CN102245541A - 使用沸石-甲醇催化剂体系将合成气转化为烃的改进方法 - Google Patents

使用沸石-甲醇催化剂体系将合成气转化为烃的改进方法 Download PDF

Info

Publication number
CN102245541A
CN102245541A CN2009801492072A CN200980149207A CN102245541A CN 102245541 A CN102245541 A CN 102245541A CN 2009801492072 A CN2009801492072 A CN 2009801492072A CN 200980149207 A CN200980149207 A CN 200980149207A CN 102245541 A CN102245541 A CN 102245541A
Authority
CN
China
Prior art keywords
hydrocarbon
catalyst
catalyzer
methanol
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801492072A
Other languages
English (en)
Inventor
C·L·凯拜
A·W·小伯顿
A·哈斯
S·豪兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron USA Inc filed Critical Chevron USA Inc
Publication of CN102245541A publication Critical patent/CN102245541A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/08Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced
    • C01B39/082Gallosilicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen

Abstract

描述了一种通过使合成气与含有镓硅酸盐沸石催化剂和甲醇催化剂的混合物的催化剂体系接触,经由甲醇作为中间体将含有一氧化碳和氢气的合成气转化为烃的方法。该方法产生减少量的不期望的低碳数烃例如C4及以下的烃,不期望的高碳数烃例如C10及以上的烃,和芳烃。该方法提供了较高收率的沸点在汽油范围内的有用高辛烷值烃。

Description

使用沸石-甲醇催化剂体系将合成气转化为烃的改进方法
发明背景
本发明涉及使用含有甲醇催化剂和分子筛沸石催化剂的沸石-甲醇催化剂体系将包含氢气和一氧化碳的合成气转化为烃的方法。
其中通过使用包含催化剂混合物的催化剂体系将气态原料转化为中间产物并同时将该中间产物转化为液体烃燃料产物的方法是已知的。沸石-甲醇催化剂体系已用于由合成气体(也称作合成气)生产沸点在汽油范围内的烃。这类催化剂体系含有能够将合成气转化为甲醇的高温甲醇催化剂,例如ZnO-Cr2O3,和能够将甲醇转化为烃的分子筛沸石催化剂,例如ZSM-5。美国专利号4,011,275、4,180,516和4,331,774各自公开了包含这样的组成以获得高度芳香性烃产物的催化剂体系。
沸石催化剂在石油加工中和在各种石化产品生产中是公知的。美国专利号3,702,886中公开并请求保护的ZSM-5为广泛使用的沸石催化剂。ZSM-5催化剂的特征通常在于主要由偶尔有铝取代的SiO2构成的四面体骨架。因为它们作为分子筛的择形性和高度热稳定性,已知ZSM-5催化剂用于许多烃转化反应。有时有利的是合成催化剂使得其活性涉及特定的烃反应。美国专利号4,968,650公开了两种用于制备含有主要存在于催化剂骨架中的镓的ZSM-5催化剂的方法和这样的催化剂生产高辛烷值族化合物的用途。所公开的催化剂用于裂化和轻质链烷烃提质,特别是将C2-C12链烷烃、烯烃和环烷烃转化为高辛烷值芳族化合物。
经由甲醇作为中间体将合成气转化为液体烃的已知方法导致含有显著量的不期望的低碳数烃如C4及以下的烃和不期望的高碳数烃如C10及以上的烃的广泛分布。这类低碳数烃的产生是高度低效率的,因为这些烃在汽油产物中是没有用的。这类高碳数烃需要进一步加工例如裂化以形成用于汽油的合适烃。将期望具有以最少的加工经由甲醇将合成气转化为液体烃从而产生较高收率的沸点在汽油范围内的有用高辛烷值烃的改进方法。考虑到当前对更为严格的环境标准的集中关注,将进一步期望与已知方法相比产生降低水平的芳族化合物的改进方法。
发明概述
根据一个实施方案,本发明涉及用于将包含摩尔比为约1.5∶1-约2.5∶1的氢气和一氧化碳的合成气原料主要转化为沸点在汽油范围内的烃的方法,该方法包括:
在约330℃-约370℃的温度和约20atm-约100atm的压力下使合成气原料与包含GaZSM-5催化剂和甲醇催化剂的催化剂体系接触并持续足以产生烃的时间;
其中所产生的烃含有小于约10体积%的芳烃和至少约75体积%的C5+液体烃。
根据另一个实施方案,本发明涉及用于将包含摩尔比为约1.5∶1-约2.5∶1的氢气和一氧化碳的合成气主要转化为汽油沸程烃的催化剂体系,该催化剂体系包含酸性GaZSM-5催化剂和甲醇催化剂的混合物,所述甲醇催化剂包含具有约0.5-约2的Zn∶Cr原子比并且具有约100m2/g-约240m2/g的表面积的ZnO-Cr2O3,其中所述甲醇催化剂与所述酸性GaZSM-5催化剂的重量比为约10∶90-约90∶10。
附图简要描述
图1是使用根据现有技术的催化剂体系通过合成气的转化产生的烃馏分(fraction)的体积%的坐标图。
图2是使用根据本发明的催化剂体系通过合成气的转化产生的烃馏分的体积%的坐标图。
发明详述
本发明的方法用于在中等温度和适度高的压力下使用包含甲醇合成催化剂和用于将该甲醇转化为液体烃燃料的ZSM-5催化剂的混合物的催化剂体系将合成气(也称作合成气)转化为烃;所述甲醇合成催化剂包含用于将合成气转化为甲醇的ZnO-Cr2O3,所述ZSM-5催化剂以Ga在其晶格骨架位置的至少一部分中所合成(也称作GaZSM-5)。当在类似的温度和压力下与包含标准ZSM-5和ZnO-Cr2O3催化剂的混合物的催化剂体系相比时,所述催化剂体系提供了对沸点温度在汽油范围内的烃的改进选择性。
如本文所定义的,沸点在汽油范围内的烃包括具有按照ASTMD86大气压下石油产物蒸馏标准试验方法(Standard Test Method forDistillation of Petroleum Products at Atmospheric Pressure)测定的约122°F-约158°F的T10点或10%回收沸点,约365°F-约374°F的T90点或90%回收沸点,和约437°F的终点或终沸点的烃。这类烃通常含有C5-C9组分,具有非常少部分的C10
用于将合成气转化为甲醇的甲醇催化剂是Zn∶Cr原子比为约0.5∶1-约2∶1的ZnO-Cr2O3催化剂。甲醇催化剂有利地具有约100m2/g-约240m2/g,甚至约180m2/g-约240m2/g的BET(Brunauer,Emmett和Teller)表面积。BET表面积通过用商业仪器分析在液氮温度下以自动定量投气(dose)测定的氮气物理吸附体积并按照BET方程式进行确定,所述分析是在0.05-0.20的归一化压力范围P/P0内使用多点分析,其中P0是饱和氮气压力,约等于大气压力。
将甲醇转化为汽油的GaZSM-5催化剂是起分子筛作用的酸形式结晶镓硅酸盐沸石。如通过感应耦合等离子体质谱(ICP-MS)所测定的,Si/Ga之比为约10-约120,甚至约20-约80。制备时原样形式的GaZSM-5催化剂含有主要在沸石晶格位置中而不是在离子交换位置中或完全在晶格外面的镓。认为在晶格位置中的镓更加耐受还原。
GaZSM-5催化剂可用其X-射线衍射图案进行表征。表1的X-射线衍射图线是根据本发明制备的合成时原样的GaZSM-5的代表。衍射图案的较小变化可由特定样品因晶格常数改变而变化的骨架物质摩尔比所产生。此外,足够小的晶体可影响峰的型状和强度,从而导致明显的峰变宽。衍射图的较小变化还可由用于该制备的有机化合物的变化以及由样品之间Y/W摩尔比的变化产生。煅烧也可导致X-射线衍射图案的较小位移。虽然这些较小扰动,但是基本晶体晶格结构保持不变。表2的X-射线衍射图线是根据本发明制备的经煅烧的GaZSM-5的代表。本文给出的粉末X-射线衍射图案通过标准技术进行测定。辐射为CuK-α辐射。峰的高度和位置(作为2θ的函数,其中θ是布拉格角)由峰的相对强度(背景调节)读取,并且可计算出d,即相应于记录线的以埃计的晶面间距。基于以下相对强度等级提供X-射线图案,其中X-射线图案中的最强线赋以100的值:
60-100=VS(非常强)
40-60=S(强)
20-40=M(中)
10-20=MW(中-弱)
<10=W(弱)
表1
Figure BDA0000067018500000041
表2
Figure BDA0000067018500000051
通过任何合适的已知方法将催化剂体系的两种催化剂在反应器内合并以形成催化剂体系。可按各种方式将所述催化剂相对于彼此进行设置。可将所述催化剂进行粗掺混或细掺混。或者可将这两种催化剂以交互层进行设置,在该情形中合成气可最初与甲醇合成催化剂层接触并最后与沸石催化剂层接触。催化剂颗粒可以是任何已知的形式,包括细碎的粉末、颗粒、片块和挤出物。催化剂颗粒的直径优选为一毫米至数毫米。个体颗粒可完全由这两种催化剂中之一构成,或者所述颗粒可由这两种催化剂的混合物构成。ZnO-Cr2O3与GaZSM-5的重量比为约10∶90-约90∶10,甚至约40∶60-约80∶20。
将含有但不限于氢气和一氧化碳的合成气原料引入到反应器例如固定床反应器或流化床反应器中。可以沿任何合适的方向例如向上或向下引入所述气体。氢气与一氧化碳的摩尔比为约1.5∶1-约2.5∶1。在约330℃-约370℃的温度和约20atm-约100atm的压力下使所述气体与本发明的催化剂体系接触。以气时空速(GHSV)表示的流速为约2000/小时-约4000/小时。如本文所定义的,GHSV是每小时通过单位体积催化剂的反应物混合物的体积。
本发明的转化方法产生沸点在汽油范围内的用作燃料的烃,该烃具有改进的烃组分分布。所产生的烃含有大于约75体积%的C5+液体,有利地约75体积%-约85体积%的C5-C9液体。如本文所使用的,Cn化合物是指每个分子具有n个碳原子的烃。例如,C5-C9是指每个分子具有5-9个碳原子的烃,C5+是指每个分子具有5个以上碳原子的烃。通过本发明方法产生的C5+烃组分,特别是C5-C9范围内的烃组分,具有高辛烷值,主要包含异链烷烃和环烷烃并且含有小于约10体积%的芳烃,因此所产生的烃就环境影响而言相对有利(benign)并且根据当前标准是可接受的。所产生的烃含有低水平的不期望的烃组分,例如约3体积%-约5体积%的C1-C2烃,约18%-约20%的C3-C4烃,和小于约2%的C10+烃。所产生的烃有利地含有小于约10%的链烷烃,大于约5%的烯烃和/或大于约15%的环烷烃。
各种碳组分的百分数通过气相色谱法对所得产物进行分析来测定,所述气相色谱法是基于可得自Agilent Technologies(Santa Clara,California)的多柱、多检测器色谱仪,该色谱具有用于烃、甲醇和DEM的定量分析的火焰离子化检测器;用于H2、CO和CO2的定量分析的热导检测器;以及用于各种烃组分的定性鉴别的质谱检测器。总速率通过入口和出口的CO、CO2、CH4、H2的分析进行检测,而总烃流速使用分别用于这些组分的单独连续分析器进行检测。所述分析器可得自ABB Ltd.,Zürich,Switzerland。
可还进一步对根据本发明产生的C5-C9烃进行蒸馏以提供液体燃料例如汽油。
实施例
GaZSM-5样品A的制备
按照以下工序合成用于本发明催化剂体系的实施例的GaZSM-5样品A。在1-升Parr钢高压釜的插入杯中将20.15g的40%四丙基氢氧化铵水溶液与216.5g的去离子水混合。接着将4.0g的氢氧化钠丸粒溶解在该溶液中。然后将2.35g氧化镓粉末溶解在该氢氧化物溶液中。之后通过手工将45.0g的Cabosil M-5气相法二氧化硅(得自Eager Polymers)混合到该溶液中以产生均匀凝胶。然后将插入杯密封在配备有顶部搅拌器的Parr高压釜内。然后将该高压釜置于炉内并且经8小时的时段加热到175℃。然后将温度在175℃下保持6天。在合成期间,用顶部搅拌器以150rpm将所述凝胶混合。然后使该高压釜冷却至室温并且通过使悬浮液过滤通过砂芯(fritted)漏斗分离出所得固体产物。用至少2升去离子水洗涤该产物。
接着通过在马弗炉中在速率为约20标准立方英尺/分钟的带有轻微漏入(bleed)的空气的氮气流中加热沸石来煅烧来自述合成的产物。将沸石以1℃/分钟加热到120℃,让其在120℃下保持2小时,以1℃/分钟加热到595℃,让其在595℃下保持5小时。然后使沸石冷却至室温。
然后将煅烧的沸石交换为铵形式。将等于待交换沸石质量的量的硝酸铵完全溶解在其量为沸石质量10倍的去离子水中。然后将沸石加入到该溶液中,将该悬浮液密封在聚丙烯瓶中并在95℃的烘箱中加热过夜。然后从烘箱中取出该瓶,通过过滤回收沸石。用其量为所述铵交换溶液中所用去离子水量的至少10倍的去离子水洗涤沸石。然后按上文所述对相同的沸石重复第二次交换。在第二次交换之后,让该沸石在95℃的烘箱中干燥过夜。
通过在空气中煅烧铵交换的沸石将该沸石转化为酸性形式。将该沸石以1℃/分钟加热到120℃,让其在120℃下保持2小时,以1℃/分钟加热到495℃,让其在495℃下保持5小时。然后使该沸石冷却至室温。
粉末X-射线衍射图案显示该材料为不具有可检测水平的其它结晶相或无定形相的ZSM-5。通过感应耦合等离子体质谱(ICP-MS)测得该沸石的Si/Ga摩尔比为26.8。
GaZSM-5样品B的制备
按照以下工序合成用于本发明催化剂体系的实施例的GaZSM-5样品B。在1-升Parr钢高压釜的
Figure BDA0000067018500000081
插入杯中将65.7g的40%四丙基氢氧化铵水溶液与336.6g的去离子水混合。接着将2.7g的氢氧化钠丸粒溶解在该溶液中。然后将130.5g涂覆氧化镓的二氧化硅的胶体悬浮液(31%固体,Si/Ga=40,TX11678,Lot 5453-160,NalcoCompany提供)与该溶液混合以产生均匀悬浮液。然后将插入杯密封在配备有顶部搅拌器的Parr高压釜内。然后将该高压釜置于炉内并经8小时的时段加热到160℃。然后将温度在160℃下保持44小时。在合成期间,用顶部搅拌器以150rpm将所述悬浮液混合以形成凝胶。然后使高压釜冷却至室温并且通过使悬浮体过滤通过砂芯漏斗分离出所得固体产物。用至少2升去离子水洗涤该产物。
使用上述用于制备样品A的工序将该沸石转化为酸性形式。粉末X-射线衍射图案显示该材料为不具有可检测水平的其它结晶相或无定形相的ZSM-5。通过ICP-MS测得该沸石的Si/Ga摩尔比为40.0。
表3和表4分别包括样品B的GaZSM-5和样品B的煅烧的GaZSM-5的X-射线衍射图案数据。
表3
Figure BDA0000067018500000091
表4
Figure BDA0000067018500000092
Figure BDA0000067018500000101
Figure BDA0000067018500000111
甲醇催化剂样品的制备
按照以下工序合成用于本发明催化剂体系的实施例的甲醇催化剂样品。将硝酸锌和硝酸铬(III)的水溶液加热到70℃并还在70℃下用2摩尔的碳酸钾水溶液使其在湍流混合器中沉淀。该锌-铬催化剂具有1的Zn/Cr比。调节所述硝酸盐和碳酸盐溶液的流量以在混合区域中产生为7的pH。在加热的容器中收集浆状沉淀物并且将将其在70℃下维持1小时。用布氏漏斗过滤该沉淀物并且在仍在该漏斗上时用70℃的水进行洗涤,直到废水的电导率降至低于100μS。然后将洗涤的沉淀物在80℃的烘箱中干燥16小时。
将经干燥的滤饼破碎并且筛分为小于500μm的粒径。在这种粒状形式中,以10g批量在浅的2mm厚的床中,通过在真空烘箱中于含有5体积%氢气和95体积%氮气的形成气体的控制气氛中加热来煅烧经干燥的2ZnO-Cr2O3材料。将该烘箱以1℃/分钟加热到250℃并在该温度下保持3小时,然后将其冷却。所得催化剂具有约218m2/g的BET表面积。
本发明催化剂体系的实施例的制备
按照以下工序形成本发明催化剂体系的实施例。将如上所述制备的ZnO-Cr2O3甲醇催化剂研磨并筛分为125-160μm。用0.536g的125-160μm 2ZnO-Cr2O3和0.326g的125-160μm GaZSM-5(样品A和样品B各自如上所述)的物理混合物填充具有4.5mm内径的圆柱形反应器。这些重量产生大约等体积的两种组分。混合催化剂床的总体积为1.185mL。在该催化剂床之上和之下设置125-160μm刚玉的层,并在所述刚玉之上和之下设置125-160μm块滑石(steatite)的层。
将该催化剂体系在试验反应器中原位活化。将体积为1.2-1.4mL的约1克样品装入直径为4.5或5.0mm的反应器中。催化剂床高度为7-11cm。在以100mL/分钟/反应器(GHSV为4000-5000/小时)流动的纯氢气中将催化剂还原。将压力提高至40atm,然后在约10℃-200℃下加热该催化剂。然后按照1℃/分钟的线性升温速率一直到350℃并在该温度下保持10小时。
在活化后,随着催化剂仍在350℃、40atm下且处于100mL/分钟流量的氢气中,逐渐引入一氧化碳流并同时减少氢气流直到H2/CO入口比为2和流量为67mL/分钟(GHSV为3000/小时)/反应器。控制该条件不变并持续数百小时,用ABB传感器就H2、CO、CO2、CH4和总烃对料流进行连续产物分析,并且通过气相色谱就C1-C12烃对料流进行定时产物分析。如下表中所示的所得烃包括约5%的C1+C2烃,19%的C3+C4烃和75-76%的C5+液体烃。液体收率的最大改进在于环烷烃产量。
对比例
在350℃的温度,40atm的压力和3000/小时的GHSV下将H2与CO之比为2的合成气给进到催化剂混合物。该催化剂混合物具有50∶50体积比的为其酸性形式的标准ZSM-5催化剂(得自Zeosit的CBV 8014)与Zn/Cr原子比为1的ZnO-Cr2O3催化剂。在运行800小时后,所得烃包括5%的C1+C2烃,25-26%的C3+C4烃(主要是异丁烷)和69-70%的C5+烃(主要是异链烷烃和环烷烃)。
如在表5中以及通过对比图1和2所可看出的,使用包含ZnO-Cr2O3甲醇催化剂和GaZSM-5的催化剂体系将合成气进行转化的方法相对于利用标准ZSM-5的方法产生了改进的汽油组成。根据本发明制备的汽油组合物包括降低水平的不期望的C1-C4组分,提高水平的期望的高辛烷C5+组分以及降低水平的不期望的高碳数烃和芳族化合物。
表5中的合成速率分别是指合成的烃产物中的C重量/小时/锌-铬甲醇催化剂重量,和形成的烃产物中的碳重量/小时/催化剂总体积。
表5
Figure BDA0000067018500000131

Claims (15)

1.一种用于将包含摩尔比为约1.5∶1-约2.5∶1的氢气和一氧化碳的合成气原料主要转化为沸点在汽油范围内的烃的方法,该方法包括:
在约330℃-约370℃的温度和约20atm-约100atm的压力下使所述合成气原料与包含GaZSM-5催化剂和甲醇催化剂的催化剂体系接触并持续足以产生烃的时间;
其中所产生的烃含有小于约10体积%的芳烃和至少约75体积%的C5+液体烃。
2.权利要求1的方法,其中所述甲醇催化剂是具有约100m2/g-约240m2/g表面积的ZnO-Cr2O3
3.权利要求1的方法,其中所述甲醇催化剂是具有约180m2/g-约240m2/g表面积的ZnO-Cr2O3
4.权利要求2的方法,其中所述甲醇催化剂具有约0.5-约1的Zn∶Cr原子比。
5.权利要求1的方法,其中所述甲醇催化剂与GaZSM-5催化剂的重量比为约40∶60-约80∶20。
6.权利要求1的方法,其中所述GaZSM-5催化剂具有约10-约120的Si/Ga比。
7.权利要求1的方法,其中所述GaZSM-5催化剂具有约20-约80的Si/Ga比。
8.权利要求1的方法,其中所产生的烃含有约3体积%-约5体积%的C1-C2烃和约18体积%-约20体积%的C3-C4烃。
9.权利要求1的方法,其中所产生的烃含有约75体积%-约85体积%的C5-C9液体烃。
10.权利要求1的方法,其中所产生的烃含有小于约10%的链烷烃。
11.权利要求1的方法,其中所产生的烃含有大于约5%的烯烃。
12.权利要求1的方法,其中所产生的烃含有大于约15%的环烷烃。
13.权利要求1的方法,其中所产生的烃含有小于约10%的链烷烃,大于约5%的烯烃和大于约15%的环烷烃。
14.一种用于将包含氢气和一氧化碳的合成气主要转化为汽油沸程烃的催化剂体系,该催化剂体系包含酸性GaZSM-5催化剂和甲醇催化剂的混合物,所述甲醇催化剂包含Zn∶Cr原子比为1并且表面积为约100m2/g-约240m2/g的ZnO-Cr2O3,其中ZnO-Cr2O3催化剂与酸性GaZSM-5催化剂的重量比为约10∶90-约90∶10。
15.权利要求14的催化剂体系,其中ZnO-Cr2O3催化剂与酸性GaZSM-5催化剂的重量比为约40∶60-约80∶20。
CN2009801492072A 2008-12-10 2009-11-13 使用沸石-甲醇催化剂体系将合成气转化为烃的改进方法 Pending CN102245541A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/316,209 US7943673B2 (en) 2008-12-10 2008-12-10 Process for conversion of synthesis gas to hydrocarbons using a zeolite-methanol catalyst system
US12/316,209 2008-12-10
PCT/US2009/064406 WO2010068364A2 (en) 2008-12-10 2009-11-13 Improved process for conversion of synthesis gas to hydrocarbons using a zeolite-methanol catalyst system

Publications (1)

Publication Number Publication Date
CN102245541A true CN102245541A (zh) 2011-11-16

Family

ID=42231806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801492072A Pending CN102245541A (zh) 2008-12-10 2009-11-13 使用沸石-甲醇催化剂体系将合成气转化为烃的改进方法

Country Status (7)

Country Link
US (1) US7943673B2 (zh)
EP (1) EP2373598A4 (zh)
CN (1) CN102245541A (zh)
AU (1) AU2009325047A1 (zh)
BR (1) BRPI0923230A2 (zh)
WO (1) WO2010068364A2 (zh)
ZA (1) ZA201103317B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071528A (zh) * 2013-01-21 2013-05-01 浙江大学 核壳结构催化剂及由合成气一步法制取低碳烯烃的方法
CN105092759A (zh) * 2015-08-11 2015-11-25 苏州优谱德精密仪器科技有限公司 用于石油化工的气质联用分析设备
CN106423263A (zh) * 2016-09-12 2017-02-22 中国科学院大连化学物理研究所 一种二氧化碳加氢制低碳烯烃的催化剂及低碳烯烃的合成
CN107469857A (zh) * 2016-06-07 2017-12-15 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制芳烃的方法
CN108144643A (zh) * 2016-12-05 2018-06-12 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN109939667A (zh) * 2018-01-26 2019-06-28 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN113366088A (zh) * 2018-12-28 2021-09-07 陶氏环球技术有限责任公司 使用包含镓金属氧化物的混合催化剂生产c2至c5链烷烃的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973086B1 (en) 2010-10-28 2011-07-05 Chevron U.S.A. Inc. Process of synthesis gas conversion to liquid hydrocarbon mixtures using alternating layers of synthesis gas conversion catalyst and hydrocracking catalyst
US8519011B2 (en) 2010-10-28 2013-08-27 Chevron U.S.A. Inc. Process of synthesis gas conversion to liquid hydrocarbon mixtures using alternating layers of synthesis gas conversion catalyst, hydrocracking and hydroisomerization catalyst
US9296665B2 (en) * 2012-12-13 2016-03-29 Pioneer Energy Inc. Synthesis of drop-in liquid fuels and chemicals from methanol, ethanol or syngas using mixed catalysts
US9283551B2 (en) 2013-01-23 2016-03-15 Mississippi State University Research And Technology Corporation Catalysts for converting syngas into liquid hydrocarbons and methods thereof
WO2016007607A1 (en) 2014-07-11 2016-01-14 Dow Global Technologies Llc Conversion of carbon monoxide, carbon dioxide, or a combination thereof over hybrid catalyst
US9714386B2 (en) 2014-07-24 2017-07-25 Exxonmobil Chemical Patents Inc. Production of xylenes from syngas
CA3003620C (en) 2015-10-30 2023-10-24 Dow Global Technologies Llc Process to convert synthesis gas to olefins over a bifunctional chromium oxide/zinc oxide-sapo-34 catalyst
AR110362A1 (es) 2016-12-22 2019-03-20 Dow Global Technologies Llc Proceso para convertir gas de síntesis en olefinas usando un catalizador bifuncional de óxido de cromozinc - sapo-34
CN110891925A (zh) * 2017-06-30 2020-03-17 华电煤业集团有限公司 一种合成气制芳烃的系统及方法
US10746659B2 (en) * 2017-07-21 2020-08-18 Exxonmobil Research And Engineering Company Determination of organic silicon in hydrocarbonaceous streams
CN112218712B (zh) 2018-06-29 2023-12-22 陶氏环球技术有限责任公司 用于生产c2和c3烃的包含混合金属氧化物组分的杂化催化剂
US11884605B2 (en) 2018-06-29 2024-01-30 Dow Global Technologies Llc Hybrid catalysts comprising a zeolite and a mixed metal oxide component for converting syngas into C2 and C3 olefins
WO2020023098A1 (en) * 2018-07-27 2020-01-30 Gas Technology Institute Fluidized bed processes and catalyst systems for fischer-tropsch conversion
WO2020210092A1 (en) 2019-04-10 2020-10-15 Exxonmobil Chemical Patents Inc. Multicomponent catalysts for syngas conversion to light hydrocarbons

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180516A (en) * 1977-08-18 1979-12-25 Mobil Oil Corporation Conversion of synthesis gas to aromatic hydrocarbons
US4331774A (en) * 1979-07-20 1982-05-25 Shell Oil Company Process for the preparation of hydrocarbons
CN86106301A (zh) * 1985-09-17 1987-03-18 无比石油公司 轻链烯转化为汽油馏分和润滑油范围的碳氢化合物
EP1142980A2 (en) * 2000-04-04 2001-10-10 Toyota Jidosha Kabushiki Kaisha Process for synthesis of lower isoparaffins from synthesis gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011275A (en) * 1974-08-23 1977-03-08 Mobil Oil Corporation Conversion of modified synthesis gas to oxygenated organic chemicals
US4418155A (en) * 1980-03-24 1983-11-29 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbons enriched in linear alpha-olefins
CA1255285A (en) 1984-08-08 1989-06-06 Johannes K. Minderhoud Catalyst mixtures for aromatic hydrocarbon synthesis
US4968650A (en) * 1985-09-17 1990-11-06 Mobil Oil Corporation ZSM-5 catalysts having predominantly framework gallium, methods of their preparation, and use thereof
AU638741B2 (en) * 1989-09-11 1993-07-08 Broken Hill Proprietary Company Limited, The Catalyst for conversion of synthesis gas into hydrocarbons
US5827903A (en) * 1996-01-31 1998-10-27 The United States Of America As Represented By The Department Of Energy Separation of catalyst from Fischer-Tropsch slurry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180516A (en) * 1977-08-18 1979-12-25 Mobil Oil Corporation Conversion of synthesis gas to aromatic hydrocarbons
US4331774A (en) * 1979-07-20 1982-05-25 Shell Oil Company Process for the preparation of hydrocarbons
CN86106301A (zh) * 1985-09-17 1987-03-18 无比石油公司 轻链烯转化为汽油馏分和润滑油范围的碳氢化合物
EP1142980A2 (en) * 2000-04-04 2001-10-10 Toyota Jidosha Kabushiki Kaisha Process for synthesis of lower isoparaffins from synthesis gas

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071528A (zh) * 2013-01-21 2013-05-01 浙江大学 核壳结构催化剂及由合成气一步法制取低碳烯烃的方法
CN105092759A (zh) * 2015-08-11 2015-11-25 苏州优谱德精密仪器科技有限公司 用于石油化工的气质联用分析设备
CN107469857A (zh) * 2016-06-07 2017-12-15 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制芳烃的方法
CN107469857B (zh) * 2016-06-07 2020-12-01 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制芳烃的方法
CN106423263A (zh) * 2016-09-12 2017-02-22 中国科学院大连化学物理研究所 一种二氧化碳加氢制低碳烯烃的催化剂及低碳烯烃的合成
CN106423263B (zh) * 2016-09-12 2018-12-21 中国科学院大连化学物理研究所 一种二氧化碳加氢制低碳烯烃的催化剂及低碳烯烃的合成
CN108144643A (zh) * 2016-12-05 2018-06-12 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN108144643B (zh) * 2016-12-05 2020-03-10 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN109939667A (zh) * 2018-01-26 2019-06-28 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN109939667B (zh) * 2018-01-26 2021-01-05 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法
CN113366088A (zh) * 2018-12-28 2021-09-07 陶氏环球技术有限责任公司 使用包含镓金属氧化物的混合催化剂生产c2至c5链烷烃的方法
CN113366088B (zh) * 2018-12-28 2024-03-22 陶氏环球技术有限责任公司 使用包含镓金属氧化物的混合催化剂生产c2至c5链烷烃的方法

Also Published As

Publication number Publication date
ZA201103317B (en) 2012-07-25
WO2010068364A3 (en) 2010-07-29
US7943673B2 (en) 2011-05-17
EP2373598A4 (en) 2014-02-12
WO2010068364A2 (en) 2010-06-17
US20100144907A1 (en) 2010-06-10
BRPI0923230A2 (pt) 2016-01-26
AU2009325047A1 (en) 2011-06-23
EP2373598A2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
CN102245541A (zh) 使用沸石-甲醇催化剂体系将合成气转化为烃的改进方法
Kuwahara et al. Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO2 catalyst supported on SBA-15 silica
Soghrati et al. Zeolite–supported nickel phyllosilicate catalyst for CO hydrogenolysis of cyclic ethers and polyols
Hernando et al. Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides
Álvaro-Muñoz et al. Use of different templates on SAPO-34 synthesis: Effect on the acidity and catalytic activity in the MTO reaction
Angelici et al. Effect of Preparation Method and CuO Promotion in the Conversion of Ethanol into 1, 3‐Butadiene over SiO2–MgO Catalysts
Álvaro-Muñoz et al. Aluminium chloride: A new aluminium source to prepare SAPO-34 catalysts with enhanced stability in the MTO process
Da Ros et al. Ethanol to 1, 3‐Butadiene Conversion by using ZrZn‐Containing MgO/SiO2 Systems Prepared by Co‐precipitation and Effect of Catalyst Acidity Modification
Álvaro-Muñoz et al. Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reaction
Vieira et al. Effects of crystal size, acidity, and synthesis procedure on the catalytic performance of gallium and aluminum MFI zeolites in glycerol dehydration
Álvaro-Muñoz et al. Effect of silicon content on the catalytic behavior of chabazite type silicoaluminophosphate in the transformation of methanol to short chain olefins
He et al. Catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone over mesoporous Zr/B mixed oxides
CN109641194B (zh) 包含小的10-环沸石微晶的催化剂和通过使含氧化合物经由所述催化剂反应来制备烃的方法
Cheng et al. Preparation of complexant-modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors and its highly efficient application in direct synthesis of isobutanol and ethanol from syngas
US20180258251A1 (en) Lignin depolymerisation and doxygenation process for obtaining aromatic compounds and their catalytic reaction composition
Gómez et al. Heterogeneous basic catalysis for upgrading of biofuels
CN106215970A (zh) Hzsm‑5分子筛催化剂的改性处理方法及应用
Aghamohammadi et al. Effect of template combinations (TEA/MOR, TEA/DEA, DEA/MOR) in synthesis of nanostructured CoAPSO-34 catalyst used in conversion of methanol to light olefins
Wang et al. Low‐Temperature Catalytic Hydrogenolysis of Guaiacol to Phenol over Al‐Doped SBA‐15 Supported Ni Catalysts
Jeenpadiphat et al. Catechol production from lignin by Al-doped mesoporous silica catalytic cracking
Zhang et al. Enhanced selectivity in the conversion of glycerol to pyridine bases over HZSM-5/11 intergrowth zeolite
CN106794453A (zh) 脱水‑水解方法及其催化剂
Gutiérrez-Rubio et al. Synthesis of cyclohexylphenol via phenol hydroalkylation using Co2P/zeolite catalysts
EP3448561B1 (en) Catalyst, its preparation and use in the conversion of oxygen-containing compounds
Wang et al. The influence of zinc loadings on the selectivity control of bio-ethanol transformation over MgO-SiO2 catalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111116