CN102203923B - 形成多个晶体管栅极的方法及形成具有至少两种不同功函数的多个晶体管栅极的方法 - Google Patents

形成多个晶体管栅极的方法及形成具有至少两种不同功函数的多个晶体管栅极的方法 Download PDF

Info

Publication number
CN102203923B
CN102203923B CN200980143451.8A CN200980143451A CN102203923B CN 102203923 B CN102203923 B CN 102203923B CN 200980143451 A CN200980143451 A CN 200980143451A CN 102203923 B CN102203923 B CN 102203923B
Authority
CN
China
Prior art keywords
transistor gate
metal
etching
transistor
conductive region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980143451.8A
Other languages
English (en)
Other versions
CN102203923A (zh
Inventor
古尔特杰·S·桑胡
马克·基尔鲍赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN102203923A publication Critical patent/CN102203923A/zh
Application granted granted Critical
Publication of CN102203923B publication Critical patent/CN102203923B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823456MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Abstract

本发明涉及一种形成具有至少两种不同功函数的多个晶体管栅极的方法,其包含在衬底上方形成具有不同宽度的第一及第二晶体管栅极,其中第一宽度比第二宽度窄。在所述衬底上方包含在所述第一及第二栅极上方沉积材料。在蚀刻室内,从所述第一及第二栅极两者上方蚀刻所述材料以暴露所述第一栅极的导电材料且减小接纳于所述第二栅极上方的所述材料的厚度但仍使所述第二栅极被所述材料覆盖。在所述蚀刻之后原位地在所述蚀刻室内,使所述衬底在至少300℃的衬底温度下经受包括金属的等离子以将所述金属扩散到所述第一栅极中,从而相比于所述第二栅极的功函数修改所述第一栅极的功函数。

Description

形成多个晶体管栅极的方法及形成具有至少两种不同功函数的多个晶体管栅极的方法
技术领域
本文中所揭示的实施例涉及形成多个晶体管栅极的方法,所述多个晶体管栅极可具有或可不具有至少两种不同功函数。
背景技术
场效应晶体管是集成电路制作中所使用的一种类型的电子组件。此类场效应晶体管包含在其之间接纳有沟道区域的一对源极/漏极区域。接近所述沟道区域接纳栅极且通过栅极电介质将所述栅极与沟道区域分离。通过将适合电压施加到晶体管的栅极,沟道区域变得导电。因此,在将适合阈值电压施加到所述栅极之后,晶体管从非导通状态切换为导通状态。期望将晶体管的阈值电压保持为小且还期望将晶体管的功率消耗保持为低。栅极的可确定阈值电压的一个重要性质是功函数。正是栅极的功函数连同沟道区域的掺杂水平一起确定场效应晶体管装置的阈值电压。为了将晶体管的阈值电压保持为小且将功率消耗保持为低,期望栅极材料的功函数约等于沟道区域的材料的功函数。
通常,并非集成电路的所有晶体管均具有相同构造或材料。因此,应认识到且通常期望将不同晶体管栅极制作为具有至少两种不同功函数。提供不同功函数的一种方式是提供待由不同材料形成的不同栅极电极。举例来说,对于导电多晶硅,使用不同导电性增强掺杂剂及浓度可为不同晶体管提供不同功函数。对于金属栅极,还已知使用不同的金属或金属合金中的不同金属量会影响成品装置的功函数。
附图说明
图1是根据本发明一实施例的工艺中的衬底的示意性截面图。
图2是继图1所展示步骤之后的处理步骤处的图1衬底的视图。
图3是继图2所展示步骤之后的处理步骤处的图2衬底的视图。
图4是继图3所展示步骤之后的处理步骤处的图3衬底的视图。
图5是继图4所展示步骤之后的替代处理步骤处的图3衬底的视图。
图6是根据本发明一实施例的工艺中的另一衬底的示意性截面图。
图7是继图6所展示步骤之后的处理步骤处的图6衬底的视图。
图8是继图7所展示步骤之后的处理步骤处的图7衬底的视图。
图9是继图8所展示步骤之后的处理步骤处的图8衬底的视图。
图10是根据本发明一实施例的工艺中的另一衬底的示意性截面图。
图11是继图10所展示步骤之后的处理步骤处的图10衬底的视图。
图12是继图11所展示步骤之后的处理步骤处的图11衬底的视图。
图13是继图12所展示步骤之后的处理步骤处的图12衬底的视图。
图14是继图13所展示步骤之后的处理步骤处的图13衬底的视图。
图15是继图14所展示步骤之后的处理步骤处的图14衬底的视图。
图16是根据本发明一实施例的工艺中的另一衬底的示意性截面图。
图17是继图16所展示步骤之后的处理步骤处的图16衬底的视图。
图18是继图17所展示步骤之后的处理步骤处的图17衬底的视图。
具体实施方式
参考图1到图4来描述形成具有至少两种不同功函数的多个晶体管栅极的第一实例性方法。参考图1,一般来说用参考编号10指示衬底(其可为半导体衬底)。在本文件的上下文中,术语“半导体衬底”或“半导电衬底”被定义为意指包括半导电材料的任一构造,包含但不限于例如半导电晶片(单独地或以其上包括其它材料的组合件形式)及半导电材料层(单独地或以包括其它材料的组合件形式)的块体半导电材料。术语“衬底”是指任一支撑结构,包含但不限于上文所描述的半导电衬底。衬底10包含半导电区域12,在所述半导电区域内源极/漏极及沟道区域(未展示)已被制作或将被制作。实例性材料12为用一种或一种以上导电性增强杂质适合地掺杂到一个或一个以上浓度的单晶硅。衬底10可包含其它层或区域,例如并非是本发明的特定材料的沟槽隔离件(未展示)。
已在衬底12上方形成栅极电介质14。栅极电介质14的实例性厚度是从约3纳米到约10纳米,其中约5纳米作为特定实例。已在衬底12/14上方形成第一晶体管栅极16及第二晶体管栅极18。第一栅极16具有第一宽度17且第二栅极18具有第二宽度19,其中第一宽度17比第二宽度19窄。在所描绘的实施例中,已在衬底12/14上方形成多个第一栅极16及多个第二栅极18,其中第一栅极16已形成于第一区20内且第二栅极18已形成于不同第二区22内。并非制作于第一区20内的所有栅极都一定具有相同材料、大小或形状,且并非制作于第二区22内的所有晶体管栅极都一定具有相同材料、大小或形状。实例性第一宽度17是从约20纳米到约75纳米,其中约50纳米作为特定实例。实例性宽度19是从约40纳米到约200纳米,其中约150纳米作为特定实例。
在本文件的上下文中,“栅极”或“晶体管栅极”单独地指代场效应晶体管栅极构造的导电部分,且栅极构造可包含额外材料,例如绝缘侧壁间隔件、绝缘顶盖及/或栅极电介质。将实例性栅极16、18展示为不具有形成于其上方或其周围的绝缘间隔件或顶盖,且包括导电区域24。然而,可提供绝缘顶盖及/或间隔件。此外,可使用快闪及其它栅极构造。因此,导电区域24可包括晶体管的控制栅极区域或浮动栅极区域。导电区域24可为同质的或不同质的。实例性材料包含经导电掺杂多晶硅、导电金属化合物及一种或一种以上元素形式金属,包含多种元素形式金属的合金。实例性金属包含铂、钴、铱、钛、钨、钽、铝、铁、锆、钒及铪。
可通过任一现有或尚待开发的方式形成晶体管栅极16及18。一种技术包含光刻图案化及蚀刻,其中图1将对材料24的蚀刻描绘为已相对于栅极电介质14选择性地进行使得其保持横跨于半导电材料12上方的导电栅极中的邻近导电栅极之间。或者,可不选择性地进行所述处理或继续蚀刻以移除一些或所有栅极电介质14以使其不被接纳于栅极之间的衬底材料12上方。此外,图1描绘其中将晶体管栅极制作为具有相等厚度的实例,但也可使用多个厚度及/或配置。导电区域24的实例性厚度是从约10纳米到约100纳米,其中约75纳米作为特定实例。另外,图1描绘晶体管定向是平面的或水平的。还涵盖替代配置,例如垂直晶体管及/或形成于沟槽中的晶体管,且无论其是现有的还是尚待开发的。
参考图2,已在衬底10上方包含分别在第一及第二栅极16、18上方沉积材料28。材料28可为绝缘的、导电的(包含经导电掺杂半导电材料)或半导电的,包含此些性质的任一组合。实例包含二氧化硅、氮化硅、多晶硅、碳、氮化钛、氮化钽及氮化钨。可将材料28沉积为小于、等于或大于第一及第二栅极16、18中的每一者的厚度。无论如何,材料28可大致保形地或不保形地沉积于第一及第二栅极中的每一者上方,且可经沉积以具有平面或非平面最外表面。图2描绘其中已以大致保形方式将材料28沉积为具有非平面最外表面29且沉积为小于第一及第二栅极16、18中的每一者的厚度的厚度的实例。在一些实施例中,材料28具有与晶体管栅极16、18的导电区域24的最外部分的组成不同的组成。
参考图3,已将衬底10放置于蚀刻室内,且已从第一栅极16与第二栅极18两者上方蚀刻材料28。对材料28的蚀刻已有效地暴露第一栅极16的导电材料且减小接纳于第二栅极18上方的材料28的厚度但仍使第二栅极18被材料28覆盖。仅举例来说,实例性适合蚀刻室包含能够实现至少300℃的衬底温度的高温等离子蚀刻器,例如由加利福尼亚州圣克拉拉的应用材料公司(Applied Materials,Inc.of Santa Clara,California)出售的DPSII G3 HT等离子蚀刻反应器的蚀刻室及由加利福尼亚州菲蒙市的Lam研究公司(Lam Research Corporation of Fremont,California.)出售的2300Kiyo等离子蚀刻反应器的蚀刻室。此类反应器理想地实现提供高于300℃的衬底温度的等离子蚀刻,但可使用其它反应器。
在一个实施例中,可操作此类反应器以产生其中蚀刻动作已完全清除材料28以使其不被接纳于相比于较宽宽度晶体管栅极18宽度较窄的晶体管栅极16上方的实例性图3所描绘结果,其中在暴露较窄宽度晶体管栅极16时或在暴露较窄宽度晶体管栅极16之后不久便停止图3的蚀刻动作。将由技术人员取决于晶体管栅极宽度以及接纳于晶体管栅极16、18上方的材料28的组成及配置来选择适合条件及蚀刻化学品。理想地将蚀刻进行为具有相当高偏置的等离子蚀刻及经部分地物理驱动的蚀刻,使得接近窄宽度栅极16有效地形成小面以帮助比较大宽度栅极18更快地暴露此类特征。举例来说,在材料28基本上由碳组成的情况下,实例性条件包含从约250℃到约400℃的衬底温度、从约20毫托到约100毫托的室压、从约100W到约500W的电感功率及从约200W到约600W的偏置功率。实例性蚀刻气体包含从0sccm到约500sccm的Ar、He、Ne、Kr及Xe中的一者或其组合加上从约50sccm到约200sccm的N2以及从约250sccm到约100sccm的O2,其中N2与O2的体积比理想地为至少2∶1。可由技术人员针对用于材料28的除碳以外的材料来确定替代或重叠条件及化学品。蚀刻动作可或可不清除材料28以使其不横跨于晶体管栅极中的邻近晶体管栅极之间,其中图3描绘其中某种厚度的材料28保持横跨于邻近晶体管栅极之间的实例。
参考图4,且原位地在蚀刻室内并在图3的蚀刻之后,已使衬底10在至少300℃的衬底温度下经受包括金属的等离子以将所述金属扩散到第一栅极16中,从而相比于第二栅极18的功函数修改第一栅极16的功函数。在本文件的上下文中,原位动作需要所述经受在发生蚀刻的恰同一室中且在蚀刻与经受包括金属的等离子之间不从蚀刻室移除衬底的情况下进行。来自等离子的金属在开始扩散时可处于或可不处于等离子状态中,且因此可替代地呈气态。图4通过图式中的点画描绘到导电区域24中的金属扩散,其中点指示扩散的金属。此扩散可将或可不将金属同质地分布于整个导电区域24中,且无论导电区域24在暴露于含有金属的等离子之前是否同质。图4描绘其中第一栅极26的导电区域24内的金属扩散在整个区域24中不同质的实例。在此情况下,来自等离子的金属到导电区域24内的扩散理想地是扩散到栅极电介质14的所描绘上表面的至少约10纳米内以对栅极的功函数产生显著影响。此外,衬底所暴露到的等离子可包含一种或一种以上不同金属,以便可将一种或一种以上不同金属扩散到第一栅极16的导电区域24中。可由技术人员取决于对栅极的功函数的所要影响来选择及确定扩散的金属量。此外,此可基于例如以下因素来影响:等离子组成、等离子条件、暴露于等离子的时间及金属扩散到其中的导电区域的组成。
暴露于等离子也可或可不将来自等离子的金属扩散到接纳于第二栅极18上方的材料28中,且无论如何接纳于第二栅极18上方的材料28可或可不屏蔽所述金属中的任何金属以使其不在暴露于等离子期间扩散到第二栅极18中。图4描绘其中某种金属扩散已发生到材料28中但尚未有效地将任何金属扩散到第二栅极18中的任一者内的实例。图5描绘替代实施例衬底10a,已在适当之处利用来自第一描述实施例的相似编号,其中用后缀“a”来指示差异。在图5的等离子暴露中,金属的扩散已有效地扩散到材料28中且穿过材料28扩散到第二栅极18的导电区域24的最外部分中。无论如何,金属到第二栅极18内的任何此扩散均显著小于到第一栅极16中的扩散,以便相比于可对或可不对第二栅极18发生的任何功函数修改而修改第一栅极的功函数。
在(例如)第一栅极16的导电区域24包含元素形式金属或元素形式金属合金的情况下,将固有地增加功函数的实例性金属的扩散包含铂、钴及铱。此外,如果导电区域24在金属扩散之前包含包括铂、钴及铱中的一者或其组合的合金,那么更多铂、钴及铱到此类导电区域中的扩散将往往增加功函数。对应地,减小金属导电区域中的功函数的金属实例包含钛、钨、钽、铝及铁。此外,举例来说,如果导电区域24的最外部分包括经导电掺杂多晶硅,那么金属的扩散可将导电区域24的最外部分形成为包括导电金属硅化物。在一个理想实施例中,等离子中的金属是从有机金属化合物获得的。实例包含用于镍的四羰基镍、用于铁的二茂铁、用于钛的Ti(N(CH3)2)4及/或Ti(N(C2H5)2)4、用于钽的五(二甲基酰胺基)钽、用于钴的Co2(CO)8及用于铂的Pt(C2H5C5H4)(CH3)3。可替代地使用除有机金属化合物以外的化合物,举例来说,例如TiCl4的金属卤化物及其它化合物。电感耦合高温蚀刻反应器中的实例性条件包含从300℃到约400℃的衬底温度、从约5毫托到约200毫托的室压、从约100W到约1,000W的电感/源功率及从0W到约100W的偏置功率。含金属气体的实例性流率是从约10sccm到约200sccm,且从0sccm到约1,000sccm的适合惰性载体气体或许改进等离子均匀度及密度(即,Ar、He、Xe、Kr、Ne及/或N2)。可通过衬底搁置于其上的基座或其它支撑件的温度来控制衬底温度。举例来说,上文所描述的反应器可使其基座设定为300℃或高于300℃的温度,其中暴露于等离子期间的衬底温度取决于等离子的条件而高出约10℃到50℃。
图3的蚀刻及图4或图5的暴露于等离子可在材料28中的任何材料上方接纳或未接纳任何掩模的情况下发生,其中在图3到图5的所描绘横截面中材料28中的任何材料上方未展示/接纳掩模。
参考图6到图10关于衬底10b来描述形成具有至少两种不同功函数的多个晶体管栅极的另一实例性实施例方法。已在适当之处利用来自第一描述实施例的相似编号,其中用后缀“b”或用不同编号来指示差异。参考图6,已在衬底12/14上方形成包括导电区域33的多个晶体管栅极32。所述晶体管栅极可具有或可不具有至少两种不同宽度,其中在图6中将栅极32展示为具有相等宽度。图6的晶体管栅极可具有图1中的栅极16、18中的一者或另一者的实例性配置或者其它配置。仅举例来说,导电区域33的组成可与上文结合第一描述实施例的晶体管16、18所描述的组成相同。可相对于晶体管栅极32提供侧壁间隔件及/或顶盖。
已在晶体管栅极32的导电区域33上方提供材料34,其中此材料具有与导电区域33的最外部分的组成不同的组成。另外,实例性材料及属性包含上文关于第一描述实施例中的材料28所描述的那些材料及属性中的任一者。
参考图7,已形成掩模36以覆盖晶体管栅极32中的一些晶体管栅极且使晶体管栅极32中的其它晶体管栅极不被掩模36覆盖。可利用任一适合现有或尚待开发的掩模,且(举例来说)其中此掩模完全地或部分地牺牲。实例性材料包含具有或不具有一个或一个以上抗反射涂覆层的光致抗蚀剂。
参考图8,在适合蚀刻室内且在形成掩模36之后,已蚀刻材料34以使其不被接纳于未被掩模36覆盖的那些晶体管栅极32上。实例性室、化学品及条件包含上文结合用以产生图3衬底的处理所描述的那些室、化学品及条件中的任一者。可将或可不将材料34蚀刻为决不完全横跨于未被掩模36覆盖的经暴露晶体管栅极32中的邻近经暴露晶体管栅极之间。图8展示在蚀刻之后一些材料34横跨于经暴露栅极32中的邻近经暴露栅极之间。或者,可移除未被掩模36覆盖的所有材料34。
参考图9,且在图8的蚀刻之后原位地在蚀刻室内,已使衬底10b在至少300℃的衬底温度下经受包括金属的等离子。暴露于等离子已有效地将来自等离子的金属扩散到未被掩模36覆盖的晶体管栅极32的导电区域中以相比于被掩模36覆盖的晶体管栅极32的功函数修改未经覆盖晶体管栅极32的功函数。理想地,掩模36屏蔽来自等离子的金属中的任何金属以使其不扩散到经覆盖/经掩蔽晶体管栅极32的导电区域33中。实例性处理条件及化学品如上文结合图4及图5实施例所描述。因此,导电区域33在暴露于等离子之前及之后可为或可不为同质的,且金属可均匀地或仅部分地扩散到导电区域33中而仍影响并修改未被掩模36覆盖的晶体管栅极32的功函数。
形成多个晶体管栅极的方法的实施例可产生或可不产生不同栅极的至少两种不同功函数。如上文所描述的实例性实施例产生不同栅极的至少两种不同功函数。在图10到图15中关于衬底10c展示未必产生至少两种不同功函数的实施例的一个实例。已在适当之处利用来自第一描述实施例的相似编号,其中用后缀“c”或用不同编号来指示差异。参考图10,已在衬底12/14上方形成具有导电区域42的多个晶体管栅极40。实例性材料及构造包含上文关于图1到图9实施例所描述的那些材料及构造中的任一者。已在衬底12/14上方包含在晶体管栅极40中的邻近晶体管栅极上方且横跨于其之间沉积第一材料44。第一材料44具有与晶体管栅极40的导电区域42的最外部分的组成不同的组成。实例性材料及属性包含上文关于材料28/34所描述的那些材料及属性中的任一者。因此,举例来说,第一材料44可具有或可不具有平面最外表面,其中在图10中展示非平面最外表面。
参考图11,已蚀刻第一材料44以移除其从而使其不横跨于晶体管栅极40中的邻近晶体管栅极之间,但仍使第一材料44覆盖晶体管栅极40的顶部及侧壁。
参考图12,已在衬底上方包含在晶体管栅极40中的邻近晶体管栅极上方且横跨于其之间沉积第二材料46。第二材料46在组成上可与第一材料44的最外部分的组成相同或不同。此外,第二材料46可具有平面或非平面最外表面,其中在图12中展示平面最外表面。实例包含上文针对材料28所描述的那些实例中的任一者。可将第二材料46沉积为小于、等于或大于晶体管栅极40的厚度的厚度。
参考图13,已蚀刻第二材料46以使其不被接纳于晶体管栅极40中的至少一些晶体管栅极上方但保持横跨于晶体管栅极40中的邻近晶体管栅极之间。图13描绘其中已蚀刻第二材料44以使其不被接纳于所有晶体管栅极40上方的实施例。此蚀刻可在有掩蔽或无掩蔽的情况下进行。
参考图14,在蚀刻室内且在蚀刻第二材料46之后,已蚀刻第一材料44以使其不被接纳于晶体管栅极40中的至少一些晶体管栅极上方,其中图14描绘其中已蚀刻第一材料44以使其不被接纳于所有晶体管栅极40上方的实例。在第二材料46具有与第一材料44不同的组成的情况下,此蚀刻可或可不相对于此第二材料选择性地进行,其中如图14中所展示已进行选择性蚀刻。无论如何,在一个实施例中,如图13中所展示的对第二材料46的蚀刻可在与图14所描绘的蚀刻相同的蚀刻室内进行。此外,在一个实施例中,可在图13的第二材料蚀刻之后原位地发生如图14中所展示的对第一材料44的蚀刻以使其不被接纳于晶体管栅极40中的至少一些晶体管栅极上方。举例来说,可如上文结合图3及图8实施例中的任一者所描述的那样进行图14中的对第一材料44的实例性蚀刻。
参考图15,已使衬底10c在至少300℃的衬底温度下经受包括金属的等离子以将来自等离子的金属扩散到晶体管栅极40的导电区域42中从而修改晶体管栅极40的功函数。在如图14中所描绘的对第一材料44的蚀刻以使其不被接纳于晶体管栅极40中的至少一些晶体管栅极上方之后,已在蚀刻室内原位地进行此经受/暴露。实例性处理可如上文关于图4、图5及图9实施例中的任一者所描述。在如图14及图15所描绘的在暴露于等离子期间暴露所有晶体管栅极的情况下,所有晶体管栅极40的功函数将被修改。图16到图18描绘其中部分地由于在暴露于等离子期间第二材料中的一些材料保持在晶体管栅极中的一些晶体管栅极上方而产生至少两种不同功函数的实例性替代实施例。
具体来说,图16到图18描绘相对于替代实施例衬底10d的处理。已在适当之处利用来自上文所描述实施例的相似编号,其中用后缀“d”或用不同编号来指示差异。图16描绘继图12实施例之后的关于第二材料46d对衬底10d的处理。在图16中,已掩蔽第二材料46d(未展示掩模)同时已使第二材料46d中的一些第二材料向外暴露并对其进行蚀刻以使其在立面上仅接纳于晶体管栅极40中的一些晶体管栅极(具体来说,是图16中留下的三个所图解说明的栅极)上方。
图17描绘借此已蚀刻第一材料44以使其不被接纳于晶体管栅极40中的经暴露晶体管栅极上方且从而不接纳于仅一些晶体管栅极上方的后续处理。图18描绘其中原位地在其内发生了图17蚀刻的蚀刻室内已将衬底10d暴露于上文所描述的含金属等离子以将金属扩散到三个留下的所图解说明晶体管栅极40的导电区域42中的后续处理。
在一个实施例中,一种方法涵盖在衬底上方形成包括导电区域的多个晶体管栅极。所述晶体管栅极可具有或可不具有至少两种不同宽度。图1、图6或图16的上文所述及所示多个晶体管栅极中的任一者为此类晶体管栅极的实例。在晶体管栅极的导电区域上方提供材料,其中此材料具有与晶体管栅极的导电区域的最外部分的组成不同的组成。材料28、34、44及46中的任何一者或其组合为此材料的实例。此外,举例来说,第一材料44与第二材料46的组合(无论是否移除第一材料44以使其不完全横跨于晶体管栅极40之间)也是此实例性材料。因此,如本文件中此处及别处所使用的“材料”并不需要同质性且可包含多种不同组成及/或密度区域及/或层。
在蚀刻室内,以毯覆方式蚀刻所述材料以使其不被接纳于晶体管栅极的导电区域上方。实例性室、化学品及条件如上文关于对材料28、34及44中的任一者的蚀刻所描述。仅举例来说,从图13转到图14时的处理可被视为描绘此实施例:借此将材料44展示为以毯覆方式进行蚀刻以使其不被接纳于栅极40的导电区域42上方。或者,仅举例来说,可以毯覆方式蚀刻图2及图6的衬底以分别移除材料28及34以使其不被接纳于所有所描绘晶体管栅极的导电区域上方。
接着,在毯覆蚀刻之后原位地在蚀刻室内,使衬底在至少300℃的衬底温度下经受包括金属的等离子以将来自所述等离子的金属扩散到晶体管栅极的导电区域中从而修改晶体管栅极的功函数。起相同作用的实例性技术、条件及化学品可为如上文关于图4、图5、图9、图15及图18中的任一者的处理所描述的那些技术、条件及化学品。

Claims (21)

1.一种形成具有至少两种不同功函数的多个晶体管栅极的方法,其包括:
在衬底上方形成第一及第二晶体管栅极,所述第一晶体管栅极具有第一宽度且所述第二晶体管栅极具有第二宽度,所述第一宽度比所述第二宽度窄;
在所述衬底上方包含在所述第一及第二晶体管栅极上方沉积材料;
在蚀刻室内,蚀刻所述材料以暴露所述第一晶体管栅极的导电材料且使所述材料留在所述第二晶体管栅极上方;及
在所述蚀刻之后原位地在所述蚀刻室内,使所述衬底在至少300℃的衬底温度下经受等离子相金属或气相金属以将所述金属扩散到所述第一晶体管栅极中,从而相比于所述第二晶体管栅极的功函数修改所述第一晶体管栅极的功函数。
2.根据权利要求1所述的方法,其中所述蚀刻减小接纳于所述第二晶体管栅极上方的所述材料的厚度。
3.根据权利要求1所述的方法,其中接纳于所述第二晶体管栅极上方的所述材料屏蔽所述金属中的任何金属以使其不在所述经受期间扩散到所述第二晶体管栅极中。
4.根据权利要求1所述的方法,其中所述经受还将所述金属扩散到接纳于所述第二晶体管栅极上方的所述材料中。
5.根据权利要求4所述的方法,其中接纳于所述第二晶体管栅极上方的所述材料屏蔽所述金属中的任何金属以使其不在所述经受期间扩散到所述第二晶体管栅极中。
6.根据权利要求4所述的方法,其中所述金属中的一些金属还扩散到所述第二晶体管栅极中。
7.根据权利要求1所述的方法,其中在所述材料中的任何材料上方未接纳任何掩模的情况下发生所述蚀刻及所述经受。
8.一种形成具有至少两种不同功函数的多个晶体管栅极的方法,其包括:
在衬底上方形成多个晶体管栅极,所述晶体管栅极包括导电区域;
在所述晶体管栅极的所述导电区域上方提供材料,所述材料具有与所述晶体管栅极的所述导电区域的最外部分的组成不同的组成;
在提供所述材料之后,形成掩模以覆盖所述晶体管栅极中的一些晶体管栅极且使所述晶体管栅极中的其它晶体管栅极不被所述掩模覆盖;
在蚀刻室内且在形成所述掩模之后,蚀刻所述材料以使其不被接纳于未被所述掩模覆盖的所述晶体管栅极上方;及
在所述蚀刻之后原位地在所述蚀刻室内,使所述衬底在至少300℃的衬底温度下经受等离子相金属或气相金属以将所述金属扩散到未被所述掩模覆盖的所述晶体管栅极的所述导电区域中,从而相比于被所述掩模覆盖的所述晶体管栅极的功函数修改未被所述掩模覆盖的所述晶体管栅极的功函数。
9.根据权利要求8所述的方法,其中所述掩模屏蔽所述金属中的任何金属以使其不扩散到被所述掩模覆盖的所述晶体管栅极的所述导电区域中。
10.根据权利要求8所述的方法,其中所述导电区域的至少所述最外部分包括元素形式金属或元素形式金属合金中的至少一者。
11.根据权利要求10所述的方法,其中所有所述导电区域基本上由一种或一种以上元素形式金属或一元素形式金属合金组成。
12.根据权利要求8所述的方法,其中所述导电区域的至少所述最外部分包括经导电掺杂多晶硅,所述经受在所述晶体管栅极的未被所述掩膜覆盖的所述导电区域内形成导电金属硅化物。
13.一种形成多个晶体管栅极的方法,其包括:
在衬底上方形成多个晶体管栅极,所述晶体管栅极包括导电区域;
在所述衬底上方包含在所述晶体管栅极中的邻近晶体管栅极上方且横跨于其之间沉积第一材料,所述第一材料具有与所述晶体管栅极的所述导电区域的最外部分的组成不同的组成;
蚀刻所述第一材料以移除其从而使其不横跨于所述晶体管栅极中的邻近晶体管栅极之间但仍使所述第一材料覆盖所述晶体管栅极的顶部及侧壁;
在蚀刻所述第一材料之后,在所述衬底上方包含在所述晶体管栅极中的邻近晶体管栅极上方且横跨于其之间沉积第二材料;
蚀刻所述第二材料以使其不被接纳于所述晶体管栅极中的至少一些晶体管栅极上方但保持横跨于所述晶体管栅极中的邻近晶体管栅极之间;
在蚀刻室内且在蚀刻所述第二材料之后,蚀刻所述第一材料以使其不被接纳于所述晶体管栅极中的所述至少一些晶体管栅极上方;及
在所述蚀刻所述第一材料以使其不被接纳于所述晶体管栅极中的所述至少一些晶体管栅极上方之后原位地在所述蚀刻室内,使所述衬底在至少300℃的衬底温度下经受等离子相金属或气相金属以将所述金属扩散到所述晶体管栅极中的所述至少一些晶体管栅极的所述导电区域中从而修改所述晶体管栅极中的所述至少一些晶体管栅极的功函数。
14.根据权利要求13所述的方法,其中在所述室内发生所述第二材料的蚀刻,此后原位地发生所述蚀刻所述第一材料以使其不被接纳于所述晶体管栅极中的所述至少一些晶体管栅极上方。
15.根据权利要求13所述的方法,其包括将所述多个晶体管栅极形成为具有至少两种不同宽度。
16.一种形成多个晶体管栅极的方法,其包括:
在衬底上方形成多个晶体管栅极,所述晶体管栅极包括导电区域;
在所述晶体管栅极的所述导电区域上方提供材料,所述材料具有与所述晶体管栅极的所述导电区域的最外部分的组成不同的组成;
在蚀刻室内,以毯覆方式蚀刻所述材料以使其不被接纳于所述晶体管栅极的所述导电区域上方;及
在所述蚀刻之后原位地在所述蚀刻室内,使所述衬底在至少300℃的衬底温度下经受等离子相金属或气相金属以将所述金属扩散到所述晶体管栅极的所述导电区域中,从而修改所述晶体管栅极的功函数。
17.根据权利要求16所述的方法,其中所述金属不同质地分布于所述导电区域中,并且所述导电区域在所述经受之后为不同质的。
18.根据权利要求17所述的方法,其中所述导电区域在所述经受之前为同质的。
19.根据权利要求16所述的方法,其中所述导电区域在所述经受之前及之后为同质的。
20.根据任一前述权利要求所述的方法,其中所述经受为经受等离子相金属。
21.根据任一前述权利要求所述的方法,其中所述经受为经受气相金属。
CN200980143451.8A 2008-11-05 2009-10-23 形成多个晶体管栅极的方法及形成具有至少两种不同功函数的多个晶体管栅极的方法 Active CN102203923B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/265,070 2008-11-05
US12/265,070 US7824986B2 (en) 2008-11-05 2008-11-05 Methods of forming a plurality of transistor gates, and methods of forming a plurality of transistor gates having at least two different work functions
PCT/US2009/061823 WO2010053720A2 (en) 2008-11-05 2009-10-23 Methods of forming a plurality of transistor gates, and methods of forming a plurality of transistor gates having at least two different work functions

Publications (2)

Publication Number Publication Date
CN102203923A CN102203923A (zh) 2011-09-28
CN102203923B true CN102203923B (zh) 2014-09-03

Family

ID=42131944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980143451.8A Active CN102203923B (zh) 2008-11-05 2009-10-23 形成多个晶体管栅极的方法及形成具有至少两种不同功函数的多个晶体管栅极的方法

Country Status (8)

Country Link
US (3) US7824986B2 (zh)
EP (1) EP2342740B1 (zh)
JP (1) JP5333977B2 (zh)
KR (1) KR101173799B1 (zh)
CN (1) CN102203923B (zh)
SG (2) SG177976A1 (zh)
TW (1) TWI397975B (zh)
WO (1) WO2010053720A2 (zh)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262395A1 (en) 2006-05-11 2007-11-15 Gibbons Jasper S Memory cell access devices and methods of making the same
US8008144B2 (en) 2006-05-11 2011-08-30 Micron Technology, Inc. Dual work function recessed access device and methods of forming
US8860174B2 (en) * 2006-05-11 2014-10-14 Micron Technology, Inc. Recessed antifuse structures and methods of making the same
US7824986B2 (en) * 2008-11-05 2010-11-02 Micron Technology, Inc. Methods of forming a plurality of transistor gates, and methods of forming a plurality of transistor gates having at least two different work functions
US20110079861A1 (en) * 2009-09-30 2011-04-07 Lucian Shifren Advanced Transistors with Threshold Voltage Set Dopant Structures
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
IT1401141B1 (it) * 2010-07-26 2013-07-12 Indena Spa Formulazioni contenenti estratti di echinacea angustifolia e di zingiber officinale utili nella riduzione dell'infiammazione e del dolore periferico
US8377783B2 (en) 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
WO2013022753A2 (en) 2011-08-05 2013-02-14 Suvolta, Inc. Semiconductor devices having fin structures and fabrication methods thereof
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US9412883B2 (en) * 2011-11-22 2016-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for MOS capacitors in replacement gate process
US9269833B2 (en) 2011-11-22 2016-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for hybrid MOS capacitors in replacement gate process
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
JP2013172082A (ja) * 2012-02-22 2013-09-02 Toshiba Corp パターン形成方法、半導体装置の製造方法および塗布装置
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
US8896035B2 (en) 2012-10-22 2014-11-25 International Business Machines Corporation Field effect transistor having phase transition material incorporated into one or more components for reduced leakage current
US9431068B2 (en) 2012-10-31 2016-08-30 Mie Fujitsu Semiconductor Limited Dynamic random access memory (DRAM) with low variation transistor peripheral circuits
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9112495B1 (en) 2013-03-15 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
KR102055379B1 (ko) 2013-08-08 2019-12-13 삼성전자 주식회사 트라이-게이트를 포함하는 반도체 소자 및 그 제조 방법
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
CN104779205B (zh) * 2014-01-15 2018-06-26 南方科技大学 一种集成不同厚度金属层以调节功函数的方法
CN105225949B (zh) * 2014-05-26 2018-08-21 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法和电子装置
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment
WO2017213638A1 (en) * 2016-06-08 2017-12-14 Intel Corporation Quantum dot devices with doped regions
WO2017213640A1 (en) * 2016-06-08 2017-12-14 Intel Corporation Quantum dot devices
WO2017213648A1 (en) * 2016-06-09 2017-12-14 Intel Corporation Quantum dot devices with doped conductive pathways
US11158714B2 (en) 2016-06-09 2021-10-26 Intel Corporation Quantum dot devices with trenched substrates
WO2017213649A1 (en) * 2016-06-09 2017-12-14 Intel Corporation Quantum dot devices with double quantum well structures
WO2017213658A1 (en) * 2016-06-10 2017-12-14 Intel Corporation Gate patterning for quantum dot devices
EP3497724A4 (en) 2016-08-10 2020-03-25 Intel Corporation QUANTUM POINT GROUP DEVICES
WO2018031007A1 (en) * 2016-08-10 2018-02-15 Intel Corporation Quantum dot array devices
US10593756B2 (en) * 2016-08-12 2020-03-17 Intel Corporation Quantum dot array devices
WO2018044267A1 (en) * 2016-08-30 2018-03-08 Intel Corporation Quantum dot devices
US10770545B2 (en) 2016-08-30 2020-09-08 Intel Corporation Quantum dot devices
US9997519B1 (en) 2017-05-03 2018-06-12 International Business Machines Corporation Dual channel structures with multiple threshold voltages
US10037919B1 (en) 2017-05-31 2018-07-31 Globalfoundries Inc. Integrated single-gated vertical field effect transistor (VFET) and independent double-gated VFET
US11616126B2 (en) 2018-09-27 2023-03-28 Intel Corporation Quantum dot devices with passive barrier elements in a quantum well stack between metal gates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243336A (zh) * 1998-06-30 2000-02-02 摩托罗拉公司 互补金属氧化物半导体器件及其形成方法
CN1266277A (zh) * 1999-02-26 2000-09-13 德克萨斯仪器股份有限公司 形成cmos器件的双金属栅结构的方法
US6313046B1 (en) * 1997-10-09 2001-11-06 Micron Technology, Inc. Method of forming materials between conductive electrical components, and insulating materials
CN1591868A (zh) * 2003-08-29 2005-03-09 台湾积体电路制造股份有限公司 具有多样的金属硅化物的半导体元件及其制造方法

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US714858A (en) * 1902-04-18 1902-12-02 William R Brixey Manufacture of crude kerite.
US4636834A (en) 1983-12-12 1987-01-13 International Business Machines Corporation Submicron FET structure and method of making
US4714519A (en) 1987-03-30 1987-12-22 Motorola, Inc. Method for fabricating MOS transistors having gates with different work functions
US5013680A (en) 1990-07-18 1991-05-07 Micron Technology, Inc. Process for fabricating a DRAM array having feature widths that transcend the resolution limit of available photolithography
US5122848A (en) 1991-04-08 1992-06-16 Micron Technology, Inc. Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance
JP3215898B2 (ja) * 1992-04-28 2001-10-09 日本電信電話株式会社 プラズマcvd法およびプラズマcvd装置
KR100362751B1 (ko) 1994-01-19 2003-02-11 소니 가부시끼 가이샤 반도체소자의콘택트홀및그형성방법
US5583065A (en) 1994-11-23 1996-12-10 Sony Corporation Method of making a MOS semiconductor device
US5547890A (en) 1995-05-05 1996-08-20 Vanguard International Semiconductor Corporation DRAM cell with a cradle-type capacitor
KR100202633B1 (ko) * 1995-07-26 1999-06-15 구본준 반도체 소자 제조방법
US5714412A (en) 1996-12-02 1998-02-03 Taiwan Semiconductor Manufacturing Company, Ltd Multi-level, split-gate, flash memory cell and method of manufacture thereof
TW377496B (en) 1997-01-15 1999-12-21 United Microelectronics Corp Method of manufacturing read-only memory structure
US6191470B1 (en) 1997-07-08 2001-02-20 Micron Technology, Inc. Semiconductor-on-insulator memory cell with buried word and body lines
US5909618A (en) 1997-07-08 1999-06-01 Micron Technology, Inc. Method of making memory cell with vertical transistor and buried word and body lines
US6072209A (en) 1997-07-08 2000-06-06 Micro Technology, Inc. Four F2 folded bit line DRAM cell structure having buried bit and word lines
US6150687A (en) 1997-07-08 2000-11-21 Micron Technology, Inc. Memory cell having a vertical transistor with buried source/drain and dual gates
US5960270A (en) 1997-08-11 1999-09-28 Motorola, Inc. Method for forming an MOS transistor having a metallic gate electrode that is formed after the formation of self-aligned source and drain regions
US5953614A (en) 1997-10-09 1999-09-14 Lsi Logic Corporation Process for forming self-aligned metal silicide contacts for MOS structure using single silicide-forming step
US6121100A (en) 1997-12-31 2000-09-19 Intel Corporation Method of fabricating a MOS transistor with a raised source/drain extension
US6187619B1 (en) * 1998-02-17 2001-02-13 Shye-Lin Wu Method to fabricate short-channel MOSFETs with an improvement in ESD resistance
US5963469A (en) 1998-02-24 1999-10-05 Micron Technology, Inc. Vertical bipolar read access for low voltage memory cell
US6259142B1 (en) 1998-04-07 2001-07-10 Advanced Micro Devices, Inc. Multiple split gate semiconductor device and fabrication method
US6696746B1 (en) 1998-04-29 2004-02-24 Micron Technology, Inc. Buried conductors
US5941701A (en) 1998-07-14 1999-08-24 Ceramoptec Ind Inc Device and method to treat oral disease in felines
KR100304717B1 (ko) 1998-08-18 2001-11-15 김덕중 트렌치형게이트를갖는반도체장치및그제조방법
US6204103B1 (en) * 1998-09-18 2001-03-20 Intel Corporation Process to make complementary silicide metal gates for CMOS technology
US6225669B1 (en) 1998-09-30 2001-05-01 Advanced Micro Devices, Inc. Non-uniform gate/dielectric field effect transistor
US6373114B1 (en) 1998-10-23 2002-04-16 Micron Technology, Inc. Barrier in gate stack for improved gate dielectric integrity
US5977579A (en) 1998-12-03 1999-11-02 Micron Technology, Inc. Trench dram cell with vertical device and buried word lines
US6130453A (en) 1999-01-04 2000-10-10 International Business Machines Corporation Flash memory structure with floating gate in vertical trench
KR100282452B1 (ko) 1999-03-18 2001-02-15 김영환 반도체 소자 및 그의 제조 방법
US6373111B1 (en) 1999-11-30 2002-04-16 Intel Corporation Work function tuning for MOSFET gate electrodes
US6383879B1 (en) 1999-12-03 2002-05-07 Agere Systems Guardian Corp. Semiconductor device having a metal gate with a work function compatible with a semiconductor device
US6956263B1 (en) 1999-12-28 2005-10-18 Intel Corporation Field effect transistor structure with self-aligned raised source/drain extensions
US6343114B1 (en) 1999-12-30 2002-01-29 Turnstone Systems, Inc. Remotely addressable maintenance unit
JP3851752B2 (ja) 2000-03-27 2006-11-29 株式会社東芝 半導体装置の製造方法
KR100327434B1 (ko) 2000-05-01 2002-03-13 박종섭 반도체 소자의 구조
EP2323164B1 (en) 2000-08-14 2015-11-25 SanDisk 3D LLC Multilevel memory array and method for making same
US6294434B1 (en) * 2000-09-27 2001-09-25 Vanguard International Semiconductor Corporation Method of forming a metal silicide layer on a polysilicon gate structure and on a source/drain region of a MOSFET device
GB0028031D0 (en) 2000-11-17 2001-01-03 Koninkl Philips Electronics Nv Trench-gate field-effect transistors and their manufacture
US6552401B1 (en) 2000-11-27 2003-04-22 Micron Technology Use of gate electrode workfunction to improve DRAM refresh
US6300177B1 (en) 2001-01-25 2001-10-09 Chartered Semiconductor Manufacturing Inc. Method to form transistors with multiple threshold voltages (VT) using a combination of different work function gate materials
US20020132473A1 (en) 2001-03-13 2002-09-19 Applied Materials ,Inc. Integrated barrier layer structure for copper contact level metallization
JP4236848B2 (ja) 2001-03-28 2009-03-11 セイコーインスツル株式会社 半導体集積回路装置の製造方法
JP2002305254A (ja) * 2001-04-05 2002-10-18 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6498062B2 (en) 2001-04-27 2002-12-24 Micron Technology, Inc. DRAM access transistor
EP2305656B1 (en) 2001-08-31 2012-10-24 Novartis AG Optical isomers of an iloperidone metabolite
US6534402B1 (en) * 2001-11-01 2003-03-18 Winbond Electronics Corp. Method of fabricating self-aligned silicide
US6610576B2 (en) 2001-12-13 2003-08-26 International Business Machines Corporation Method for forming asymmetric dual gate transistor
US6653698B2 (en) 2001-12-20 2003-11-25 International Business Machines Corporation Integration of dual workfunction metal gate CMOS devices
US6630720B1 (en) 2001-12-26 2003-10-07 Advanced Micro Devices, Inc. Asymmetric semiconductor device having dual work function gate and method of fabrication
US6794234B2 (en) 2002-01-30 2004-09-21 The Regents Of The University Of California Dual work function CMOS gate technology based on metal interdiffusion
US6562713B1 (en) * 2002-02-19 2003-05-13 International Business Machines Corporation Method of protecting semiconductor areas while exposing a gate
KR100502407B1 (ko) 2002-04-11 2005-07-19 삼성전자주식회사 고유전막과 높은 도전성의 전극을 갖는 게이트 구조체 및그 형성 방법
US6806123B2 (en) 2002-04-26 2004-10-19 Micron Technology, Inc. Methods of forming isolation regions associated with semiconductor constructions
US7071043B2 (en) 2002-08-15 2006-07-04 Micron Technology, Inc. Methods of forming a field effect transistor having source/drain material over insulative material
US7045406B2 (en) 2002-12-03 2006-05-16 Asm International, N.V. Method of forming an electrode with adjusted work function
US7316950B2 (en) 2003-04-22 2008-01-08 National University Of Singapore Method of fabricating a CMOS device with dual metal gate electrodes
KR100505113B1 (ko) 2003-04-23 2005-07-29 삼성전자주식회사 모스 트랜지스터 및 그 제조방법
CN1799125B (zh) 2003-06-03 2011-04-06 Nxp股份有限公司 具有减少的热预算的结和硅化物的形成
KR100511045B1 (ko) 2003-07-14 2005-08-30 삼성전자주식회사 리세스된 게이트 전극을 갖는 반도체 소자의 집적방법
KR100488546B1 (ko) * 2003-08-29 2005-05-11 삼성전자주식회사 트랜지스터의 제조방법
US6844591B1 (en) 2003-09-17 2005-01-18 Micron Technology, Inc. Method of forming DRAM access transistors
US7029966B2 (en) 2003-09-18 2006-04-18 International Business Machines Corporation Process options of forming silicided metal gates for advanced CMOS devices
US6963108B1 (en) 2003-10-10 2005-11-08 Advanced Micro Devices, Inc. Recessed channel
JP4085051B2 (ja) 2003-12-26 2008-04-30 株式会社東芝 半導体装置およびその製造方法
US7148104B2 (en) 2004-03-10 2006-12-12 Promos Technologies Inc. Fabrication of conductive lines interconnecting first conductive gates in nonvolatile memories having second conductive gates provided by conductive gate lines, wherein the adjacent conductive gate lines for the adjacent columns are spaced from each other, and non-volatile memory structures
US7262089B2 (en) 2004-03-11 2007-08-28 Micron Technology, Inc. Methods of forming semiconductor structures
US7285829B2 (en) 2004-03-31 2007-10-23 Intel Corporation Semiconductor device having a laterally modulated gate workfunction and method of fabrication
US7226826B2 (en) * 2004-04-16 2007-06-05 Texas Instruments Incorporated Semiconductor device having multiple work functions and method of manufacture therefor
KR100614240B1 (ko) 2004-06-10 2006-08-18 삼성전자주식회사 전계 효과 트랜지스터를 포함하는 반도체 소자 및 그 형성방법
JP2006013332A (ja) 2004-06-29 2006-01-12 Sumitomo Electric Ind Ltd コネクタ、その製造方法および接続方法ならびに接続した電子装置
KR100629263B1 (ko) 2004-07-23 2006-09-29 삼성전자주식회사 리세스된 게이트 전극을 갖는 모스 트랜지스터 및 그제조방법
US7122425B2 (en) 2004-08-24 2006-10-17 Micron Technology, Inc. Methods of forming semiconductor constructions
US7795094B2 (en) 2004-09-02 2010-09-14 Micron Technology, Inc. Recessed gate dielectric antifuse
US7285812B2 (en) 2004-09-02 2007-10-23 Micron Technology, Inc. Vertical transistors
JP4116990B2 (ja) * 2004-09-28 2008-07-09 富士通株式会社 電界効果型トランジスタおよびその製造方法
US7611943B2 (en) 2004-10-20 2009-11-03 Texas Instruments Incorporated Transistors, integrated circuits, systems, and processes of manufacture with improved work function modulation
KR100699830B1 (ko) 2004-12-16 2007-03-27 삼성전자주식회사 이레이즈 효율을 개선하는 비휘발성 메모리 소자 및 제조방법
KR100719340B1 (ko) 2005-01-14 2007-05-17 삼성전자주식회사 듀얼 게이트 전극을 갖는 반도체 소자 및 그 형성 방법
KR100632953B1 (ko) 2005-03-07 2006-10-12 삼성전자주식회사 메모리 소자, 상기 메모리 소자를 위한 메모리 배열 및 상기 메모리 배열의 구동 방법
US7244659B2 (en) 2005-03-10 2007-07-17 Micron Technology, Inc. Integrated circuits and methods of forming a field effect transistor
US7384849B2 (en) 2005-03-25 2008-06-10 Micron Technology, Inc. Methods of forming recessed access devices associated with semiconductor constructions
US7214621B2 (en) 2005-05-18 2007-05-08 Micron Technology, Inc. Methods of forming devices associated with semiconductor constructions
JP4591827B2 (ja) 2005-05-24 2010-12-01 エルピーダメモリ株式会社 リセスチャネル構造を有するセルトランジスタを含む半導体装置およびその製造方法
US7282401B2 (en) 2005-07-08 2007-10-16 Micron Technology, Inc. Method and apparatus for a self-aligned recessed access device (RAD) transistor gate
US7202535B2 (en) 2005-07-14 2007-04-10 Infineon Technologies Ag Manufacturing method for an integrated semiconductor structure and corresponding integrated semiconductor structure
JP5114881B2 (ja) * 2005-07-26 2013-01-09 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US7229873B2 (en) 2005-08-10 2007-06-12 Texas Instruments Incorporated Process for manufacturing dual work function metal gates in a microelectronics device
US7332433B2 (en) 2005-09-22 2008-02-19 Sematech Inc. Methods of modulating the work functions of film layers
KR100689840B1 (ko) 2005-10-04 2007-03-08 삼성전자주식회사 리세스된 게이트 전극을 갖는 반도체소자 및 그의 제조방법
EP1772898A1 (en) * 2005-10-06 2007-04-11 Interuniversitair Microelektronica Centrum ( Imec) Method for forming a silicide gate
EP1801856A1 (en) 2005-12-23 2007-06-27 Interuniversitair Microelektronica Centrum ( Imec) Method for gate electrode height control
US7349232B2 (en) 2006-03-15 2008-03-25 Micron Technology, Inc. 6F2 DRAM cell design with 3F-pitch folded digitline sense amplifier
JP2007251030A (ja) * 2006-03-17 2007-09-27 Renesas Technology Corp 半導体装置の製造方法および半導体装置
US7902597B2 (en) 2006-03-22 2011-03-08 Samsung Electronics Co., Ltd. Transistors with laterally extended active regions and methods of fabricating same
US20070262395A1 (en) 2006-05-11 2007-11-15 Gibbons Jasper S Memory cell access devices and methods of making the same
US8860174B2 (en) 2006-05-11 2014-10-14 Micron Technology, Inc. Recessed antifuse structures and methods of making the same
US8008144B2 (en) 2006-05-11 2011-08-30 Micron Technology, Inc. Dual work function recessed access device and methods of forming
US7968463B2 (en) 2006-05-25 2011-06-28 Renesas Electronics Corporation Formation method of metallic compound layer, manufacturing method of semiconductor device, and formation apparatus for metallic compound layer
KR100770536B1 (ko) * 2006-07-19 2007-10-25 동부일렉트로닉스 주식회사 고전압 반도체 소자 및 이의 제조 방법
US7494878B2 (en) * 2006-10-25 2009-02-24 United Microelectronics Corp. Metal-oxide-semiconductor transistor and method of forming the same
US20080146012A1 (en) * 2006-12-15 2008-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Novel method to adjust work function by plasma assisted metal incorporated dielectric
US7629655B2 (en) * 2007-03-20 2009-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with multiple silicide regions
US7723192B2 (en) * 2008-03-14 2010-05-25 Advanced Micro Devices, Inc. Integrated circuit long and short channel metal gate devices and method of manufacture
US7875919B2 (en) 2008-03-31 2011-01-25 International Business Machines Corporation Shallow trench capacitor compatible with high-K / metal gate
US7824986B2 (en) * 2008-11-05 2010-11-02 Micron Technology, Inc. Methods of forming a plurality of transistor gates, and methods of forming a plurality of transistor gates having at least two different work functions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313046B1 (en) * 1997-10-09 2001-11-06 Micron Technology, Inc. Method of forming materials between conductive electrical components, and insulating materials
CN1243336A (zh) * 1998-06-30 2000-02-02 摩托罗拉公司 互补金属氧化物半导体器件及其形成方法
CN1266277A (zh) * 1999-02-26 2000-09-13 德克萨斯仪器股份有限公司 形成cmos器件的双金属栅结构的方法
CN1591868A (zh) * 2003-08-29 2005-03-09 台湾积体电路制造股份有限公司 具有多样的金属硅化物的半导体元件及其制造方法

Also Published As

Publication number Publication date
US20120021594A1 (en) 2012-01-26
EP2342740A2 (en) 2011-07-13
EP2342740A4 (en) 2012-12-19
US7824986B2 (en) 2010-11-02
US20100112808A1 (en) 2010-05-06
CN102203923A (zh) 2011-09-28
TWI397975B (zh) 2013-06-01
SG177976A1 (en) 2012-02-28
JP2012507865A (ja) 2012-03-29
TW201027673A (en) 2010-07-16
EP2342740B1 (en) 2014-04-02
US8524561B2 (en) 2013-09-03
KR101173799B1 (ko) 2012-08-16
SG177975A1 (en) 2012-02-28
JP5333977B2 (ja) 2013-11-06
US8034687B2 (en) 2011-10-11
KR20110084221A (ko) 2011-07-21
WO2010053720A2 (en) 2010-05-14
WO2010053720A3 (en) 2010-07-08
US20110039404A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
CN102203923B (zh) 形成多个晶体管栅极的方法及形成具有至少两种不同功函数的多个晶体管栅极的方法
EP1656693B1 (en) Masking methods
CN100594599C (zh) 集成n型和p型金属栅晶体管
US8273625B2 (en) Structure for flash memory cells
CN101211865B (zh) 制造半导体器件的方法
US20160020119A1 (en) Method of Controlling Recess Depth and Bottom ECD in Over-Etching
US20040152331A1 (en) Process for etching polysilicon gates with good mask selectivity, critical dimension control, and cleanliness
US7338906B2 (en) Method for fabricating semiconductor device
US6515328B1 (en) Semiconductor devices with reduced control gate dimensions
JPH10242065A (ja) ポリシリコン層及び層構造の製造方法並びにパターニング方法
CN100452360C (zh) 制造快闪存储装置的方法
CN100517578C (zh) 半导体器件的栅极制造方法
US20060094235A1 (en) Method for fabricating gate electrode in semiconductor device
KR20070096600A (ko) 반도체 소자의 제조방법
KR100818653B1 (ko) 반도체소자의 게이트 형성 방법
JPH0774148A (ja) ドライエッチング方法
KR20040102814A (ko) 반도체 소자의 게이트 전극 형성방법
KR20080089030A (ko) 반도체 소자의 리세스 게이트 제조방법
US20080003832A1 (en) Method for fabricating recess gate of semiconductor device
KR20070069759A (ko) 반도체 소자의 듀얼 게이트 형성방법
KR20050116296A (ko) 반도체 장치의 게이트 스페이서 및 그 형성방법
KR20030053217A (ko) 듀얼 게이트 전극 형성방법
KR20010008407A (ko) 반도체장치의 전극형성방법
KR19990003877A (ko) 박막 트랜지스터 제조방법
KR20000031891A (ko) 반도체 장치의 식각 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant