CN102854619A - 具有宽带反射特性的干涉式光学调制器 - Google Patents

具有宽带反射特性的干涉式光学调制器 Download PDF

Info

Publication number
CN102854619A
CN102854619A CN2012103507926A CN201210350792A CN102854619A CN 102854619 A CN102854619 A CN 102854619A CN 2012103507926 A CN2012103507926 A CN 2012103507926A CN 201210350792 A CN201210350792 A CN 201210350792A CN 102854619 A CN102854619 A CN 102854619A
Authority
CN
China
Prior art keywords
optical devices
layer
optical
state
devices according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103507926A
Other languages
English (en)
Inventor
徐刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm MEMS Technologies Inc
Original Assignee
Qualcomm MEMS Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm MEMS Technologies Inc filed Critical Qualcomm MEMS Technologies Inc
Publication of CN102854619A publication Critical patent/CN102854619A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B5/00Devices comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining

Abstract

本发明提供一种适合于在视频显示器中形成像素的光学装置800。所述光学装置800包含:第一层802,其具有第一折射率;在所述第一层802上的第二层804,所述第二层804具有小于所述第一折射率的第二折射率;及在所述第二层804上的第三层806,所述第三层806具有大于所述第二折射率的第三折射率;及第四层810,其为至少部分光学吸收性的,其中光学堆叠808与所述第四层810在所述装置处于第一状态下时彼此相距第一距离,且在所述装置处于第二状态下时彼此相距第二距离,所述第一距离不同于所述第二距离。

Description

具有宽带反射特性的干涉式光学调制器
技术领域
本发明的领域涉及微机电系统(MEMS),且更明确地说,涉及包括MEMS的显示器。
背景技术
微机电系统(MEMS)包含微机械元件、激活器和电子元件。可使用沉积、蚀刻和/或其它蚀刻掉衬底和/或已沉积材料层的部分或者添加层以形成电装置和机电装置的微加工工艺来产生微机械元件。一种类型的MEMS装置称为干涉式调制器。如本文所使用,术语干涉式调制器或干涉式光调制器指的是一种使用光学干涉原理选择性地吸收且/或反射光的装置。在某些实施例中,干涉式调制器可包括一对导电板,其中之一或两者可能整体或部分透明且/或具有反射性,且能够在施加适当电信号时进行相对运动。在特定实施例中,一个板可包括沉积在衬底上的固定层,且另一个板可包括通过气隙与固定层分离的金属薄膜。如本文更详细描述,一个板相对于另一个板的位置可改变入射在干涉式调制器上的光的光学干涉。这些装置具有广范围的应用,且在此项技术中,利用且/或修改这些类型装置的特性使得其特征可被发掘用于改进现有产品和创建尚未开发的新产品,将是有益的。
发明内容
揭示本发明的许多示范性实施例。在一个实施例中,揭示一种光学装置,所述光学装置包括:光学堆叠,其包括:第一层,其具有第一折射率;在所述第一层上的第二层,所述第二层具有小于第一折射率的第二折射率;及在所述第二层上的第三层,所述第三层具有大于第二折射率的第三折射率;及第四层,其为至少部分光学吸收性的,其中光学堆叠与第四层在装置处于第一状态下时彼此相距第一距离,且在装置处于第二状态下时彼此相距第二距离,所述第一距离不同于所述第二距离。
在一个实施例中,揭示一种形成光学装置的方法,所述方法包括:形成第一层,所述第一层具有第一折射率;在第一层上形成第二层,所述第二层具有小于第一折射率的第二折射率;在第二层上形成第三层,所述第三层具有大于第二折射率的第三折射率;在第三层上形成牺牲层;在牺牲层上形成第四层,所述第四层为至少部分光学吸收性的;及移除所述牺牲层。
在一个实施例中,揭示一种调制光的方法,所述方法包括:提供光学装置,所述光学装置包括:光学堆叠,所述光学堆叠包括:第一层,其具有第一折射率;在所述第一层上的第二层,所述第二层具有小于第一折射率的第二折射率;及在所述第二层上的第三层,所述第三层具有大于第二折射率的第三折射率;及第四层,其为至少部分光学吸收性的,其中光学堆叠与第四层在装置处于第一状态下时彼此相距第一距离,且在装置处于第二状态下时彼此相距第二距离,所述第一距离不同于所述第二距离;将第一电压施加到装置以将所述装置置于第一状态下;及将第二电压施加到装置以将所述装置置于第二状态下。
在一个实施例中,揭示一种光学装置,所述光学装置包括:用于反射及透射光的第一装置,所述第一装置具有第一折射率;用于反射及透射光的第二装置,所述第二装置在所述第一装置上,所述第二装置具有小于第一折射率的第二折射率;及用于反射及透射光的第三装置,所述第三装置在所述第二装置上,所述第三装置具有大于第二折射率的第三折射率;及用于反射及吸收光的第四装置,其中第三装置与第四装置在装置处于第一状态下时彼此相距第一距离,且在装置处于第二状态下时彼此相距第二距离,所述第一距离不同于所述第二距离。
附图说明
图1是描绘干涉式调制器显示器的一个实施例的一部分的等角视图,其中第一干涉式调制器的可移动反射层处于松弛位置,且第二干涉式调制器的可移动反射层处于激活位置。
图2是说明并入有3×3干涉式调制器显示器的电子装置的一个实施例的系统框图。
图3是图1的干涉式调制器的一个示范性实施例的可移动镜位置对所施加电压的图。
图4是可用于驱动干涉式调制器显示器的一组行和列电压的说明。
图5A说明图2的3×3干涉式调制器显示器中的显示器数据的一个示范性帧。
图5B说明可用于写入图5A的帧的行和列信号的一个示范性时序图。
图6A和图6B是说明包括多个干涉式调制器的视觉显示器装置的实施例的系统框图。
图7A是图1的装置的横截面。
图7B是干涉式调制器的替代实施例的横截面。
图7C是干涉式调制器的另一替代实施例的横截面。
图7D是干涉式调制器的又一替代实施例的横截面。
图7E是干涉式调制器的额外替代实施例的横截面。
图8为具有宽带反射特性的干涉式调制器的横截面。
图9包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
图10包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
图11包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
图12包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
图13包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
图14包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
图15包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
图16包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
图17包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
图18包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
图19包含总结图8的干涉式调制器的实施例的结构及光学特性的表及曲线图。
具体实施方式
以下详细描述针对本发明的某些特定实施例。然而,本发明可以许多不同方式实施。如从以下描述中将了解,所述实施例可实施在经配置以显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是图画的图像的任何装置中。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP3播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,一件珠宝上的图像显示器)。具有与本文中描述的装置类似的结构的MEMS装置也可用于例如电子切换装置的非显示器应用中。
图1中说明包括干涉式MEMS显示器元件的一个干涉式调制器显示器的实施例。在这些装置中,像素处于明状态或暗状态。在明(“接通”或“开启”)状态下,显示器元件将入射可见光的大部分反射到用户。当在暗(“断开”或“关闭”)状态下时,显示器元件将极少的入射可见光反射到用户。依据实施例而定,可颠倒“接通”和“断开”状态的光反射性质。MEMS像素可经配置以主要在所选颜色下反射,从而除了黑色和白色以外还允许彩色显示器。
图1是描述视觉显示器的一系列像素中的两个相邻像素的等角视图,其中每一像素包括MEMS干涉式调制器。在一些实施例中,干涉式调制器显示器包括这些干涉式调制器的一行/列阵列。每一干涉式调制器包含一对反射层,其定位成彼此相距可变且可控制的距离以形成具有至少一个可变尺寸的谐振光学间隙。在一个实施例中,可在两个位置之间移动所述反射层之一。在第一位置(本文中称为松弛位置)中,可移动反射层定位成距固定部分反射层相对较大的距离。在第二位置(本文中称为激活位置)中,可移动反射层定位成更紧密邻近所述部分反射层。视可移动反射层的位置而定,从所述两个层反射的入射光相长地或相消地进行干涉,从而针对每一像素产生全反射状态或非反射状态。
图1中像素阵列的所描绘部分包含两个相邻干涉式调制器12a和12b。在左侧干涉式调制器12a中,说明可移动反射层14a处于距包含部分反射层的光学堆叠16a预定距离处的松弛位置中。在右侧干涉式调制器12b中,说明可移动反射层14b处于邻近于光学堆叠16b的激活位置中。
如本文所引用的光学堆叠16a和16b(统称为光学堆叠16)通常包括若干熔合层(fused layer),所述熔合层可包含例如氧化铟锡(ITO)的电极层、例如铬的部分反射层和透明电介质。因此,光学堆叠16是导电的、部分透明且部分反射的,且可通过(例如)将上述层的一者或一者以上沉积到透明衬底20上来制造。部分反射层可由为部分反射的多种材料(例如,各种金属、半导体及电介质)形成。部分反射层可由一个或一个以上材料层形成,且层中的每一者可由单一材料或材料的组合形成。
在一些实施例中,光学堆叠16的层经图案化成为多个平行条带,且如下文中进一步描述,可在显示器装置中形成行电极。可移动反射层14a、14b可形成为沉积金属层(一层或多层)的一系列平行条带(与行电极16a、16b垂直),所述金属层沉积在柱18和沉积于柱18之间的介入牺牲材料的顶部上。当蚀刻去除牺牲材料时,可移动反射层14a、14b通过所界定的间隙19而与光学堆叠16a、16b分离。例如铝的高度导电且反射的材料可用于反射层14,且这些条带可在显示器装置中形成列电极。
在不施加电压的情况下,间隙19保留在可移动反射层14a与光学堆叠16a之间,其中可移动反射层14a处于机械松弛状态,如图1中像素12a所说明。然而,当将电位差施加到选定的行和列时,形成在相应像素处的行电极与列电极的交叉处的电容器变得带电,且静电力将所述电极拉在一起。如果电压足够高,那么可移动反射层14变形且被迫抵靠光学堆叠16。光学堆叠16内的介电层(在此图中未图示)可防止短路并控制层14与16之间的分离距离,如图1中右侧的像素12b所说明。不管所施加的电位差的极性如何,表现均相同。以此方式,可控制反射像素状态对非反射像素状态的行/列激活在许多方面类似于常规LCD和其它显示技术中所使用的行/列激活。
图2到图5B说明在显示器应用中使用干涉式调制器阵列的一个示范性工艺和系统。
图2是说明可并入有本发明各方面的电子装置的一个实施例的系统框图。在所述示范性实施例中,所述电子装置包含处理器21,其可为任何通用单芯片或多芯片微处理器(例如ARM、
Figure BDA00002159659000051
Figure BDA00002159659000052
Figure BDA00002159659000053
Figure BDA00002159659000054
Figure BDA00002159659000055
Pro、8051、
Figure BDA00002159659000056
Power
Figure BDA00002159659000057
),或任何专用微处理器(例如数字信号处理器、微控制器或可编程门阵列)。如此项技术中常规的做法,处理器21可经配置以执行一个或一个以上软件模块。除了执行操作系统外,所述处理器可经配置以执行一个或一个以上软件应用程序,包含网络浏览器、电话应用程序、电子邮件程序或任何其它软件应用程序。
在一个实施例中,处理器21还经配置以与阵列驱动器22通信。在一个实施例中,所述阵列驱动器22包含将信号提供到显示器阵列或面板30的行驱动器电路24和列驱动器电路26。在图2中以线1-1展示图1中说明的阵列的横截面。对于MEMS干涉式调制器来说,行/列激活协议可利用图3中说明的这些装置的滞后性质。可能需要(例如)10伏的电位差来促使可移动层从松弛状态变形为激活状态。然而,当电压从所述值减小时,可移动层在电压降回10伏以下时维持其状态。在图3的示范性实施例中,可移动层直到电压降到2伏以下时才完全松弛。因此,在图3中所说明的实例中,存在约3到7 V的经施加电压窗口,在所述窗口内,装置在松弛状态或激活状态中均是稳定的。此窗口在本文中称为“滞后窗口”或“稳定窗口”。对于具有图3的滞后特性的显示器阵列来说,可设计行/列激活协议使得在行选通期间,已选通行中待激活的像素暴露于约10伏的电压差,且待松弛的像素暴露于接近零伏的电压差。在选通之后,所述像素暴露于约5伏的稳态电压差使得其维持在行选通使其所处的任何状态中。在此实例中,每一像素在被写入之后经历3-7伏的“稳定窗口”内的电位差。此特征使图1中说明的像素设计在相同的施加电压条件下在激活或松弛预存在状态下均是稳定的。因为干涉式调制器的每一像素(不论处于激活还是松弛状态)本质上是由固定反射层和移动反射层形成的电容器,所以可在滞后窗口内的一电压下维持此稳定状态而几乎无功率消耗。本质上,如果所施加的电压是固定的,那么没有电流流入像素中。
在典型应用中,可通过根据第一行中所需组的激活像素断言所述组列电极来产生显示帧。接着将行脉冲施加到行1电极,从而激活对应于所断言的列线的像素。接着改变所述组已断言列电极以对应于第二行中所需组的激活像素。接着将脉冲施加到行2电极,从而根据已断言的列电极而激活行2中的适当像素。行1像素不受行2脉冲影响,且维持在其在行1脉冲期间被设定的状态中。可以连续方式对整个系列的行重复此过程以产生帧。通常,通过以每秒某一所需数目的帧的速度连续地重复此过程来用新的显示器数据刷新且/或更新所述帧。用于驱动像素阵列的行和列电极以产生显示帧的广泛种类的协议也是众所周知的且可结合本发明使用。
图4、图5A和图5B说明用于在图2的3×3阵列上形成显示帧的一个可能的激活协议。图4说明可用于使像素展示出图3的滞后曲线的一组可能的列和行电压电平。在图4实施例中,激活像素涉及将适当列设定为-Vbias,且将适当行设定为+ΔV,其分别可对应于-5伏和+5伏。松弛像素是通过将适当列设定为+Vbias,且将适当行设定为相同的+ΔV,从而在像素上产生零伏电位差而实现的。在行电压维持在零伏的那些行中,不管列处于+Vbias还是-Vbias,像素在任何其最初所处的状态中均是稳定的。同样如图4中所说明,将了解,可使用具有与上述电压的极性相反的极性的电压,例如,激活像素可涉及将适当列设定为+Vbias,且将适当行设定为-ΔV。在此实施例中,释放像素是通过将适当列设定为-Vbias,且将适当行设定为相同的-ΔV,从而在像素上产生零伏电位差而实现的。
图5B是展示施加到图2的3×3阵列的一系列行和列信号的时序图,所述系列的行和列信号将产生图5A中说明的显示器布置,其中被激活像素为非反射的。在对图5A中说明的帧进行写入之前,像素可处于任何状态,且在本实例中所有行均处于0伏,且所有列均处于+5伏。在这些所施加的电压的情况下,所有像素在其既有的激活或松弛状态中均是稳定的。
在图5A的帧中,像素(1,1)、(1,2)、(2,2)、(3,2)和(3,3)被激活。为了实现此目的,在行1的“线时间(line time)”期间,将列1和2设定为-5伏,且将列3设定为+5伏。因为所有像素均保留在3-7伏的稳定窗口中,所以这并不改变任何像素的状态。接着用从0升到5伏且返回零的脉冲选通行1。这激活了(1,1)和(1,2)像素且松弛了(1,3)像素。阵列中其它像素均不受影响。为了视需要设定行2,将列2设定为-5伏,且将列1和3设定为+5伏。施加到行2的相同选通接着将激活像素(2,2)且松弛像素(2,1)和(2,3)。同样,阵列中其它像素均不受影响。通过将列2和3设定为-5伏且将列1设定为+5伏来类似地设定行3。行3选通设定行3像素,如图5A中所示。在对帧进行写入之后,行电位为零,且列电位可维持在+5或-5伏,且接着显示器在图5A的布置中是稳定的。将了解,可将相同程序用于数十或数百个行和列的阵列。还将了解,用于执行行和列激活的电压的时序、序列和电平可在上文所概述的一般原理内广泛变化,且上文的实例仅为示范性的,且任何激活电压方法均可与本文中描述的系统和方法一起使用。
图6A和图6B是说明显示器装置40的实施例的系统框图。显示器装置40可为(例如)蜂窝式电话或移动电话。然而,显示器装置40的相同组件或其稍微变化形式也说明例如电视、便携式媒体播放器及计算机等各种类型的显示器装置。
显示器装置40包含外壳41、显示器30、天线43、扬声器45、输入装置48和麦克风46。外壳41通常由所属领域的技术人员众所周知的多种制造工艺中的任一者形成,所述工艺包含注射模制和真空成形。另外,外壳41可由多种材料中的任一者制成,所述材料包含(但不限于)塑料、金属、玻璃、橡胶和陶瓷,或其组合。在一个实施例中,外壳41包含可去除部分(未图示),所述可去除部分可与其它具有不同颜色或含有不同标记、图画或符号的可去除部分互换。
如本文中所描述,示范性显示器装置40的显示器30可为包含双稳态显示器(bi-stable display)在内的多种显示器中的任一者。在其它实施例中,如所属领域的技术人员众所周知,显示器30包含例如如上所述的等离子、EL、OLED、STN LCD或TFT LCD等平板显示器,或例如CRT或其它电子管装置等非平板显示器。然而,出于描述本实施例的目的,如本文中所描述,显示器30包含干涉式调制器显示器。
图6B中示意说明示范性显示器装置40的一个实施例的组件。所说明的示范性显示器装置40包含外壳41且可包含至少部分封围在所述外壳41中的额外组件。举例来说,在一个实施例中,示范性显示器装置40包含网络接口27,所述网络接口27包含耦合到收发器47的天线43。收发器47连接到处理器21,处理器21连接到调节硬件52。调节硬件52可经配置以调节信号(例如,对信号进行滤波)。调节硬件52连接到扬声器45和麦克风46。处理器21也连接到输入装置48和驱动器控制器29。驱动器控制器29耦合到帧缓冲器28且耦合到阵列驱动器22,所述阵列驱动器22进而耦合到显示器阵列30。根据特定示范性显示器装置40设计的要求,电源50将功率提供到所有组件。
网络接口27包含天线43和收发器47使得示范性显示器装置40可经由网络与一个或一个以上装置通信。在一个实施例中,网络接口27也可具有某些处理能力以减轻对处理器21的要求。天线43是所属领域的技术人员已知的用于发射和接收信号的任何天线。在一个实施例中,所述天线根据IEEE 802.11标准(包含IEEE 802.11(a)、(b)或(g))来发射和接收RF信号。在另一实施例中,所述天线根据蓝牙(BLUETOOTH)标准来发射和接收RF信号。在蜂窝式电话的情况下,所述天线经设计以接收CDMA、GSM、AMPS或其它用于在无线手机网络内通信的已知信号。收发器47预处理从天线43接收到的信号,使得处理器21可接收所述信号并进一步对所述信号进行处理。收发器47还处理从处理器21接收到的信号使得可经由天线43从示范性显示器装置40发射所述信号。
在替代实施例中,收发器47可由接收器代替。在又一替代实施例中,网络接口27可由可存储或产生待发送到处理器21的图像数据的图像源代替。举例来说,所述图像源可为数字视频光盘(DVD)或含有图像数据的硬盘驱动器,或产生图像数据的软件模块。
处理器21大致上控制示范性显示器装置40的全部操作。处理器21接收例如来自网络接口27或图像源的压缩图像数据的数据,并将所述数据处理成原始图像数据或处理成易被处理成原始图像数据的格式。处理器21接着将已处理的数据发送到驱动器控制器29或发送到帧缓冲器28以供存储。原始数据通常是指识别图像内每一位置处的图像特性的信息。举例来说,这些图像特性可包含颜色、饱和度和灰度级。
在一个实施例中,处理器21包含微控制器、CPU或逻辑单元以控制示范性显示器装置40的操作。处理器21还可经配置以执行一个或一个以上软件应用程序,包括网页浏览器、电话应用程序、电子邮件程序或任何其它软件应用程序。处理器21还可经配置以执行一个或一个以上软件应用程序,包括网页浏览器、电话应用程序、电子邮件程序或任何其它软件应用程序。调节硬件52通常包含放大器和滤波器,以用于将信号发射到扬声器45,且用于从麦克风46接收信号。调节硬件52可为示范性显示器装置40内的离散组件,或可并入在处理器21或其它组件内。
驱动器控制器29直接从处理器21或从帧缓冲器28取得由处理器21产生的原始图像数据,并适当地重新格式化所述原始图像数据以供高速发射到阵列驱动器22。具体来说,驱动器控制器29将原始图像数据重新格式化为具有类似光栅的格式的数据流,使得其具有适于在显示器阵列30上进行扫描的时间次序。接着,驱动器控制器29将已格式化的信息发送到阵列驱动器22。尽管驱动器控制器29(例如LCD控制器)通常与系统处理器21关联而作为独立的集成电路(IC),但可以许多方式实施这些控制器。其可作为硬件嵌入处理器21中,作为软件嵌入处理器21中,或与阵列驱动器22完全集成在硬件中。
通常,阵列驱动器22从驱动器控制器29接收已格式化的信息且将视频数据重新格式化为一组平行波形,所述波形以每秒多次的速度被施加到来自显示器的x-y像素矩阵的数百且有时数千个引线。
在一个实施例中,驱动器控制器29、阵列驱动器22和显示器阵列30适用于本文描述的任意类型的显示器。举例来说,在一个实施例中,驱动器控制器29是常规显示器控制器或双稳态显示器控制器(例如,干涉式调制器控制器)。在另一实施例中,阵列驱动器22是常规驱动器或双稳态显示器驱动器(例如,干涉式调制器显示器)。在一个实施例中,驱动器控制器29与阵列驱动器22集成。此实施例在例如蜂窝式电话、手表和其它小面积显示器的高度集成系统中是普遍的。在又一实施例中,显示器阵列30是典型的显示器阵列或双稳态显示器阵列(例如,包含干涉式调制器阵列的显示器)。
输入装置48允许用户控制示范性显示器装置40的操作。在一个实施例中,输入装置48包含例如QWERTY键盘或电话键区的键区、按钮、开关、触敏屏幕或压敏或热敏薄膜。在一个实施例中,麦克风46是用于示范性显示器装置40的输入装置。当使用麦克风46将数据输入到所述装置时,用户可提供声音命令以便控制示范性显示器装置40的操作。
电源50可包含此项技术中众所周知的多种能量存储装置。举例来说,在一个实施例中,电源50是例如镍镉电池或锂离子电池的可再充电电池。在另一实施例中,电源50是可再生能源、电容器或太阳能电池,包含塑料太阳能电池和太阳能电池涂料。在另一实施例中,电源50经配置以从壁式插座接收功率。
在某些实施例中,如上文中所描述,控制可编程性驻存在驱动器控制器中,所述驱动器控制器可位于电子显示器系统中的若干位置中。在某些实施例中,控制可编程性驻存在阵列驱动器22中。所属领域的技术人员将了解,上述优化可实施在任何数目的硬件和/或软件组件中且可以各种配置实施。
根据上文陈述的原理而操作的干涉式调制器的结构的细节可广泛变化。举例来说,图7A-7E说明可移动反射层14及其支撑结构的五个不同实施例。图7A是图1的实施例的横截面,其中金属材料条带14沉积在垂直延伸的支撑件18上。
在图7B中,可移动反射层14在系链(tether)32上仅在隅角处附接到支撑件。在图7C中,可移动反射层14从可包括柔性金属的可变形层34悬置下来。所述可变形层34直接或间接地连接到围绕可变形层34的周边的衬底20。这些连接在本文中称为支柱。图7D中说明的实施例具有支柱插塞42,可变形层34搁置在所述支柱插塞42上。如图7A-7C所示,可移动反射层14保持悬置在间隙上方,但可变形层34并不通过填充可变形层34与光学堆叠16之间的孔而形成所述支柱。而是,支柱由平坦化材料形成,其用于形成支柱插塞42。图7E中说明的实施例是基于图7D中展示的实施例,但也可适于与图7A-7C中说明的实施例以及未图示的额外实施例的任一者一起发挥作用。在图7E中所示的实施例中,已使用金属或其它导电材料的额外层来形成总线结构44。这允许信号沿着干涉式调制器的背面进行路由,从而消除许多原本可能必须形成在衬底20上的电极。
在例如图7中所示的那些实施例的实施例中,干涉式调制器充当直接观看装置,其中从透明衬底20的前侧观看图像,所述侧与上面布置有调制器的一侧相对。在这些实施例中,反射层14以光学方式遮蔽反射层的与衬底20相对侧上的干涉式调制器的若干部分,其包含可变形层34。这允许对遮蔽区域进行配置和操作而不会消极地影响图像质量。此遮蔽允许图7E中的总线结构44,其提供使调制器的光学性质与调制器的机电性质分离的能力,例如,寻址或由所述寻址引起的移动。这种可分离的调制器结构允许选择用于调制器的机电方面和光学方面的结构设计和材料且使其彼此独立地发挥作用。此外,图7C-7E中所示的实施例具有源自反射层14的光学性质与其机械性质脱离的额外益处,所述益处由可变形层34执行。这允许用于反射层14的结构设计和材料在光学性质方面得以优化,且用于可变形层34的结构设计和材料在所需的机械性质方面得以优化。
如本文中所揭示,例如图7中说明的光学装置的光学装置可用以在用于电子装置的显示器中产生像素。这些光学装置可经设计以在处于“明”状态下时呈现出任何所要色彩。举例来说,光学装置可经设计以在处于“明”状态下时优选地反射红色、绿色、蓝色或任一其它色彩的光。所述光学装置还可经制造以在处于“明”状态下时呈现出大体上白色。实现白“明”状态的一种方式为由具有不同色彩(例如,黄色及青色)的多个子像素形成一像素,使得来自子像素的色彩由观察者的眼睛在空间上平均开来以产生白像素的外观。然而,由于每一子像素仅反射与特定色彩(例如,黄色或青色)相关联的相对狭窄范围的可见光,所以像素的总体反射率可比像素归因于真实宽带反射而呈现为白色的情况低。
如上文所述,具有大体上白“明”状态的显示器像素还可通过将其配置为具有相对宽带反射特性而实现。举例来说,此可(例如)通过以反射层14与光学堆叠16之间相对较薄的间隙对例如图7中所说明的光学装置的光学装置进行配置而完成。然而,在一些情况下,可能需要导致所要宽带反射特性的反射层14与光学堆叠16之间的间隙为狭窄的,使得削弱可归因于干涉效应的光从装置的反射。此外,在光学装置的制造中可能出现关于使装置进行宽带反射的相对较小的间隙的复杂性。举例来说,归因于制造而留在反射层14与光学堆叠16之间的空间中的不合需要的粒子可能使得难以实现小间隙。反射层14及光学堆叠16中的一者或一者以上中的非平面性还可能使得难以实现小间隙。一般来说,反射层14与光学堆叠16之间的间隙越小,则制造容差变得越具决定性。
图8说明具有大体上白“明”状态的光学装置800的又一实施例。如本文中所描述,由于装置的相对宽带反射特性,接着为光学装置800的白“明”状态。归因于光学装置800的宽带反射特性,在一些情况下,其可用以形成具有比实施在空间上平均化不同色彩的一个或一个以上子像素的技术的白像素大的亮度的显示器像素。此外,光学装置800可配置有比在经设计以反射宽带范围的可见光的其它光学装置中可能所需的间隙宽的间隙。因此,当与由需要相对较薄干涉间隙以实现白色外观的光学装置形成的白像素相比时,光学装置800可提供关于制造过程的某些方面的益处。
在一些实施例中,光学装置800包括光学堆叠808,其具有:具有第一折射率的第一层802;在第一层802上的第二层804,其具有小于第一折射率的第二折射率;及在第二层804上的第三层806,其具有大于第二折射率的第三折射率。光学装置800还包括具至少部分光学吸收性的第四层810。当装置800处于第一状态(例如,未激活状态)下时,光学堆叠808与第四层810彼此相距第一距离,且当装置处于第二状态(例如,激活状态)下时,其彼此相距第二距离,第一距离不同于第二距离。
光学装置800的光学堆叠808形成于光学透射衬底820上。举例来说,衬底820可包括玻璃或塑料。示意性说明于图8中的光学堆叠808包含三个大体上光学透射层802、804、806。在一些实施例中,光学堆叠808的三个层802、804、806分别由具有相对较高折射率、相对较低折射率及相对较高折射率的材料形成。因此,在一些实施例中,光学堆叠808具有高-低-高折射率分布,但还可使用其它折射率分布。举例来说,在一些实施例中,光学堆叠808可包括单一高折射率层。如本文中所揭示,可改变在光学堆叠808的实施例中的层的宽度及折射率以使光学装置800展示出不同的光学特性。不应将光学堆叠808与(例如)在图7A到7E中所说明的光学堆叠16(其在结构及组成上截然不同)混淆。
光学堆叠808可由介电材料、光学透射导电材料(例如,具有复折射率的材料,例如,氧化铟锡)或其组合等形成。在一些实施例中,第一高折射率层802及第二高折射率层806各自具有大于约1.7的折射率,而在一些实施例中,这些高折射率层中的每一者具有大于约2的折射率。在一些实施例中,低折射率层804具有小于约1.5的折射率。
如图8中所说明,第二高折射率层806可包含多个子层805、807。第二高折射率层806的子层805、807中的每一者可由具有大于约1.7的折射率的材料形成。然而,子层805、807不需具有相同的折射率。
举例来说,子层805、807可用以增强光学装置800的光学或电性能。在一些实施例中,一个子层(例如,子层805)包括导电材料,例如,氧化铟锡(ITO)。如本文中所描述,所述子层可充当用于光学装置的电激活的电极。虽然一个子层可基于其电性能而经选择,但另一子层(例如,子层807)可基于其光学性能而经选择。举例来说,子层可由基于其折射率而选择的介电材料形成,以便增强装置800的光学性能。正如同第二高折射率层806可包含多个子层,以同样方式,第一高折射率层802及低折射率层804还可包含多个子层(未说明)。
在一些实施例中,第一高折射率层802包括ITO、氮化硅(Si3N4)、氧化钛(TiO2)、氧化锆(ZrO2)、氧化钇(Y2O3)、氧化锑(Sb2O3)、硒化锌(ZnSe)、其组合或其它类似高折射率材料。第二高折射率层806可由与第一高折射率层802相同的材料形成。在一些实施例中,第一高折射率层802具有在约
Figure BDA00002159659000121
与约
Figure BDA00002159659000122
之间的范围中的厚度,而第二高折射率层806具有在约
Figure BDA00002159659000123
与约
Figure BDA00002159659000124
之间的范围中的厚度。
在一些实施例中,低折射率层804包括冰晶石(Na3AlF6)、氟化镁(MgF2)、氟化的氧化硅(SiOx)、其组合等。在一些实施例中,低折射率层804具有在约
Figure BDA00002159659000125
与约
Figure BDA00002159659000126
之间的范围中的厚度。
光学装置800还包含至少部分光学吸收层810。举例来说,在一些实施例中,对于光的可见波长,用以形成光学吸收层810的材料具有在约0.05与1.00之间的范围中的消光系数。然而,还可使用具有在此范围外的消光系数的材料。在一些实施例中,光学吸收层810大体平行于光学堆叠808,且由侧壁818支撑。可以类似于图7A到图7E中所说明的反射层14的支撑结构的方式对用于支撑吸收层810的结构加以配置。
当光学装置800处于第一状态(例如,未激活状态)下时,光学吸收层810与光学堆叠808分开第一距离。在一些实施例中,第一距离处于约
Figure BDA00002159659000127
与约
Figure BDA00002159659000128
之间的范围中。在其它实施例中,第一距离处于约
Figure BDA00002159659000129
与约
Figure BDA000021596590001210
之间的范围中。第一状态对应于光学装置800的“明”状态。在“明”状态下,光学装置800反射在衬底820处入射于装置800上的宽带范围的可见光。因此,在一些实施例中,如本文中所描述,光学装置800在“明”状态下呈现为大体上白色。当光在光学装置800的各种层(例如,802、804、806及810)之间的界面处经部分反射或透射时,干涉效应引起由光学装置800进行的光的反射。
当装置800处于第一状态下时光学吸收层810与光学堆叠808之间的空间可填充有气体(例如,空气)。在其它实施例中,光学吸收层810与光学堆叠808之间的空间为至少部分真空。在一些实施例中,占据吸收层810与光学堆叠808之间的空间的气体的折射率大致为一。因此,结合光学堆叠808与吸收层810之间的空隙采用的光学堆叠808的折射率分布为高-低-高-低。
当光学装置800处于第二状态(例如,激活状态)下时,光学吸收层810与光学堆叠808分开第二距离。举例来说,在一些实施例中,第二距离大致为零当光学装置800处于第二状态下时,光学吸收层810与光学堆叠808可彼此接触,或者其可仅在彼此附近的范围内。
在一些实施例中,吸收层810包括钼、镍、硅、TiNxWy、氮化钛(TiN)、锗(结晶或非晶)、碳、铁、铬、钨、氮化锡(SnNx)、SixGe1-x合金或其组合。在一些实施例中,吸收层810具有在约
Figure BDA00002159659000132
与约之间的范围中的厚度。在其它实施例中,吸收层810具有大于的厚度。在一些实施例中,吸收层810包括吸收子层及机械支撑子层(未图示)。在一些实施例中,机械支撑子层可形成于吸收子层的与光学堆叠808相对的侧上。机械支撑子层将稳定性添加到吸收层810,且还可充当用于装置800的电激活的电极。举例来说,机械支撑子层可由镍形成。
图8说明在第一状态(例如,未激活状态)下的光学装置。根据一个实施例,在第二状态(例如,激活状态)下,光学装置800将呈现为类似于图1中的光学装置12b。第二状态为“暗”状态。与未激活状态相比,在此状态下,光学装置800将增加量的光能耦合到吸收层810内。由于增加量的光能经吸收于吸收层810中而非由光学堆叠808反射,所以光学装置800的反射率减小。
如本文中所描述,当将电压施加到光学装置800的电极时,在大体与光学堆叠808的表面正交的方向上朝向光学堆叠808(或反过来)激活吸收层。将跨越两个电极施加电压。在光学装置800的一个实施例中,在光学堆叠808内的ITO子层充当一个电极,而吸收层810(例如,吸收层810的机械支撑子层)充当另一电极。
图9说明光学装置800的实施例的结构及光学特性。如表960中所说明,在图9中说明的实施例中,第一高折射率层802具有大致
Figure BDA00002159659000135
的厚度,且包括ITO。低折射率层804具有大致的厚度,且包括冰晶石。第二高折射率层806包含子层805及807。子层805具有大致
Figure BDA00002159659000137
的厚度,且包括ITO。子层807具有大致的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致
Figure BDA00002159659000139
Figure BDA000021596590001310
的厚度,且对于“暗”状态,气隙具有大致
Figure BDA000021596590001311
的厚度。吸收层810具有大致
Figure BDA000021596590001312
的厚度,且包括钼。在一些实施例中,钼由具有大致
Figure BDA000021596590001313
或更高的厚度的镍层支撑。
表960还总结图9中说明的光学装置800的实施例的光学特性。如此项技术中所已知,可使用模拟技术或经由实验来计算表960中的光学特性的值。在图9中说明的实施例以及图10到图19中说明的实施例中,已确定对于光经由具有约1.52的折射率的玻璃衬底820入射于光学堆叠808上的情况的光学特性。此外,在每一情况下,图9到图19中呈现的光学特性假定吸收层810包含具有至少约
Figure BDA00002159659000141
的厚度的镍的机械支撑子层。然而,应理解,一些实施例包含由不同材料制成且/或具有不同折射率的衬底层820。此外,一些实施例包含具有具有不同厚度或由不同材料制成的机械支撑子层的吸收层,而其它实施例不包含机械支撑子层。然而,由于机械支撑子层对光学装置800的光学特性的影响一般相对较小,所以图9到图19中说明的实施例的光学特性的值一般地表示具有其它类型的机械支撑子层的实施例或甚至不具有机械支撑子层的实施例。
图9中说明的光学装置800具有在“明”状态下为81.39%且在“暗”状态下为4.53%的平均反射率。在此情况下,在根据在每一波长下的人类视觉响应对光学装置800跨越可见光谱的反射率进行加权后,计算平均反射率。举例来说,在得出平均反射率值的过程中较为大量地对在480nm到630nm的范围中的反射率值进行加权,因为人眼对此频带中的光较敏感。曲线图970以图形方式说明依据波长而变的光学装置800的反射率。曲线972说明光学装置800在处于“明”状态下时的反射率,而曲线974说明装置800在处于“暗”状态下时的反射率
作为在“明”状态下的光学装置的经眼睛响应加权平均反射率与在“暗”状态下的经眼睛响应加权平均反射率的比率计算表960中的对比率。对于图9中说明的实施例,光学装置的对比率为17.96。在一些实施例中,光学装置800的层802、804、806、810的相对及绝对厚度可经选择以使由一组选定材料形成的光学装置的对比率最大化或大致最大化。
表960还包含针对“暗”及“明”状态两者的u′及v′坐标。这些为由光学装置在这些状态中的每一者下反射的光的表观色的色度坐标。坐标对应于在国际照明委员会(CIE)标准色彩空间中界定的色域中的特定色彩。在一些实施例中,光学装置800经设计使得“明”状态下的(u′,v′)坐标对对应于例如D65的标准白色点,但视(例如)由多个光学装置800构成的显示器的预期观看条件而定,可将其它白色点(例如,E、D50、D55、D75等)作为目标。举例来说,对于D65,(u′,v′)为大致(0.19,0.47)。
图10说明光学装置800的另一实施例的结构及光学特性。如表1060中所说明,在图10中说明的实施例中,第一高折射率层802具有大致
Figure BDA00002159659000142
的厚度,且包括ITO。低折射率层804具有大致
Figure BDA00002159659000143
的厚度,且包括冰晶石。第二高折射率层具有大致
Figure BDA00002159659000144
的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致
Figure BDA00002159659000145
的厚度。吸收层810具有大致
Figure BDA00002159659000146
的厚度,且包括镍。
图10中说明的光学装置800具有在“明”状态下大致为90.29%且在“暗”状态下大致为14.79%的平均反射率。曲线图1070以图形方式说明依据波长而变的光学装置800的反射率。曲线1072说明光学装置800在处于“明”状态下时的反射率,而曲线1074说明装置800在处于“暗”状态下时的反射率。对于图10中说明的实施例,光学装置800的对比率大致为6.11。表1060还包含针对“暗”及“明”状态两者的u′及v′坐标。“明”状态下的u′坐标大致为0.196。“明”状态下的v′坐标大致为0.475。
图11说明光学装置800的另一实施例的结构及光学特性。如表1160中所说明,在图11中说明的实施例中,第一高折射率层802具有大致
Figure BDA00002159659000151
的厚度,且包括氧化锑。低折射率层804具有大致
Figure BDA00002159659000152
的厚度,且包括冰晶石。第二高折射率层具有大致
Figure BDA00002159659000153
的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致
Figure BDA00002159659000155
的厚度。吸收层810具有大致
Figure BDA00002159659000156
的厚度,且包括硅。在一些实施例中,硅由具有大致或更高的厚度的镍层支撑。
图11中说明的光学装置800具有在“明”状态下大致为72.32%且在“暗”状态下大致为0.59%的平均反射率。曲线图1170以图形方式说明依据波长而变的光学装置800的反射率。曲线1172说明光学装置800在处于“明”状态下时的反射率,而曲线1174说明装置800在处于“暗”状态下时的反射率。对于图11中说明的实施例,光学装置800的对比率大致为122.77。表1160还包含针对“暗”及“明”状态两者的u′及v′坐标。“明”状态下的u′坐标大致为0.203。“明”状态下的v′坐标大致为0.459。
图12说明光学装置800的另一实施例的结构及光学特性。如表1260中所说明,在图12中说明的实施例中,第一高折射率层802具有大致
Figure BDA00002159659000158
的厚度,且包括氧化锑。低折射率层804具有大致的厚度,且包括冰晶石。第二高折射率层具有大致
Figure BDA000021596590001511
的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致
Figure BDA000021596590001512
的厚度。吸收层810具有大致
Figure BDA000021596590001513
的厚度,且包括TiNxWy。在一些实施例中,TiNxWy由具有大致
Figure BDA000021596590001514
或更高的厚度的镍层支撑。
图12中说明的光学装置800具有在“明”状态下大致为67.32%且在“暗”状态下大致为1.40%的平均反射率。曲线图1270以图形方式说明依据波长而变的光学装置800的反射率。曲线1272说明光学装置800在处于“明”状态下时的反射率,而曲线1274说明装置800在处于“暗”状态下时的反射率。对于图12中说明的实施例,光学装置800的对比率大致为47.93。表1260还包含针对“暗”及“明”状态两者的u′及v′坐标。“明”状态下的u′坐标大致为0.199。“明”状态下的v′坐标大致为0.472。
图13说明光学装置800的另一实施例的结构及光学特性。如表1360中所说明,在图13中说明的实施例中,第一高折射率层802具有大致
Figure BDA000021596590001515
的厚度,且包括氧化锑。低折射率层804具有大致
Figure BDA00002159659000161
的厚度,且包括冰晶石。第二高折射率层具有大致
Figure BDA00002159659000162
的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致
Figure BDA00002159659000164
的厚度。吸收层810具有大致的厚度,且包括结晶锗。在一些实施例中,结晶锗由具有大致
Figure BDA00002159659000166
或更高的厚度的镍层支撑。
图13中说明的光学装置800具有在“明”状态下大致为80.87%且在“暗”状态下大致为3.36%的平均反射率。曲线图1370以图形方式说明依据波长而变的光学装置800的反射率。曲线1372说明光学装置800在处于“明”状态下时的反射率,而曲线1374说明装置800在处于“暗”状态下时的反射率。对于图13中说明的实施例,光学装置800的对比率大致为24.09。表1360还包含针对“暗”及“明”状态两者的u′及v′坐标。“明”状态下的u′坐标大致为0.192。“明”状态下的v′坐标大致为0.476。
图14说明光学装置800的另一实施例的结构及光学特性。如表1460中所说明,在图14中说明的实施例中,第一高折射率层802具有大致
Figure BDA00002159659000167
的厚度,且包括氧化锑。低折射率层804具有大致
Figure BDA00002159659000168
的厚度,且包括冰晶石。第二高折射率层具有大致的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致
Figure BDA000021596590001610
的厚度。吸收层810具有大致的厚度,且包括非晶锗。在一些实施例中,非晶锗由具有大致
Figure BDA000021596590001612
或更高的厚度的镍层支撑。
图14中说明的光学装置800具有在“明”状态下大致为70.79%且在“暗”状态下大致为0.98%的平均反射率。曲线图1470以图形方式说明依据波长而变的光学装置800的反射率。曲线1472说明光学装置800在处于“明”状态下时的反射率,而曲线1474说明装置800在处于“暗”状态下时的反射率。对于图14中说明的实施例,光学装置800的对比率大致为72.55。表1460还包含针对“暗”及“明”状态两者的u′及v′坐标。“明”状态下的u′坐标大致为0.195。“明”状态下的v′坐标大致为0.461。
图15说明光学装置800的另一实施例的结构及光学特性。如表1560中所说明,在图15中说明的实施例中,第一高折射率层802具有大致
Figure BDA000021596590001613
的厚度,且包括氧化锑。低折射率层804具有大致的厚度,且包括冰晶石。第二高折射率层具有大致
Figure BDA000021596590001615
的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致
Figure BDA000021596590001617
的厚度。吸收层810具有大致
Figure BDA000021596590001618
的厚度,且包括碳。在一些实施例中,碳由具有大致
Figure BDA000021596590001619
或更高的厚度的镍层支撑。
图15中说明的光学装置800具有在“明”状态下大致为36.21%且在“暗”状态下大致为0.26%的平均反射率。曲线图1570以图形方式说明依据波长而变的光学装置800的反射率。曲线1572说明光学装置800在处于“明”状态下时的反射率,而曲线1574说明装置800在处于“暗”状态下时的反射率。对于图15中说明的实施例,光学装置800的对比率大致为139.31。表1560还包含针对“暗”及“明”状态两者的u′及v′坐标。“明”状态下的u′坐标大致为0.213。“明”状态下的v′坐标大致为0.460。
图16说明光学装置800的另一实施例的结构及光学特性。如表1660中所说明,在图16中说明的实施例中,第一高折射率层802具有大致
Figure BDA00002159659000171
的厚度,且包括氧化锑。低折射率层804具有大致
Figure BDA00002159659000172
的厚度,且包括冰晶石。第二高折射率层具有大致
Figure BDA00002159659000173
的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致
Figure BDA00002159659000175
的厚度。吸收层810具有大致的厚度,且包括铁。在一些实施例中,铁由具有大致或更高的厚度的镍层支撑。
图16中说明的光学装置800具有在“明”状态下大致为87.46%且在“暗”状态下大致为7.09%的平均反射率。曲线图1670以图形方式说明依据波长而变的光学装置800的反射率。曲线1672说明光学装置800在处于“明”状态下时的反射率,而曲线1674说明装置800在处于“暗”状态下时的反射率。对于图16中说明的实施例,光学装置800的对比率大致为12.33。表1660还包含针对“暗”及“明”状态两者的u′及v′坐标。“明”状态下的u′坐标大致为0.196。“明”状态下的v′坐标大致为0.475。
图17说明光学装置800的另一实施例的结构及光学特性。如表1760中所说明,在图17中说明的实施例中,第一高折射率层802具有大致
Figure BDA00002159659000178
的厚度,且包括氧化锑。低折射率层804具有大致
Figure BDA00002159659000179
的厚度,且包括冰晶石。第二高折射率层具有大致
Figure BDA000021596590001710
Figure BDA000021596590001711
的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致
Figure BDA000021596590001712
的厚度。吸收层810具有大致
Figure BDA000021596590001713
的厚度,且包括铬。在一些实施例中,铬由具有大致
Figure BDA000021596590001714
或更高的厚度的镍层支撑。
图17中说明的光学装置800具有在“明”状态下大致为89.88%且在“暗”状态下大致为11.50%的平均反射率。曲线图1770以图形方式说明依据波长而变的光学装置800的反射率。曲线1772说明光学装置800在处于“明”状态下时的反射率,而曲线1774说明装置800在处于“暗”状态下时的反射率。对于图17中说明的实施例,光学装置800的对比率大致为7.81。表1760还包含针对“暗”及“明”状态两者的u′及v′坐标。“明”状态下的u′坐标大致为0.195。“明”状态下的v′坐标大致为0.474。
图18说明光学装置800的另一实施例的结构及光学特性。如表1860中所说明,在图18中说明的实施例中,第一高折射率层802具有大致
Figure BDA000021596590001715
的厚度,且包括氧化锑。低折射率层804具有大致的厚度,且包括冰晶石。第二高折射率层具有大致
Figure BDA000021596590001717
Figure BDA000021596590001718
的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致的厚度。吸收层810具有大致
Figure BDA00002159659000182
的厚度,且包括钨。在一些实施例中,钨由具有大致
Figure BDA00002159659000183
或更高的厚度的镍层支撑。
图18中说明的光学装置800具有在“明”状态下大致为73.66%且在“暗”状态下大致为2.37%的平均反射率。曲线图1870以图形方式说明作依据波长而变的光学装置800的反射率。曲线1872说明光学装置800在处于“明”状态下时的反射率,而曲线1874说明装置800在处于“暗”状态下时的反射率。对于图18中说明的实施例,光学装置800的对比率大致为31.07。表1860还包含针对“暗”及“明”状态两者的u′及v′坐标。“明”状态下的u′坐标大致为0.202。“明”状态下的v′坐标大致为0.478。
图19说明光学装置800的另一实施例的结构及光学特性。如表1960中所说明,在图19中说明的实施例中,第一高折射率层802具有大致的厚度,且包括氧化锑。低折射率层804具有大致
Figure BDA00002159659000185
的厚度,且包括冰晶石。第二高折射率层具有大致
Figure BDA00002159659000186
Figure BDA00002159659000187
的厚度,且包括氧化锑。光学堆叠808与吸收层810分开一气隙。在“明”状态下,气隙具有大致
Figure BDA00002159659000188
的厚度。吸收层810具有大致
Figure BDA00002159659000189
的厚度,且包括钼。在一些实施例中,钼由具有大致
Figure BDA000021596590001810
或更高的厚度的镍层支撑。
图19中说明的光学装置800具有在“明”状态下大致为81.85%且在“暗”状态下大致为5.34%的平均反射率。曲线图1970以图形方式说明依据波长而变的光学装置800的反射率。曲线1972说明光学装置800在处于“明”状态下时的反射率,而曲线1974说明装置800在处于“暗”状态下时的反射率。对于图19中说明的实施例,光学装置800的对比率大致为15.33。表1960还包含针对“暗”及“明”状态两者的u′及v′坐标。“明”状态下的u′坐标大致为0.197。“明”状态下的v′坐标大致为0.482。
在上述实施例中的任一者的情况下,可使用此项技术中已知的技术(例如,光刻)制造光学装置800。举例来说,参看图8,可提供衬底820。光学堆叠808可接着形成于衬底820上。在一些实施例中,光学堆叠808的形成包括在衬底820上形成第一高折射率层802,在第一高折射率层802上形成低折射率层804及在低折射率层804上形成第二高折射率层806。周边壁818或其它类型的支撑结构可形成于(例如)光学堆叠808之上或其周围。可与光学堆叠808间隔开地形成光学吸收层810。举例来说,此可通过在光学堆叠上形成牺牲层(未图示)、在牺牲层上形成光学吸收层810且接着移除牺牲层而进行。
多个光学装置800可形成于衬底820上以产生并入有多个像素的显示器。举例来说,可将多个光学装置800提供于衬底820上以产生单色、黑白显示器。还可将多个光学装置800用于其它类型的显示器中,例如,红绿蓝白(RGBW)显示器。
已结合附图描述了各种特定实施例。然而,广泛多种变化为可能的。可添加、移除或重新布置组件及/或元件。另外,可添加、移除或重新排序处理步骤。虽然仅明确地描述了少数实施例,但对于所属领域的技术人员来说,基于本发明,其它实施例将变得显而易见。因此,希望本发明的范围由对所附权利要求书的参考且并非仅关于明确描述的实施例来界定。

Claims (39)

1.一种光学装置,其包括:
光学堆叠,其包括:
第一层,其具有第一折射率,
在所述第一层上的第二层,所述第二层具有小于所述第一折射率的第二折射率;以及
在所述第二层上的第三层,所述第三层具有大于所述第二折射率的第三折射率;
第四层,其为至少部分光学吸收性的,
其中所述光学堆叠与所述第四层在所述光学装置处于第一状态下时彼此相距第一距离,且在所述光学装置处于第二状态下时彼此相距第二距离,所述第一距离不同于所述第二距离,所述光学装置在所述第一状态下反射大体上白色的光。
2.根据权利要求1所述的光学装置,其中所述第一层及所述第三层中的至少一者包括两个或两个以上子层。
3.根据权利要求2所述的光学装置,其中所述子层中的一者具有比所述第二折射率大的第四折射率。
4.根据权利要求2所述的光学装置,其中所述子层中的一者为导电的。
5.根据权利要求1所述的光学装置,其中所述光学堆叠与所述至少部分光学吸收性的层之间的区域具有比所述第三折射率小的第五折射率。
6.根据权利要求1所述的光学装置,其中所述第一层及所述第三层中的至少一者为导电的。
7.根据权利要求1所述的光学装置,其中所述第一折射率及所述第三折射率均大于约1.7。
8.根据权利要求1所述的光学装置,其中所述第二折射率小于约1.5。
9.根据权利要求1所述的光学装置,其中所述第一层或第三层包括氧化铟锡、氮化硅、氧化钛、氧化锆、氧化钇、氧化锑或硒化锌。
10.根据权利要求1所述的光学装置,其中所述第二层包括冰晶石、氟化镁或氟化的SiOx
11.根据权利要求1所述的光学装置,其中所述第四层包括钼、镍、硅、TiNxWy、氮化钛、锗、碳、铁、铬、钨、SixGe1-x或氮化锡。
12.根据权利要求1所述的光学装置,其中所述第一层具有在约700埃与约1350埃之间的范围中的厚度。
13.根据权利要求1所述的光学装置,其中所述第二层具有在约900埃与约1400埃之间的范围中的厚度。
14.根据权利要求1所述的光学装置,其中所述第三层具有在约100埃与约550埃之间的范围中的厚度。
15.根据权利要求1所述的光学装置,其中所述第四层具有在约30埃与约3000埃之间的范围中的厚度。
16.根据权利要求1所述的光学装置,其中所述第一距离处于约
Figure FDA00002159658900021
与约
Figure FDA00002159658900022
之间或约
Figure FDA00002159658900023
Figure FDA00002159658900024
之间的范围中。
17.根据权利要求1所述的光学装置,其中所述第二距离大致为零。
18.根据权利要求1所述的光学装置,其中所述光学装置在所述第一状态下具有第一反射率,且所述光学装置在所述第二状态下具有第二反射率,所述第一反射率与所述第二反射率的比率大于约十。
19.根据权利要求18所述的光学装置,其中所述第一反射率与所述第二反射率的所述比率大于约一百。
20.根据权利要求1所述的光学装置,其中所述光学装置在所述第一状态下具有大体上对应于标准白色点D65的可见光的反射光谱功率分布。
21.根据权利要求1所述的光学装置,其中所述第四层安装于机械支撑层上。
22.根据权利要求21所述的光学装置,其中所述机械支撑层包括镍。
23.根据权利要求1所述的光学装置,其中所述光学堆叠安装于至少部分光学透射衬底上。
24.根据权利要求23所述的光学装置,其中所述至少部分光学透射衬底包括玻璃。
25.根据权利要求1所述的光学装置,其进一步包括:
显示器;
处理器,其经配置以与所述显示器通信,所述处理器经配置以处理图像数据;以及
存储器装置,其经配置以与所述处理器通信。
26.根据权利要求25所述的光学装置,其进一步包括经配置以将至少一个信号发送到所述显示器的驱动器电路。
27.根据权利要求26所述的光学装置,其进一步包括经配置以将所述图像数据的至少一部分发送到所述驱动器电路的控制器。
28.根据权利要求25所述的光学装置,其进一步包括经配置以将所述图像数据发送到所述处理器的图像源模块。
29.根据权利要求28所述的光学装置,其中所述图像源模块包括接收器、收发器及发射器中的至少一者。
30.根据权利要求25所述的光学装置,其进一步包括经配置以接收输入数据且将所述输入数据传送到所述处理器的输入装置。
31.根据权利要求1所述的光学装置,其中所述光学装置被提供作为反射式显示器的显示元件。
32.一种形成光学装置的方法,其包括:
形成第一层,所述第一层具有第一折射率;
在所述第一层上形成第二层,所述第二层具有小于所述第一折射率的第二折射率;
在所述第二层上形成第三层,所述第三层具有大于所述第二折射率的第三折射率;
在所述第三层上形成牺牲层;
在所述牺牲层上形成第四层,所述第四层为至少部分光学吸收性的;以及
移除所述牺牲层,
其中所述光学装置当所述第四层与所述第三层间隔开时反射大体上白色的光。
33.根据权利要求32所述的方法,其中在光学透射衬底上形成所述第一层。
34.一种调制光的方法,其包括:
提供光学装置,所述光学装置包括:
光学堆叠,其包括:
第一层,其具有第一折射率,
在所述第一层上的第二层,所述第二层具有小于所述第一折射率的第二折射率,以及
在所述第二层上的第三层,所述第三层具有大于所述第二折射率的第三折射率,以及
第四层,其为至少部分光学吸收性的,
其中所述光学堆叠与所述第四层在所述光学装置处于第一状态下时彼此相距第一距离,且在所述光学装置处于第二状态下时彼此相距第二距离,所述第一距离不同于所述第二距离,所述光学装置在所述第一状态下反射大体上白色的光;以及
将第一电压施加到所述光学装置以将所述光学装置置于所述第一状态下;以及
将第二电压施加到所述光学装置以将所述光学装置置于所述第二状态下。
35.根据权利要求34所述的方法,其中所述光学堆叠包括第一电极,且所述第四层包括第二电极。
36.根据权利要求35所述的方法,其进一步包括跨越所述第一及第二电极施加所述第一及第二电压。
37.一种光学装置,其包括:
第一装置,其用于反射及透射光,所述第一装置具有第一折射率;
第二装置,其用于反射及透射光,所述第二装置在所述第一装置上,所述第二装置具有小于所述第一折射率的第二折射率;以及
第三装置,其用于反射及透射光,所述第三装置在所述第二装置上,所述第三装置具有大于所述第二折射率的第三折射率;以及
第四装置,其用于反射及吸收光,其中所述第三装置与所述第四装置在所述光学装置处于第一状态下时彼此相距第一距离,且在所述光学装置处于第二状态下时彼此相距第二距离,所述第一距离不同于所述第二距离,所述光学装置在所述第一状态下反射大体上白色的光。
38.根据权利要求37所述的光学装置,其中所述第一装置包括具有所述第一折射率的材料层,所述第二装置包括具有所述第二折射率的材料层,且第三装置包括具有所述第三折射率的材料层。
39.根据权利要求37所述的光学装置,其中所述第四装置包括至少部分光学吸收材料层。
CN2012103507926A 2007-08-29 2008-08-19 具有宽带反射特性的干涉式光学调制器 Pending CN102854619A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/847,205 2007-08-29
US11/847,205 US8072402B2 (en) 2007-08-29 2007-08-29 Interferometric optical modulator with broadband reflection characteristics
EP08153441A EP2030947A3 (en) 2007-08-29 2008-03-27 Interferometric optical modulator with broadband reflection characteristics
EP081534414 2008-03-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2008801078326A Division CN101801838B (zh) 2007-08-29 2008-08-19 具有宽带反射特性的干涉式光学调制器

Publications (1)

Publication Number Publication Date
CN102854619A true CN102854619A (zh) 2013-01-02

Family

ID=39930809

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2008801078326A Expired - Fee Related CN101801838B (zh) 2007-08-29 2008-08-19 具有宽带反射特性的干涉式光学调制器
CN2012103507926A Pending CN102854619A (zh) 2007-08-29 2008-08-19 具有宽带反射特性的干涉式光学调制器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2008801078326A Expired - Fee Related CN101801838B (zh) 2007-08-29 2008-08-19 具有宽带反射特性的干涉式光学调制器

Country Status (7)

Country Link
US (3) US8072402B2 (zh)
EP (1) EP2030947A3 (zh)
JP (2) JP2010538324A (zh)
KR (1) KR20100059907A (zh)
CN (2) CN101801838B (zh)
TW (1) TW200919059A (zh)
WO (1) WO2009032525A2 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907319B2 (en) 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
KR100703140B1 (ko) 1998-04-08 2007-04-05 이리다임 디스플레이 코포레이션 간섭 변조기 및 그 제조 방법
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
WO2003007049A1 (en) * 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7855824B2 (en) * 2004-03-06 2010-12-21 Qualcomm Mems Technologies, Inc. Method and system for color optimization in a display
US7710636B2 (en) * 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Systems and methods using interferometric optical modulators and diffusers
US20060066586A1 (en) * 2004-09-27 2006-03-30 Gally Brian J Touchscreens for displays
US8004504B2 (en) * 2004-09-27 2011-08-23 Qualcomm Mems Technologies, Inc. Reduced capacitance display element
US7898521B2 (en) * 2004-09-27 2011-03-01 Qualcomm Mems Technologies, Inc. Device and method for wavelength filtering
US7928928B2 (en) 2004-09-27 2011-04-19 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing perceived color shift
US20060132383A1 (en) * 2004-09-27 2006-06-22 Idc, Llc System and method for illuminating interferometric modulator display
US7630123B2 (en) * 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
EP2069838A2 (en) 2006-10-06 2009-06-17 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8872085B2 (en) * 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
KR101628340B1 (ko) * 2006-10-06 2016-06-08 퀄컴 엠이엠에스 테크놀로지스, 인크. 디스플레이 장치 및 디스플레이의 형성 방법
WO2008045463A2 (en) * 2006-10-10 2008-04-17 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US8072402B2 (en) * 2007-08-29 2011-12-06 Qualcomm Mems Technologies, Inc. Interferometric optical modulator with broadband reflection characteristics
US8068710B2 (en) * 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
WO2009102670A1 (en) * 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Dual layer thin film holographic solar concentrator/ collector
WO2009102733A2 (en) * 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Integrated front light diffuser for reflective displays
WO2009102731A2 (en) * 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing brightness of displays using angle conversion layers
US20090323144A1 (en) * 2008-06-30 2009-12-31 Qualcomm Mems Technologies, Inc. Illumination device with holographic light guide
CN102160196A (zh) * 2008-09-18 2011-08-17 高通Mems科技公司 增加太阳能收集器/集中器中的光收集角度范围
WO2010138763A1 (en) 2009-05-29 2010-12-02 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
KR101061991B1 (ko) 2009-12-28 2011-09-05 한국기계연구원 태양전지용 후면전극 및 이의 제조방법
US8848294B2 (en) * 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8643936B2 (en) * 2011-05-04 2014-02-04 Qualcomm Mems Technologies, Inc. Devices and methods for achieving non-contacting white state in interferometric modulators
US9176536B2 (en) 2011-09-30 2015-11-03 Apple, Inc. Wireless display for electronic devices
US8736939B2 (en) * 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8995043B2 (en) * 2011-11-29 2015-03-31 Qualcomm Mems Technologies, Inc. Interferometric modulator with dual absorbing layers
US9075226B2 (en) * 2012-04-06 2015-07-07 Qualcomm Mems Technologies, Inc. Multi-state IMOD with RGB absorbers
CN104246913B (zh) * 2012-04-18 2016-08-24 Lg化学株式会社 导电结构及其制备方法
US9810942B2 (en) 2012-06-15 2017-11-07 Apple Inc. Quantum dot-enhanced display having dichroic filter
US20140176570A1 (en) * 2012-12-21 2014-06-26 Pixtronix, Inc. Interferometric light absorbing structure for display apparatus
CN105099550A (zh) * 2014-05-15 2015-11-25 复旦大学 一种可见光上行回传循环利用的方法及其系统
TWM515149U (zh) * 2014-07-30 2016-01-01 Lg伊諾特股份有限公司 觸控面板
US10782460B2 (en) * 2017-05-22 2020-09-22 Viavi Solutions Inc. Multispectral filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388506A (ja) * 1986-10-01 1988-04-19 Sumitomo Electric Ind Ltd 多層部分反射膜
JPH08152621A (ja) * 1994-11-28 1996-06-11 Sharp Corp 反射拡散板および反射型液晶表示装置
JP2005024827A (ja) * 2003-07-01 2005-01-27 Nippon Telegr & Teleph Corp <Ntt> 半導体多層膜反射鏡及びこれを含む光半導体デバイス
US20050046919A1 (en) * 2003-08-29 2005-03-03 Sharp Kabushiki Kaisha Interferometric modulator and display unit
JP1591079S (zh) * 2017-04-28 2017-11-20

Family Cites Families (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518647A (en) 1948-01-07 1950-08-15 Celanese Corp Interferometer means for thickness measurements
FR1603131A (zh) 1968-07-05 1971-03-22
US3728030A (en) 1970-06-22 1973-04-17 Cary Instruments Polarization interferometer
JPS4946974A (zh) 1972-09-11 1974-05-07
NL8001281A (nl) 1980-03-04 1981-10-01 Philips Nv Weergeefinrichting.
US4377324A (en) 1980-08-04 1983-03-22 Honeywell Inc. Graded index Fabry-Perot optical filter device
US4441791A (en) 1980-09-02 1984-04-10 Texas Instruments Incorporated Deformable mirror light modulator
US4566935A (en) 1984-07-31 1986-01-28 Texas Instruments Incorporated Spatial light modulator and method
US4710732A (en) 1984-07-31 1987-12-01 Texas Instruments Incorporated Spatial light modulator and method
US5096279A (en) 1984-08-31 1992-03-17 Texas Instruments Incorporated Spatial light modulator and method
US5061049A (en) 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US4596992A (en) 1984-08-31 1986-06-24 Texas Instruments Incorporated Linear spatial light modulator and printer
US4662746A (en) 1985-10-30 1987-05-05 Texas Instruments Incorporated Spatial light modulator and method
US4615595A (en) 1984-10-10 1986-10-07 Texas Instruments Incorporated Frame addressed spatial light modulator
US4859060A (en) 1985-11-26 1989-08-22 501 Sharp Kabushiki Kaisha Variable interferometric device and a process for the production of the same
US4705361A (en) 1985-11-27 1987-11-10 Texas Instruments Incorporated Spatial light modulator
US5835255A (en) 1986-04-23 1998-11-10 Etalon, Inc. Visible spectrum modulator arrays
US4786128A (en) 1986-12-02 1988-11-22 Quantum Diagnostics, Ltd. Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction
US4822993A (en) 1987-02-17 1989-04-18 Optron Systems, Inc. Low-cost, substantially cross-talk free high spatial resolution 2-D bistable light modulator
US5091983A (en) 1987-06-04 1992-02-25 Walter Lukosz Optical modulation apparatus and measurement method
US4956619A (en) 1988-02-19 1990-09-11 Texas Instruments Incorporated Spatial light modulator
US5028939A (en) 1988-08-23 1991-07-02 Texas Instruments Incorporated Spatial light modulator system
JPH0791089B2 (ja) 1988-12-13 1995-10-04 セントラル硝子株式会社 熱線反射ガラス
US4982184A (en) 1989-01-03 1991-01-01 General Electric Company Electrocrystallochromic display and element
US5022745A (en) 1989-09-07 1991-06-11 Massachusetts Institute Of Technology Electrostatically deformable single crystal dielectrically coated mirror
US4954789A (en) 1989-09-28 1990-09-04 Texas Instruments Incorporated Spatial light modulator
US5151585A (en) 1991-08-12 1992-09-29 Hughes Danbury Optical Systems, Inc. Coherent radiation detector
US5315370A (en) 1991-10-23 1994-05-24 Bulow Jeffrey A Interferometric modulator for optical signal processing
TW245772B (zh) 1992-05-19 1995-04-21 Akzo Nv
US5818095A (en) 1992-08-11 1998-10-06 Texas Instruments Incorporated High-yield spatial light modulator with light blocking layer
FI96450C (fi) 1993-01-13 1996-06-25 Vaisala Oy Yksikanavainen kaasun pitoisuuden mittausmenetelmä ja -laitteisto
US6674562B1 (en) 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US7830587B2 (en) 1993-03-17 2010-11-09 Qualcomm Mems Technologies, Inc. Method and device for modulating light with semiconductor substrate
US5559358A (en) 1993-05-25 1996-09-24 Honeywell Inc. Opto-electro-mechanical device or filter, process for making, and sensors made therefrom
US5526172A (en) 1993-07-27 1996-06-11 Texas Instruments Incorporated Microminiature, monolithic, variable electrical signal processor and apparatus including same
US5500761A (en) 1994-01-27 1996-03-19 At&T Corp. Micromechanical modulator
US5665997A (en) 1994-03-31 1997-09-09 Texas Instruments Incorporated Grated landing area to eliminate sticking of micro-mechanical devices
US6680792B2 (en) 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US7808694B2 (en) 1994-05-05 2010-10-05 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US7138984B1 (en) 2001-06-05 2006-11-21 Idc, Llc Directly laminated touch sensitive screen
US7123216B1 (en) 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
US7738157B2 (en) 1994-05-05 2010-06-15 Qualcomm Mems Technologies, Inc. System and method for a MEMS device
US7550794B2 (en) 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US7826120B2 (en) 1994-05-05 2010-11-02 Qualcomm Mems Technologies, Inc. Method and device for multi-color interferometric modulation
US8081369B2 (en) 1994-05-05 2011-12-20 Qualcomm Mems Technologies, Inc. System and method for a MEMS device
US7852545B2 (en) 1994-05-05 2010-12-14 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US6710908B2 (en) 1994-05-05 2004-03-23 Iridigm Display Corporation Controlling micro-electro-mechanical cavities
US20010003487A1 (en) 1996-11-05 2001-06-14 Mark W. Miles Visible spectrum modulator arrays
US7460291B2 (en) 1994-05-05 2008-12-02 Idc, Llc Separable modulator
US6040937A (en) 1994-05-05 2000-03-21 Etalon, Inc. Interferometric modulation
US5485304A (en) 1994-07-29 1996-01-16 Texas Instruments, Inc. Support posts for micro-mechanical devices
US5636052A (en) 1994-07-29 1997-06-03 Lucent Technologies Inc. Direct view display based on a micromechanical modulation
JPH0887341A (ja) * 1994-09-16 1996-04-02 Fujitsu Ltd 自動縮退立ち上げ機能を有したコンピュータシステム
US5650881A (en) 1994-11-02 1997-07-22 Texas Instruments Incorporated Support post architecture for micromechanical devices
JP2916887B2 (ja) 1994-11-29 1999-07-05 キヤノン株式会社 電子放出素子、電子源、画像形成装置の製造方法
US5661592A (en) 1995-06-07 1997-08-26 Silicon Light Machines Method of making and an apparatus for a flat diffraction grating light valve
US6046840A (en) 1995-06-19 2000-04-04 Reflectivity, Inc. Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US5578976A (en) 1995-06-22 1996-11-26 Rockwell International Corporation Micro electromechanical RF switch
US6080467A (en) * 1995-06-26 2000-06-27 3M Innovative Properties Company High efficiency optical devices
US5757536A (en) 1995-08-30 1998-05-26 Sandia Corporation Electrically-programmable diffraction grating
US6324192B1 (en) 1995-09-29 2001-11-27 Coretek, Inc. Electrically tunable fabry-perot structure utilizing a deformable multi-layer mirror and method of making the same
JP4431196B2 (ja) 1995-11-06 2010-03-10 アイディーシー エルエルシー 干渉性変調
US7907319B2 (en) 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
US5999306A (en) 1995-12-01 1999-12-07 Seiko Epson Corporation Method of manufacturing spatial light modulator and electronic device employing it
US5825528A (en) 1995-12-26 1998-10-20 Lucent Technologies Inc. Phase-mismatched fabry-perot cavity micromechanical modulator
EP0786911B1 (en) 1996-01-26 2003-09-10 Sharp Kabushiki Kaisha Autostereoscopic display
US5751469A (en) 1996-02-01 1998-05-12 Lucent Technologies Inc. Method and apparatus for an improved micromechanical modulator
US5710656A (en) 1996-07-30 1998-01-20 Lucent Technologies Inc. Micromechanical optical modulator having a reduced-mass composite membrane
US5838484A (en) 1996-08-19 1998-11-17 Lucent Technologies Inc. Micromechanical optical modulator with linear operating characteristic
US6028689A (en) 1997-01-24 2000-02-22 The United States Of America As Represented By The Secretary Of The Air Force Multi-motion micromirror
US5786927A (en) 1997-03-12 1998-07-28 Lucent Technologies Inc. Gas-damped micromechanical structure
US6384952B1 (en) 1997-03-27 2002-05-07 Mems Optical Inc. Vertical comb drive actuated deformable mirror device and method
DE69806846T2 (de) 1997-05-08 2002-12-12 Texas Instruments Inc Verbesserungen für räumliche Lichtmodulatoren
US5914803A (en) 1997-07-01 1999-06-22 Daewoo Electronics Co., Ltd. Thin film actuated mirror array in an optical projection system and method for manufacturing the same
US5867302A (en) 1997-08-07 1999-02-02 Sandia Corporation Bistable microelectromechanical actuator
US6031653A (en) 1997-08-28 2000-02-29 California Institute Of Technology Low-cost thin-metal-film interference filters
US6088102A (en) 1997-10-31 2000-07-11 Silicon Light Machines Display apparatus including grating light-valve array and interferometric optical system
US5920421A (en) 1997-12-10 1999-07-06 Daewoo Electronics Co., Ltd. Thin film actuated mirror array in an optical projection system and method for manufacturing the same
KR100604621B1 (ko) 1998-01-20 2006-07-28 세이코 엡슨 가부시키가이샤 광 스위칭 소자, 그의 제어 방법 및 화상 표시 장치
US5914804A (en) 1998-01-28 1999-06-22 Lucent Technologies Inc Double-cavity micromechanical optical modulator with plural multilayer mirrors
KR100703140B1 (ko) 1998-04-08 2007-04-05 이리다임 디스플레이 코포레이션 간섭 변조기 및 그 제조 방법
US7532377B2 (en) 1998-04-08 2009-05-12 Idc, Llc Movable micro-electromechanical device
US6282010B1 (en) 1998-05-14 2001-08-28 Texas Instruments Incorporated Anti-reflective coatings for spatial light modulators
EP1114340A1 (en) 1998-09-14 2001-07-11 Digilens Inc. Holographic illumination system and holographic projection system
JP3919954B2 (ja) 1998-10-16 2007-05-30 富士フイルム株式会社 アレイ型光変調素子及び平面ディスプレイの駆動方法
US6188519B1 (en) 1999-01-05 2001-02-13 Kenneth Carlisle Johnson Bigrating light valve
US6323987B1 (en) 1999-05-14 2001-11-27 Agere Systems Optoelectronics Guardian Corp. Controlled multi-wavelength etalon
US20070195392A1 (en) * 1999-07-08 2007-08-23 Jds Uniphase Corporation Adhesive Chromagram And Method Of Forming Thereof
WO2003007049A1 (en) 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
LT4842B (lt) 1999-12-10 2001-09-25 Uab "Geola" Hologramų spausdinimo būdas ir įrenginys
KR20010112456A (ko) 2000-02-24 2001-12-20 요트.게.아. 롤페즈 광 가이드를 포함한 디스플레이 디바이스
US6836366B1 (en) 2000-03-03 2004-12-28 Axsun Technologies, Inc. Integrated tunable fabry-perot filter and method of making same
CA2339604C (en) * 2000-03-08 2007-09-04 Hubbell Incorporated Raceway fitting with or without base fitting
US6698295B1 (en) 2000-03-31 2004-03-02 Shipley Company, L.L.C. Microstructures comprising silicon nitride layer and thin conductive polysilicon layer
US6400738B1 (en) 2000-04-14 2002-06-04 Agilent Technologies, Inc. Tunable Fabry-Perot filters and lasers
WO2001081994A1 (fr) 2000-04-21 2001-11-01 Seiko Epson Corporation Dispositif electro-optique, affichage par projection et procede de fabrication dudit dispositif electro-optique
FR2811139B1 (fr) 2000-06-29 2003-10-17 Centre Nat Rech Scient Dispositif optoelectronique a filtrage de longueur d'onde integre
EP1720347B1 (en) 2000-07-03 2010-06-23 Sony Corporation Optical multilayer structure, optical switching device, and image display
US6466354B1 (en) 2000-09-19 2002-10-15 Silicon Light Machines Method and apparatus for interferometric modulation of light
US6433917B1 (en) 2000-11-22 2002-08-13 Ball Semiconductor, Inc. Light modulation device and system
US6906847B2 (en) 2000-12-07 2005-06-14 Reflectivity, Inc Spatial light modulators with light blocking/absorbing areas
US6614576B2 (en) 2000-12-15 2003-09-02 Texas Instruments Incorporated Surface micro-planarization for enhanced optical efficiency and pixel performance in SLM devices
US6912078B2 (en) 2001-03-16 2005-06-28 Corning Incorporated Electrostatically actuated micro-electro-mechanical devices and method of manufacture
US6661561B2 (en) 2001-03-26 2003-12-09 Creo Inc. High frequency deformable mirror device
US6657832B2 (en) 2001-04-26 2003-12-02 Texas Instruments Incorporated Mechanically assisted restoring force support for micromachined membranes
JP3760810B2 (ja) 2001-07-06 2006-03-29 ソニー株式会社 光変調素子、glvデバイス、及びレーザディスプレイ
JP3740444B2 (ja) 2001-07-11 2006-02-01 キヤノン株式会社 光偏向器、それを用いた光学機器、ねじれ揺動体
JP4032216B2 (ja) * 2001-07-12 2008-01-16 ソニー株式会社 光学多層構造体およびその製造方法、並びに光スイッチング素子および画像表示装置
US6632698B2 (en) 2001-08-07 2003-10-14 Hewlett-Packard Development Company, L.P. Microelectromechanical device having a stiffened support beam, and methods of forming stiffened support beams in MEMS
US6661562B2 (en) 2001-08-17 2003-12-09 Lucent Technologies Inc. Optical modulator and method of manufacture thereof
US6983820B2 (en) * 2001-09-07 2006-01-10 Avon Polymer Products Limited Noise and vibration suppressors
US20030053078A1 (en) 2001-09-17 2003-03-20 Mark Missey Microelectromechanical tunable fabry-perot wavelength monitor with thermal actuators
JP3801032B2 (ja) 2001-11-29 2006-07-26 日本電気株式会社 光源とこの光源を用いた液晶表示装置
JP2003167500A (ja) 2001-11-30 2003-06-13 Art Nau:Kk ホログラム作成方法
US7515336B2 (en) 2001-12-21 2009-04-07 Bose Corporation Selective reflecting
US6791735B2 (en) 2002-01-09 2004-09-14 The Regents Of The University Of California Differentially-driven MEMS spatial light modulator
US6608268B1 (en) 2002-02-05 2003-08-19 Memtronics, A Division Of Cogent Solutions, Inc. Proximity micro-electro-mechanical system
US6794119B2 (en) 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
CN1643439A (zh) 2002-03-14 2005-07-20 日本电气株式会社 光调制显示器件、其制作方法以及装有此光调制显示器件的显示装置
US7145143B2 (en) 2002-03-18 2006-12-05 Honeywell International Inc. Tunable sensor
US6768555B2 (en) 2002-03-21 2004-07-27 Industrial Technology Research Institute Fabry-Perot filter apparatus with enhanced optical discrimination
US6972882B2 (en) 2002-04-30 2005-12-06 Hewlett-Packard Development Company, L.P. Micro-mirror device with light angle amplification
US6954297B2 (en) 2002-04-30 2005-10-11 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic liquid
US6717650B2 (en) 2002-05-01 2004-04-06 Anvik Corporation Maskless lithography with sub-pixel resolution
KR100433229B1 (ko) 2002-05-17 2004-05-28 엘지.필립스 엘시디 주식회사 액정표시장치 및 그 제조방법
JP3801099B2 (ja) 2002-06-04 2006-07-26 株式会社デンソー チューナブルフィルタ、その製造方法、及びそれを使用した光スイッチング装置
GB2389960A (en) 2002-06-20 2003-12-24 Suisse Electronique Microtech Four-tap demodulation pixel
DE10228946B4 (de) 2002-06-28 2004-08-26 Universität Bremen Optischer Modulator, Display, Verwendung eines optischen Modulators und Verfahren zur Herstellung eines optischen Modulators
US6822798B2 (en) 2002-08-09 2004-11-23 Optron Systems, Inc. Tunable optical filter
JP4057871B2 (ja) 2002-09-19 2008-03-05 東芝松下ディスプレイテクノロジー株式会社 液晶表示装置
US6943777B2 (en) 2002-10-10 2005-09-13 Motorola, Inc. Electronic device with user interface capability and method therefor
US7085121B2 (en) 2002-10-21 2006-08-01 Hrl Laboratories, Llc Variable capacitance membrane actuator for wide band tuning of microstrip resonators and filters
FR2846318B1 (fr) 2002-10-24 2005-01-07 Commissariat Energie Atomique Microstructure electromecanique integree comportant des moyens de reglage de la pression dans une cavite scellee et procede de reglage de la pression
US7370185B2 (en) 2003-04-30 2008-05-06 Hewlett-Packard Development Company, L.P. Self-packaged optical interference display device having anti-stiction bumps, integral micro-lens, and reflection-absorbing layers
US6958846B2 (en) 2002-11-26 2005-10-25 Reflectivity, Inc Spatial light modulators with light absorbing areas
US6811274B2 (en) 2002-12-04 2004-11-02 General Electric Company Polarization sensitive optical substrate
KR100936905B1 (ko) 2002-12-13 2010-01-15 삼성전자주식회사 액정표시장치 및 이의 제조 방법
TWI289708B (en) * 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
TW594155B (en) 2002-12-27 2004-06-21 Prime View Int Corp Ltd Optical interference type color display and optical interference modulator
TW200413810A (en) 2003-01-29 2004-08-01 Prime View Int Co Ltd Light interference display panel and its manufacturing method
TW557395B (en) 2003-01-29 2003-10-11 Yen Sun Technology Corp Optical interference type reflection panel and the manufacturing method thereof
US6903487B2 (en) 2003-02-14 2005-06-07 Hewlett-Packard Development Company, L.P. Micro-mirror device with increased mirror tilt
TW200417806A (en) 2003-03-05 2004-09-16 Prime View Int Corp Ltd A structure of a light-incidence electrode of an optical interference display plate
TWI226504B (en) 2003-04-21 2005-01-11 Prime View Int Co Ltd A structure of an interference display cell
TW594360B (en) 2003-04-21 2004-06-21 Prime View Int Corp Ltd A method for fabricating an interference display cell
TW567355B (en) 2003-04-21 2003-12-21 Prime View Int Co Ltd An interference display cell and fabrication method thereof
TWI224235B (en) 2003-04-21 2004-11-21 Prime View Int Co Ltd A method for fabricating an interference display cell
US7072093B2 (en) 2003-04-30 2006-07-04 Hewlett-Packard Development Company, L.P. Optical interference pixel display with charge control
US6940630B2 (en) 2003-05-01 2005-09-06 University Of Florida Research Foundation, Inc. Vertical displacement device
TW570896B (en) 2003-05-26 2004-01-11 Prime View Int Co Ltd A method for fabricating an interference display cell
TW591716B (en) 2003-05-26 2004-06-11 Prime View Int Co Ltd A structure of a structure release and manufacturing the same
TWI223855B (en) 2003-06-09 2004-11-11 Taiwan Semiconductor Mfg Method for manufacturing reflective spatial light modulator mirror devices
US6822780B1 (en) 2003-06-23 2004-11-23 Northrop Grumman Corporation Vertically stacked spatial light modulator with multi-bit phase resolution
US7221495B2 (en) 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
TWI305599B (en) 2003-08-15 2009-01-21 Qualcomm Mems Technologies Inc Interference display panel and method thereof
TW200506479A (en) 2003-08-15 2005-02-16 Prime View Int Co Ltd Color changeable pixel for an interference display
TWI251712B (en) 2003-08-15 2006-03-21 Prime View Int Corp Ltd Interference display plate
TWI231865B (en) 2003-08-26 2005-05-01 Prime View Int Co Ltd An interference display cell and fabrication method thereof
TWI230801B (en) 2003-08-29 2005-04-11 Prime View Int Co Ltd Reflective display unit using interferometric modulation and manufacturing method thereof
TWI232333B (en) 2003-09-03 2005-05-11 Prime View Int Co Ltd Display unit using interferometric modulation and manufacturing method thereof
US6982820B2 (en) 2003-09-26 2006-01-03 Prime View International Co., Ltd. Color changeable pixel
TW593126B (en) 2003-09-30 2004-06-21 Prime View Int Co Ltd A structure of a micro electro mechanical system and manufacturing the same
TWI235345B (en) 2004-01-20 2005-07-01 Prime View Int Co Ltd A structure of an optical interference display unit
US7342705B2 (en) * 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
JP2005235403A (ja) 2004-02-17 2005-09-02 Hitachi Displays Ltd 有機・el表示装置
TWI256941B (en) 2004-02-18 2006-06-21 Qualcomm Mems Technologies Inc A micro electro mechanical system display cell and method for fabricating thereof
US7119945B2 (en) 2004-03-03 2006-10-10 Idc, Llc Altering temporal response of microelectromechanical elements
TW200530669A (en) 2004-03-05 2005-09-16 Prime View Int Co Ltd Interference display plate and manufacturing method thereof
US7855824B2 (en) 2004-03-06 2010-12-21 Qualcomm Mems Technologies, Inc. Method and system for color optimization in a display
TWI261683B (en) 2004-03-10 2006-09-11 Qualcomm Mems Technologies Inc Interference reflective element and repairing method thereof
JP4581453B2 (ja) 2004-03-29 2010-11-17 ソニー株式会社 Mems素子、光学mems素子、回折型光学mems素子、並びにレーザディスプレイ
US7187365B2 (en) 2004-03-31 2007-03-06 Motorola, Inc. Indic intermediate code and electronic device therefor
US7476327B2 (en) 2004-05-04 2009-01-13 Idc, Llc Method of manufacture for microelectromechanical devices
WO2005111669A1 (ja) 2004-05-17 2005-11-24 Nikon Corporation 光学素子、コンバイナ光学系、及び画像表示装置
US6970031B1 (en) 2004-05-28 2005-11-29 Hewlett-Packard Development Company, L.P. Method and apparatus for reducing charge injection in control of MEMS electrostatic actuator array
TWI233916B (en) 2004-07-09 2005-06-11 Prime View Int Co Ltd A structure of a micro electro mechanical system
TWI270722B (en) 2004-07-23 2007-01-11 Au Optronics Corp Dual-side display panel
KR101354520B1 (ko) 2004-07-29 2014-01-21 퀄컴 엠이엠에스 테크놀로지스, 인크. 간섭 변조기의 미소기전 동작을 위한 시스템 및 방법
US20060044291A1 (en) 2004-08-25 2006-03-02 Willis Thomas E Segmenting a waveform that drives a display
KR100648310B1 (ko) * 2004-09-24 2006-11-23 삼성전자주식회사 영상의 휘도 정보를 이용한 색변환장치 및 이를 구비하는디스플레이 장치
US7304784B2 (en) 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7684104B2 (en) 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7327510B2 (en) 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US7710632B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Display device having an array of spatial light modulators with integrated color filters
US7289259B2 (en) 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7911428B2 (en) 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7130104B2 (en) 2004-09-27 2006-10-31 Idc, Llc Methods and devices for inhibiting tilting of a mirror in an interferometric modulator
US7355780B2 (en) 2004-09-27 2008-04-08 Idc, Llc System and method of illuminating interferometric modulators using backlighting
US7369294B2 (en) 2004-09-27 2008-05-06 Idc, Llc Ornamental display device
US7302157B2 (en) 2004-09-27 2007-11-27 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7184202B2 (en) 2004-09-27 2007-02-27 Idc, Llc Method and system for packaging a MEMS device
US8102407B2 (en) 2004-09-27 2012-01-24 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7612932B2 (en) 2004-09-27 2009-11-03 Idc, Llc Microelectromechanical device with optical function separated from mechanical and electrical function
US7417735B2 (en) 2004-09-27 2008-08-26 Idc, Llc Systems and methods for measuring color and contrast in specular reflective devices
US7508571B2 (en) 2004-09-27 2009-03-24 Idc, Llc Optical films for controlling angular characteristics of displays
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7898521B2 (en) 2004-09-27 2011-03-01 Qualcomm Mems Technologies, Inc. Device and method for wavelength filtering
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7321456B2 (en) 2004-09-27 2008-01-22 Idc, Llc Method and device for corner interferometric modulation
US7561323B2 (en) 2004-09-27 2009-07-14 Idc, Llc Optical films for directing light towards active areas of displays
US7710636B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Systems and methods using interferometric optical modulators and diffusers
US7630123B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US7893919B2 (en) 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US8004504B2 (en) 2004-09-27 2011-08-23 Qualcomm Mems Technologies, Inc. Reduced capacitance display element
US7554714B2 (en) 2004-09-27 2009-06-30 Idc, Llc Device and method for manipulation of thermal response in a modulator
US8310442B2 (en) 2005-02-23 2012-11-13 Pixtronix, Inc. Circuits for controlling display apparatus
US7675665B2 (en) 2005-02-23 2010-03-09 Pixtronix, Incorporated Methods and apparatus for actuating displays
US7884989B2 (en) 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US7460292B2 (en) 2005-06-03 2008-12-02 Qualcomm Mems Technologies, Inc. Interferometric modulator with internal polarization and drive method
US7630114B2 (en) * 2005-10-28 2009-12-08 Idc, Llc Diffusion barrier layer for MEMS devices
US7760197B2 (en) 2005-10-31 2010-07-20 Hewlett-Packard Development Company, L.P. Fabry-perot interferometric MEMS electromagnetic wave modulator with zero-electric field
US20070115415A1 (en) 2005-11-21 2007-05-24 Arthur Piehl Light absorbers and methods
US7550810B2 (en) 2006-02-23 2009-06-23 Qualcomm Mems Technologies, Inc. MEMS device having a layer movable at asymmetric rates
US7643203B2 (en) 2006-04-10 2010-01-05 Qualcomm Mems Technologies, Inc. Interferometric optical display system with broadband characteristics
US7417784B2 (en) 2006-04-19 2008-08-26 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing a porous surface
US7223515B1 (en) * 2006-05-30 2007-05-29 3M Innovative Properties Company Thermal mass transfer substrate films, donor elements, and methods of making and using same
US7321457B2 (en) 2006-06-01 2008-01-22 Qualcomm Incorporated Process and structure for fabrication of MEMS device having isolated edge posts
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7385744B2 (en) 2006-06-28 2008-06-10 Qualcomm Mems Technologies, Inc. Support structure for free-standing MEMS device and methods for forming the same
US7855827B2 (en) 2006-10-06 2010-12-21 Qualcomm Mems Technologies, Inc. Internal optical isolation structure for integrated front or back lighting
US7629197B2 (en) 2006-10-18 2009-12-08 Qualcomm Mems Technologies, Inc. Spatial light modulator
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US7742220B2 (en) 2007-03-28 2010-06-22 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing conducting layers separated by stops
US8072402B2 (en) * 2007-08-29 2011-12-06 Qualcomm Mems Technologies, Inc. Interferometric optical modulator with broadband reflection characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388506A (ja) * 1986-10-01 1988-04-19 Sumitomo Electric Ind Ltd 多層部分反射膜
JPH08152621A (ja) * 1994-11-28 1996-06-11 Sharp Corp 反射拡散板および反射型液晶表示装置
JP2005024827A (ja) * 2003-07-01 2005-01-27 Nippon Telegr & Teleph Corp <Ntt> 半導体多層膜反射鏡及びこれを含む光半導体デバイス
US20050046919A1 (en) * 2003-08-29 2005-03-03 Sharp Kabushiki Kaisha Interferometric modulator and display unit
JP1591079S (zh) * 2017-04-28 2017-11-20

Also Published As

Publication number Publication date
EP2030947A3 (en) 2009-04-22
JP2013050734A (ja) 2013-03-14
CN101801838B (zh) 2012-11-14
TW200919059A (en) 2009-05-01
JP2010538324A (ja) 2010-12-09
KR20100059907A (ko) 2010-06-04
EP2030947A2 (en) 2009-03-04
CN101801838A (zh) 2010-08-11
US20090059346A1 (en) 2009-03-05
US8072402B2 (en) 2011-12-06
US20120075269A1 (en) 2012-03-29
WO2009032525A3 (en) 2009-05-14
WO2009032525A2 (en) 2009-03-12
US20140225905A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
CN101801838B (zh) 具有宽带反射特性的干涉式光学调制器
CN101802678B (zh) 半透明/透射反射型发光干涉式调制器装置
CN101952763B (zh) 具有电力产生黑色掩模的装置及其制造方法
CN101467198B (zh) 用于微机电系统显示架构的低范围位深度增强的方法及设备
CN101802677B (zh) 一种微机电装置及其制造方法
CN102426405B (zh) 用于干涉式调制器阵列的导电总线结构
JP5112450B2 (ja) 多状態反射型変調器ディスプレイ用のハイブリッドカラー合成
CN101978302A (zh) 具有间隔层的机电装置
CN101755232A (zh) 微机电系统显示器装置及其制造方法
CN102576150A (zh) 具有干涉式反射器的干涉式显示器
CN101688973A (zh) 红外线及双模式显示器
CN101385066B (zh) 用于将数据写入到微机电系统显示器元件的方法和系统
CN101855586A (zh) 具有与机械及电功能分离的光学功能的微机电装置
CN102608755A (zh) 使用背光照明照射干涉式调制器的系统及方法
CN101479781A (zh) 用于对显示器输入进行解多路复用的无源电路
CN103518180A (zh) 用于集成电容式触摸装置的接线及外围
CN101688975A (zh) 具有与机械及电功能分离的光学功能的微机电装置
CN103917912A (zh) 用于机电系统反射式显示装置的匹配层薄膜
US8040590B2 (en) Interferometric modulation devices having triangular subpixels
CN101663701A (zh) 用于对显示器输入进行多路分用的无源电路
CN104081252A (zh) 具有彩色陷波滤波器的模拟imod
CN100547453C (zh) 两侧均具有可观看显示器的反射性显示装置
CN101027595A (zh) 用于操纵显示器中的颜色的方法和装置
CN101027592B (zh) 具有减小的电容的显示元件
CN104755990A (zh) 包含可移动吸收体及可移动反射体组合件的机电系统显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130102