它材料。硫族元素包括氧(O)、硫(S)、硒(Se)以及碲(Te)四种元素中的任一者,所述元素形成元素周期表的VIA族的部分。硫属化合物包括具有带较多正电的元素或自由基的硫族元素的化合物。硫属化合物合金包括具有诸如过渡金属的其它材料的硫属化合物的组合。硫属化合物合金通常含有一或多种选自元素周期表的IVA族的元素,诸如锗(Ge)以及锡(Sn)。通常,硫属化合物合金包括锑(Sb)、镓(Ga)、铟(In)以及银(Ag)中的一或多者的组合。技术文献已提出许多相变存储材料,包括以下的合金:Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Sb/Te、In/Sb/Te、Ga/Se/Te、Sn/Sb/Te、In/Sb/Ge、Ag/In/Sb/Te、Ge/Sn/Sb/Te、Ge/Sb/Se/Te以及Te/Ge/Sb/S。在Ge/Sb/Te合金的系列中,可以使用的合金组成物的范围相当广。所述组成物可表示为TeaGebSb100-(a+b)。有一个研究人员已提出最有用的合金是使沉积材料中Te的平均浓度远低于70%,通常Te的平均浓度低于约60%且通常低如约23%至约58%且最佳为约48%至58%。在材料中,Ge的浓度高于约5%且平均为约8%至约30%,通常保持低于50%。最佳地,Ge的浓度在约8%至约40%的范围中。此组成物中,除了上述主要组成元素以外,另一主要组成元素为Sb。这些百分比为原子百分比,其中组成元素的原子的百分比的总合为100%(Ovshinsky的美国专利第5,687,112号,第10至第11行。)。另一个研究员评估的特定合金包括Ge2Sb2Te5、GeSb2Te4以及GeSb4Te7(Noboru Yamada,“Potential of Ge-Sb-Te Phase-Change Optical Disks forHigh-Data-Rate Recording”,SPIE,第3109卷,第28至第37页(1997))。通常,可将诸如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)的过渡金属以及其混合物或其合金与Ge/Sb/Te组合,以形成具有可编程电阻特性的相变合金。Ovshinsky在美国专利第5,687,112号的第11至第13行所提出的可用的存储材料的特定实例以引用的方式并入本案。
在一些实施例中,硫属化合物以及其它相变材料掺杂有杂质,使用经掺杂的硫属化合物来修改存储构件的传导性、转变温度、熔化温度以及其它性质。用以掺杂硫属化合物的典型杂质包括氮、硅、氧、二氧化硅、氮化硅、铜、银、金、铝、氧化铝、钽、氧化钽、氮化钽、钛以及氧化钛。请参照美国专利第6,800,504号以及美国专利申请公开案第2005/0029502号。
相变合金能够在第一结构状态与第二结构状态之间切换,其中第一结构状态是指材料为通常非晶固相;而第二结构状态是指在单元的主动信道区中的材料为局部有序,且材料为通常结晶固相。这些合金至少是双稳态。「非晶」是指比单晶无序的相对较无序的结构,其可侦测特性例如是具有比结晶相高的电阻率。「结晶」是指比非晶结构有序的相对较有序的结构,其可侦测特性例如是比非晶相低的电阻率。通常,在完全非晶状态与完全结晶状态之间的整个相谱(Spectrum)中,相变材料在局部有序的不同的可侦测状态之间进行电性切换。受到非晶相与结晶相之间改变所影响的其它材料特性包括原子次序、自由电子密度以及活化能。材料可切换至不同固相或两个或两个以上的固相的混合相,以在完全非晶状态与完全结晶状态之间提供灰阶。材料的电性可相应地改变。
通过施加电脉冲可使相变合金自一个相状态改变至另一个相状态。据观察,较短、较高振幅脉冲倾向于将相变材料改变为通常非晶状态。较长、较低振幅脉冲倾向于将相变材料改变为通常结晶状态。较短、较高振幅脉冲中的能量足够高,可使得结晶结构中的键断裂,而较短、较高振幅脉冲中的能量足够短,则可以防止原子重新排列成结晶状态。不需过度实验即可决定适于特定相变合金的脉冲的轮廓(profile)。在接下来的叙述中,是以GST作为相变材料的代表,然而,当可理解亦可以使用其它类型的相变材料。本文所述的用来形成相变随机存取存储器(PCRAM)的材料是Ge2Sb2Te5
在本发明的其它实施例中可使用其它可编程电阻存储材料,包括使用不同晶相改变来决定电阻的其它材料,或使用电脉冲来改变电阻状态的其它存储材料。这些实例包括用于电阻式随机存取存储(resistance random access memory,RRAM)的材料,如金属氧化物(metal-oxides),其包含WOX、NiO、Nb2O5、CuO2、Ta2O5、Al2O3、CoO、Fe2O3、HfO2、TiO2、SrTiO3、SrZrO3或(BaSr)TiO3。其它实例包括用于诸如旋转力矩转移(spin-torque-transfer,STT)磁电阻式随机存取存储器(magnetoresistance random access memory,MRAM)的MRAM的材料,例如CoFeB、Fe、Co、Ni、Gd、Dy、CoFe、NiFe、MnAs、MnBi、MnSb、CrO2、MnOFe2O3、FeOFe2O5、NiOFe2O3、MgOFe2、EuO和Y3Fe5O12中至少一者。请见诸如题为“Magnetic Memory Device and Method ofFabricating the Same”的美国专利公开案第2007/0176251号,其并入本文中以供参照。其它实例包括用于可编程金属单元(programmable-metallization-cell,PMC)存储器或者纳米离子存储存储器(nano-ionic memory)的固态电解质(solid electrolyte)材料,譬如掺杂银的硫化锗电解质与掺杂铜的硫化锗电解质。请见诸如N.E.Gilbert等人发表在Solid-State Electronics期刊(2005年第49期第1813至1819页)的题为“A macro model of programmablemetallization cell devices”的文献,其并入本文中以供参照。
一种形成硫属化合物的例示性方法是在1mTorr~100mTorr的压力下,利用物理气相沉积(Physical Vapor Deposition,PVD)溅镀法或磁控溅镀法以及Ar、N2及/或He等来源气体。这样的沉积通常是在室温进行。可以使用一种高宽比为1~5的准直管(collimator)来改善填入效能(fill-in performance)。也可以用数十伏至数百伏的直流偏压来改善填入效能。另一方面,可同时使用直流偏压与准直管的结合。
题为“Chemical Vapor Deposition of ChalcogenideMaterials”的美国专利公开第2006/0172067号中揭露一种利用化学气相沉积(CVD)形成硫属化合物材料的例示性方法,其并入本文中以供参照。
依据情况,在真空中或在氮气环境中进行沉积后退火处理,以改良硫属化合物材料的结晶状态。退火温度通常在100℃至400℃的范围中,退火时间少于30分钟。
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中包括通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视后附的申请专利范围所界定者为准。

Claims (17)

1.一种相变存储装置,其特征在于,包括:
导电接触窗;
存储元件,包括位于所述导电接触窗上的可编程电阻存储材料;
绝缘元件,包括多个管状部分,各个所述管状部分由所述导电接触窗延伸至所述存储元件,所述存储元件的所述存储材料包围所述管状部分的外表面,且各个所述管状部分具有近端、远端以及定义出第一内部的内表面,其中所述近端与所述导电接触窗相邻;
多个下电极,所述多个下电极接触所述导电接触窗,且在对应的所述管状部分的所述第一内部中由所述近端向上延伸至所述远端,且各个所述下电极具有上表面,所述上表面以第一接触表面接触与所述对应的管状部分的所述远端相邻的所述存储元件;以及
上电极,所述存储元件使所述上电极与所述管状部分的所述远端分离,且所述上电极以第二接触表面接触所述存储元件,其中所述第二接触表面的表面积大于所述第一接触表面的表面积;
其中,所述存储元件使所述上电极与各个所述管状部分的所述远端分离。
2.如权利要求1所述的相变存储装置,其特征在于,所述绝缘元件还包括基部,所述基部位于所述管状部分的所述近端,且位于所述导电接触窗的上表面上,并使所述导电接触窗与所述存储元件分离。
3.如权利要求1所述的相变存储装置,其特征在于,所述下电极具有定义出第二内部的内表面,且所述下电极还包括位于所述第二内部中的电性绝缘填充材料。
4.如权利要求1所述的相变存储装置,其特征在于,所述下电极包括一材料,所述材料的电阻率大于所述导电接触窗的材料的电阻率。
5.如权利要求1所述的相变存储装置,其特征在于,所述存储元件包括一材料,所述材料的热传导系数小于所述绝缘元件的材料的热传导系数。
6.如权利要求1所述的相变存储装置,其特征在于,所述管状部分的所述第一内部在所述近端处与所述远端处的宽度实质上相同。
7.一种相变存储装置的制造方法,其特征在于,包括:
形成导电接触窗;
于所述导电接触窗上形成下电极,其中所述下电极具有外表面与上表面;
于所述下电极与所述导电接触窗上形成绝缘元件,其中形成所述绝缘元件包括形成管状部分,所述管状部分具有内表面,所述内表面包围所述下电极的所述外表面,且所述管状部分具有近端与远端,其中所述近端与所述导电接触窗相邻;
于所述绝缘元件上形成存储元件,所述存储元件包括可编程电阻存储材料,所述存储元件的所述存储材料包围所述管状部分的外表面,且与所述远端相邻的所述存储材料以第一接触表面与所述下电极的所述上表面接触;以及
形成上电极,其中所述存储元件的所述存储材料使所述上电极与所述管状部分的所述远端分离,且所述上电极以第二接触表面接触所述存储元件,其中所述第二接触表面的表面积大于所述第一接触表面的表面积;
其中,形成所述下电极的步骤包括于所述导电接触窗上形成多个下电极,其中各个所述下电极具有外表面与上表面;
形成所述绝缘元件的步骤包括于所述多个下电极上形成多个管状部分,其中各个所述管状部分具有内表面,所述内表面包围对应的所述下电极的所述外表面,且各个所述管状部分具有近端与远端,其中所述近端与所述导电接触窗相邻;
形成所述存储元件的步骤包括于所述多个管状部分上形成所述存储元件,其中所述存储元件包围所述多个管状部分的所述外表面,且与所述远端相邻的所述存储元件接触所述多个下电极的所述上表面;以及
形成所述上电极包括通过所述存储元件使所述上电极与所述管状部分的所述远端分离。
8.如权利要求7所述的相变存储装置的制造方法,其特征在于,形成所述下电极的步骤包括使用纳米线成长工艺(nano-wire growth process),以于所述导电接触窗上成长所述下电极。
9.如权利要求7所述的相变存储装置的制造方法,其特征在于,形成所述下电极的步骤包括:
于所述导电接触窗上沉积下电极材料;
于所述下电极材料上形成罩幕;以及
以所述罩幕为蚀刻罩幕,蚀刻所述下电极材料。
10.如权利要求7所述的相变存储装置的制造方法,其特征在于,形成所述下电极的步骤包括:
于所述导电接触窗上形成牺牲材料层;
形成延伸于所述牺牲材料层中的开口;
于所述开口中形成所述下电极,以接触所述导电接触窗;以及
移除所述牺牲材料层。
11.如权利要求7所述的相变存储装置的制造方法,其特征在于,形成所述绝缘元件的步骤包括:
沉积绝缘材料,所述绝缘材料形成于所述下电极的所述上表面与所述外表面上以及所述导电接触窗的上表面上;
于所述绝缘材料上形成填充材料;
平坦化所述填充材料与所述绝缘材料,以暴露所述下电极的所述上表面,因而形成所述绝缘元件;以及
移除所述填充材料,以暴露所述绝缘元件的所述管状部分的所述外表面。
12.如权利要求11所述的相变存储装置的制造方法,其特征在于,移除所述填充材料的步骤包括移除部分所述填充材料,以及保留包围所述管状部分的下部的填充材料。
13.如权利要求7所述的相变存储装置的制造方法,其特征在于,所述下电极具有定义出内部的内表面,且所述的存储装置的制造方法还包括在所述内部中形成电性绝缘填充材料。
14.如权利要求7所述的相变存储装置的制造方法,其特征在于,所述下电极具有定义出内部的内表面,且所述的存储装置的制造方法还包括在所述内部中形成导电填充材料,所述导电填充材料的导电率与所述下电极的材料的导电率不同。
15.如权利要求7所述的相变存储装置的制造方法,其特征在于,形成所述下电极的步骤与形成所述绝缘元件的步骤包括:
使用纳米线成长技术,于所述导电接触窗上成长所述下电极;以及
于所述下电极的所述外表面上形成所述绝缘元件。
16.一种相变存储装置,其特征在于,包括:
绝缘元件,包括多个管状部分,各个所述管状部分由导电接触窗延伸至存储元件,且各个所述管状部分具有近端、远端以及定义出内部的内表面,其中所述近端与所述导电接触窗相邻;
多个第一电极,所述多个第一电极接触所述导电接触窗,且在对应的所述管状部分的内部中由所述近端向上延伸至所述远端,且各个所述第一电极具有上表面,所述上表面接触与所述对应的管状部分的所述远端相邻的存储元件;
存储元件,包括位于所述绝缘元件上的可编程电阻存储材料,所述存储元件包围所述管状部分的外表面,且所述存储元件以第一接触表面接触所述第一电极,其中所述第一接触表面与所述管状部分的上表面相邻,以及所述存储元件在所述第一接触表面处具有主动区;以及
第二电极,以第二接触表面接触所述存储元件;
其中,所述存储元件使所述第一电极与各个所述管状部分的所述远端分离。
17.如权利要求16所述的相变存储装置,其特征在于,所述绝缘元件还包括基部,所述基部接触所述存储元件。
CN201010229193XA 2009-07-15 2010-07-14 相变存储装置及其制造方法 Active CN101958399B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US27101009P 2009-07-15 2009-07-15
US61/271,010 2009-07-15
US12/534,599 2009-08-03
US12/534,599 US8198619B2 (en) 2009-07-15 2009-08-03 Phase change memory cell structure

Publications (2)

Publication Number Publication Date
CN101958399A CN101958399A (zh) 2011-01-26
CN101958399B true CN101958399B (zh) 2013-01-16

Family

ID=43464647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010229193XA Active CN101958399B (zh) 2009-07-15 2010-07-14 相变存储装置及其制造方法

Country Status (3)

Country Link
US (2) US8198619B2 (zh)
CN (1) CN101958399B (zh)
TW (1) TWI409944B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9082954B2 (en) * 2010-09-24 2015-07-14 Macronix International Co., Ltd. PCRAM with current flowing laterally relative to axis defined by electrodes
US8901537B2 (en) * 2010-12-21 2014-12-02 Intel Corporation Transistors with high concentration of boron doped germanium
CN103839919B (zh) * 2012-11-23 2018-09-14 中芯国际集成电路制造(上海)有限公司 电极的制造方法、熔丝装置及其制造方法
CN103117087B (zh) * 2013-01-16 2015-08-26 华中科技大学 一种短时与长时存储器件及存储方法
US9231205B2 (en) * 2013-03-13 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Low form voltage resistive random access memory (RRAM)
GB2515567A (en) * 2013-06-28 2014-12-31 Ibm Phase-Change memory cells
GB2515568B (en) 2013-06-28 2016-05-18 Ibm Resistive random-access memory cells
CN104810473B (zh) * 2014-01-23 2017-11-24 华邦电子股份有限公司 电阻式存储器及其制造方法
CN105098068A (zh) 2014-05-22 2015-11-25 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
KR20160063067A (ko) * 2014-11-26 2016-06-03 에스케이하이닉스 주식회사 저항 메모리 소자 및 그 제조 방법
KR102374642B1 (ko) 2015-01-22 2022-03-17 삼성전자주식회사 자기 메모리 소자 및 그 제조 방법
US9537093B1 (en) * 2016-02-16 2017-01-03 Macronix International Co., Ltd. Memory structure
US10833270B1 (en) * 2019-05-07 2020-11-10 International Business Machines Corporation Lateral electrochemical cell with symmetric response for neuromorphic computing
CN112331767B (zh) * 2020-10-27 2023-12-22 华中科技大学 一种Ge-Sb基相变材料及多级相变存储器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
CN101009358A (zh) * 2004-10-29 2007-08-01 旺宏电子股份有限公司 半导体单元、存储单元和存储单元阵列及其形成方法

Family Cites Families (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
US3846767A (en) 1973-10-24 1974-11-05 Energy Conversion Devices Inc Method and means for resetting filament-forming memory semiconductor device
IL61678A (en) 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4452592A (en) 1982-06-01 1984-06-05 General Motors Corporation Cyclic phase change coupling
JPS60137070A (ja) 1983-12-26 1985-07-20 Toshiba Corp 半導体装置の製造方法
US4719594A (en) 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
JP2606857B2 (ja) 1987-12-10 1997-05-07 株式会社日立製作所 半導体記憶装置の製造方法
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (ja) 1991-08-06 1998-11-18 日本電気株式会社 半導体メモリ装置
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
JPH05206394A (ja) 1992-01-24 1993-08-13 Mitsubishi Electric Corp 電界効果トランジスタおよびその製造方法
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (ja) 1992-10-30 1999-04-19 日本電気株式会社 半導体メモリ
US5515488A (en) 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
KR0182866B1 (ko) 1995-12-27 1999-04-15 김주용 플래쉬 메모리 장치
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US6337266B1 (en) 1996-07-22 2002-01-08 Micron Technology, Inc. Small electrode for chalcogenide memories
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5688713A (en) 1996-08-26 1997-11-18 Vanguard International Semiconductor Corporation Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5716883A (en) 1996-11-06 1998-02-10 Vanguard International Semiconductor Corporation Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US5902704A (en) 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6768165B1 (en) 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US6969866B1 (en) 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US7023009B2 (en) 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
FR2774209B1 (fr) 1998-01-23 2001-09-14 St Microelectronics Sa Procede de controle du circuit de lecture d'un plan memoire et dispositif de memoire correspondant
US6087269A (en) 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6372651B1 (en) 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6141260A (en) 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6483736B2 (en) 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP2000164830A (ja) 1998-11-27 2000-06-16 Mitsubishi Electric Corp 半導体記憶装置の製造方法
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6291137B1 (en) 1999-01-20 2001-09-18 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
US6245669B1 (en) 1999-02-05 2001-06-12 Taiwan Semiconductor Manufacturing Company High selectivity Si-rich SiON etch-stop layer
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
CN1210819C (zh) 1999-03-25 2005-07-13 能源变换设备有限公司 带有改进的接触点的电可编程存储器元件
US6943365B2 (en) 1999-03-25 2005-09-13 Ovonyx, Inc. Electrically programmable memory element with reduced area of contact and method for making same
US6177317B1 (en) 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6075719A (en) 1999-06-22 2000-06-13 Energy Conversion Devices, Inc. Method of programming phase-change memory element
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6326307B1 (en) 1999-11-15 2001-12-04 Appllied Materials, Inc. Plasma pretreatment of photoresist in an oxide etch process
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6576546B2 (en) 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
TW586154B (en) 2001-01-05 2004-05-01 Macronix Int Co Ltd Planarization method for semiconductor device
US6927411B2 (en) 2000-02-11 2005-08-09 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
US6444557B1 (en) 2000-03-14 2002-09-03 International Business Machines Corporation Method of forming a damascene structure using a sacrificial conductive layer
US6420216B1 (en) 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6720240B2 (en) 2000-03-29 2004-04-13 Georgia Tech Research Corporation Silicon based nanospheres and nanowires
US6888750B2 (en) 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6512263B1 (en) 2000-09-22 2003-01-28 Sandisk Corporation Non-volatile memory cell array having discontinuous source and drain diffusions contacted by continuous bit line conductors and methods of forming
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6555860B2 (en) 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6567293B1 (en) 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
KR100382729B1 (ko) 2000-12-09 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
KR100574715B1 (ko) 2001-01-30 2006-04-28 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치
KR100400037B1 (ko) 2001-02-22 2003-09-29 삼성전자주식회사 콘택 플러그를 구비하는 반도체 소자 및 그의 제조 방법
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6596589B2 (en) 2001-04-30 2003-07-22 Vanguard International Semiconductor Corporation Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US7102150B2 (en) 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6514788B2 (en) 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
DE10128482A1 (de) 2001-06-12 2003-01-02 Infineon Technologies Ag Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung
US6774387B2 (en) 2001-06-26 2004-08-10 Ovonyx, Inc. Programmable resistance memory element
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6511867B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6737312B2 (en) 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6764894B2 (en) 2001-08-31 2004-07-20 Ovonyx, Inc. Elevated pore phase-change memory
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US7045383B2 (en) 2001-09-19 2006-05-16 BAE Systems Information and Ovonyx, Inc Method for making tapered opening for programmable resistance memory element
US6566700B2 (en) 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6545903B1 (en) 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6867638B2 (en) 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3948292B2 (ja) 2002-02-01 2007-07-25 株式会社日立製作所 半導体記憶装置及びその製造方法
US7151273B2 (en) 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US6831017B1 (en) 2002-04-05 2004-12-14 Integrated Nanosystems, Inc. Catalyst patterning for nanowire devices
WO2003085740A1 (fr) 2002-04-09 2003-10-16 Matsushita Electric Industrial Co., Ltd. Memoire non volatile et procede de fabrication
US6864500B2 (en) 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
AU2002326868A1 (en) 2002-09-11 2004-04-30 Ovonyx, Inc. Programming a phase-change material memory
JP4190238B2 (ja) 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
KR20050053750A (ko) 2002-10-11 2005-06-08 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 상변환 물질을 포함하는 전기 장치
US6992932B2 (en) 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
JP4928045B2 (ja) 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6940744B2 (en) 2002-10-31 2005-09-06 Unity Semiconductor Corporation Adaptive programming technique for a re-writable conductive memory device
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US7314776B2 (en) 2002-12-13 2008-01-01 Ovonyx, Inc. Method to manufacture a phase change memory
US7589343B2 (en) 2002-12-13 2009-09-15 Intel Corporation Memory and access device and method therefor
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6815266B2 (en) 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
EP1439583B1 (en) 2003-01-15 2013-04-10 STMicroelectronics Srl Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof
KR100476690B1 (ko) 2003-01-17 2005-03-18 삼성전자주식회사 반도체 장치 및 그 제조방법
KR101009891B1 (ko) 2003-01-31 2011-01-20 엔엑스피 비 브이 자기 저항 메모리 셀, 자기 저항 메모리 셀의 매트릭스,자기 저항 메모리 셀의 매트릭스에 값을 기록하는 방법 및자기 저항 메모리 셀 제조 방법
KR100486306B1 (ko) 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
US7323734B2 (en) 2003-02-25 2008-01-29 Samsung Electronics Co., Ltd. Phase changeable memory cells
US6936544B2 (en) 2003-03-11 2005-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing metal etching residues following a metal etchback process to improve a CMP process
US7400522B2 (en) 2003-03-18 2008-07-15 Kabushiki Kaisha Toshiba Resistance change memory device having a variable resistance element formed of a first and second composite compound for storing a cation
KR100504698B1 (ko) 2003-04-02 2005-08-02 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
JP4634014B2 (ja) 2003-05-22 2011-02-16 株式会社日立製作所 半導体記憶装置
KR100979710B1 (ko) 2003-05-23 2010-09-02 삼성전자주식회사 반도체 메모리 소자 및 제조방법
US20060006472A1 (en) 2003-06-03 2006-01-12 Hai Jiang Phase change memory with extra-small resistors
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US6838692B1 (en) 2003-06-23 2005-01-04 Macronix International Co., Ltd. Chalcogenide memory device with multiple bits per cell
US7132350B2 (en) 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
US20050018526A1 (en) 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
KR100615586B1 (ko) 2003-07-23 2006-08-25 삼성전자주식회사 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법
US7893419B2 (en) 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
DE102004039977B4 (de) 2003-08-13 2008-09-11 Samsung Electronics Co., Ltd., Suwon Programmierverfahren und Treiberschaltung für eine Phasenwechselspeicherzelle
EP1667089A4 (en) 2003-08-19 2009-04-08 Fuji Electric Holdings DISPLAY AND METHOD OF ATTACK
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
KR100505709B1 (ko) 2003-09-08 2005-08-03 삼성전자주식회사 상 변화 메모리 장치의 파이어링 방법 및 효율적인파이어링을 수행할 수 있는 상 변화 메모리 장치
US20050062087A1 (en) 2003-09-19 2005-03-24 Yi-Chou Chen Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
US6910907B2 (en) 2003-11-18 2005-06-28 Agere Systems Inc. Contact for use in an integrated circuit and a method of manufacture therefor
US7485891B2 (en) 2003-11-20 2009-02-03 International Business Machines Corporation Multi-bit phase change memory cell and multi-bit phase change memory including the same, method of forming a multi-bit phase change memory, and method of programming a multi-bit phase change memory
KR100558548B1 (ko) 2003-11-27 2006-03-10 삼성전자주식회사 상변화 메모리 소자에서의 라이트 드라이버 회로 및라이트 전류 인가방법
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7928420B2 (en) 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
US7291556B2 (en) 2003-12-12 2007-11-06 Samsung Electronics Co., Ltd. Method for forming small features in microelectronic devices using sacrificial layers
KR100569549B1 (ko) 2003-12-13 2006-04-10 주식회사 하이닉스반도체 상 변화 저항 셀 및 이를 이용한 불휘발성 메모리 장치
KR100564602B1 (ko) 2003-12-30 2006-03-29 삼성전자주식회사 상 변화 메모리 어레이의 셋 프로그래밍 방법 및 기입드라이버 회로
US7038230B2 (en) 2004-01-06 2006-05-02 Macronix Internation Co., Ltd. Horizontal chalcogenide element defined by a pad for use in solid-state memories
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US7858980B2 (en) 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
KR100574975B1 (ko) 2004-03-05 2006-05-02 삼성전자주식회사 상 변화 메모리 어레이의 셋 프로그래밍 방법 및 기입드라이버 회로
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
KR100532509B1 (ko) 2004-03-26 2005-11-30 삼성전자주식회사 SiGe를 이용한 트렌치 커패시터 및 그 형성방법
US7158411B2 (en) 2004-04-01 2007-01-02 Macronix International Co., Ltd. Integrated code and data flash memory
US7482616B2 (en) 2004-05-27 2009-01-27 Samsung Electronics Co., Ltd. Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same
US6977181B1 (en) 2004-06-17 2005-12-20 Infincon Technologies Ag MTJ stack with crystallization inhibiting layer
KR100668825B1 (ko) 2004-06-30 2007-01-16 주식회사 하이닉스반도체 상변화 기억 소자 및 그 제조방법
US7359231B2 (en) 2004-06-30 2008-04-15 Intel Corporation Providing current for phase change memories
DE102004035830A1 (de) 2004-07-23 2006-02-16 Infineon Technologies Ag Speicherbauelement mit thermischen Isolationsschichten
KR100657897B1 (ko) 2004-08-21 2006-12-14 삼성전자주식회사 전압 제어층을 포함하는 메모리 소자
US7365385B2 (en) 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
KR100610014B1 (ko) 2004-09-06 2006-08-09 삼성전자주식회사 리키지 전류 보상 가능한 반도체 메모리 장치
US7443062B2 (en) 2004-09-30 2008-10-28 Reliance Electric Technologies Llc Motor rotor cooling with rotation heat pipes
US7023008B1 (en) 2004-09-30 2006-04-04 Infineon Technologies Ag Resistive memory element
TWI277207B (en) 2004-10-08 2007-03-21 Ind Tech Res Inst Multilevel phase-change memory, operating method and manufacture method thereof
KR100626388B1 (ko) 2004-10-19 2006-09-20 삼성전자주식회사 상변환 메모리 소자 및 그 형성 방법
JP2006127583A (ja) 2004-10-26 2006-05-18 Elpida Memory Inc 不揮発性半導体記憶装置及び相変化メモリ
DE102004052611A1 (de) 2004-10-29 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle
US7238959B2 (en) 2004-11-01 2007-07-03 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids and sloped trench, and a method of making same
US7608503B2 (en) 2004-11-22 2009-10-27 Macronix International Co., Ltd. Side wall active pin memory and manufacturing method
US7202493B2 (en) 2004-11-30 2007-04-10 Macronix International Co., Inc. Chalcogenide memory having a small active region
JP2006156886A (ja) 2004-12-01 2006-06-15 Renesas Technology Corp 半導体集積回路装置およびその製造方法
KR100827653B1 (ko) 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
DE102004059428A1 (de) 2004-12-09 2006-06-22 Infineon Technologies Ag Herstellungsverfahren für eine mikroelektronische Elektrodenstruktur, insbesondere für ein PCM-Speicherelement, und entsprechende mikroelektronische Elektrodenstruktur
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
TWI260764B (en) 2004-12-10 2006-08-21 Macronix Int Co Ltd Non-volatile memory cell and operating method thereof
US20060131555A1 (en) 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US20060138467A1 (en) 2004-12-29 2006-06-29 Hsiang-Lan Lung Method of forming a small contact in phase-change memory and a memory cell produced by the method
JP4646634B2 (ja) 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
US7419771B2 (en) 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
EP1684352B1 (en) 2005-01-21 2008-09-17 STMicroelectronics S.r.l. Phase-change memory device and manufacturing process thereof
US20060172067A1 (en) 2005-01-28 2006-08-03 Energy Conversion Devices, Inc Chemical vapor deposition of chalcogenide materials
US20060169968A1 (en) 2005-02-01 2006-08-03 Thomas Happ Pillar phase change memory cell
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7348590B2 (en) 2005-02-10 2008-03-25 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7099180B1 (en) 2005-02-15 2006-08-29 Intel Corporation Phase change memory bits reset through a series of pulses of increasing amplitude
US7229883B2 (en) 2005-02-23 2007-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacture thereof
KR100668333B1 (ko) 2005-02-25 2007-01-12 삼성전자주식회사 Pram 소자 및 그 제조방법
JP2006244561A (ja) 2005-03-01 2006-09-14 Renesas Technology Corp 半導体装置
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
DE602005011249D1 (de) 2005-04-08 2009-01-08 St Microelectronics Srl Phasenwechselspeicher mit rohrförmiger Heizstruktur sowie deren Herstellungsverfahren
KR100675279B1 (ko) 2005-04-20 2007-01-26 삼성전자주식회사 셀 다이오드들을 채택하는 상변이 기억소자들 및 그제조방법들
US7408240B2 (en) 2005-05-02 2008-08-05 Infineon Technologies Ag Memory device
KR100682946B1 (ko) 2005-05-31 2007-02-15 삼성전자주식회사 상전이 램 및 그 동작 방법
KR100668846B1 (ko) 2005-06-10 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자의 제조방법
US7388273B2 (en) 2005-06-14 2008-06-17 International Business Machines Corporation Reprogrammable fuse structure and method
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US20060289848A1 (en) 2005-06-28 2006-12-28 Dennison Charles H Reducing oxidation of phase change memory electrodes
US20060289847A1 (en) 2005-06-28 2006-12-28 Richard Dodge Reducing the time to program a phase change memory to the set state
TWI290369B (en) 2005-07-08 2007-11-21 Ind Tech Res Inst Phase change memory with adjustable resistance ratio and fabricating method thereof
US7309630B2 (en) 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US7233520B2 (en) 2005-07-08 2007-06-19 Micron Technology, Inc. Process for erasing chalcogenide variable resistance memory bits
US7345907B2 (en) 2005-07-11 2008-03-18 Sandisk 3D Llc Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements
KR100669851B1 (ko) * 2005-07-12 2007-01-16 삼성전자주식회사 상변화 메모리 장치의 제조 방법
US20070037101A1 (en) 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
TWI273703B (en) 2005-08-19 2007-02-11 Ind Tech Res Inst A manufacture method and structure for improving the characteristics of phase change memory
KR100655443B1 (ko) 2005-09-05 2006-12-08 삼성전자주식회사 상변화 메모리 장치 및 그 동작 방법
US7615770B2 (en) 2005-10-27 2009-11-10 Infineon Technologies Ag Integrated circuit having an insulated memory
US7417245B2 (en) 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7833616B2 (en) 2005-11-16 2010-11-16 Hewlett-Packard Development Company, L.P. Self-aligning nanowires and methods thereof
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7233054B1 (en) 2005-11-29 2007-06-19 Korea Institute Of Science And Technology Phase change material and non-volatile memory device using the same
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
CN101461071B (zh) 2005-12-20 2012-01-18 Nxp股份有限公司 纵向相变存储器单元及其制造方法
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US20070156949A1 (en) 2005-12-30 2007-07-05 Rudelic John C Method and apparatus for single chip system boot
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7292466B2 (en) 2006-01-03 2007-11-06 Infineon Technologies Ag Integrated circuit having a resistive memory
KR100763908B1 (ko) 2006-01-05 2007-10-05 삼성전자주식회사 상전이 물질, 이를 포함하는 상전이 메모리와 이의 동작방법
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7351648B2 (en) 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7426134B2 (en) 2006-02-24 2008-09-16 Infineon Technologies North America Sense circuit for resistive memory
US7910907B2 (en) 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20070252127A1 (en) 2006-03-30 2007-11-01 Arnold John C Phase change memory element with a peripheral connection to a thin film electrode and method of manufacture thereof
US20070235811A1 (en) 2006-04-07 2007-10-11 International Business Machines Corporation Simultaneous conditioning of a plurality of memory cells through series resistors
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US20070249090A1 (en) 2006-04-24 2007-10-25 Philipp Jan B Phase-change memory cell adapted to prevent over-etching or under-etching
US7514705B2 (en) 2006-04-25 2009-04-07 International Business Machines Corporation Phase change memory cell with limited switchable volume
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US20070267618A1 (en) 2006-05-17 2007-11-22 Shoaib Zaidi Memory device
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7663909B2 (en) 2006-07-10 2010-02-16 Qimonda North America Corp. Integrated circuit having a phase change memory cell including a narrow active region width
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7542338B2 (en) 2006-07-31 2009-06-02 Sandisk 3D Llc Method for reading a multi-level passive element memory cell array
US7394089B2 (en) 2006-08-25 2008-07-01 International Business Machines Corporation Heat-shielded low power PCM-based reprogrammable EFUSE device
US7684225B2 (en) 2006-10-13 2010-03-23 Ovonyx, Inc. Sequential and video access for non-volatile memory arrays
KR100858083B1 (ko) * 2006-10-18 2008-09-10 삼성전자주식회사 하부전극 콘택층과 상변화층 사이에 넓은 접촉면적을 갖는상변화 메모리 소자 및 그 제조 방법
US20080225489A1 (en) 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
US7863655B2 (en) 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US20080101110A1 (en) 2006-10-25 2008-05-01 Thomas Happ Combined read/write circuit for memory
US20080137400A1 (en) 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US7682868B2 (en) 2006-12-06 2010-03-23 Macronix International Co., Ltd. Method for making a keyhole opening during the manufacture of a memory cell
US7473576B2 (en) 2006-12-06 2009-01-06 Macronix International Co., Ltd. Method for making a self-converged void and bottom electrode for memory cell
US7476587B2 (en) 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US20080165569A1 (en) 2007-01-04 2008-07-10 Chieh-Fang Chen Resistance Limited Phase Change Memory Material
US7515461B2 (en) 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US20080164453A1 (en) 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7456460B2 (en) 2007-01-29 2008-11-25 International Business Machines Corporation Phase change memory element and method of making the same
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7463512B2 (en) 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US8008643B2 (en) 2007-02-21 2011-08-30 Macronix International Co., Ltd. Phase change memory cell with heater and method for fabricating the same
US7569844B2 (en) 2007-04-17 2009-08-04 Macronix International Co., Ltd. Memory cell sidewall contacting side electrode
US20080265234A1 (en) 2007-04-30 2008-10-30 Breitwisch Matthew J Method of Forming Phase Change Memory Cell With Reduced Switchable Volume
TWI333273B (en) * 2007-05-02 2010-11-11 Powerchip Technology Corp Methods for reducing a contact area between heating electrode and phase-change material layer, phase-change memory devices and methods for fabricating the same
US7906368B2 (en) 2007-06-29 2011-03-15 International Business Machines Corporation Phase change memory with tapered heater
US7745807B2 (en) 2007-07-11 2010-06-29 International Business Machines Corporation Current constricting phase change memory element structure
US7755935B2 (en) 2007-07-26 2010-07-13 International Business Machines Corporation Block erase for phase change memory
US7642125B2 (en) 2007-09-14 2010-01-05 Macronix International Co., Ltd. Phase change memory cell in via array with self-aligned, self-converged bottom electrode and method for manufacturing
US8269208B2 (en) * 2008-03-07 2012-09-18 Ovonyx, Inc. Memory device
US7868313B2 (en) 2008-04-29 2011-01-11 International Business Machines Corporation Phase change memory device and method of manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
CN101009358A (zh) * 2004-10-29 2007-08-01 旺宏电子股份有限公司 半导体单元、存储单元和存储单元阵列及其形成方法

Also Published As

Publication number Publication date
CN101958399A (zh) 2011-01-26
US20110012083A1 (en) 2011-01-20
TW201103141A (en) 2011-01-16
TWI409944B (zh) 2013-09-21
US8779408B2 (en) 2014-07-15
US20120187362A1 (en) 2012-07-26
US8198619B2 (en) 2012-06-12

Similar Documents

Publication Publication Date Title
CN101958399B (zh) 相变存储装置及其制造方法
US8106376B2 (en) Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
US8110822B2 (en) Thermal protect PCRAM structure and methods for making
TWI422014B (zh) 記憶體裝置及其製造方法
CN100562985C (zh) 制造存储单元的自对准空洞及底电极的方法
TWI415220B (zh) 埋藏矽化物結構及其製造方法
CN101197422B (zh) 在制造存储单元时产生微孔开口的方法
CN101504967B (zh) 中心加热相变化存储器结构及其制造方法
CN101840928B (zh) 带有自对准存储元件的多晶硅柱双极晶体管
TWI387103B (zh) 具有二極體存取裝置之完全自我對準微孔型記憶胞
CN101197423B (zh) 制造存储单元中的自收敛存储材料元件的方法
CN100550462C (zh) 具有l型电极的电阻式随机存取存储器单元
TWI397997B (zh) 具有改善結構穩定性之記憶胞
TWI497706B (zh) 具有自動對準底電極和二極體存取裝置之蕈狀記憶胞
CN101814521B (zh) 相变化存储器的多晶硅栓塞双极性晶体管及其制造方法
TWI409942B (zh) 熱穩定電極結構
TW201737519A (zh) 記憶體裝置、其製造方法以及包含上述的電子設備
CN101877384B (zh) 低操作电流相变存储器元件结构
US7897954B2 (en) Dielectric-sandwiched pillar memory device
CN100573899C (zh) 自我对准的嵌入式相变存储器及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant