CN102227622B - 用于仿真耦合混合动态系统的离线控制方法和系统 - Google Patents

用于仿真耦合混合动态系统的离线控制方法和系统 Download PDF

Info

Publication number
CN102227622B
CN102227622B CN200980147362.0A CN200980147362A CN102227622B CN 102227622 B CN102227622 B CN 102227622B CN 200980147362 A CN200980147362 A CN 200980147362A CN 102227622 B CN102227622 B CN 102227622B
Authority
CN
China
Prior art keywords
response
test equipment
model
component
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980147362.0A
Other languages
English (en)
Other versions
CN102227622A (zh
Inventor
大卫·M·弗里克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTS Systems Corp
Original Assignee
MTS Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTS Systems Corp filed Critical MTS Systems Corp
Publication of CN102227622A publication Critical patent/CN102227622A/zh
Application granted granted Critical
Publication of CN102227622B publication Critical patent/CN102227622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/0072Wheeled or endless-tracked vehicles the wheels of the vehicle co-operating with rotatable rolls
    • G01M17/0074Details, e.g. roller construction, vehicle restraining devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/027Test-benches with force-applying means, e.g. loading of drive shafts along several directions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Abstract

提供了用于对耦合混合动态系统的仿真进行控制的系统和方法,包括物理测试装备(72),配置为驱动系统的物理结构部件,并产生测试装备响应,作为向测试装备(72)施加测试装备驱动信号输入的结果。处理器(120)被配置有系统的虚拟模型(70)。该处理器(120)接收测试装备响应,并基于接收到的测试装备响应和虚拟驱动输入,来产生系统的模型响应。在系统响应建模步骤中,用随机输入驱动系统。处理器(120)将测试装备响应与模型响应相比较,差值用于形成系统动态响应模型,以产生测试驱动信号。在测试驱动开发步骤中,使用系统动态响应模型的逆来迭代地将模型响应与测试装备响应之间的差值减小到低于定义的阈值。

Description

用于仿真耦合混合动态系统的离线控制方法和系统
技术领域
本发明公开涉及仿真领域,具体涉及用于控制动态系统的仿真的方法和系统。
背景技术
在例如车辆和车辆部件等复杂的动态系统的设计和评估中,需要并且常常有必要测试和调谐这些部件。这是为了确定车辆部件对车辆性能的影响、以及车辆对部件的影响。可以执行耐久性测试以及需要的其他类型的测试。在测试车辆中的部件中已经采用了多种方法和系统。
图1-4示出了常规实验室仿真测试的数据采集系统和方法。在这种方法中,在测试道路12上行使物理车辆10,并测量特定部件响应。例如,可以测量物理车辆10中安装的悬垂支柱(未示出)的位移,并将其存储在合适的数据库中。这些响应指示为附图标记14。例如支柱等特定部件的响应用作测试控制过程的参考测量值。
参照图2,向测试装备(test rig)18输入一般性(即,随机幅度,宽带频率)驱动16,这里也称作随机装备驱动。特定车辆部件(在本示例中是悬垂支柱20)安装在测试装备18中。装备控制器22转换来自随机装备驱动16的驱动信号,以控制测试装备18的运动。在测试装备18处测量测试部件的响应,例如支柱20的位移。在24提供测量值,以形成测试部件响应。在图2的示例中,测试部件响应24是响应于装备16的输入的随机装备位移。随机装备驱动16的输入和随机装备位移24的测量是实时过程。装备控制器22不需要是复杂的跟踪控制器,因为它仅仅响应于随机驱动16。装备控制器22不执行复杂的实时建模计算来补偿装备或样品动态变化。
测试部件响应24与测试装备驱动16一起用于计算总体系统动态响应模型26。该响应模型表示测试系统和部件的耦合动态变化。在多输入多输出测试中,该响应模型也可以表示控制输入之间的交叉耦合动态变化。可以对响应模型26(典型的是频率响应函数FRF)求逆,并用于仿真控制过程中的测试装备驱动预测。在该示例中,对总体系统动态响应模型26的确定是离线过程,这是因为需要全部的驱动和响应时间历史来计算定义好的FRF。
因此,在常规的测试系统和过程中,首个步骤是在测试装备18处确定实验室中存在的输入/输出关系。需要理解至测试控制系统的输入与系统如何响应于这些输入之间的关系。具备了这种理解,可以开发出经补偿的测试驱动信号,来产生任何所需的部件响应。
在确定了车辆环境中部件如何响应(见图1)以及测试环境如何影响部件响应(见图2)之后,执行迭代的测试驱动信号开发过程,如图3所示。
在初始迭代(N=0)中,认为测试装备响应为0,并且将在图1中已确定的所需响应32与在图2确定的总体系统动态响应模型的逆(FRF-1)一起用来创建初始驱动。在每次迭代中,将当前的测试装备响应30与所需响应相比较。比较器34提供仿真误差,以使用逆(FRF-1)来产生驱动校正38。此时,递增迭代次数。
将驱动校正38与先前的测试装备驱动40相加,以产生下一测试装备驱动42。响应于先前测试装备驱动对下一测试装备驱动的确定是离线过程。
将下一测试装备驱动42施加至测试装备18,并测量部件响应30。迭代地重复图3的过程,直到结果仿真误差减小到所需容限值以下。在执行测试驱动迭代中,递增地改变测试装备驱动42,以获得先前已测量的来自测试装备18的响应。换言之,确定测试装备驱动42,其将产生在图1的数据采集阶段已先前获得的来自物理车辆部件的相同响应。
一旦通过迭代过程直到仿真误差低于预定值来确定了测试装备驱动42,就将当前的最终测试装备驱动42用于随后的部件测试,如图4所示。可以执行不同类型的测试,例如性能测试,耐久性测试等。
虽然常规的迭代测试方法具有一些优点,但是该方法需要在准备测试之前确保所需的车辆,应用仪器并获取测试数据。这使得常规的仿真测试系统和方法在一些方面的用处不大。有可能在需要测试车辆部件之前无法获得用于测量部件响应的合适的测试车辆。例如,可能希望确定尚未存在的车辆的车辆部件的响应,例如尚未生产或甚至尚无原型的新型号车辆。此外,通常没有足够的时间或资源来充分地准备车辆以测量用于物理部件测试的数据。此外,可能需要测试大量的部件变型,每一个变型都会影响车辆中的部件响应。此外,例如在耐久性测试中,车辆系统内的部件响应常常随时间而逐渐改变,必须调整测试,以使测试保持有效。
图5示出了用于测试物理部件的另一系统和方法,称作实时mHIL(模型硬件在环,model hardware in loop)。与图1-4所示的测试方法相反,不在道路上行使其中安装关键部件的物理车辆。而是,使用虚拟车辆,其中未安装关键部件,并在虚拟道路上行使该虚拟车辆。由处理器(未示出)对该车辆建模。表示为附图标记50的车辆模型排除了物理测试部件。车辆模型从在虚拟测试道路上的行驶中产生响应52。将该响应通过反射存储器(reflected-memory)处理器链接54作为控制输入56施加至物理测试系统,例如测试装备58。
测试装备58包括其中提供有模型的复杂装备控制器60。虚拟车辆内部发生的任何事件都需要发生在测试装备58内的物理部件62上。因此,测试装备58包括车辆模型50中未提供的物理测试部件。
将测试装备58中物理部件62的响应作为附加输入64提供给车辆模型50。该响应经由反射存储器链接54实时地提供给模型50。
图5所示的实时mHIL过程是闭环过程,其允许即时评估物理部件测试响应,并自动调整物理部件测试响应以适应测试环境的变化。该系统的应用限制在于实时车辆模型的保真度、反射存储器链接和处理器的速度、以及测试装备控制器60的跟踪性能。为了使这种系统工作,模型必须进行实时操作。为使用当今的技术来实现这一目的,不得不简化车辆模型和装备控制器中的建模。此外,具有实时能力的模型可能在高频上缺少保真度,但是评估耐久性的工程师可能需要这些频率的仿真来实现精确的测试。因此,图5的实时mHIL过程和布置具有可能限制这种系统的有用性的约束。
发明内容
需要提供系统和方法,其避免从物理车辆或其他系统获取数据的需要,并提供从测试装备到车辆模型的反馈链接。一般而言,混合仿真提供了针对一般测试能力的可能性。这意味着有可能进行对隔离的物理子系统的精确仿真和测试,而不需要知道特定、独有的系统输入或响应。在虚拟部件动态变化耦合至物理系统力和运动的最优实施方式中,混合系统能够精确地响应系统输入中出现的任何变化、或物理或虚拟部件行为的变化。
根据本发明公开的系统和方法满足上述需求,该系统和方法提供了一种用于对耦合混合动态系统的仿真进行控制的装置。该装置包括物理测试装备,配置为驱动系统的物理结构部件,并产生测试装备响应,作为向测试装备施加驱动信号输入的结果。处理器被配置有物理部件的互补系统的虚拟模型。该处理器接收测试装备响应作为输入,并使用接收到的测试装备响应的第一部分以及虚拟驱动,作为输入,来产生系统的模型响应。处理器还被配置为将测试装备响应的不同的第二部分与对应的模型响应相比较,以形成差值,该差值用于形成系统动态响应模型,以产生测试装备驱动信号。
在一些实施例中,处理器还被配置为产生测试驱动信号,接收测试装备响应,产生模型响应,并将测试装备响应与模型响应相比较以产生混合仿真过程误差。然后,使用系统动态响应模型的逆,以迭代形式,减小该误差,直到模型响应与测试装备响应之间的差值低于定义的阈值。
公开的实施例的上述特征、方面和优点将从以下具体描述和附图中显而易见。
附图说明
图1是根据现有技术的数据采集过程的示意框图。
图2是根据现有技术的针对响应仿真测试装备的响应模型测量的示意框图。
图3是根据现有技术的执行迭代仿真误差减小过程的响应仿真测试系统的示意框图。
图4是根据现有技术的执行仿真实验室测试的系统的示意框图。
图5是根据现有技术的实时模型硬件在环(mHIL)系统的示意框图。
图6示出了根据本公开实施例的执行离线mHIL系统动态响应测量的系统。
图7是根据公开实施例的采用图6离线mHIL系统的迭代过程的示意框图。
图8是根据本公开实施例的离线mHIL测试的示意框图。
图9示出了根据本公开实施例的执行图6-8所示离线mHIL过程的系统的框图。
图10是根据本公开实施例的执行离线mHIL迭代和测试方法中的一些步骤的流程图。
具体实施方式
本发明公开的实施例针对并解决与动态系统的控制有关的问题,例如需要获取其他系统中的数据、需要进行实时建模、以及实时建模导致的约束等有关问题。本发明公开的实施例通过提供对耦合混合动态系统的仿真进行控制的装置,部分地针对并解决这些问题。该装置包括物理测试装备,配置为驱动系统的物理结构部件,并产生测试装备响应,作为向测试装备施加驱动信号输入的结果。处理器被配置有系统的虚拟模型。该处理器接收测试装备响应,并使用接收到的测试装备响应的第一部分以及虚拟驱动,作为输入,来产生系统的模型响应。处理器还被配置为将测试装备响应的不同的第二部分与对应的模型响应相比较,以形成差值,该差值用于形成系统动态响应模型,以产生测试装备驱动信号。这是系统响应建模步骤。在测试驱动开发步骤中,在一些实施例中,使用系统动态响应模型的逆来迭代地减小模型响应与测试装备响应之间的差值到低于定义的阈值。该方法的优点之一在于,不需要完整的物理系统,而是可以采用非测试系统部件的离线、非实时的模型。此外,该方法避免了如下需要:由于事实上部件的精确模型是不可用的,所以需要对常常被测试的物理部件建模。因此,避免了依据计算能力、计算速度和被测试部件的精确模型的可用性的限制。
图6示出了的根据公开实施例的对耦合混合动态系统的仿真进行控制的装置。在该装置中,在处理器(见图9)上提供车辆模型70。该车辆模型仅仅是示例,可以对其他系统建模,这不背离本公开。此外,为了说明目的,物理部件是车辆悬垂系统中使用的支柱。支柱仅仅是物理部件的示例,可以测试其他部件。还提供了测试装备72。在示例中,测试装备72配置为测试测试装备72内安装的物理支柱。然而,测试装备73可以配置为测试其他结构部件。
测试装备72具有装备控制器74。不同于图4实时mHIL系统的装备控制器60,图5实施例的装备控制器74不需要具有向模型命令提供瞬时响应的复杂系统模型。由于不必复杂,所以可以采用成本更低的装备控制器。此外,可以实现更高频率上的测试。
该装置形成了用于产生对测试装备72进行驱动的驱动信号的系统动态响应模型。系统动态响应模型76的一个示例可以是频率响应函数(FRF)。系统动态响应模型76也可以是由运行系统模型70的同一处理器确定或计算的(例如图9)。但是,系统动态响应模型76也可以是图中未示出的分离的处理器确定和计算的。
图6示出了形成系统动态响应模型76的装置和步骤,这可以称为系统响应建模步骤。在稍后描述的图7的迭代过程中将采用系统动态响应模型。在图6中,将随机测试装备驱动78提供至安装有车辆部件80(例如,支柱)的测试装备72中。随机测试装备驱动78可以是一般性驱动,例如随机幅度、宽带频率驱动。在本公开实施例中测量两个响应,但是该装置不限于两个响应。这些响应之一,例如随机测试装备力信号82,要施加至车辆模型70。另一响应,例如随机装备位移84,是要与模型响应相比较的响应。在图6所示实施例中,第一响应是支柱施加在测试装备72上的力,第二响应84是支柱80的位移,第二响应也可以作为输入提供给装备控制器74。注意,力和位移信号仅仅是示例,可以从测试装备72提供其他响应信号。
提供来自测试装备的响应,例如随机装备力82,作为输入,以形成至车辆模型70的随机模型驱动86。车辆模型70排除了被测试的部件,在本实施例中是支柱80。车辆模型70以随机模型响应信号88来响应随机模型驱动输入信号86,在该实施例中,随机模型响应信号88是位移。
在过程的第三步骤中,将模型响应88与关联的测试装备响应84相比较。执行比较90,以形成响应差值92。响应差值与随机装备驱动之间的关系建立了系统动态响应模型。对该组合响应模型76求逆,并用于图7的迭代仿真控制过程的测试装备驱动预测。可以离线过程进行组合系统动态响应模型76的确定,从而不需要高性能和高速度的计算能力。此外,对于图6的离线mHIL系统系统动态响应模型测量,不需要例如物理车辆等实际系统。这克服了采用物理系统所固有的许多缺点。由于不需要获取数据,所以可以测试任何部件,而不需要事先知道在虚拟模型内或物理环境中该部件将如何响应。系统动态响应模型的离线mHIL测量测量部件在物理系统中时,模型与装备响应的差值对装备输入的灵敏度。一旦已对装备驱动与系统响应差值92之间的关系建立了模型,就执行如图7所示的离线mHIL迭代过程。这可以视为测试驱动开发步骤。
在图7的作为离线迭代的迭代过程中,操作排除了测试部件的虚拟系统。在示例实施例中,虚拟系统是虚拟车辆,排除的测试部件是支柱80。在测试道路上行驶虚拟车辆,以产生模型响应100。例如,模型响应100可以表示支柱80的位移,但是由于支柱80不是实际存在的,所以模型响应100所测量的实际上是本来会由支柱80占据的空间的位移。除了虚拟测试道路输入,以附图标记98示出了附加的模型输入。至车辆模型70的该附加模型输入98基于来自测试装备72的测试装备响应94。在测试期间,例如在测试装备72处测量的力等附加模型输入98被同时施加至车辆模型70。对于初始迭代(N=0),模型输入98典型地为0。
将模型响应100与来自测试装备72的测试装备响应96相比较。如果模型响应100是位移,则该测试装备响应96也必然是位移。在测试装备响应96与模型响应100直接进行比较102,以形成响应差值103。
在本示例中作为位移差值的响应差值103与期望的差值104相比较。典型地,对于迭代控制过程,期望差值104设置为0。然而,在其他实施例中,可以采用其他期望差值,而不背离本发明公开的范围。
响应差值103与期望的差值104之间的比较106产生仿真误差107,由先前在图6所示步骤中确定的系统动态响应模型76的逆(FRF-1)使用仿真误差107。在图7中将系统动态响应模型76的逆示出为附图标记108。在112将驱动校正109与先前的测试装备驱动信号110相加,以产生下一测试装备驱动信号114。
将下一测试装备驱动信号114施加至测试装备72,并测量第一和第二响应。要向车辆模型施加的响应94是要与模型响应96比较的响应。迭代地重复该过程,直到得到的仿真误差107减小到所需容限值。
对车辆70的建模以及对最终测试装备驱动信号的确定,能够在单个处理器内执行。然而,在一些实施例中,可以采用多个处理器。此外,应理解,用于确定仿真误差和确定测试装备驱动信号114的处理器可以是离线执行的,提供了上述优点。
在确定测试装备驱动信号114之后,在测试测试部件80时使用该最终测试装备驱动信号114,如图8所示。测试装备驱动信号114是至测试装备控制器74的输入,测试装备控制器74驱动装备72。因此,可以对例如支柱等物理部件80执行性能测试、耐久性测试和其他类型的测试,而无需事先对物理车辆进行测量和测试,或者实际上甚至无需物理车辆存在。也不需要部件的复杂模型,因为物理部件是混合系统的一部分。离线测量允许使用系统的模型,避免了对物理车辆和其他系统的需要,并且不需要实时建模系统的性能。
图9示出了耦合至测试装备72的处理器120的框图。处理器120也可以耦合至数据库122、以及接口、监视器等与处理关联的任何其他常规部件。注意,虽然示出了处理器120与测试装备72之间的连接,但是该连接不是图3所示实时mHIL系统中的反射存储器处理器链接54。处理器120与测试装备72之间的耦合仅仅是为了向图6-8中已示出的测试装备72提供信号。
图10示出了根据公开的实施例,对耦合混合动态系统的仿真执行离线mHIL控制的简化方法。图10所示方法涵盖了参照图6-8描述的步骤。
在步骤200,将随机装备驱动78置入到安装有部件80的测试装备72中。在步骤202,向不包括测试部件的系统的模型施加第一测试装备响应,以产生模型响应。在步骤204,将模型响应与第二测试装备响应相比较,以产生响应差值。在步骤206,根据随机装备驱动和响应差值,产生系统动态响应模型。步骤200-206表示参照图6描述的步骤,以使这些步骤执行例如频率响应函数等系统动态响应模型的离线mHIL测量。
下面描述的步骤208-222表示图7的离线mHIL迭代过程中执行的步骤。在步骤208,在排除测试部件的情况下,驱动系统的模型,以产生模型响应。对系统模型的驱动包括将测试装备响应作为至系统模型的输入。在步骤210,将模型响应与备用的测试装备响应相比较,以产生响应差值。在步骤212将响应差值与期望差值相比较,以产生仿真误差。在步骤214,判定仿真误差是否小于容限值。如果回答是否定的,则在步骤216使用逆系统动态响应模型,根据仿真误差产生驱动校正。在步骤218将该驱动校正与先前的测试装备驱动相加。在步骤220将校正的测试装备驱动提供给测试装备,并在步骤222测量对测试装备驱动的测试装备响应,并将其作为输入来驱动模型,用于与模型响应相比较。该过程返回至步骤208并重复,直到如在步骤214确定仿真误差小于容限值。
步骤224表示图8所示的测试物理部件的过程。使用最后的校正测试装备驱动信号114来驱动测试装备72,以测试物理部件80。
本公开的实施例不限于硬件电路和软件的任何特定组合。根据本公开的一些方面,可以使用图9的处理器120执行数据库或存储器122中包含的一个或多个指令的一个或多个序列,来实现处理。可以从另一机器可读介质(例如包含指令并由盘驱动(未示出)读取的盘)读取这些指令到数据库或存储器122中。对数据库或存储器122中包含的指令序列的执行使处理器120执行上述过程步骤。也可以采用多处理布置中的一个或多个处理器来执行数据库或存储器122中包含的指令序列。在备选实施例中,可以替代软件指令或与软件指令相组合地使用硬连线电路,来执行本公开的多种实施例。
本文使用的术语“机器可读介质”是指参与向处理器120提供指令以便执行的任何介质。这种介质可以采用多种形式,包括但不限于非易失性介质、易失性介质和传输媒介。非易失性介质包括例如光盘或磁盘。易失性介质包括动态存储器。传输媒介包括同轴电缆、铜线和光纤。传输媒介也可以是声波或光波,例如在射频和红外数据通信期间产生的声波或光波。机器可读介质的常见形式包括例如软盘、柔性盘、硬盘、磁带、任何其他磁介质、CD-ROM、DVD、任何其他光介质、穿孔卡、纸带、具有孔图案的任何其他物理介质、RAM、PROM、EPROM、FLASH EPROM、任何其他存储器芯片或弹盒、载波、或者计算机可以读取的任何其他介质。
尽管已经详细描述和示出了本公开的实施例,这些实施例仅仅是示意和示例的,不是进行限制,本发明的范围仅由所附权利要求限定。

Claims (12)

1.一种用于对耦合混合动态系统的仿真进行控制的装置,包括:
用于接收包括第一分量和不同的第二分量在内的测试装备响应,并使用接收到的测试装备响应的第一分量作为输入,来产生系统的虚拟模型的模型响应的模块,其中测试装备响应是由物理测试装备驱动系统的物理结构部件来在测试装备上产生的,作为向测试装备施加驱动信号输入的结果;
用于将测试装备响应的第二分量与对应于测试装备响应的第二分量的模型响应相比较,以形成差值的模块;以及
用于使用该差值来形成系统动态响应模型,以产生测试装备驱动信号的模块。
2.根据权利要求1所述的装置,还包括:
用于接收虚拟驱动,使用该虚拟驱动作为输入来产生另一模型响应,将测试装备响应的第二分量与所述另一模型响应相比较以产生仿真过程误差,并使用系统动态响应模型的逆来迭代地减小该误差,直到所述另一模型响应与测试装备响应的第二分量之间的差值低于定义的阈值的模块。
3.根据权利要求2所述的装置,其中,测试装备驱动信号是由物理测试装备驱动物理结构部件而实时产生的,并且离线地将测试装备响应的第二分量与所述另一模型响应相比较以产生所述仿真过程误差。
4.根据权利要求3所述的装置,其中,第一分量是测量的力信号,该测量的力信号形成至系统模型的输入信号。
5.根据权利要求4所述的装置,其中,第二分量是测量的位移信号,模型响应是系统的位移信号。
6.根据权利要求5所述的装置,还包括:用于使用所述系统动态响应模型的逆来产生驱动校正信号的模块。
7.根据权利要求6所述的装置,还包括:用于将驱动校正信号与测试装备驱动信号相组合来形成更新的测试装备信号的模块,该更新的测试装备信号要输入至测试装备作为测试装备驱动信号。
8.根据权利要求7所述的装置,其中,系统是车辆。
9.根据权利要求1所述的装置,其中,第一分量是测量的位移信号,该测量的位移信号形成至系统模型的输入信号。
10.根据权利要求9所述的装置,其中,第二分量是测量的力信号,模型响应是系统的力信号。
11.一种用于对耦合混合动态系统的仿真进行控制的方法,包括步骤:
接收包括第一分量和不同的第二分量在内的测试装备响应,并使用接收到的测试装备响应的第一分量作为输入,来产生系统的虚拟模型的模型响应,其中测试装备响应是由物理测试装备驱动系统的物理结构部件来在测试装备上产生的,作为向测试装备施加驱动信号输入的结果;
将测试装备响应的第二分量与对应于测试装备响应的第二分量的模型响应相比较,以形成差值;以及
使用该差值来形成系统动态响应模型,以产生测试装备驱动信号。
12.根据权利要求11所述的方法,还包括:
接收虚拟驱动,使用虚拟驱动作为输入来产生另一模型响应,将测试装备响应的第二分量与所述另一模型响应相比较以产生仿真过程误差,并使用系统动态响应模型的逆来迭代地减小该误差,直到所述另一模型响应与测试装备响应的第二分量之间的差值低于定义的阈值。
CN200980147362.0A 2008-10-02 2009-09-30 用于仿真耦合混合动态系统的离线控制方法和系统 Active CN102227622B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/244,597 2008-10-02
US12/244,597 US8135556B2 (en) 2008-10-02 2008-10-02 Methods and systems for off-line control for simulation of coupled hybrid dynamic systems
PCT/US2009/058945 WO2010039777A1 (en) 2008-10-02 2009-09-30 Methods and systems for off-line control for simulation of coupled hybrid dynamic systems

Publications (2)

Publication Number Publication Date
CN102227622A CN102227622A (zh) 2011-10-26
CN102227622B true CN102227622B (zh) 2014-05-14

Family

ID=41445672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980147362.0A Active CN102227622B (zh) 2008-10-02 2009-09-30 用于仿真耦合混合动态系统的离线控制方法和系统

Country Status (7)

Country Link
US (2) US8135556B2 (zh)
EP (1) EP2344855B1 (zh)
JP (1) JP5478627B2 (zh)
KR (1) KR101474057B1 (zh)
CN (1) CN102227622B (zh)
DK (1) DK2344855T3 (zh)
WO (1) WO2010039777A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT9467U3 (de) * 2007-06-14 2008-07-15 Avl List Gmbh Vorrichtung und verfahren zur simulation einer entwicklungsanlage
US8135556B2 (en) * 2008-10-02 2012-03-13 Mts Systems Corporation Methods and systems for off-line control for simulation of coupled hybrid dynamic systems
US9477793B2 (en) 2008-10-02 2016-10-25 Mts Systems Corporation Method and systems for off-line control for simulation of coupled hybrid dynamic systems
AT10759U3 (de) * 2009-04-23 2010-07-15 Avl List Gmbh Verfahren und vorrichtung zur verifizierung eines automatisierungssystems
AT11220U3 (de) * 2010-02-04 2010-12-15 Avl List Gmbh Verfahren zum testen eines fahrzeuges oder eines teilsystems davon
CN102980763B (zh) * 2012-11-28 2015-06-03 重庆理工大学 汽车传动系动静耦合扭转疲劳试验方法
KR102218146B1 (ko) * 2013-03-15 2021-02-19 엠티에스 시스템즈 코포레이숀 연성 하이브리드 동적 시스템의 시뮬레이션을 위한 오프라인 제어 방법 및 시스템
AT512483B1 (de) 2013-06-03 2015-02-15 Avl List Gmbh Verfahren zur Reduzierung von Schwingungen in einem Prüfstand
AT512717B1 (de) * 2013-07-26 2015-02-15 Avl List Gmbh Verfahren zur Durchführung eines Prüflaufs auf einem Prüfstand
KR102287994B1 (ko) 2013-09-09 2021-08-09 엠티에스 시스템즈 코포레이숀 결합형 하이브리드 다이내믹 시스템을 테스트하기 위한 방법 및 시스템
EP3044564A1 (en) * 2013-09-09 2016-07-20 MTS Systems Corporation Test system having a compliant actuator assembly and iteratively obtained drive
TR201909686T4 (tr) * 2013-09-09 2019-07-22 Mts System Corp Test izleme ve modifikasyonuna yönelik çevrimdışı hibrit sistem değerlendirme yöntemi.
CN104699905B (zh) * 2015-03-18 2017-10-31 中国航空工业集团公司雷华电子技术研究所 基于频域响应的调速系统齿轮传动机构辨识建模方法
DE102018202093A1 (de) * 2018-02-12 2019-08-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Berechnung von Datenmodellen in sicherheitskritischen Systemen
CN108760338B (zh) * 2018-06-22 2020-07-31 天津英创汇智汽车技术有限公司 无人驾驶在环测试装置及系统
CN111532395B (zh) * 2020-05-18 2022-02-18 智慧航海(青岛)科技有限公司 智能船舶主机及其控制系统硬件在环测试系统和方法
WO2022227067A1 (zh) * 2021-04-30 2022-11-03 西门子股份公司 虚拟测试方法、装置和系统
CN115395863B (zh) * 2022-10-28 2023-01-31 南京工程学院 一种基于混杂系统理论的主动磁轴承控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012475A1 (de) * 1991-12-09 1993-06-24 Siemens Aktiengesellschaft Verfahren zur optimierung von steuerparametern für ein system, das in abhängigkeit der steuerparameter ein ist-verhalten aufweist
EP0890918A2 (en) * 1997-07-11 1999-01-13 Ford Motor Company Vehicle road load simulation using effective road profile
US5942673A (en) * 1996-05-24 1999-08-24 Hitachi, Ltd. Vehicle testing system and testing method
US6247348B1 (en) * 1997-04-04 2001-06-19 Hitachi, Ltd. Apparatus for and method of testing dynamic characteristics of components of vehicle
US20020134149A1 (en) * 2000-06-14 2002-09-26 Masaki Shiraishi Vehicle/tire performance simulating method
US20030033058A1 (en) * 1998-01-22 2003-02-13 Lund Richard A. Method and apparatus for generating input signals in a physical system
US20040199351A1 (en) * 2003-04-01 2004-10-07 Ott Michael G. On-line device testing block integrated into a process control/safety system
US20040255661A1 (en) * 2001-07-26 2004-12-23 Masao Nagai Tire testing machine for real time evaluation of steering stability
US20050188753A1 (en) * 2002-05-22 2005-09-01 Kenichiro Kurai Method of adjusting straight ahead traveling capability of vehicle
US20060069962A1 (en) * 2004-09-28 2006-03-30 Daimlerchrysler Ag Method for simulation of the life of a vehicle

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE728819A (zh) 1968-02-26 1969-08-01
US3592545A (en) 1969-10-13 1971-07-13 Nasa Apparatus for remote measurement of displacement of marks on a specimen undergoing a tensile test
US3818751A (en) 1972-05-23 1974-06-25 Goodrich Co B F Testing apparatus for elastomers
CH568562A5 (zh) 1973-11-05 1975-10-31 Bolliger Alfred R
DE2728007C2 (de) 1977-06-22 1979-04-05 Michael Dr. 7201 Rietheim Ungethuem Simulator zum Testen von Totalendoprothesen für das Hüftgelenk
US5014719A (en) 1984-02-02 1991-05-14 Mcleod Paul C Knee loading and testing apparatus and method
US4882677A (en) 1987-09-03 1989-11-21 Curran Thomas M Isometric strength testing method and equipment for disability evaluation
DE3911656A1 (de) 1989-04-10 1990-10-11 Ekuma Werkzeug & Maschbau Pruefgeraet fuer die bremsanlage eines kraftfahrzeugs
US5038605A (en) 1990-08-16 1991-08-13 Trinity Industries, Inc. Railcar brake tester
KR950007524B1 (ko) 1991-02-06 1995-07-11 혼다기겡 고오교오 가부시기가이샤 가진장치 및 그 제어방법
JP3059241B2 (ja) * 1991-02-06 2000-07-04 本田技研工業株式会社 ロードシミュレーション装置
US5101660A (en) 1991-04-05 1992-04-07 Clayton Industries Method and apparatus for enabling two or four wheel drive vehicles to be tested under simulated road conditions
US5211666A (en) 1991-04-22 1993-05-18 New York University Hip joint femoral component endoprosthesis with a lateral load-transferring support surface
US5257190A (en) 1991-08-12 1993-10-26 Crane Harold E Interactive dynamic realtime management system for powered vehicles
US5277584A (en) 1991-09-06 1994-01-11 Occusym Limited Liability Company Vehicle vibration simulator and method for programming and using same
DE4203262A1 (de) 1992-02-05 1993-08-12 Fraunhofer Ges Forschung Versuchseinrichtung und verfahren zur pruefung von kraftfahrzeugbaugruppen, insbesondere von einzelradaufhaengungen
JP3267661B2 (ja) 1992-04-06 2002-03-18 全日本空輸株式会社 連続試験装置
US5369974A (en) 1992-11-10 1994-12-06 Hunter Engineering Company Suspension tester and method
US5430645A (en) 1993-09-07 1995-07-04 Keller; A. Scott Robotic system for testing of electric vehicles
GB9319788D0 (en) 1993-09-24 1993-11-10 Instron Ltd Structure testing machine
DE4411508C2 (de) 1994-04-02 2002-02-07 Cerasiv Gmbh Vorrichtung zum Prüfen von keramischen Hüftgelenkkugeln
JPH08285753A (ja) 1995-04-12 1996-11-01 Bridgestone Corp 粘弾性体の発熱疲労測定方法及びサーボ式フレクソメータ
JPH0943109A (ja) * 1995-05-25 1997-02-14 Hitachi Ltd 車両の試験装置および試験方法
US5880362A (en) 1995-09-06 1999-03-09 Engineering Technology Associates, Inc. Method and system for simulating vehicle and roadway interaction
US5999168A (en) 1995-09-27 1999-12-07 Immersion Corporation Haptic accelerator for force feedback computer peripherals
US5821718A (en) 1996-05-07 1998-10-13 Chrysler Corporation Robotic system for automated durability road (ADR) facility
JPH1011103A (ja) 1996-06-27 1998-01-16 Toyota Motor Corp アクチュエータの制御装置及びフィードバックゲインの算出方法
US6141620A (en) 1996-09-03 2000-10-31 Chrysler Corporation Vehicle control system for automated durability road (ADR) facility
JPH10185788A (ja) 1996-12-27 1998-07-14 Shimadzu Corp 試験装置
US6044696A (en) 1997-04-10 2000-04-04 Northern California Diagnostic Laboratories Apparatus for testing and evaluating the performance of an automobile
US6171812B1 (en) 1997-07-15 2001-01-09 The National Institute Of Biogerontology, Inc. Combined perfusion and mechanical loading system for explanted bone
US6134957A (en) 1997-07-16 2000-10-24 Ford Global Technologies, Inc. Multiple degree-of-freedom tire modeling method and system for use with a vehicle spindle-coupled simulator
JPH1137904A (ja) * 1997-07-24 1999-02-12 Hitachi Ltd 車両の試験装置及び試験方法
US5937530A (en) 1997-11-26 1999-08-17 Masson; Martin Kinematic restraint device and method for determining the range of motion of a total knee replacement system
US6405145B1 (en) 1998-03-20 2002-06-11 National Instruments Corporation Instrumentation system and method which performs instrument interchangeability checking
US6105422A (en) 1998-07-13 2000-08-22 Pollock; Paul Brake tester and method of using same
US6285972B1 (en) 1998-10-21 2001-09-04 Mts Systems Corporation Generating a nonlinear model and generating drive signals for simulation testing using the same
AU1619800A (en) 1998-11-11 2000-05-29 Kenmar Company Trust Enhanced computer optimized adaptive air spring suspension
DE19910967C1 (de) 1999-03-12 2000-09-21 Avl Deutschland Gmbh Verfahren zum Simulieren des Verhaltens eines Fahrzeugs auf einer Fahrbahn
CZ20013491A3 (cs) 1999-03-31 2002-05-15 Siemens Aktiengesellschaft Dynamické zkuąební zařízení pro vozidlo, zkuąebna a výrobní linka s dynamickým zkuąebním zařízením a jejich vyuľití pro přezkuąování bezpečnostního systému příčné stability ve vozidle
JP2000289417A (ja) 1999-04-08 2000-10-17 Yokohama Rubber Co Ltd:The 車両用タイヤの開発装置及び開発方法
US6634218B1 (en) 1999-04-28 2003-10-21 Horiba, Ltd Engine testing apparatus
US6510740B1 (en) 1999-09-28 2003-01-28 Rosemount Inc. Thermal management in a pressure transmitter
US7117137B1 (en) 1999-12-29 2006-10-03 Ge Harris Railway Electronics, Llc Adaptive train model
US6538215B2 (en) 2000-01-13 2003-03-25 Sunbeam Products, Inc. Programmable digital scale
US6571373B1 (en) 2000-01-31 2003-05-27 International Business Machines Corporation Simulator-independent system-on-chip verification methodology
JP2003534846A (ja) 2000-05-12 2003-11-25 アルバータ リサーチ カウンシル インコーポレイテッド 移動プラットホームおよびその使用方法
NL1015517C2 (nl) 2000-06-23 2001-12-28 Tno Stelsel voor het uitvoeren van onderzoek aan intelligente wegvoertuigen.
CA2354837C (en) 2000-08-11 2005-01-04 Honda Giken Kogyo Kabushiki Kaisha Simulator for automatic vehicle transmission controllers
US6721922B1 (en) 2000-09-27 2004-04-13 Cadence Design Systems, Inc. System for electronic circuit characterization, analysis, modeling and plan development
JP2002286589A (ja) 2001-03-23 2002-10-03 Toyota Motor Corp 操作部材の自動押圧による車輌の性能評価試験方法及び装置
US6598486B2 (en) 2001-05-21 2003-07-29 Enduratec Systems Corporation Portable device for testing the shear response of a material in response to a repetitive applied force
DE10139333A1 (de) 2001-08-10 2003-03-06 Biedermann Motech Gmbh Sensoreinrichtung, insbesondere für eine Prothese und Prothese mit einer solchen Sensoreinrichtung
US7575602B2 (en) 2002-03-19 2009-08-18 The Board Of Trustees Of The University Of Illinois System and method for prosthetic fitting and balancing in joints
US7058488B2 (en) 2002-05-03 2006-06-06 Burke E. Porter Machinery Company Vehicle testing apparatus for measuring a propensity of a vehicle to roll over
KR101075136B1 (ko) 2002-05-14 2011-10-24 비아이에이 6축 로드 시뮬레이터 테스트 시스템
JP4105492B2 (ja) * 2002-07-22 2008-06-25 株式会社鷺宮製作所 負荷試験システムおよび負荷試験方法
US6821299B2 (en) 2002-07-24 2004-11-23 Zimmer Technology, Inc. Implantable prosthesis for measuring six force components
EP1396802A3 (en) 2002-09-04 2005-11-23 Nissan Motor Company, Limited Construction assist method and system
US6715336B1 (en) 2003-02-24 2004-04-06 Npoint, Inc. Piezoelectric force motion scanner
US20080271542A1 (en) 2003-12-05 2008-11-06 Mts Systems Corporation Method to extend testing through integration of measured responses with virtual models
EP1696838B1 (en) 2003-12-05 2018-09-19 Mts Systems Corporation Method and system to extend testing through integration of measured responses with virtual models
US7055381B2 (en) 2004-07-08 2006-06-06 The Goodyear Tire & Rubber Company Method of testing tires for durability
US20060028005A1 (en) 2004-08-03 2006-02-09 Dell Eva Mark L Proximity suppression system tester
US7174776B2 (en) 2004-09-22 2007-02-13 Daimlerchrysler Corporation Methodology for vehicle box component durability test development
JP4465506B2 (ja) 2004-10-14 2010-05-19 株式会社神戸製鋼所 タイヤhilシミュレータ
US7363805B2 (en) 2005-09-30 2008-04-29 Ford Motor Company System for virtual prediction of road loads
US7194888B1 (en) 2006-04-10 2007-03-27 Daimlerchrysler Corporation Reducing drive file development time for a vehicle road test simulator
US20070260438A1 (en) 2006-05-08 2007-11-08 Langer William J Vehicle testing and simulation using integrated simulation model and physical parts
US20070260373A1 (en) 2006-05-08 2007-11-08 Langer William J Dynamic vehicle durability testing and simulation
US20070260372A1 (en) 2006-05-08 2007-11-08 Langer William J Dynamic vehicle suspension system testing and simulation
US20070275355A1 (en) 2006-05-08 2007-11-29 Langer William J Integration and supervision for modeled and mechanical vehicle testing and simulation
US7441465B2 (en) 2006-06-02 2008-10-28 Agilent Technologies, Inc. Measurement of properties of thin specimens based on experimentally acquired force-displacement data
JP2008122253A (ja) * 2006-11-13 2008-05-29 Bridgestone Corp シミュレーションシステム
US20080275681A1 (en) * 2007-05-04 2008-11-06 Langer William J Method and system for vehicle damper system evaluation and tuning with loading system and vehicle model
US20080275682A1 (en) 2007-05-04 2008-11-06 Langer William J Method and system for axle evaluation and tuning with loading system and vehicle model
KR20100021580A (ko) 2007-05-04 2010-02-25 엠티에스 시스템즈 코포레이숀 로딩 장치와 차량 모델을 이용하여 타이어를 평가하고 튜닝하는 방법 및 장치
US8135556B2 (en) * 2008-10-02 2012-03-13 Mts Systems Corporation Methods and systems for off-line control for simulation of coupled hybrid dynamic systems

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012475A1 (de) * 1991-12-09 1993-06-24 Siemens Aktiengesellschaft Verfahren zur optimierung von steuerparametern für ein system, das in abhängigkeit der steuerparameter ein ist-verhalten aufweist
US5942673A (en) * 1996-05-24 1999-08-24 Hitachi, Ltd. Vehicle testing system and testing method
US6247348B1 (en) * 1997-04-04 2001-06-19 Hitachi, Ltd. Apparatus for and method of testing dynamic characteristics of components of vehicle
EP0890918A2 (en) * 1997-07-11 1999-01-13 Ford Motor Company Vehicle road load simulation using effective road profile
US20030033058A1 (en) * 1998-01-22 2003-02-13 Lund Richard A. Method and apparatus for generating input signals in a physical system
US7031949B2 (en) * 1998-01-22 2006-04-18 Mts Systems Corporation Method and apparatus for generating input signals in a physical system
US20020134149A1 (en) * 2000-06-14 2002-09-26 Masaki Shiraishi Vehicle/tire performance simulating method
US20040255661A1 (en) * 2001-07-26 2004-12-23 Masao Nagai Tire testing machine for real time evaluation of steering stability
US20050188753A1 (en) * 2002-05-22 2005-09-01 Kenichiro Kurai Method of adjusting straight ahead traveling capability of vehicle
US20040199351A1 (en) * 2003-04-01 2004-10-07 Ott Michael G. On-line device testing block integrated into a process control/safety system
US20060069962A1 (en) * 2004-09-28 2006-03-30 Daimlerchrysler Ag Method for simulation of the life of a vehicle
US7146859B2 (en) * 2004-09-28 2006-12-12 Daimlerchrysler Ag Method for simulation of the life of a vehicle

Also Published As

Publication number Publication date
US8135556B2 (en) 2012-03-13
KR101474057B1 (ko) 2014-12-17
JP5478627B2 (ja) 2014-04-23
DK2344855T3 (en) 2015-01-12
EP2344855B1 (en) 2014-12-17
US20130030751A1 (en) 2013-01-31
US20100088058A1 (en) 2010-04-08
JP2012504765A (ja) 2012-02-23
KR20110081263A (ko) 2011-07-13
CN102227622A (zh) 2011-10-26
EP2344855A1 (en) 2011-07-20
WO2010039777A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
CN102227622B (zh) 用于仿真耦合混合动态系统的离线控制方法和系统
US10339265B2 (en) Method and systems for off-line control for simulation of coupled hybrid dynamic systems
MXPA01003920A (es) Generacion de un modelo no lineal y generacion se senales de activacion para prueba de simulacion empleando dicho modelo.
CN109597752B (zh) 基于复杂网络模型的故障传播路径仿真方法
Des Roches et al. Using component modes in a system design process
US20140107962A1 (en) Method and systems for off-line control for simulation of coupled hybrid dynamic systems
CN114219108A (zh) 一种车辆诊断方法、系统、终端及存储介质
CN105143843B (zh) 用于耦合混合动态系统的仿真的离线控制的方法和系统
CN105705927A (zh) 具有柔性致动器组件和迭代获得的驱动的测试系统
Lauber et al. Virtual test method for complex and variant-rich automotive systems
Dittmann et al. Validation of virtual prototypes via a virtual test laboratory
CN105723201A (zh) 用于测试监视及修改的离线混合系统评估的方法
Naithani et al. Development of an Automobile Hardware-inthe-Loop Test System with CAN Communication
CN110955423B (zh) 一种模型设计方法、系统、存储介质和终端
Ensor et al. Optimising simulation and test techniques for efficient vehicle durability design and development
US20240104273A1 (en) Verification system, verification method, and verification program
JP2023101400A (ja) 機械学習モデルを開発及び試験するシステム及び方法
de Melo et al. Combining classical and component-based TPA for equivalent load identification
Gnacy–Gajdzik et al. A Model-Based Approach for Testing Automotive Embedded Systems–A Preliminary Study
CN116933703A (zh) 基于多平台的集成电路验证方法、系统、装置及存储介质
CN117389857A (zh) 用于广义被测系统(SuT)的通用仿真测试
Tarnutzer et al. Automated Testing and Validation for Complex Vehicle Electronics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant