CN103401011B - 质子交换薄膜燃料电池堆叠和燃料电池堆叠模块 - Google Patents

质子交换薄膜燃料电池堆叠和燃料电池堆叠模块 Download PDF

Info

Publication number
CN103401011B
CN103401011B CN201310273456.0A CN201310273456A CN103401011B CN 103401011 B CN103401011 B CN 103401011B CN 201310273456 A CN201310273456 A CN 201310273456A CN 103401011 B CN103401011 B CN 103401011B
Authority
CN
China
Prior art keywords
fuel cell
exchange membrane
proton exchange
cell stack
framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310273456.0A
Other languages
English (en)
Other versions
CN103401011A (zh
Inventor
斯科特·A·斯平克
戴维·R·洛特
马修·M·莱特
埃里克·J·瑞安
迪内希·S·叶穆尔
约翰·M·费希尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emerging energy companies
Original Assignee
Relion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Relion Inc filed Critical Relion Inc
Publication of CN103401011A publication Critical patent/CN103401011A/zh
Application granted granted Critical
Publication of CN103401011B publication Critical patent/CN103401011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明揭示一种质子交换薄膜燃料电池堆叠和新颖的质子交换薄膜燃料电池模块,且其中所述质子交换薄膜燃料电池堆叠包含多个重复的串联电耦合的燃料电池堆叠模块,且所述燃料电池堆叠模块通过小于每平方英寸约60磅的压缩力以可密封方式安装在一起。

Description

质子交换薄膜燃料电池堆叠和燃料电池堆叠模块
分案申请的相关信息
本案是分案申请。该分案的母案是申请日为2008年4月4日、申请号为200880015047.8、发明名称为“质子交换薄膜燃料电池堆叠和燃料电池堆叠模块”的发明专利申请案。
技术领域
本发明涉及一种质子交换薄膜燃料电池堆叠和一种燃料电池堆叠模块,且更具体来说,涉及一种由多个串连电连接的燃料电池堆叠模块组成的质子交换薄膜燃料电池堆叠,所述燃料电池堆叠模块通过减少的压缩力耦合在一起,且在小于所述减少的压缩力的压力下实现最佳电性能。
背景技术
燃料电池是一种电化学装置,其将氢气、燃料源和通常得自环境空气的氧气进行反应以产生电、水和热。基本过程是高度有效的,且以纯氢为燃料的燃料电池大体上无污染。此外,由于燃料电池可被组装为具有各种大小的模块,因此已开发出电力系统以产生广阔范围的电功率输出。由于这些属性的结果,燃料电池电力系统很有希望作为用于大量应用的环境友好且可行的电来源。
多种已知燃料电池技术中的一者是质子交换薄膜(PEM)燃料电池。PEM燃料电池操作所根据的基本电化学过程在此项技术中充分地被理解且知道。典型的单个PEM燃料电池产生约0.45到约0.70伏DC的有用电压,但大多数燃料电池在约0.60伏DC下操作以便从其提取最大效率。为了实现有用电压,通常将若干个别燃料电池串联地电组合或耦合。在一个常见配置中,若干个别燃料电池以燃料电池堆叠的形式串联地电耦合。在堆叠配置中,一个燃料电池的阳极电耦合到另一燃料电池的阴极,以便串联连接所述两个燃料电池。任何数目的燃料电池可类似地堆叠在一起以实现所需的输出电压和电流。通常,这些个别燃料电池由导电双极隔板分离。此外,个别燃料电池放置于两个端板之间且对其施加相当大的压缩力,以便有效将其密封且实现相应燃料电池之间的操作上有效的欧姆电连接。
除了所提到的相对低操作温度PEM燃料电池以外,已开发出上文的固体氧化物燃料电池(SOFC)。SOFC是直接从化学反应产生电的燃料电池,但不同于PEM燃料电池,SOFC通常由固体陶瓷材料组成。此类现有技术SOFC装置中所采用的材料的选择在较大程度上由此类装置所经历的高操作温度(600-800摄氏度)规定。鉴于致使基于陶瓷的电解质变为电离活性所需的极高操作温度,SOFC装置不需要使用昂贵的催化剂(铂),而如上文论述的PEM燃料电池需要如此。由于这些高操作温度的结果,对于SOFC可采用各种各样的在PEM燃料电池中无法正常使用的燃料。因此,SOFC装置可采用例如甲烷、丙烷、丁烷、发酵气、气化生物燃料等燃料。在典型的SOFC装置中,由例如氧化锆等材料形成的基于陶瓷的电解质夹在多孔的导电阴极层与多孔的导电阳极层之间。这些阴极和阳极层通常是出于其结构刚性和高温容限而选择的陶瓷气体扩散层。所选的电解质必须不透空气(氧气)且必须电绝缘,使得从阳极侧上的氧化反应产生的电子受迫行进通过外部电路,之后到达SOFC的阴极侧。在典型的SOFC装置中,金属或导电互连件以串联布置电耦合相应电池。如果采用陶瓷互连件,那么其必须极端稳定,因为其暴露于处于高温下的SOFC的氧化侧和还原侧两者。
从上文论述应了解,制造此类SOFC装置的成本是显著的。此外,为了致使此类装置操作,必须采用相当显著且复杂的设备平衡布置来以可控制方式将SOFC装置加热直到操作温度,且随后将装置维持在可接受的温度范围内。相比之下,PEM燃料电池不需要SOFC装置中所采用的极高温度以便致使电解质(通常为Nafion)变为电离活性。此外,这些高温已规定针对阳极和阴极使用耐热陶瓷材料。制造这些组件的成本是显著的。在典型的PEM燃料电池装置中,其设计者已持续努力采用较低成本组件,且简化任何设备平衡要求以便减少其成本且使每产生的功率瓦特的成本对于谨慎的市场应用来说更加可接受。
虽然传统的PEM燃料电池堆叠已以某种程度的成功来操作,但若干缺点持续分散其有用性。这些缺点中的第一者是传统堆叠设计的个别组件的高制造成本。这些高成本组件中的首要组件是对于其而采用的双极板。为了节约成本,许多燃料电池堆叠制造商已尝试将若干功能组合到双极板中。现代的双极板是精确制造的组件,其执行若干功能,包含燃料管理、冷却、电传导和气体分离。此功能组合的结果是必须牺牲许多区域中的性能以便节省成本。此布置的实例参见第5,252,410号和第5,863,671号美国专利,其教示以引用的方式并入本文中。
影响传统燃料电池堆叠的另一主要成本或因素是贡献于使此类装置操作所需的力压缩的成本或因素。为了实现质子交换薄膜、气体扩散层和/或双极板之间的操作上有效的电传导性,必须在传统堆叠的端板之间施加大量力。通常,这些压缩力超过每平方英寸100磅。为了实现此压缩力水平,常常需要昂贵的、重的且复杂的组件。此力的施加通常压缩堆叠内的相同组件,对于多孔的那些组件,此相同的力可能减少其多孔性。可归因于传统燃料电池堆叠设计或布置的又一缺点是热管理。因为燃料电池在产生电的同时产生热,所以过量热常常在堆叠内的中心和其它位置中产生并累积。已开发出若干复杂的技术和设计以管理这些热点,但结果是所得燃料电池堆叠系统的较高制造成本和较大复杂性。
对与现有技术力压缩布置的成本和复杂性相关联的问题的一种提出的解决方案已揭示于第6,716,549号美国专利中,所述专利的教示以引用的方式并入本文中。此提出的解决方案涉及用金属涂覆传统的刚性碳气体扩散层的表面,使得所得金属化气体扩散层保持其多孔性。碳气体扩散层的所得金属化表面形成与邻近金属集电极的欧姆接触,而无需在没有金属层的情况下通常将需要的高压缩力。虽然此解决方案解决了与力压缩相关联的某些问题,但其仍需要使用刚性的碳气体扩散层,其已变得越来越昂贵且难以采购。因此,长期需要对现在此项技术中揭示的现有技术高力压缩质子交换薄膜燃料电池堆叠的较低成本且较高性能的替代物。
现有技术充分具有尝试解决这些和其它问题的其它现有技术燃料电池装置的许多实例。官方注意涉及第5,470,671号、第5,482,792号美国专利和第2006/0134498号美国申请公开案,其教示均以引用的方式并入本文中。
避免伴随现有技术装置和在此之前利用的实践的缺点的质子交换薄膜燃料电池堆叠和相关联的质子交换薄膜燃料电池堆叠模块是本申请案的标的物。
发明内容
本发明的第一方面涉及一种质子交换薄膜燃料电池堆叠,其包含多个重复的串联电耦合的燃料电池堆叠模块,所述模块通过小于每平方英寸约60磅的压缩力以可密封方式安装在一起。
本发明的另一方面涉及一种质子交换薄膜燃料电池堆叠,其包含:第一和第二端板,其以大体上平行间隔关系而安置;以及多个重复的空气冷却的燃料电池堆叠模块,其定位在所述第一与第二端板之间且串联电耦合在一起,且其中所述相应端板通过向所述相应燃料电池堆叠模块中的每一者施加小于每平方英寸约60磅的压缩力而以可密封方式将所述相应燃料电池堆叠模块耦合在一起,且其中所述质子交换薄膜燃料电池堆叠具有在所述第一与第二端板之间测量的改变小于约10%的操作温度分布。
本发明的再一方面涉及一种质子交换薄膜燃料电池堆叠模块,其包含质子交换薄膜,其具有阳极侧和阴极侧;第一气体扩散层,其相对于所述阳极侧并置;第二气体扩散层,其相对于所述阴极侧并置;导电散热片,其具有导热质量且相对于所述第二气体扩散层并置;以及集电隔板,其相对于所述第一气体扩散层成欧姆电接触而并置,且其中多个燃料电池堆叠模块串联电连接,且进一步安装在第一与第二端板之间以形成燃料电池堆叠,且其中第一燃料电池模块的所述集电隔板相对于所述第一端板并置,且其中远端的第二燃料电池模块的散热片相对于所述第二端板以受力关系而定位,且其中所述第一和第二端板向所述多个质子交换薄膜燃料电池堆叠模块中的每一者提供小于每平方英寸约60磅的压缩力。
本发明的又一方面涉及一种质子交换薄膜燃料电池堆叠,其包含:多个重复的串联电耦合的燃料电池堆叠模块,其通过小于每平方英寸约60磅的压缩力以可密封方式安装在一起,且其中所述相应燃料电池堆叠模块进一步包括框架,所述框架具有内部和外部周边边缘以及第一和第二侧,且其中所述内部周边边缘界定内部腔,且其中所述相应框架以操作定向自对准且配合地嵌套在一起,且其中所述相应框架各自界定空气通路,所述空气通路在所述内部与外部周边边缘之间延伸且与其内部腔连通。
此外,本发明的另一方面涉及一种质子交换薄膜燃料电池堆叠模块,其包含:质子交换薄膜,其具有阳极侧和阴极侧;第一气体扩散层,其相对于所述阳极侧并置;第二气体扩散层,其相对于所述阴极侧并置;导电散热片,其相对于所述第二气体扩散层并置;框架,其具有内部和外部周边边缘以及第一和第二侧,且其中所述内部周边边缘在所述框架内界定内部腔,且其中所述质子交换薄膜、所述第一和第二气体扩散层以及所述散热片封闭在所述内部腔内;以及第一集电隔板,其安装在所述框架的第一侧上,且相对于所述第一气体扩散层并置,以便形成燃料电池堆叠模块,且其中多个燃料电池堆叠模块定位在第一与第二端板之间,且进一步串联电耦合在一起,且其中所述相应端板在所述相应燃料电池堆叠模块中的每一者上施加小于每平方英寸约60磅的压缩力。
本发明的另一方面涉及一种质子交换薄膜燃料电池堆叠,其包含:多个重复的串联电耦合的燃料电池堆叠模块,其各自界定内部腔且通过小于每平方英寸约60磅的压缩力以可密封方式安装在一起;以及质子交换薄膜相对于至少一个陶瓷气体扩散层以操作定向而放置,且接纳在所述相应燃料电池堆叠模块的所述腔内。
本发明的再一方面涉及一种质子交换薄膜燃料电池堆叠,其包含:第一和第二端板,其以大体上平行间隔关系而安置;以及多个重复的空气冷却的燃料电池堆叠模块,其定位在所述第一与第二端板之间且串联电耦合在一起,且所述燃料电池堆叠模块进一步具有在所述第一与第二端板之间测量的操作上有效的传导性,所述操作上有效的传导性是在小于施加于所述多个所述燃料电池堆叠模块中的每一者的压缩力的压力下实现的,且所述燃料电池堆叠模块进一步具有在所述第一与第二端板之间测量的大体上均匀的操作上有效的温度分布。
本发明的又一方面涉及一种质子交换薄膜燃料电池堆叠模块,其包含:质子交换薄膜,其具有阳极侧和阴极侧;第一导电陶瓷层,其相对于所述阳极侧并置;第二导电陶瓷层,其相对于所述阴极侧并置;导电散热片,其相对于所述第二导电陶瓷层并置;框架,其具有内部和外部周边边缘以及第一和第二侧,且其中所述内部周边边缘界定内部腔,且其中所述相应框架各自界定空气通路,所述空气通路在所述内部与外部周边边缘之间延伸且与其内部腔连通,且其中所述质子交换薄膜、第一和第二导电陶瓷层以及所述导电散热片封闭在所述内部腔内;以及集电隔板,其安装在所述框架的第一侧上且相对于所述第一导电陶瓷层并置。
本发明的另一方面涉及一种质子交换薄膜燃料电池堆叠,其包含:第一端板和相对的第二端板;多个燃料电池堆叠模块,其安装在所述第一与第二端板中的每一者之间,且其中所述燃料电池堆叠模块中的每一者进一步包含:质子交换薄膜,其具有阳极侧和阴极侧;第一导电陶瓷扩散层,其相对于所述阳极侧并置;第二导电陶瓷气体扩散层,其相对于所述阴极侧并置;导电散热片,其相对于所述第二陶瓷气体扩散层并置,且其中所述散热片界定多个流体通路,所述流体通路准许空气源穿过其中且到达所述第二陶瓷气体扩散层;框架,其具有第一和第二侧以及内部和外部周边边缘,且其中所述内部周边边缘界定内部腔,且其中所述质子交换薄膜、所述第一和第二陶瓷气体扩散层以及所述散热片封闭在所述内部腔内,且其中所述框架界定各自相对于第一陶瓷气体扩散层以流体流动关系而安置的燃料和排放气体通路,且其中所述框架进一步界定相对于所述散热片以流体流动关系而定向的空气通路,且其中所述框架进一步具有延伸到所述内部腔中且大体上外接所述框架的内部周边边缘的安装凸缘,且其中所述质子交换薄膜以可密封方式附接到所述安装凸缘;第一集电隔板,其安装在所述框架的第一侧上,且相对于第一气体扩散层并置;以及第二集电隔板,其相对于所述第二端板并置,且其中第一燃料电池模块的第一集电隔板相对于所述第一端板并置,且其中第二集电隔板相对于邻近于所述第二端板而定位的第二燃料电池模块的散热片并置,且其中所述第一和第二端板向所述多个燃料电池模块中的每一者提供小于每平方英寸约60磅的压缩力。
本发明的另一方面涉及一种质子交换薄膜燃料电池堆叠,其包含:多个框架,其各自具有内部和外部周边边缘以及第一和第二侧,且其中所述内部周边边缘界定内部腔,且其中所述相应框架以操作定向自对准且配合地嵌套在一起,且其中所述相应框架各自界定空气通路,所述空气通路在所述内部与外部周边边缘之间延伸且与其内部腔连通,且其中所述相应框架中的每一者进一步界定燃料气体通路,所述燃料气体通路相对于至少部分由所述框架中的每一者的第一侧界定的多个燃料气体通道以流体流动关系而耦合,且其中所述燃料气体通道中的每一者以流体流动关系而耦合到所述框架的所述内部腔,且其中所述相应燃料电池堆叠模块的个别燃料气体通路各自相对于彼此以流体流动关系而耦合,且其中所述框架进一步界定相对于至少部分由所述框架的第一侧界定的多个排放气体通道以流体流动关系耦合,且其中所述个别排放气体通道以流体流动关系而耦合到所述框架的所述内部腔,且其中所述相应燃料电池堆叠模块的个别排放气体通路各自相对于彼此以流体流动关系而耦合;安装凸缘,其与所述框架中的每一者的内部周边边缘一体制成且相对于所述框架中的每一者的第一侧成大体上共面定向而安置,且其中所述安装凸缘延伸到所述框架中的每一者的内部腔中且界定与所述框架的内部腔连通的孔,且其中所述安装凸缘具有第一和第二侧以及由所述第一与第二侧之间的距离界定的厚度尺寸;第一气体扩散层,其具有面向内部和面向外部的表面且定位在所述框架的所述内部腔内,且其中所述第一气体扩散层的所述面向外部的表面相对于所述框架的所述第一侧成大体上共面定向而定向,且具有大体上类似于所述安装凸缘的所述厚度尺寸的厚度尺寸,且其中所述第一气体扩散层大体上堵塞由所述安装凸缘界定的所述孔;质子交换薄膜,其接纳在所述框架的所述内部腔内,且相对于所述安装凸缘以贴靠密封关系而安置,且其中所述质子交换薄膜具有相对于所述第一气体扩散层的所述面向内部的表面并置的阳极侧和相对的阴极侧;第二气体扩散层,其定位在所述框架的内部腔内且相对于所述质子交换薄膜的所述阴极侧并置;导电散热片,其具有面向内部和面向外部的表面且接纳在所述框架中的每一者的内部腔内,且其中其面向内部的表面相对于所述第二气体扩散层并置,且其中所述散热片的所述面向外部的表面相对于所述框架中的每一者的第二侧成大体上共面定向而定向,且进一步相对于由所述框架界定的所述空气通路以流体流动关系而定向,且其中所述散热片具有大于约10毫米的厚度尺寸;集电隔板,其安装在所述框架中的每一者的第一侧上,且进一步至少部分与所述第一气体扩散层成欧姆电接触而定位,且其中所述导电散热片与邻近燃料电池堆叠模块的集电隔板成欧姆电接触而安置,且其中所述集电隔板与所述框架配合地耦合且相对于所述框架自对准,且其中所述集电隔板进一步是无孔的大体上光滑的金属板,所述金属板粘结到所述框架的第一侧,以便有效地密封由所述框架的第一侧界定的所述多个燃料气体和排放气体通道;以及第一和第二端板,其相对于彼此以预定间隔关系而安置,且其中所述多个框架位于所述第一与第二端板之间且相对于所述第一和第二端板以受力关系而安置,且其中所述相应第一和第二端板向所述相应框架中的每一者施加小于每平方英寸约60磅的压缩力。
本发明的又一方面涉及一种质子交换薄膜燃料电池堆叠,其包含:多个质子交换薄膜,其各自具有阳极侧和阴极侧;第一多孔导电陶瓷层,其相对于所述质子交换薄膜中的每一者的阳极侧并置;以及第二多孔导电陶瓷层,其相对于所述质子交换薄膜中的每一者的阴极侧并置,且其中所述质子交换薄膜燃料电池堆叠具有小于约200摄氏度的操作温度。
本发明的再一方面涉及一种质子交换薄膜燃料电池堆叠,其包含:多个重复的串联电耦合的燃料电池堆叠模块,其通过小于每平方英寸约60磅的压缩力以可密封方式安装在一起,且其中所述相应燃料电池堆叠模块进一步包括具有内部和外部周边边缘的框架,且其中所述内部周边边缘界定内部腔,且其中所述相应框架各自界定具有横截面积的空气通路,且所述空气通路在所述内部与外部周边边缘之间延伸且进一步与其内部腔连通,且其中具有有效操作温度的质子交换薄膜接纳在所述框架中的每一者的内部腔内,且其中具有导热质量的导电散热片接纳在所述相应框架的内部腔内,且进一步相对于由所述框架界定的所述空气通路以流体流动关系而定向,且耗散在操作期间由所述质子交换薄膜产生的热能,且其中所述质子交换薄膜燃料电池堆叠的所述相应质子交换薄膜的操作温度在彼此的小于约百分之十以内。
本发明的又一方面涉及一种质子交换薄膜燃料电池堆叠模块,其包含:质子交换薄膜,其具有阳极侧和阴极侧,且其中所述阳极和阴极侧各自具有有源区域表面,且其中所述质子交换薄膜的阳极侧或阴极侧中的至少一者的有源区域表面和/或具有相对于其至少成部分覆盖关系而定向的区的燃料电池组件大体上没有用于容纳反应气体流的预定通路。
本发明的再一方面涉及一种质子交换薄膜燃料电池堆叠,其包含:多个质子交换薄膜,其各自具有阳极侧和阴极侧,且其中所述阳极和阴极侧中的每一者具有有源区域表面,且其中所述质子交换薄膜的阳极侧的有源区域表面和具有相对于所述阳极侧的所述有源区域表面成至少部分覆盖关系的区的燃料电池堆叠组件均大体上没有用于容纳反应气体流的预定通路;多个第一气体扩散层,其分别相对于所述阳极侧中的每一者并置;多个第二气体扩散层,其分别相对于所述阴极侧中的每一者并置;以及多个集电隔板,其分别相对于所述第一气体扩散层中的每一者成欧姆电接触并置。
下文将更详细描述本发明的这些和其它方面。
附图说明
下文参看以下附图来描述本发明的优选实施例。
图1是采用本发明的特征的燃料电池电力系统的示意性表示。
图2是本发明的质子交换薄膜燃料电池堆叠的一种形式的透视图。
图3是如图2所见的质子交换薄膜燃料电池堆叠的形式的分解透视图。
图4是本发明的质子交换薄膜燃料电池堆叠的另一形式的分解透视图。
图5是形成本发明的特征的质子交换薄膜燃料电池堆叠模块的一种形式的片段分解透视图。
图6是从与图5中所见的位置相对的位置取得且形成本发明的特征的相同质子交换薄膜燃料电池堆叠模块的片段分解透视图。
图7是本发明的质子交换薄膜燃料电池堆叠的另一形式的透视图。
图8是形成本发明的特征的质子交换薄膜燃料电池堆叠模块框架的一种形式的透视侧视立面图。
图9是形成本发明的特征的质子交换薄膜燃料电池堆叠模块框架的另一形式的透视侧视立面图。
图10是形成本发明的特征的质子交换薄膜燃料电池堆叠模块框架的又一形式的透视侧视立面图。
图11是从与图9中所见的位置相对的位置取得的质子交换薄膜燃料电池堆叠模块框架的第二透视侧视立面图。
图12是形成本发明的特征的质子交换薄膜燃料电池堆叠的又一形式的透视图。
图13是由网状金属泡沫制成且形成本发明的特征的散热片的一种形式的俯视平面图。
图14是如图13所见的相同散热片的侧视立面图。
图15是如图13所见且以不同尺寸制造的相同散热片的第二侧视立面图。
图16是形成本发明的特征的波纹金属散热片的透视侧视立面图。
图17是形成本发明的特征的挤压铝散热片的透视侧视立面图。
图18是形成本发明的特征的冲压的弹性网状散热片的透视侧视立面图。
图19是形成本发明的特征的具有多个冷却通道的散热片的透视侧视图立面图。
图20是形成本发明的特征的如图19中说明但具有可变大小设计的冷却通道的散热片的侧视立面图。
图21是形成本发明的特征的质子交换薄膜燃料电池堆叠的又一形式的透视侧视立面图。
图22是定位在陶瓷气体扩散层之间的质子交换薄膜的显著夸大的分解横向垂直截面图,所述陶瓷气体扩散层各自具有涂覆于其的催化剂层。
图23是定位于一对陶瓷气体扩散层之间的质子交换薄膜电极组合件的显著放大的分解横向垂直截面图。
图24是展示定位于两个陶瓷气体扩散层之间的质子交换薄膜电极组合件的显著放大的分解横向垂直截面图,且其中一个气体扩散层大于另一气体扩散层。
图25是形成本发明的特征的具有气体扩散层的质子交换薄膜电极组合件的显著放大的横向垂直截面图,所述气体扩散层具有涂覆于其的金属化涂层。
图26是如图25中所见的布置的显著放大的分解横向垂直截面图。
图27是在本发明的一种形式中使用的烧结金属网的透视分解的显著放大的横向垂直截面图。
具体实施方式
现在参看图1,质子交换薄膜(PEM)燃料电池堆叠电力系统在其中大体上由标号10指示。如在此较大简化的视图中所见,PEM燃料电池堆叠电力系统10包含透气的外壳或柜体11,其可安装在支撑表面(未图示)上。外壳11包含多个侧壁12,其界定个别的隔间,且进一步支撑子机架,所述子机架大体上由标号13指示且支撑并另外至少部分封闭将在下文更详细论述的新颖的质子交换薄膜燃料电池堆叠。外壳11可进一步支撑个别可移动门14,所述门允许操作者(未图示)取用个别隔间以用于修理或替换下文将描述的个别质子交换薄膜燃料电池堆叠。再者,燃料电池堆叠电力系统10包含数字控制系统,其大体上由标号15指示且通常安装在外壳11上但也可相对于外壳11在远处定位。控制燃料电池电力堆叠系统10的操作的数字控制系统15是此项技术中众所周知的。官方注意特定涉及第6,387,556号美国专利,其教示以引用的方式并入本文中。数字控制系统15可尤其包含字母数字显示器16,其向操作者提供关于燃料电池堆叠电力系统10的操作特征和性能的信息,且进一步可包含其它控制件17,例如开关、拨盘和类似物,其允许操作者(未图示)控制燃料电池堆叠电力系统10的操作。
如图1所见的发明10预期一电布置,借此如下文将描述的质子交换薄膜燃料电池堆叠可被去活且从外壳或柜体11移除,同时如将描述的其余质子交换薄膜燃料电池堆叠保持操作且继续服务负载20,如图1所见。此性能特征是此项技术中众所周知的,且在此之前已在模块化燃料电池中采用,所述模块化燃料电池更完整地描述于例如第6,030,718号和第6,468,682号美国专利等参考中,所述美国专利的教示以引用的方式并入本文中。如图1所见,电缆21电耦合质子交换薄膜燃料电池电力系统10与待服务的电负载20。质子交换薄膜燃料电池电力系统10如本申请案中较早描述通过众所周知的方式产生电。如下文将描述的质子交换薄膜燃料电池堆叠被供应来自大体上由标号30指示的源的反应燃料气体。反应燃料气体的源30也可为加压氢气瓶31,其将处于压力下的纯氢提供到质子交换薄膜燃料电池电力系统10。再者,反应燃料气体的源30可包含氢产生器、燃料处理器或重整器32,其可将富含氢的重整流或大体上纯氢提供到质子交换薄膜燃料电池电力系统10。如图1所见,反应燃料气体的源30中的每一者可借助于大体上由标号33指示的氢气递送导管而耦合到燃料电池电力系统10。
形成本发明的特征的一种可能形式的质子交换薄膜燃料电池堆叠在图4中大体上由标号40指示。如图4中最佳所见,此形式的质子交换薄膜燃料电池堆叠40包含第一端板41和第二端板42。第一端板41具有大体上由标号43指示的主体。主体包含面向内部的表面44和相对的面向外部的表面45。再者,主体由周边边缘46界定。例如如图4中所见,应了解系杆孔50形成于主体43中且在其面向内部的表面44与面向外部的表面45之间延伸。如应了解,系杆孔可操作以穿过其接纳如下文将描述的系杆,且允许分别将第一端板41和第二端板42朝向彼此推动,以便在下文将更详细论述的燃料电池模块框架上施加压缩力。在此方面,第一端板41的主体43进一步在其中形成有大体上由标号51指示的燃料气体通路和大体上由标号52指示的排放气体通路。燃料气体通路51和排放气体通路52在面向内部的表面44与面向外部的表面45之间延伸。燃料气体通路51允许来自源30的将供应到质子交换薄膜燃料电池堆叠40的合适燃料气体的通过。排放气体通路允许可能包含未使用燃料气体和水蒸气的组合的排放气体以有效方式从质子交换薄膜燃料电池堆叠40逸出。如图4所见,第二端板42类似地具有主体53,其由面向内部的表面54和面向外部的表面55界定。第二端板42的主体53也具有周边边缘56。位于围绕周边边缘56的预定位置处的是系杆孔57,其分别在面向内部的表面54与面向外部的表面55之间延伸。系杆孔57可操作以接纳下文将论述的合适系杆。
如图4中所见,将了解此形式的质子交换薄膜燃料电池堆叠40包含多个大体上由标号60指示的系杆。这些多个系杆或耦合件在本发明的此形式中分别包含第一系杆61、第二系杆62、第三系杆63和第四系杆64。所述多个系杆各自具有可操作以啮合第二端板42的面向外部的表面55的第一末端65以及可操作以由合适螺母67啮合的相对的带螺纹第二末端66,所述螺母67相对于第一端板41的面向外部的表面45处于力传递啮合中。在如图4所见的本发明的所描绘形式中,将了解系杆60可操作以分别穿过第一端板41和第二端板42的系杆孔50和57而被接纳。系杆60还可操作以穿过下文将更详细描述的多个燃料电池堆叠模块框架而被接纳。如将了解,通过相对于相应系杆60中的每一者收紧螺母67,第一端板41和第二端板42被朝向彼此拉动,且组合地向相应燃料电池堆叠模块中的每一者施加小于每平方英寸约60磅的压缩力,如下文将更详细描述。在本发明的替代形式(其未说明,但将从图4的研究中了解到)中,个别系杆或耦合件60个别地与相应的第一端板41和第二端板42协作且将所述端板连接在一起。然而,在本发明的此形式中,个别的第一端板41和第二端板42在某种程度上从图4所见的视图放大。在本发明的此形式中,所述多个系杆或耦合件60不穿过相应燃料电池堆叠模块,如下文将相对于本发明的所述形式而描述,而是相对于所述燃料电池堆叠模块位于外部。在本发明的此未说明的形式中,第一端板41和第二端板42仍向相应燃料电池堆叠模块中的每一者施加小于每平方英寸约60磅的压缩力。
现在参看图7,展示另一形式的质子交换薄膜燃料电池堆叠,且其大体上由标号70指示。在本发明的此形式中,质子交换薄膜燃料电池堆叠70类似地具有第一端板71和第二端板72。如所述图中所见,第一端板具有由周边边缘74界定的主体73。再者,主体具有面向外部的表面75。如同所描述的本发明的较早形式,主体73具有形成于其中的燃料气体通路76和排放气体通路77。燃料气体通路76允许将燃料气体的源30供应到质子交换薄膜燃料电池堆叠70。排放气体通路77允许可能包含未使用燃料气体以及水蒸气的排放气体从本发明的此形式70逸出。如图7中所见,第二端板72具有主体80。主体具有面向外部的表面81和相对的面向内部的表面82。再者,主体81由周边边缘83界定。如图7中说明,具有第一末端85和相对的第二末端86的第一可释放耦合件84分别个别地附接到第一端板71和第二端板72。第二且相对的耦合件88也可提供于燃料电池堆叠70的相对侧上,且类似地附接到第一端板71和第二端板72。耦合件84进一步具有可移动的闩组合件87,且其可操作以在完全啮合或闭合时致使第一端板71和第二端板72强制地一起移动,进而在如下文将更详细论述的个别燃料电池堆叠模块上施加小于每平方英寸约60磅的压缩力。如图中所见,分别具有相对末端85和86的耦合件84与相应的第一端板71和第二端板72协作且强制地将第一端板71和第二端板72连接在一起,且不穿过相应的燃料电池模块,如下文将描述。此布置还便于在故障或失灵的情况下容易修理和替换个别的燃料电池模块。当然,此耦合布置大大便于以在此之前不可能的方式对燃料电池堆叠进行维护。
现在参看图3,展示本发明的另一形式且其大体上由标号90指示。如本发明的此形式中所见,质子交换薄膜燃料电池堆叠90具有第一端板91和相对的第二端板92。第一端板具有主体93,其由面向外部的表面94和相对的面向内部的表面95界定。再者,主体93由外接的周边边缘96界定。如所说明,燃料气体通路100在面向外部的表面94与面向内部的表面95之间延伸,且提供燃料气体的源30可通过燃料气体接头106进入燃料电池堆叠90所借助的方式。排放气体通路101也在面向外部的表面94与面向内部的表面95之间延伸,且提供任何未使用燃料气体和/或水蒸气可在操作期间通过排放气体接头107退出质子交换薄膜燃料电池堆叠90所借助的方式。如本发明的此形式中所见,多个扣件接纳孔102形成于面向内部的表面95和周边边缘96中。这些扣件接纳孔102可操作以啮合由相应质子交换薄膜燃料电池堆叠模块支承且相对于所述模块向外延伸的弹性扣件,如下文将描述。再者,且如图3所见,第一端板91包含一对弹性闩或扣件部件103,其通常相对于面向内部的表面95向外延伸,且沿着主体93的周边边缘96安装。这些个别扣件或闩部件103具有远端104,其包含啮合部分105,所述啮合部分105可操作以用可释放方式啮合如下文将描述的邻近的并置燃料电池堆叠模块,以便相对于其施加足够的压缩力以便实现本发明的益处。
仍参看图3,将看到第二端板92具有主体110,所述主体110具有面向外部的表面111和相对的面向内部的表面112。如图3的分解图中说明,主体110也由外部周边边缘113和相对的内部周边边缘114界定。内部周边边缘114至少部分界定内部腔115,其可操作以接纳导电散热片,如下文将更详细论述。再者,如图3所见,应了解,多个空气通路116形成于主体110中,且在外部周边边缘113与内部周边边缘114之间延伸。所述多个空气通路116允许合适的冷却空气通过其中且啮合下文详细论述的导电散热片,所述导电散热片接纳在内部腔115内以完成本发明的特征。在第二端板92上且更具体来说在其面向内部的表面112的周边边缘113上安装相对于其大体上通常向外延伸的多个弹性扣件117。所述多个扣件具有远端118,其形成用于啮合邻近燃料电池堆叠模块的啮合部分119,如下文将更详细描述。所述多个弹性扣件117与邻近燃料电池堆叠模块的啮合(如下文将描述)产生足够压缩力以便实现本发明的若干益处,如下文将更详细论述。
现在参看图12,展示质子交换薄膜燃料电池堆叠的又一替代形式,且其大体上由标号130指示。如其中所见,此形式的质子交换薄膜燃料电池堆叠分别具有第一端板131和第二端板132,且其如在本发明的先前形式中可操作以在下文将描述的燃料电池堆叠模块上施加压缩力以便致使质子交换薄膜燃料电池堆叠130操作。在本发明的此形式中,第一端板131具有主体133,其具有面向外部的表面134和相对的面向内部的表面135。再者,主体133由外接的周边边缘136界定。如图12中所见,多个弹性扣件140与周边边缘136一体制成且具有远啮合部分141,所述远啮合部分141弹性地以可释放方式啮合如下文将描述的邻近燃料电池堆叠模块,进而以可释放方式以相对于其的强制啮合附接第一端板131。如图12中进一步说明,第二端板132类似地具有主体142,其由面向外部的表面143和相对的面向内部的表面144界定。应了解,主体142在其总体设计上非常类似于关于上文紧接段落中描述的本发明的较早描述形式所描述的设计。在本发明的此形式中,主体142具有外部周边边缘145,其类似地在其中形成有多个空气通路146,所述空气通路146允许冷却空气源通过其中且相对于在随后的段落中将详细描述的导电散热片成除热接触。在本发明的本形式中,且如图12所见,应了解,提供燃料气体歧管150且其跨越于第一端板131与第二端板132之间。燃料气体歧管150可操作以通过燃料气体接头152将反应燃料气体的源30递送到相应燃料电池模块,以致使其以如下文将更详细描述的方式个别地操作。再者,在本发明的此形式130中,提供排放气体歧管151且其相对于相应质子交换薄膜燃料电池堆叠模块成流体接纳关系而耦合,如下文将更详细论述,以通过排放气体接头153移除任何未使用的燃料气体和/或水蒸气。在本发明的此形式中,如在本发明的先前形式中,应了解,第一端板131和第二端板132以可释放方式扣紧到定位于其间的邻近燃料电池堆叠模块。此扣紧布置产生压缩力,所述压缩力施加于如下文描述的相应燃料电池堆叠模块以便致使PEM燃料电池堆叠130完全操作。
现在参看图21,展示质子交换薄膜燃料电池堆叠的又一替代形式且其在其中大体上由标号160指示。如在本发明的此形式中所见,本发明包含第一端板161和第二端板162,其以类似于上文论述的本发明的先前形式中描述的端板的方式操作。在此方面,第一端板161由具有面向外部的表面164和相对的面向内部的表面165的主体163界定。主体还由面向外部的周边边缘166界定。如所说明,燃料气体通路170和排放气体通路171形成于主体163中且分别在面向外部的表面164与面向内部的表面165之间延伸。如较早论述,燃料气体通路可操作以将反应燃料气体的源30递送到燃料电池堆叠模块,如下文将描述,以便致使PEM燃料电池堆叠160操作。类似地,排放气体通路171可操作以移除未使用燃料气体和可能作为PEM燃料电池堆叠160的操作的副产品产生的水蒸气,如将在本申请案的操作阶段中更详细描述。在某些方面类似于上文描述的本发明的其它形式,多个扣件接纳孔172形成于面向内部的表面165和主体163的周边边缘166中,且可操作以接纳相对于下文将描述的个别燃料电池堆叠模块通常向外延伸的弹性扣件。如图21所见,第二端板162也由主体173界定,且主体173具有面向外部的表面和相对的面向内部的表面175。如应了解,面向内部的表面至少部分界定用于接纳导电散热片(未图示)的腔。再者,主体具有面向外部的周边边缘176,其具有形成于其中的多个空气通路177。空气通路177允许冷却空气源到达至少部分由面向内部的表面175界定的腔内所含有的导电散热片,且相对于所述散热片成除热关系。这类似于如图3所见的本发明的较早形式。再次,本发明的此形式160以类似于上文论述的本发明的较早形式的方式操作,借此以允许致使质子交换薄膜燃料电池堆叠160完全操作的方式产生压缩力的方式,将个别的第一端板161和第二端板162扣紧到如下文将描述的邻近燃料电池模块。
现在参看图2和随后图式,将了解,呈如已经识别的各种形式40、70、90、130、160且可并入在PEM燃料电池堆叠电力系统10中的质子交换薄膜燃料电池堆叠包含多个重复的串联电耦合的燃料电池堆叠模块,其大体上由标号180指示。所述多个燃料电池堆叠模块180安置于在此之前论述的第一端板41与第二端板42之间、第一端板71与第二端板72之间、第一端板91与第二端板92之间、第一端板131与第二端板132之间以及第一端板161与第二端板162之间,且通过小于每平方英寸约60磅的压缩力以可密封方式安装在一起。此压缩力可借助于各种端板41和42、71和72、91和92、131和132及161和162以及耦合件组合件(例如多个系杆60和可释放的耦合件84)来施加。再者,如下文将描述的其它扣紧布置也将产生压缩力。应了解,燃料电池堆叠模块180中的每一者包括框架。在此方面,本发明预期至少五个不同的质子交换薄膜堆叠模块框架,其在下文将仅称为“框架”。在此方面,相应的框架包含如图3中最佳所见的第一形式181、如图5和9中最佳所见的第二形式182、如图8中最佳所见的第三形式183、如图10中最佳所见的第四形式184以及如图21中最佳所见的第五形式185。在随后的段落中,应了解,相同标号分别指代呈个别框架形式181到185的相同结构。从随后的论述将了解,相应的框架形式具有细微变化,其对如所描述的本发明的各种形式提供优点。在随后的段落中将更详细论述这些特征。在本发明的此形式中,相应框架中的每一者是由热塑性可注射模制塑料制成的,但其它材料也可能合适。
图8到10中分别展示呈其各种形式181到185的相应质子交换薄膜燃料电池堆叠框架。分别相对于框架的各种形式181到185,将了解相应的框架181到185各自具有主体200。主体200由第一侧201和相对的第二侧202界定。第一和第二侧通过具有给定宽度尺寸的外部周边边缘203安置成预定间隔关系。再者,主体200具有内部周边边缘204,其界定内部腔205。如参看图2和随后图式最佳所见,将了解,空气通路206形成于周边边缘203中,且分别在内部周边边缘203与外部周边边缘204之间延伸。此空气通路206与其内部腔205连通。从研究框架的各种形式181到185中应了解,框架是大体上自对准的,如下文将更详细描述。本发明的此特征大大有利于本发明的有效组装。
框架的各种形式181到185分别各自具有安装凸缘210,其与主体200的内部周边边缘204一体制成且延伸到框架的内部腔205中。安装凸缘210具有相对于框架的第一侧201安置成大体上共面定向的第一侧211,以及第二侧212。厚度尺寸213(图5)界定于安装凸缘210的第一侧211与第二侧212之间。再者,安装凸缘界定内部周边边缘214(图3),其界定与框架180的内部腔205连通的孔215。框架的若干形式181到185中的每一者分别在其中形成有燃料气体通路220,其延伸通过框架180的相应主体200且与框架的内部腔205连通。在此方面,相应燃料气体通路220具有第一末端221(图5),其相对于较早描述的由本发明的各种形式40、70、90和160的端板41、42、71、72、91、92、131、132、161、162界定的燃料气体通路51、76、100、170成流体流动连通而耦合。因此,提供到由本发明的各种形式的端板界定的燃料气体通路的反应燃料气体的源30将进而通过端板且沿着形成于框架180中的大体同轴对准的燃料气体通路220行进,且接纳在框架的内部腔205内。应了解,且在本发明的一种形式中,相应框架181到185的燃料气体通路220的第二末端222相对于邻近框架的燃料气体通路220的第一末端221成流体流动关系而定位。再者,且如图中最佳所见,多个燃料气体通道223(图5)形成于主体200的第一侧201中,且其耦合相对于框架181到185的内部腔205成流体流动关系的燃料气体通路220且耦合到由安装凸缘210的内部周边边缘214界定的孔215。再者,通过对例如图5等图式的研究将认识到,主体200的第一侧201进一步在其中形成有排放气体通路224,其具有第一末端225和相对的第二末端226。类似于上文论述,排放气体通路224的第一末端225相对于较早揭示的如在相应端板41、71、91、131、161中界定的排放气体通路52、77、101、171成流体流动关系而耦合。类似地,第二末端226相对于邻近主体200的第一末端225成流体流动关系而耦合。图5中将看到,多个排放气体通道227形成于主体200的第一侧201中,进而相对于排放气体通路224成流体流动关系而耦合内部腔205和孔215。如将了解,相应燃料电池堆叠模块180的燃料气体通路220和排放气体通路224在本发明的一种可能形式中相对于彼此成流体流动关系而耦合。
现在参看图12,应了解在如其中所见的本发明的形式130中,燃料气体通路230可替代地形成于框架180的外部周边边缘203中,以便相对于燃料气体歧管150成流体流动关系而耦合。类似地,排放气体通路(未图示)可替代地形成于框架180的外部周边边缘203中,以便相对于排放气体歧管151成流体流动关系而耦合。现在参看图10,且在本发明的另一替代形式中,排放气体通路231可以一方式形成于框架180的外部周边边缘203中,使得由质子交换薄膜燃料电池堆叠形成且可能包含未使用燃料气体和作为燃料电池堆叠的操作的副产品形成的水蒸气的排放气体可被排放到周围环境。在如图4所见的本发明的一种可能形式40中,框架180中的邻近于第一端板41而定位的一者不包含孔215。而是,框架180的第一侧201大体上是连续的且由邻近端板强制地啮合。这类似于如图3所见的本发明的形式90的情况,且其中第二端板92看上去很类似于定位于其间的框架180。第一端板91和第二端板92具有大体上连续的面向外部的表面94,且不界定与其内部腔115连通的孔215。
如例如参看图9和11最佳所见,且在本发明的一种形式中,框架的各种形式181到185可包含多个对准腔240(图11),其形成于框架180的第一侧201中的预定位置中且可操作以配合地接纳或嵌套多个阳对准部件241,所述阳对准部件241支承在相对于其并置的邻近框架180的第二侧202上且另外相对于所述第二侧202向外延伸。应了解,通路可能但确实需要延伸通过241与242(未图示)之间。第一阳对准部件241可操作以呈摩擦配合的性质接纳或配合地嵌套在个别对准腔240内。阳对准部件的此种伸缩接纳在个别对准腔240内有利于相应框架181到185相对于彼此的自对准。此大大有利于如本文描述的个别质子交换薄膜燃料电池堆叠40、70、90、130和160的准确且快速组装。将认识到,采用O形环密封件244以便将邻近燃料电池堆叠模块的相应燃料气体通路220和排放气体通路224密封在一起。在本发明的某些形式中,如例如图4中所见,所述多个系杆或耦合件61到64分别穿过个别地同轴对准的对准腔和阳对准部件而被接纳,以便允许特定形式的质子交换薄膜燃料电池堆叠40的端板41和42强制联合或耦合在一起。在如图3所见的本发明的替代形式90中,为了安装在主体200的第二侧202上且相对于第二侧202通常向外延伸的多个弹性扣件242而消除了较早提到的对准腔240和阳对准部件241。所述多个弹性扣件242个别地同轴对准,以便以搭扣配合的性质接纳在形成于邻近框架181到185的主体200的第一侧201中的多个扣件接纳孔243内。可取用个别弹性扣件242以便借助于部分延伸通过如图3所见的外部周边边缘203的多个扣件接纳孔243而释放邻近燃料电池模块。当利用本发明的此形式时,个别框架181到185可以如下方式组装:个别框架180相对于彼此施加适当量的力,以便实现本发明的益处,且不使用例如关于本发明的某些形式描述的耦合件。因此,所述多个弹性扣件242和扣件接纳孔243在其相对于彼此成操作关系定向时组合地为相应框架180提供相同自对准特征,且进一步可操作以啮合邻近框架的扣件接纳孔243以便提供适当的配合关系以便实现本发明的益处。
现在参看图21,通过比较所述视图与图3的视图将了解,在框架180的此形式185中,如主体200界定的相应空气通路206的数目和横截面积可变化以便实现在操作期间从质子交换薄膜燃料电池堆叠160的操作上有效的热耗散。在如图21所见的本发明的当前形式160以及如图所见的本发明的其它形式中,应了解,质子交换薄膜燃料电池堆叠160当在操作期间PEM燃料电池堆叠160产生最佳量的电功率时具有操作上有效的温度。在所揭示的本发明中,个别质子交换薄膜燃料电池模块180各自被维持在相对于相同质子交换薄膜燃料电池堆叠40、70、90、130和160内所含有的任何其它燃料电池模块180小于约10%以内的操作温度。
现在参看图3和随后图式,如本文揭示的质子交换薄膜模块180中的每一者包含密封部件250,其以可密封方式附接到框架181到185的主体200中的每一者的第一侧201,且邻近于其外部周边边缘203而定位。分别相对于个别框架181到185成大体密封关系且对准而定位的是大体上由标号251指示的集电隔板。集电隔板251通常是通常由导电金属制成的无孔的大体上光滑的板。与相应框架181到185配合地协作且相对于相应框架181到185大体上自对准的集电隔板251具有第一面向内部的表面252和相对的第二面向外部的表面253。当相对于主体200的第一侧201适当定位时,面向内部的表面252分别相对于相应(和示范性)燃料气体通道223和排放气体通道227(图11)成覆盖关系而安置且大体上密封所述燃料气体通道223和排放气体通道227,进而将反应或燃料气体30和任何未使用反应气体和/或水蒸气限制于那些通道区223、221。如图所见,集电隔板251由周边边缘254界定且在本发明的某些形式中,集电隔板具有导电突出部255,其相对于所述框架181到185中的每一者的主体200的外部周边边缘203向外延伸以用于允许移除电或进一步允许从其传输电信号。这将例如允许由图1所见的数字控制系统15监视本发明。在本发明的其它形式中,一个或一个以上集电隔板251上的导电突出部255可用于将燃料电池堆叠40、70、90、130、160电学分段,如以引用的方式并入本文中的第6,703,155号美国专利中教示。在如图5所见的本发明的一种形式中,可沿着周边边缘252形成多个对准孔256以便容纳阳对准部件241或邻近框架181到185的多个弹性扣件242以穿过其中。在本发明的某些形式中,相同的集电隔板251将具有形成于其中的燃料气体通路257以及排放气体通路258两者,其将相对于形成于邻近主体200中的燃料气体通路220和排放气体通路224大体上同轴对准。
质子交换薄膜燃料电池模块180中的每一者在适当定向上包含且封闭大体上由标号270指示的第一多孔气体扩散层。在本发明的一种可能形式中,第一气体扩散层至少部分包括多孔导电陶瓷材料层,其选自基本上由以下各项组成的群组:二硼化钛、二硼化锆、二硅化钼、二硅化钛、氮化钛、氮化锆、碳化钒、碳化钨及其复合物、层压物和固溶体。通常选择的多孔导电陶瓷材料具有小于约60微欧-厘米的电阻率,具有位于大于约5格利-秒到小于约2000格利-秒的范围内的磁导率,且进一步具有约0.5到约200微米的孔大小。另外,第一多孔气体扩散层270具有主体271,其具有相对于主体200的第一侧201成大体共面定向而定位的面向外部的表面272,以及第二面向内部的表面273。应了解,主体271具有近似等于界定于安装凸缘210的第一侧211与第二侧212之间的厚度尺寸213的厚度尺寸。再者,主体271经大小设计以便大体上堵塞由安装凸缘210的内部周边边缘214界定的孔215。应认识到,如上文论述的形成于框架181到185的第一侧201上的燃料气体通道223将燃料气体源30递送到第一气体扩散层270。将第一多孔导电气体扩散层270的面向外部的表面272放置成抵靠着以可密封方式安装在第一侧201上的集电隔板251的面向内部的表面252成欧姆电接触。
现在参看图6,本发明包含外接阳极密封件280,其接纳在框架的内部腔205内,且沿着其配合且抵靠着安装凸缘210的第二侧212以可密封接触而搁置。阳极密封件280可由压敏粘合剂或其它密封和粘结构件形成,其形状将大体上符合安装凸缘210的第二侧212的形状。
如图3到6所示,本发明还包含PEM薄膜电极组合件(MEA),其大体上由标号310指示。PEMMEA是此项技术中众所周知的且关于其组成物和操作的进一步论述不再说明,而是应注意PEM燃料电池通常具有小于约200摄氏度的操作温度。此外,所属领域的技术人员将容易认识到PEMMEA在操作期间产生水作为副产品。长久以来已经知道,必须存在某些量的水以致使MEA完全操作。此外,如果存在过多的水,那么MEA将不会最佳地操作。如图23所示,MEA包括质子交换薄膜290,其具有第一阳极侧291且具有相对的第二阴极侧292。再者,MEA由大体上由标号293指示的有源区域界定。将阳极电极催化剂层295涂覆于薄膜290的阳极侧291的有源区域293。将阴极电极催化剂层296涂覆于薄膜290的阴极侧292的有源区域293。这些电极催化剂层295和296的可能组成物是此项技术中众所周知的,且阳极和阴极电极催化剂层的相对组成物可有所不同。而且,如图3到7中所示,MEA还包含周边边缘294,其在有源区域293外部且以可密封方式抵靠着阳极密封件280搁置,且进而以可密封方式将MEA或质子交换薄膜紧固到安装凸缘210。如上文揭示的施加于燃料电池堆叠模块180中的每一者的小于每平方英寸约60磅的压缩力抵靠着阳极密封件280向安装凸缘210施加质子交换薄膜密封力,其位于每平方英寸约5到约50磅的范围内。
在本发明的某些形式中,第一多孔导电气体扩散层270可为多孔碳层或板。再者,在如图25和26所见的本发明的另一可能形式中,第一多孔导电气体扩散层270可进一步包含涂覆于第二面向外部的表面272的多孔金属化层275。此层揭示于第6,716,549号美国专利中,其教示以引用的方式并入本文中。在此方面,此多孔金属涂层或层275选自基本上由以下各项组成的金属群组:铝、钛、镍、铁、不锈钢、锰、锌、铬、铜、锆、银和钨及其合金、氮化物、氧化物和碳化物。在图25所示的本发明的形式中,具有金属涂层275的第一气体扩散层270相对于MEA310的阳极侧311并置。金属涂层275允许多孔气体扩散层270与集电隔板251形成有效的欧姆电接触。
在如图22所见的本发明的一种可能形式中,第一多孔导电气体扩散层270可包含粘结或涂覆到其表面(这里说明为第一面向内部的表面273)的电极或催化剂层274。在此情况下,质子交换薄膜290的阳极侧291随后相对于粘结或涂覆到第一传导气体扩散层270的催化剂层274并置。同样,在如图26所见的本发明的形式中,将催化剂层274涂覆于多孔气体扩散层270的一个表面,因此在所述多孔气体扩散层270上将多孔金属涂层275涂覆于相对表面。质子交换薄膜290的阳极侧291随后相对于催化剂层274并置。
现在参看图3和随后图式,将了解,相应的燃料电池堆叠模块180进一步包含第二气体扩散层,其大体上由标号300指示且定位在相应框架181到185的内部腔205内,且相对于质子交换薄膜310的阴极侧312并置。第二气体扩散层300通常是由可类似于形成第一多孔气体扩散层270的材料的导电陶瓷材料制成的,但第一气体扩散层270和第二气体扩散层300的组成物可有所不同。第二气体扩散层300具有主体301,其具有相对于MEA310的阴极侧312成并置关系放置的第一面向内部的表面302,以及相对的第二或面向外部的表面303。再者,主体由周边边缘304界定。如图22和26中所见,在本发明的某些形式中,可首先将催化剂层305涂覆于面向内部的表面302。随后,可将质子交换薄膜290粘结在第一气体扩散层270与第二气体扩散层300之间。在如图23所见的本发明的形式中,质子交换薄膜290具有涂覆于其相对的阳极侧291和阴极侧292的催化剂层295,且此后可将第一多孔气体扩散层270和第二多孔气体扩散层300粘结到催化剂层295。图24展示本发明的另一形式,且其中第二多孔气体扩散层300具有比第一多孔导电陶瓷气体扩散层270的大小大的大小。在此情况下,第二气体扩散层300的大小使得其完全堵塞框架181到185的内部腔205,而第一气体扩散层270经大小设计以完全堵塞由MEA安装凸缘210的内部周边边缘214界定的较小孔215。
在如图25和26最佳所见的本发明的再一可能形式中,多孔导电陶瓷气体扩散层270和300分别涂覆有个别催化剂层305以及分别多孔金属涂层275和306。金属涂层306类似于较早相对于涂覆于第一陶瓷导电层270的涂层或金属化层275揭示的涂层。在组装时,与邻近于其定位的催化剂层组合的质子交换薄膜290包括薄膜电极组合件310,其随后接纳在相应框架200的内部腔205内。在完全组装时,第一气体扩散层270和第二气体扩散层300分别位于抵靠着质子交换薄膜290分别的相对阳极侧291和阴极侧292成欧姆电接触。
如较早在PEM燃料电池的操作期间提到,水作为副产品产生。在先前现有技术装置中,已设想出各种方案和布置以便有效管理质子交换薄膜所产生的水,以便从任何所得燃料电池提供最佳电输出。在此之前已被采用的一种布置是向定位在MEA的阳极或阴极侧上的气体扩散层提供各种材料涂层,以便向气体扩散层给予较大或较小程度的疏水性。通过这样做,设计者已尝试在质子交换薄膜中保持足够量的水,以便最大化燃料电池的操作。无论在此之前采用的方案和方法如何,气体扩散层已被设计以便保持恰好足够的水以将薄膜维持在最佳水合状态,且同时从薄膜移除过量的水以便防止薄膜被水淹没且关闭燃料电池的电产生。
在如本申请案中论述的布置中,应了解多孔导电陶瓷气体扩散层270和300是由大体上表征为亲水材料(即,其具有吸附、吸收或通过水的亲合性)的多孔陶瓷材料制成的。鉴于这些材料的亲水性质,曾预期水管理问题将从多孔导电陶瓷材料的使用中产生。通过未被完全了解的机制,已惊人地发现,在例如第一气体扩散层270和第二气体扩散层300中采用的这些相同的多孔陶瓷材料以某种方式保持足够的水,以便维持质子交换薄膜290最佳水合,同时允许气体穿过其中。鉴于在此之前在固体氧化物燃料电池(SOFC)中已利用陶瓷材料的方式,由多孔导电陶瓷气体扩散层270和300保持某些量的水以致使燃料电池操作是非常新颖的且出乎预期的。此外,本发明关于陶瓷阳极和阴极气体扩散层的初始测试已展示操作温度范围的出乎预期的增加。虽然具有碳气体扩散层的相同PEM薄膜将具有近似46℃的最大操作温度,但具有陶瓷气体扩散层的相同薄膜可操作直达54℃,而没有由质子交换薄膜的脱水引起的热流失。此出乎预期的特征允许燃料电池系统10在较高环境温度条件下操作。如本发明的背景技术中所提到,SOFC装置已采用多孔导电陶瓷材料来制造其阳极和阴极。然而,在SOFC装置的操作中,鉴于高操作温度(600到900°),水无法也无需由与其一起采用的陶瓷气体扩散层保持。另外,虽然必须需要某些量的水以致使质子交换薄膜290操作,但并不必须需要水以致使SOFC中使用的陶瓷电解质操作,而是SOFC的操作的高温度致使电解质电离传导。
现在参看图27,在本发明的一种可能形式中,提供替代的导电气体扩散层320且其可分别代替如较早描述的第一导电陶瓷气体扩散层270和第二导电陶瓷气体扩散层300。在本发明的此形式中,导电气体扩散层320可包括多个具有减小的多孔性的烧结金属丝网,所述金属丝网一体式接合在一起以便提供借助于通常分别在第一气体扩散层270和第二气体扩散层300的制造中利用的导电且多孔的陶瓷材料而提供的优点。如所述视图中所见,所述多个金属丝网321具有减小的多孔性且以常规方式烧结,进而变为可与如较早描述的质子交换薄膜290组合使用的单式物体。在本发明的另一可能形式中,导电气体扩散层320可涂覆有催化剂层,且随后与质子交换薄膜290组合,如较早相对于图25到26所见。
现在参看图22到27,质子交换薄膜290、电极或催化剂层274、295、296或305以及气体扩散层270或300的粘结或并置组合常称为薄膜电极扩散组合件(MEDA)313。所属领域的技术人员现在可了解,在本发明的各种形式的每一者中,第一或第二气体扩散层270和/或300中的至少一者包括一材料或组成物,其中导电性建立于第一或第二气体扩散层270和/或300与燃料电池堆叠模块180的紧邻于气体扩散层270和/或300的组件之间,使得导电性大体上与施加于相应燃料电池堆叠模块180中的每一者的压缩力无关。本发明的此特征允许施加大体上小于通常施加于现有技术装置的力的压缩力。以稍微不同的方式陈述,采用由相应燃料电池堆叠模块180或由相对端板施加的压缩力以用于将相应组件密封在一起,维持组件之间的热接触,且/或对产品提供刚性,且其基本上不用于维持操作上有效的导电性。另外,将注意,施加于气体扩散层270和300的减少的压缩力改进了相应的气体扩散层质量输送能力,因为通常在现有技术堆叠布置中施加的高压缩力往往使多孔材料碎裂,进而阻碍穿过其的质量输送。
因此,在本发明的一种形式中,提供质子交换薄膜燃料电池堆叠模块180且其包含具有第一阳极侧311和第二阴极侧312的薄膜电极组合件310,且其中阳极侧311和阴极侧312各自具有有源区域表面293。在本发明的此形式中,如例如图5所见,MEA290的阳极侧311和阴极侧312中的至少一者的有源区域表面293和/或例如各自具有相对于有源区域表面293以至少部分覆盖关系而定向的区的第一气体扩散层270和第二气体扩散层300和/或集电隔板251等燃料电池组件大体上没有用于容纳反应气体流的预定通路。鉴于在此之前提供的许多现有技术参考的较早教示,本发明的此特征是非常独特的。明确地说,应注意,阳极侧291或阴极侧292的有源区域表面或相关联的陶瓷气体扩散层270、300大体上没有用于容纳反应气体流的预定通路。类似地,邻近的电流传导隔板没有沿着其面向内部或面向外部的表面延伸的预定气体通路。
如参看图3和随后图式最佳所见,本发明进一步包含导电散热片330,其具有导热质量且接纳在框架的内部腔205内,且相对于第二气体扩散层300成欧姆电接触而并置。如图所见,散热片330相对于由框架界定的空气通路206成流体流动关系而定向。在如图所见的布置中将看到,散热片330可采用各种形式。举例来说,如图13、14和15所见,散热片330可包括网状导电金属泡沫331。具有网状金属泡沫散热片的空气冷却燃料电池揭示于第6,939,636号美国专利中,其教示以引用的方式并入本文中。再者,如图16和19中所见,散热片330可包括各种形式的波纹或折叠金属散热片332。在本发明的一种可能形式中,波纹散热片可如图所示由实心材料制造,或在替代方案中,可由金属网制造。此外且现在参看图17,本发明的散热片330可包括挤压铝板333。此外,如图18所见,散热片330可包括冲压的弹性网状金属散热片334。再者,散热片330可包括散热片的这些相同形式331到334中的一者或一者以上的组合。上文描述的散热片330中的每一者包含具有向内面向的表面341的主体340,所述向内面向的表面341相对于第二导电陶瓷气体扩散层300并置且抵靠着第二导电陶瓷气体扩散层300成欧姆电接触而定位。再者,相应散热片331到334具有第二向外面向的表面342,其分别相对于相应框架181到185的第二侧202成大体上共面定向而定位。第二向外面向的表面342与邻近燃料电池堆叠模块180的集电隔板251成欧姆电接触而放置,因此电耦合燃料电池堆叠40、70、90、130和160内的燃料电池堆叠模块180中的每一者。应了解,如果组合使用两个或两个以上散热片形式331到334,那么最外的散热片仍将具有分别与相应框架181到185的向外面向的表面202大体上共面的向外面向的表面。因此,相应散热片封闭在相应框架181到185的内部腔205内。相应散热片330进一步具有周边边缘343和分别在向内面向的表面341与向外面向的表面342之间测量的厚度尺寸。在如图14所见的本发明的一种形式中,散热片33的厚度尺寸是从大于约10毫米到小于约100毫米。再者,散热片340中的每一者的主体具有第一末端344和第二末端345。相应散热片330的主体340中的每一者界定多个空气通路346,其允许冷却空气穿过其中以利于移除在操作期间由质子交换薄膜燃料电池堆叠40、70、90、130和160产生的热能和湿气。如从图中将了解,所述多个空气通路346相对于分别由相应框架181到185界定的空气通路206成流体流动关系而定向。如从图14和15的研究应了解,散热片330的热质量和/或厚度可改变,以便实现燃料电池模块180中的每一者的大体上均匀的操作温度。
在如图所见的布置中应了解,燃料电池堆叠模块180中的每一者具有在位于同一燃料电池堆叠40、70、90、130和160内的任何其它燃料堆叠模块180的小于约10%以内的操作温度。此外,在如图所示的布置中应了解,燃料电池堆叠模块180中的每一者的个别散热片330的导热质量为燃料电池堆叠40、70、90、130和160内的相应燃料电池堆叠模块180中的每一者提供显著不同程度的冷却,使得所述多个燃料电池堆叠模块180中的任一者的所得操作温度与所述多个燃料电池堆叠模块180中的任何其它者的操作温度相差小于约10%。在如图所见的布置中应了解,个别模块180可具有具可变导热质量的导电散热片330。更具体来说,朝向质子交换薄膜燃料电池堆叠40、70、90、130和160的中心部分逐渐向内定位的那些模块180通常将具有比那些例如较靠近端板41和42定位的燃料电池堆叠模块180大的导热质量。相应燃料电池堆叠模块180的此导热质量变化有利于作为质子交换薄膜燃料电池堆叠的操作的副产品的热能的有效耗散。此外,如图19和20最佳所见的本发明的另一可能形式波纹或折叠金属散热片332沿着散热片的长度可能具有或不具有空气通路的横截面尺寸变化。折叠金属散热片332由界定多个通路346的导电衬底形成,所述通路346当在其第一末端344与第二末端345之间测量这些通路时具有各种横截面尺寸。如图20所示的散热片的形式中所见,应注意到,在第一末端344处开始的所述多个空气通路346大体来说具有比位于相对第二末端345处的相同空气通路346宽的横截面尺寸。所述多个通路的此横截面尺寸变化可相对于相应通路346提供至少第一空气冷却速度351和第二空气冷却速度352。应了解,这些第一和第二冷却空气速度各自相对于散热片330沿着其长度分别提供在第一末端344与第二末端345之间测量的显著不同程度的冷却。因此,本发明的散热片330不仅提供用于在任何燃料电池堆叠40、70、90、130和160内的个别燃料电池堆叠模块180之间维持小于约10%的大体上恒定操作温度的手段,而且进一步提供用于无论质子交换薄膜燃料电池堆叠10内燃料电池堆叠模块180的位置如何均以大体上均匀方式显著冷却每一模块以为相应燃料电池模块中的每一者提供最佳操作效率的手段。
此外且现在参看图21且如较早论述,相同质子交换薄膜燃料电池堆叠布置160进一步提供了如相应框架181界定的空气通路206可具有可变的横截面面积。因此,应了解,本发明不仅提供用于改变相应导电散热片330中的每一者的导热质量的手段,而且借助于改变空气通路206的数目和横截面尺寸而提供可变量的空气,以便分别为质子交换薄膜燃料电池堆叠40、70、90、130和160提供操作上有效且大体上均匀的操作温度。
操作
相信本发明的所描述实施例的操作是容易明白的且在此点简要概述。
在其最广义方面的一者中,本发明涉及一种质子交换薄膜燃料电池堆叠40、70、90、130和160,其包含多个重复的串联电耦合的燃料电池堆叠模块180,所述燃料电池堆叠模块180通过小于每平方英寸约60磅的压缩力而以可密封方式安装在一起。在如图所见的布置中,燃料电池堆叠模块180各自具有在位于同一质子交换薄膜燃料电池堆叠内的燃料电池堆叠模块180中的任何其它者的小于约10%以内的操作温度。此压缩力向安装凸缘210施加质子交换薄膜密封力,其位于约5磅PSI到约50磅PSI的范围内。在如各图中所见的布置中,质子交换薄膜燃料电池堆叠40、70、90、130和160具有在第一与第二端板41、42;71、72;91、92;131、132;161与162之间测量的操作上有效的传导性,且所述操作上有效的传导性是在小于由第一和第二端板施加的压缩力的压力下实现的。这确实是相对于在此之前揭示的现有燃料电池堆叠来说为独特的,且其中这些现有技术装置的端板施加相当大的压缩力以利于适当的操作上有效的传导性,且进一步实现定位于其间的个别质子交换薄膜燃料电池组件的适当密封。另外,这些现有技术装置遭受与PEM堆叠的各种部分中不适当热累积及其操作上有效的传导性的可变性(鉴于不适当的水合)相关联的问题以及此项技术中众所周知的其它问题。
在如图所见的布置中,质子交换薄膜290的阳极侧291具有有源区域293。在本发明的一种可能形式中,质子交换薄膜290的有源区域293或相对于其成至少部分覆盖关系而定位的集电隔板251两者大体上没有用于容纳反应气体流30的预定通路。这确实是相对于先前质子交换薄膜燃料电池堆叠来说为独特且新颖的,其中在此之前已利用相当精细的预定通路来管理反应气体流且优化这些现有技术装置的性能。
本发明的另一方面涉及质子交换薄膜燃料电池堆叠40、70、90、130和160,其包含相对于彼此成大体上平行间隔关系而安置的第一和第二端板41、42;71、72;91、92;131、132;161和162;且多个重复的空气冷却的燃料电池堆叠模块180定位于第一与第二端板之间,且其串联电耦合在一起,且其中相应端板通过向相应燃料电池堆叠模块180中的每一者至少部分施加小于每平方英寸约60磅的压缩力而以可密封方式将相应燃料电池堆叠模块180耦合在一起,且其中质子交换薄膜燃料电池堆叠具有在第一与第二端板之间测量的改变小于约10%的操作温度分布。如较早说明,质子交换薄膜燃料电池堆叠具有在第一与第二端板之间测量的操作上有效的传导性,其是在小于由相应质子交换模块180经历的压缩力的压力下实现的。
本发明的另一方面涉及一种质子交换薄膜燃料电池堆叠模块180,其包含:质子交换薄膜290,其具有阳极侧291和阴极侧292;第一气体扩散层270,其相对于阳极侧291并置;第二气体扩散层300,其相对于阴极侧292并置;导电散热片330,其具有导热质量且相对于第二气体扩散层300并置;以及集电隔板251,其相对于第一气体扩散层270成欧姆电接触而并置。在如各图所见的布置中,所述多个燃料电池堆叠模块180串联电连接,且进一步安装在第一与第二端板41、42;71、72;91、92;131、132;161与162之间以形成燃料电池堆叠40、70、90、130和160。在所述图式中,第一燃料电池模块180的集电隔板251相对于第一端板并置,且其中远端的第二燃料电池模块180的散热片330相对于第二端板以受力关系而定位。第一和第二端板向所述多个质子交换薄膜燃料电池堆叠模块中的每一者提供小于每平方英寸约60磅的压缩力。
本发明的再一方面涉及一种质子交换薄膜燃料电池堆叠40、70、90、130和160,其包含多个重复的串联电耦合的燃料电池堆叠模块180,且所述燃料电池堆叠模块180通过小于每平方英寸约60磅的压缩力以可密封方式安装在一起,且其中相应燃料电池堆叠模块180进一步包括框架181到185,其分别具有内部周边边缘204和外部周边边缘203以及第一侧201和第二侧202。内部周边边缘204界定内部腔205,且其中相应框架181到185以操作定向自对准且配合地嵌套在一起。相应框架181到185各自界定空气通路206,所述空气通路206在内部周边边缘与外部周边边缘之间延伸且与其内部腔连通。
在本发明的再一方面中,提供一种质子交换薄膜燃料电池堆叠模块180且其进一步包含具有阳极侧291和阴极侧292的质子交换薄膜290,以及相对于阳极侧291并置的第一气体扩散层270。在此布置中,提供第二气体扩散层300且其相对于阴极侧292并置。再者,导电散热片330相对于第二气体扩散层300并置。再者,提供分别具有内部周边边缘204和外部周边边缘203以及第一侧201和第二侧202的框架181到185。在此布置中,内部周边边缘204分别在个别框架181到185内界定内部腔205。再者,质子交换薄膜290、分别第一气体扩散层270和第二气体扩散层300以及散热片330封闭在内部腔205内。再者,第一集电隔板251分别安装在相应框架181到185的第一侧201上。集电隔板251相对于第一气体扩散层270并置,以便形成燃料电池堆叠模块180。在如图所见的布置中,多个燃料电池堆叠模块180定位在第一与第二端板41、42;71、72;91、92;131、132;161与162之间且进一步串联电耦合在一起,且其中相应端板在相应燃料电池堆叠模块180中的每一者上施加小于每平方英寸约60磅的压缩力。在如各图所见的布置中,第一气体扩散层270和第二气体扩散层300分别至少部分包括多孔导电陶瓷材料层。此陶瓷材料层选自基本上由以下各项组成的群组:二硼化钛、二硼化锆、二硅化钼、二硅化钛、氮化钛、氮化锆、碳化钒、碳化钨及其复合物、层压物和固溶体。
本发明的另一方面涉及一种质子交换薄膜燃料电池堆叠40、70、90、130和160,且其包含多个重复的串联电耦合的燃料电池堆叠模块180,所述燃料电池堆叠模块180每一者界定内部腔205且进一步通过小于每平方英寸约60磅的压缩力以可密封方式安装在一起。再者,提供质子交换薄膜290且其相对于至少一个陶瓷气体扩散层270或300以操作定向而放置,且其进一步接纳在相应燃料电池堆叠模块180的腔205内。
在本发明的再一方面中,质子交换薄膜燃料电池堆叠40、70、90、130和160包含以大体上平行间隔关系而安置的第一和第二端板41、42;71、72;91、92;131、132;161和162,且多个重复的空气冷却的燃料电池堆叠模块180定位在第一与第二端板之间且串联电耦合在一起,且其进一步具有在第一与第二端板之间测量的操作上有效的传导性,所述操作上有效的传导性是在小于施加于所述多个所述燃料电池堆叠模块180中的每一者的压缩力的压力下实现的,且其进一步具有在第一与第二端板之间测量的大体上均匀的操作上有效的温度分布。
在本发明的再一方面中包含一种质子交换薄膜燃料电池堆叠模块180。模块180封闭具有阳极侧291和阴极侧292的质子交换薄膜290;且第一导电陶瓷层270相对于阳极侧并置。在本发明的此形式中,提供第二导电陶瓷层300且其相对于阴极侧并置;且导电散热片330相对于第二导电陶瓷层并置。在本发明的此形式中,提供框架181到185且其分别具有内部周边边缘204和外部周边边缘203。再者,框架181到185具有第一侧201和第二侧202,且其中内部周边边缘204界定内部腔205。在本发明的此形式中,相应框架181到185各自界定空气通路206,所述空气通路206分别在内部周边边缘204与外部周边边缘203之间延伸且与其内部腔205连通。质子交换薄膜290、分别第一导电陶瓷层270和第二导电陶瓷层300以及导电散热片330各自大体上封闭在内部腔205内。再者,在本发明的此形式中,集电隔板251安装在框架181到185的第一侧201上,且其相对于第一导电陶瓷层270并置。
在本发明的再一方面中,提供一种质子交换薄膜燃料电池堆叠40、70、90、130和160,且其包含各自具有阳极侧291和阴极侧292的多个质子交换薄膜290以及相对于质子交换薄膜290中的每一者的阳极侧291并置的第一多孔导电陶瓷层270。再者,在本发明的此形式中,第二多孔导电陶瓷层300相对于质子交换薄膜290中的每一者的阴极侧292并置,且其中质子交换薄膜燃料电池堆叠具有小于约200摄氏度的操作温度。
在本发明的再一形式中,提供一种质子交换薄膜燃料电池堆叠模块180且其包含具有阳极侧291和阴极侧292的质子交换薄膜290,且其中阳极侧291和阴极侧292各自具有有源区域表面293。在本发明的一种形式中,质子交换薄膜290的阳极侧291或阴极侧292中的至少一者的有源区域表面293和/或例如分别第一陶瓷气体扩散层270或第二陶瓷气体扩散层300和/或集电隔板251等燃料电池组件具有相对于其至少成部分覆盖关系而定向的区,且其大体上没有用于容纳反应气体流30的预定通路。
在如提供的本发明的每一形式中,质子交换薄膜燃料电池模块70各自包含分别具有面向内部的表面341和面向外部的表面342的导电散热片330,其分别接纳在框架181到185中的每一者的内部腔205中,且其中面向内部的表面341相对于第二气体扩散层300并置,且散热片330的面向外部的表面342分别相对于框架181到185中的每一者的第二侧202以大体上共面定向而定向。再者,散热片相对于分别由相应框架181到185界定的空气通路206以流体流动关系而定向。再者,散热片330具有大于约10mm的厚度尺寸以及导热质量,所述导热质量可在个别质子交换薄膜燃料电池堆叠模块180之间变化,以便提供分别在第一与第二端板41、42;71、72;91、92;131、132;161与162之间测量的操作上均匀的温度。
因此,将看到,描述一种质子交换薄膜燃料电池堆叠电力系统10,且其提供优于在此之前已利用的常规质子交换薄膜燃料电池堆叠的各种各样的优点。本发明是空气冷却的,容易制造和组装,且在小于将个别质子交换薄膜模块180密封在一起所必要的压力量的压力下实现操作上有效的传导性,且进一步提供用于以成本有效方式产生电力且在此之前并不可能的方便手段。

Claims (9)

1.一种质子交换薄膜燃料电池堆叠,其包括:
多个串联布置的质子交换薄膜燃料电池模块;
各质子交换薄膜燃料电池模块包括:
框架,所述框架具有内部和外部周边边缘以及第一和第二侧,且其中所述内部周边边缘界定相对于所述第二侧的内部腔;
集电隔板,其安装在所述框架的所述第一侧上;
质子交换薄膜,其具有阳极侧和阴极侧;
第一导电多孔层,其相对于所述阳极侧并置;
第二导电多孔层,其相对于所述阴极侧并置;
导电散热片,其相对于所述第二导电多孔层并置;且
其中所述框架界定空气通路,所述空气通路在所述内部与外部周边边缘之间延伸且与其所述内部腔连通,且其中所述质子交换薄膜、所述第一和第二导电多孔层以及所述导电散热片有效地封闭于所述内部腔中以使所述框架的第二表面和所述导电散热片均接触相邻质子交换薄膜燃料电池模块的框架的集电隔板;
其中所述多个串联布置的质子交换薄膜燃料电池模块通过相邻于各相邻质子交换薄膜燃料电池模块的阴极侧而定位的各质子交换薄膜燃料电池模块的阳极侧而与另一质子交换薄膜燃料电池模块相关联以形成所述质子交换薄膜燃料电池堆叠。
2.根据权利要求1所述的质子交换薄膜燃料电池堆叠,其中所述空气通路为水平定向或其中所述空气通路为垂直定向。
3.根据权利要求1所述的质子交换薄膜燃料电池堆叠,其中所述框架的所述第一侧与所述相邻质子交换薄膜燃料电池模块的框架的第二侧自对准。
4.根据权利要求1所述的质子交换薄膜燃料电池堆叠,其中所述框架包括形成于其中的在所述框架的所述第一侧和所述框架的所述第二侧之间的燃料空气通路,其与形成于所述相邻质子交换薄膜燃料电池模块的框架的第一侧和第二侧之间的另一燃料空气通路处于流体流动关系。
5.根据权利要求1所述的质子交换薄膜燃料电池堆叠,其中所述导电散热片是波纹或折叠散热片、挤压金属散热片、机加工金属散热片或铸件金属散热片。
6.一种包括权利要求1所述的质子交换薄膜燃料电池堆叠的质子交换薄膜燃料电池堆叠电力系统。
7.根据权利要求6所述的质子交换薄膜燃料电池堆叠电力系统,其进一步包括:另一质子交换薄膜燃料电池堆叠以及数字控制系统,所述数字控制系统经配置以控制所述质子交换薄膜燃料电池堆叠和所述另一质子交换薄膜燃料电池堆叠。
8.一种质子交换薄膜燃料电池堆叠系统,其包括:
多个串联布置的质子交换薄膜燃料电池模块;
各质子交换薄膜燃料电池模块包括:
框架,所述框架具有通常相对的第一和第二主表面以及外部周边定义的表面和内部腔定义的表面,所述外部周边定义的表面和所述内部腔定义的表面的每一者在所述第一和第二主表面之间延伸以定义所述框架的宽度;
集电隔板,其邻近于所述框架的所述第一主表面而安装;
质子交换薄膜,其具有阳极侧和阴极侧;
第一导电多孔层,其相对于所述阳极侧并置;
第二导电多孔层,其相对于所述阴极侧并置;以及
导电散热片,其相对于所述第二导电多孔层并置;
其中所述框架的宽度足以有效地嵌套接收所述质子交换薄膜、所述第一和第二导电多孔层以及所述第一和第二主表面之间的导电散热片,以使所述框架的所述第二主表面和所述导电散热片均接触各相邻质子交换薄膜燃料电池模块的框架的集电隔板;
其中所述多个串联布置的质子交换薄膜燃料电池模块通过相邻于各相邻质子交换薄膜燃料电池模块的阴极侧而定位的各质子交换薄膜燃料电池模块的阳极侧而与另一质子交换薄膜燃料电池模块相关联以形成质子交换薄膜燃料电池堆叠。
9.根据权利要求8所述的质子交换薄膜燃料电池堆叠系统,其中所述内部腔定义的表面经配置以将所述质子交换薄膜、所述第一和第二导电多孔层以及所述导电散热片自动对准,且其中所述框架进一步包括自对准特征,所述自对准特征经配置以将所述框架与各相邻质子交换薄膜燃料电池模块的框架自动对准。
CN201310273456.0A 2007-05-08 2008-04-04 质子交换薄膜燃料电池堆叠和燃料电池堆叠模块 Active CN103401011B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/800,994 US8026020B2 (en) 2007-05-08 2007-05-08 Proton exchange membrane fuel cell stack and fuel cell stack module
US11/800,994 2007-05-08
CN200880015047.8A CN101711440B (zh) 2007-05-08 2008-04-04 质子交换薄膜燃料电池堆叠和燃料电池堆叠模块

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200880015047.8A Division CN101711440B (zh) 2007-05-08 2008-04-04 质子交换薄膜燃料电池堆叠和燃料电池堆叠模块

Publications (2)

Publication Number Publication Date
CN103401011A CN103401011A (zh) 2013-11-20
CN103401011B true CN103401011B (zh) 2015-11-18

Family

ID=39969832

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200880015047.8A Active CN101711440B (zh) 2007-05-08 2008-04-04 质子交换薄膜燃料电池堆叠和燃料电池堆叠模块
CN201310273456.0A Active CN103401011B (zh) 2007-05-08 2008-04-04 质子交换薄膜燃料电池堆叠和燃料电池堆叠模块

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200880015047.8A Active CN101711440B (zh) 2007-05-08 2008-04-04 质子交换薄膜燃料电池堆叠和燃料电池堆叠模块

Country Status (4)

Country Link
US (3) US8026020B2 (zh)
CN (2) CN101711440B (zh)
BR (1) BRPI0810205A2 (zh)
WO (1) WO2008140659A1 (zh)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026020B2 (en) 2007-05-08 2011-09-27 Relion, Inc. Proton exchange membrane fuel cell stack and fuel cell stack module
US9293778B2 (en) * 2007-06-11 2016-03-22 Emergent Power Inc. Proton exchange membrane fuel cell
US8642230B2 (en) * 2007-06-11 2014-02-04 Panasonic Corporation Electrode-membrane-frame assembly for fuel cell, polyelectrolyte fuel cell and manufacturing method therefor
US9614232B2 (en) * 2007-12-28 2017-04-04 Altergy Systems Modular unit fuel cell assembly
TWI369809B (en) * 2008-10-22 2012-08-01 Iner Aec Executive Yuan Load device for sofc stack and a high temperature using the same
US20100124683A1 (en) * 2008-11-20 2010-05-20 Mti Microfuel Cells Inc. Heat spreader assembly for use with a direct oxidation fuel cell
EP2483961B1 (en) * 2009-09-30 2017-12-06 Bloom Energy Corporation Fuel cell stack compression devices and methods
TWI395366B (zh) * 2010-03-12 2013-05-01 Iner Aec Executive Yuan 固態氧化物燃料電池堆在封裝製程中元件間最佳接觸壓力量測方法及其量測裝置
DE102010022217A1 (de) * 2010-05-20 2011-11-24 Li-Tec Battery Gmbh Galvanische Zelle
US8795872B2 (en) 2010-07-26 2014-08-05 Enerdel, Inc. Battery cell system with interconnected frames
TWI422096B (zh) * 2010-10-21 2014-01-01 Atomic Energy Council 易組裝及抽換之平板型固態氧化物燃料電池電池堆結構
US9812684B2 (en) 2010-11-09 2017-11-07 GM Global Technology Operations LLC Using elastic averaging for alignment of battery stack, fuel cell stack, or other vehicle assembly
US9061403B2 (en) 2011-07-21 2015-06-23 GM Global Technology Operations LLC Elastic tube alignment system for precisely locating an emblem lens to an outer bezel
US9067379B2 (en) 2012-04-28 2015-06-30 GM Global Technologies Operations LLC Stiffened multi-layer compartment door assembly utilizing elastic averaging
US10038201B2 (en) 2012-06-13 2018-07-31 Audi Ag Fuel cell component with embedded power connector
US9618026B2 (en) 2012-08-06 2017-04-11 GM Global Technology Operations LLC Semi-circular alignment features of an elastic averaging alignment system
US9061715B2 (en) 2012-08-09 2015-06-23 GM Global Technology Operations LLC Elastic cantilever beam alignment system for precisely aligning components
US9463538B2 (en) 2012-08-13 2016-10-11 GM Global Technology Operations LLC Alignment system and method thereof
US9644277B2 (en) 2012-08-14 2017-05-09 Loop Energy Inc. Reactant flow channels for electrolyzer applications
CN104718651B (zh) 2012-08-14 2017-07-28 环能源公司 燃料电池流动沟道和流场
GB201503750D0 (en) 2012-08-14 2015-04-22 Powerdisc Dev Corp Ltd Fuel cells components, stacks and modular fuel cell systems
CN102922863B (zh) * 2012-11-05 2014-11-12 中国科学院长春应用化学研究所 一种阻醇型高导电率质子交换膜的制备方法
US9556890B2 (en) 2013-01-31 2017-01-31 GM Global Technology Operations LLC Elastic alignment assembly for aligning mated components and method of reducing positional variation
US9156506B2 (en) 2013-03-27 2015-10-13 GM Global Technology Operations LLC Elastically averaged alignment system
US9388838B2 (en) 2013-04-04 2016-07-12 GM Global Technology Operations LLC Elastic retaining assembly for matable components and method of assembling
US9278642B2 (en) 2013-04-04 2016-03-08 GM Global Technology Operations LLC Elastically deformable flange locator arrangement and method of reducing positional variation
US9382935B2 (en) 2013-04-04 2016-07-05 GM Global Technology Operations LLC Elastic tubular attachment assembly for mating components and method of mating components
US9297400B2 (en) 2013-04-08 2016-03-29 GM Global Technology Operations LLC Elastic mating assembly and method of elastically assembling matable components
US9067625B2 (en) 2013-04-09 2015-06-30 GM Global Technology Operations LLC Elastic retaining arrangement for jointed components and method of reducing a gap between jointed components
US9447840B2 (en) 2013-06-11 2016-09-20 GM Global Technology Operations LLC Elastically deformable energy management assembly and method of managing energy absorption
US9243655B2 (en) 2013-06-13 2016-01-26 GM Global Technology Operations LLC Elastic attachment assembly and method of reducing positional variation and increasing stiffness
US9488205B2 (en) 2013-07-12 2016-11-08 GM Global Technology Operations LLC Alignment arrangement for mated components and method
US9303667B2 (en) 2013-07-18 2016-04-05 Gm Global Technology Operations, Llc Lobular elastic tube alignment system for providing precise four-way alignment of components
US9863454B2 (en) 2013-08-07 2018-01-09 GM Global Technology Operations LLC Alignment system for providing precise alignment and retention of components of a sealable compartment
US9458876B2 (en) 2013-08-28 2016-10-04 GM Global Technology Operations LLC Elastically deformable alignment fastener and system
US9463831B2 (en) 2013-09-09 2016-10-11 GM Global Technology Operations LLC Elastic tube alignment and fastening system for providing precise alignment and fastening of components
US9457845B2 (en) 2013-10-02 2016-10-04 GM Global Technology Operations LLC Lobular elastic tube alignment and retention system for providing precise alignment of components
US9511802B2 (en) 2013-10-03 2016-12-06 GM Global Technology Operations LLC Elastically averaged alignment systems and methods
US9669774B2 (en) 2013-10-11 2017-06-06 GM Global Technology Operations LLC Reconfigurable vehicle interior assembly
US9481317B2 (en) 2013-11-15 2016-11-01 GM Global Technology Operations LLC Elastically deformable clip and method
US9447806B2 (en) 2013-12-12 2016-09-20 GM Global Technology Operations LLC Self-retaining alignment system for providing precise alignment and retention of components
US9428123B2 (en) 2013-12-12 2016-08-30 GM Global Technology Operations LLC Alignment and retention system for a flexible assembly
US9216704B2 (en) 2013-12-17 2015-12-22 GM Global Technology Operations LLC Elastically averaged strap systems and methods
US9446722B2 (en) 2013-12-19 2016-09-20 GM Global Technology Operations LLC Elastic averaging alignment member
US9599279B2 (en) 2013-12-19 2017-03-21 GM Global Technology Operations LLC Elastically deformable module installation assembly
US9238488B2 (en) 2013-12-20 2016-01-19 GM Global Technology Operations LLC Elastically averaged alignment systems and methods
US9541113B2 (en) 2014-01-09 2017-01-10 GM Global Technology Operations LLC Elastically averaged alignment systems and methods
US9463829B2 (en) 2014-02-20 2016-10-11 GM Global Technology Operations LLC Elastically averaged alignment systems and methods
US9428046B2 (en) 2014-04-02 2016-08-30 GM Global Technology Operations LLC Alignment and retention system for laterally slideably engageable mating components
US9657807B2 (en) 2014-04-23 2017-05-23 GM Global Technology Operations LLC System for elastically averaging assembly of components
DE102014209208A1 (de) * 2014-05-15 2015-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lufttemperierter Brennstoffzellenstapel mit Strömungsverteiler zur Verringerung des Temperaturgradienten im Brennstoffzellenstapel
US9429176B2 (en) 2014-06-30 2016-08-30 GM Global Technology Operations LLC Elastically averaged alignment systems and methods
JP6434723B2 (ja) * 2014-07-01 2018-12-05 住友電気工業株式会社 膜電極複合体、膜電極複合体の製造方法、燃料電池及び燃料電池の製造方法
EP3012892B1 (fr) * 2014-10-24 2017-07-19 Swiss Hydrogen SA Dispositif électrochimique à empilement
US9758110B2 (en) 2015-01-12 2017-09-12 GM Global Technology Operations LLC Coupling system
US10211479B2 (en) 2015-01-29 2019-02-19 Bloom Energy Corporation Fuel cell stack assembly and method of operating the same
US10000126B2 (en) * 2015-04-15 2018-06-19 Ford Global Technologies, Llc Power-module assembly and method
US9919608B2 (en) * 2015-04-15 2018-03-20 Ford Global Technologies, Llc Power-module assembly for a vehicle
JP6236103B2 (ja) * 2016-03-01 2017-11-22 本田技研工業株式会社 燃料電池スタック
JP7022073B2 (ja) 2016-03-22 2022-02-17 ループ エナジー インコーポレイテッド 温度管理のための燃料電池の流れ場の設計
CN107799851B (zh) * 2016-09-06 2019-11-26 有生科技有限公司 燃料电池装置
DE102017101515A1 (de) 2017-01-26 2018-07-26 Audi Ag Brennstoffzellenstapel und Brennstoffzellensystem mit einem solchen
US10153497B2 (en) * 2017-03-02 2018-12-11 Saudi Arabian Oil Company Modular electrochemical cell and stack design
US20180298544A1 (en) * 2017-04-17 2018-10-18 Greg O'Rourke High-Efficiency Washer-Dryer System
US10566646B2 (en) * 2017-08-08 2020-02-18 Bloom Energy Corporation Fuel cell stack containing external electrode for corrosion mitigation
US10916793B2 (en) 2017-10-06 2021-02-09 Bloom Energy Corporation Method for joining a ceramic matrix composite to dense ceramics for improved joint strength
KR102575712B1 (ko) * 2017-11-07 2023-09-07 현대자동차주식회사 연료전지 스택
CN109802198A (zh) * 2018-12-05 2019-05-24 宁波石墨烯创新中心有限公司 复合式电源系统及其控制方法
JP7103985B2 (ja) * 2019-03-18 2022-07-20 本田技研工業株式会社 燃料電池車両
CN109921059B (zh) * 2019-03-28 2023-11-24 浙江高成绿能科技有限公司 一种简化风冷阴极封闭式燃料电池系统
US11271241B1 (en) 2020-09-01 2022-03-08 Chuni Lal Ghosh Stackable fuel cell
CN114614040A (zh) * 2020-12-09 2022-06-10 中国科学院大连化学物理研究所 一种间隔冷却燃料电池电堆
WO2023220432A2 (en) * 2022-05-13 2023-11-16 Zeroavia Ltd Run fuel cell coolant through cathode intercooler
CN116706124A (zh) * 2023-08-08 2023-09-05 武汉氢能与燃料电池产业技术研究院有限公司 固体氧化物燃料电池发电系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108005A (zh) * 1993-04-30 1995-09-06 德·诺拉·帕尔梅利有限公司 设有离子交换膜的和双极金属板的改进电化学电池

Family Cites Families (352)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3134697A (en) 1959-11-03 1964-05-26 Gen Electric Fuel cell
NL259578A (zh) 1959-12-31 1900-01-01
US3183123A (en) * 1962-03-19 1965-05-11 Allis Chalmers Mfg Co Fuel cell electrode
US3297487A (en) * 1964-10-16 1967-01-10 Du Pont Fuel cell
US3346421A (en) 1963-12-30 1967-10-10 Exxon Research Engineering Co Transition metal electrode
DE1496176C3 (de) * 1964-06-12 1975-02-27 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Katalysatoren für Brennstoffelektroden von Brennstoffelementen mit saurem Elektrolyten
US3494174A (en) 1968-01-30 1970-02-10 Varian Associates Gas chromatography apparatus
DE1815690C3 (de) * 1968-12-19 1975-01-30 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Kontaktierung einer Gasdiffusionselektrode für elektrochemische Zellen
DE1947512A1 (de) 1969-09-19 1971-04-08 Kleinewefers Soehne J Vorrichtung zum kontinuierlichen Befeuchten einer laufenden Bahn aus Papier,Gewebe oder anderen Materialien
US3756579A (en) 1971-07-15 1973-09-04 Electrohome Ltd Humidifier
US4017426A (en) 1971-12-22 1977-04-12 Groupement Atomique Alsacienne Atlantique Highly porous conductive ceramics and a method for the preparation of same
US4076899A (en) * 1973-05-03 1978-02-28 E. I. Du Pont De Nemours And Company Electrochemical gas electrode
DE2809815C3 (de) * 1978-03-07 1981-05-21 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Brennstoffzelle mit einer den Elektrolyten chemisch und physikalisch adsorbierenden Matrixschicht
US4192906A (en) 1978-07-10 1980-03-11 Energy Research Corporation Electrochemical cell operation and system
US4324636A (en) 1979-04-26 1982-04-13 Dankese Joseph P Ion exchange membranes
US4243508A (en) 1979-04-26 1981-01-06 Dankese Joseph P Electrochemical apparatus
US4324844A (en) * 1980-04-28 1982-04-13 Westinghouse Electric Corp. Variable area fuel cell cooling
US4276355A (en) 1980-04-28 1981-06-30 Westinghouse Electric Corp. Fuel cell system configurations
US4310605A (en) 1980-09-22 1982-01-12 Engelhard Minerals & Chemicals Corp. Fuel cell system
US4444851A (en) * 1982-06-28 1984-04-24 Energy Research Corporation Fuel cell stack
US4508793A (en) * 1982-09-08 1985-04-02 Sanyo Electric Co., Ltd. Air-cooled fuel cell system
US4746363A (en) 1982-12-30 1988-05-24 Corning Glass Works Reaction sintered cermet
USH16H (en) 1984-03-02 1986-01-07 The United States Of America As Represented By The United States Department Of Energy Fuel cell electrode and method of preparation
FR2564251B1 (fr) 1984-05-11 1986-09-12 Alsthom Atlantique Perfectionnements aux structures des piles a combustible
FR2564249B1 (fr) * 1984-05-11 1986-09-12 Alsthom Atlantique Amenagements aux structures des piles a combustible
FR2564250B1 (fr) 1984-05-11 1986-09-12 Alsthom Atlantique Ameliorations aux structures des piles a combustible
FR2568412B1 (fr) 1984-07-27 1986-10-17 Occidental Chem Co Perfectionnements aux structures des piles a combustible.
JPH0238377Y2 (zh) 1984-09-19 1990-10-16
DE3576248D1 (de) 1984-10-17 1990-04-05 Hitachi Ltd Verfahren zur herstellung einer flexiblen brennstoffzellenelektrode, ausgehend von kohlepapier.
EP0180538A1 (en) 1984-10-23 1986-05-07 Mitsubishi Jukogyo Kabushiki Kaisha Solid electrolyte fuel cell and method for preparing it
JPS61116769A (ja) 1984-11-12 1986-06-04 Sanyo Electric Co Ltd 燃料電池のスタツク枠体締付装置
JPH06101348B2 (ja) 1985-03-19 1994-12-12 三洋電機株式会社 燃料電池の温度制御装置
US4648955A (en) 1985-04-19 1987-03-10 Ivac Corporation Planar multi-junction electrochemical cell
CN1010723B (zh) 1985-06-07 1990-12-05 三洋电机株式会社 燃料电池集电设备
US4795536A (en) 1985-07-10 1989-01-03 Allied-Signal Inc. Hydrogen separation and electricity generation using novel three-component membrane
JPS6217958A (ja) 1985-07-16 1987-01-26 Sanyo Electric Co Ltd 燃料電池発電システムの制御装置
US4797185A (en) 1985-07-19 1989-01-10 Allied-Signal Inc. Hydrogen separation and electricity generation using novel electrolyte membrane
US4647359A (en) 1985-10-16 1987-03-03 Prototech Company Electrocatalytic gas diffusion electrode employing thin carbon cloth layer
US4722873A (en) 1985-12-06 1988-02-02 Mitsubishi Denki Kabushiki Kaisha Fuel cell power generating system
US4661411A (en) 1986-02-25 1987-04-28 The Dow Chemical Company Method for depositing a fluorocarbonsulfonic acid polymer on a support from a solution
US4727191A (en) 1986-07-10 1988-02-23 Ethyl Corporation Purification of (hydrocarbylthio) aromatic amines
US4797190A (en) 1986-10-06 1989-01-10 T And G. Corporation Ionic semiconductor materials and applications thereof
US4728585A (en) 1986-12-24 1988-03-01 International Fuel Cells Corporation Fuel cell stack with combination end-pressure plates
US4876115A (en) 1987-01-30 1989-10-24 United States Department Of Energy Electrode assembly for use in a solid polymer electrolyte fuel cell
US4849253A (en) 1987-05-29 1989-07-18 International Fuel Cell Corporation Method of making an electrochemical cell electrode
US4826741A (en) 1987-06-02 1989-05-02 Ergenics Power Systems, Inc. Ion exchange fuel cell assembly with improved water and thermal management
JPS6451331A (en) 1987-08-20 1989-02-27 Kureha Chemical Ind Co Ltd Proton-conductive substance and its production
US4804592A (en) 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
JPH07105241B2 (ja) 1987-11-10 1995-11-13 富士電機株式会社 燃料電池のマニホールド
US4769297A (en) 1987-11-16 1988-09-06 International Fuel Cells Corporation Solid polymer electrolyte fuel cell stack water management system
US4826742A (en) 1988-01-21 1989-05-02 International Fuel Cells Corporation Water and heat management in solid polymer fuel cell stack
US4973531A (en) 1988-02-19 1990-11-27 Ishikawajima-Harima Heavy Industries Co., Ltd. Arrangement for tightening stack of fuel cell elements
US4849308A (en) 1988-03-17 1989-07-18 The United States Of America As Represented By The United States Department Of Energy Manifold seal for fuel cell stack assembly
US4818637A (en) 1988-05-20 1989-04-04 United Technologies Corporation Hydrogen/halogen fuel cell with improved water management system
US4863813A (en) 1988-09-15 1989-09-05 Bell Communications Research, Inc. Primary source of electrical energy using a mixture of fuel and oxidizer
EP0406523A1 (en) 1989-07-07 1991-01-09 Osaka Gas Co., Ltd. Fuel cell
US4982309A (en) 1989-07-17 1991-01-01 National Semiconductor Corporation Electrodes for electrical ceramic oxide devices
US4994331A (en) 1989-08-28 1991-02-19 International Fuel Cells Corporation Fuel cell evaporative cooling using fuel as a carrier gas
US5009968A (en) 1989-09-08 1991-04-23 International Fuel Cells Corporation Fuel cell end plate structure
US4983472A (en) * 1989-11-24 1991-01-08 International Fuel Cells Corporation Fuel cell current collector
DK166747B1 (da) 1989-12-05 1993-07-05 Topsoe Haldor As Braendselscelle og braendselscellestabel
US4973530A (en) 1989-12-21 1990-11-27 The United States Of America As Represented By The United States Department Of Energy Fuel cell water transport
US5117482A (en) 1990-01-16 1992-05-26 Automated Dynamics Corporation Porous ceramic body electrical resistance fluid heater
US5069985A (en) 1990-02-15 1991-12-03 International Fuel Cells Corporation Plaque fuel cell stack
DE69015802T2 (de) 1990-03-01 1995-05-11 Tanaka Precious Metal Ind Struktur zum Einbau einer Brennstoffzelle.
US5053294A (en) 1990-04-10 1991-10-01 Hughes Aircraft Company Planar sodium-sulfur electrical storage cell
US5094928A (en) * 1990-04-20 1992-03-10 Bell Communications Research, Inc. Modular fuel cell assembly
US5302269A (en) 1990-06-11 1994-04-12 The Dow Chemical Company Ion exchange membrane/electrode assembly having increased efficiency in proton exchange processes
US5164060A (en) 1990-06-11 1992-11-17 The Dow Chemical Company Ion exchange membrane having increased efficiency in proton exchange processes
WO1992002057A1 (en) 1990-07-24 1992-02-06 Kabushiki Kaisha Toshiba Separator and its manufacturing method
US5084144A (en) 1990-07-31 1992-01-28 Physical Sciences Inc. High utilization supported catalytic metal-containing gas-diffusion electrode, process for making it, and cells utilizing it
US5132193A (en) 1990-08-08 1992-07-21 Physical Sciences, Inc. Generation of electricity with fuel cell using alcohol fuel
US5395705A (en) 1990-08-31 1995-03-07 The Dow Chemical Company Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
GB9023091D0 (en) 1990-10-24 1990-12-05 Ici Plc Composite membranes and electrochemical cells containing them
US5192627A (en) 1990-11-13 1993-03-09 Energy Partners, Inc. Closed loop reactant/product management system for electrochemical galvanic energy device
CH679620A5 (zh) 1990-12-11 1992-03-13 Sulzer Ag
US5547776A (en) * 1991-01-15 1996-08-20 Ballard Power Systems Inc. Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams
US5366818A (en) 1991-01-15 1994-11-22 Ballard Power Systems Inc. Solid polymer fuel cell systems incorporating water removal at the anode
US5234777A (en) 1991-02-19 1993-08-10 The Regents Of The University Of California Membrane catalyst layer for fuel cells
US5200278A (en) 1991-03-15 1993-04-06 Ballard Power Systems, Inc. Integrated fuel cell power generation system
WO1992017888A1 (en) 1991-04-04 1992-10-15 W.L. Gore & Associates, Inc. Electrically conductive gasket materials
EP0524326B1 (en) * 1991-07-20 1995-03-15 Osaka Gas Co., Ltd. Fuel cell
US5219673A (en) 1991-08-23 1993-06-15 Kaun Thomas D Cell structure for electrochemical devices and method of making same
US5252410A (en) 1991-09-13 1993-10-12 Ballard Power Systems Inc. Lightweight fuel cell membrane electrode assembly with integral reactant flow passages
JPH06176771A (ja) 1991-09-13 1994-06-24 Tanaka Kikinzoku Kogyo Kk 燃料電池用イオン交換膜の構造
US5185220A (en) 1991-10-25 1993-02-09 M-C Power Corporation Fuel cell clamping force equalizer
JPH05144444A (ja) 1991-11-25 1993-06-11 Toshiba Corp 燃料電池およびそれに用いる電極の製造方法
US5248566A (en) 1991-11-25 1993-09-28 The United States Of America As Represented By The United States Department Of Energy Fuel cell system for transportation applications
US5242764A (en) * 1991-12-17 1993-09-07 Bcs Technology, Inc. Near ambient, unhumidified solid polymer fuel cell
US5262249A (en) 1991-12-26 1993-11-16 International Fuel Cells Corporation Internally cooled proton exchange membrane fuel cell device
US5264299A (en) 1991-12-26 1993-11-23 International Fuel Cells Corporation Proton exchange membrane fuel cell support plate and an assembly including the same
WO1993013566A1 (en) 1991-12-26 1993-07-08 International Fuel Cells, Inc. Plate-shaped fuel cell component and a method of making the same
US5187025A (en) * 1992-02-03 1993-02-16 Analytic Power Corp. Unitized fuel cell structure
JP3245929B2 (ja) 1992-03-09 2002-01-15 株式会社日立製作所 燃料電池及びその応用装置
JP3352716B2 (ja) 1992-03-31 2002-12-03 株式会社東芝 固体高分子電解質型燃料電池装置
US5364711A (en) 1992-04-01 1994-11-15 Kabushiki Kaisha Toshiba Fuel cell
US5272017A (en) 1992-04-03 1993-12-21 General Motors Corporation Membrane-electrode assemblies for electrochemical cells
US5266421A (en) 1992-05-12 1993-11-30 Hughes Aircraft Company Enhanced membrane-electrode interface
US5350643A (en) 1992-06-02 1994-09-27 Hitachi, Ltd. Solid polymer electrolyte type fuel cell
EP0574791B1 (de) 1992-06-13 1999-12-22 Aventis Research & Technologies GmbH & Co. KG Polymerelektrolyt-Membran und Verfahren zu ihrer Herstellung
JP3135991B2 (ja) * 1992-06-18 2001-02-19 本田技研工業株式会社 燃料電池および燃料電池スタック締め付け方法
US5736269A (en) * 1992-06-18 1998-04-07 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack and method of pressing together the same
GB2268619B (en) 1992-07-01 1995-06-28 Rolls Royce & Ass A fuel cell
CA2142090A1 (en) 1992-08-10 1994-02-17 Karl Strasser Fuel cell and method for moistening the electrolyte
US5292600A (en) * 1992-08-13 1994-03-08 H-Power Corp. Hydrogen power cell
JP3360318B2 (ja) 1992-08-20 2002-12-24 富士電機株式会社 燃料電池発電装置
US5336570A (en) 1992-08-21 1994-08-09 Dodge Jr Cleveland E Hydrogen powered electricity generating planar member
US5232792A (en) * 1992-08-21 1993-08-03 M-C Power Corporation Cell separator plate used in fuel cell stacks
US5382478A (en) 1992-11-03 1995-01-17 Ballard Power Systems Inc. Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section
GB2272430B (en) 1992-11-11 1995-12-20 Vickers Shipbuilding & Eng Processing of fuel gases,in particular for fuel cells and apparatus therefor
US5362578A (en) 1992-12-08 1994-11-08 Institute Of Gas Technology Integrated main rail, feed rail, and current collector
US5273837A (en) 1992-12-23 1993-12-28 Corning Incorporated Solid electrolyte fuel cells
US5304430A (en) 1993-02-22 1994-04-19 Hughes Aircraft Company Acid-base concentration cell for electric power generation
WO1994019839A1 (fr) 1993-02-26 1994-09-01 Asahi Kasei Kogyo Kabushiki Kaisha Membrane d'echange d'ions pour cellule electrochimique
US5403675A (en) 1993-04-09 1995-04-04 Maxdem, Incorporated Sulfonated polymers for solid polymer electrolytes
US5338622A (en) 1993-04-12 1994-08-16 Ztek Corporation Thermal control apparatus
US5330860A (en) 1993-04-26 1994-07-19 E. I. Du Pont De Nemours And Company Membrane and electrode structure
DE4314745C1 (de) 1993-05-04 1994-12-08 Fraunhofer Ges Forschung Brennstoffzelle
US6183896B1 (en) * 1993-05-11 2001-02-06 Agency Of Industrial Science And Technology Solid oxide fuel cell and a carbon direct-oxidizing-type electrode for the fuel cell
DE4318818C2 (de) 1993-06-07 1995-05-04 Daimler Benz Ag Verfahren und Vorrichtung zur Bereitstellung von konditionierter Prozessluft für luftatmende Brennstoffzellensysteme
US5635039A (en) 1993-07-13 1997-06-03 Lynntech, Inc. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
DE4324907A1 (de) 1993-07-24 1995-01-26 Dornier Gmbh Verschalten von Brennstoffzellen
US5372896A (en) 1993-09-20 1994-12-13 The United States Of America As Represented By The Secretary Of The Army Treated solid polymer electrolyte membrane for use in a fuel cell and fuel cell including the treated solid polymer electrolyte membrane
US5773162A (en) 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
US5358620A (en) 1993-10-13 1994-10-25 Valence Technology, Inc. Allyl polyelectrolytes
US5413878A (en) 1993-10-28 1995-05-09 The United States Of America As Represented By The Department Of Energy System and method for networking electrochemical devices
DE4340486C1 (de) 1993-11-27 1995-06-01 Forschungszentrum Juelich Gmbh Brennstoffzelle und Verfahren zur Herstellung der Brennstoffzelle
US5686200A (en) 1993-12-22 1997-11-11 Ballard Power Systems Inc. Electrochemical fuel cell assembly with compliant compression mechanism
US5470671A (en) 1993-12-22 1995-11-28 Ballard Power Systems Inc. Electrochemical fuel cell employing ambient air as the oxidant and coolant
JPH07220743A (ja) 1994-01-27 1995-08-18 Kansai Electric Power Co Inc:The 燃料電池、そのバイポーラ板、およびバイポーラ板の製造方法
US5547777A (en) * 1994-02-23 1996-08-20 Richards Engineering Fuel cell having uniform compressive stress distribution over active area
BE1008456A3 (nl) 1994-06-07 1996-05-07 Vito Werkwijze ter vervaardiging van een gasdiffusie elektrode.
NO180176C (no) 1994-06-30 1997-02-26 Norske Stats Oljeselskap Strömoppsamleranordning for en brenselcellestabel
KR0123727B1 (ko) * 1994-08-17 1997-12-09 김광호 연료전지의 적층체
US5486430A (en) * 1994-09-01 1996-01-23 Ballard Power Systems Inc. Internal fluid manifold assembly for an electrochemical fuel cell stack array
US5484666A (en) * 1994-09-20 1996-01-16 Ballard Power Systems Inc. Electrochemical fuel cell stack with compression mechanism extending through interior manifold headers
US5863671A (en) 1994-10-12 1999-01-26 H Power Corporation Plastic platelet fuel cells employing integrated fluid management
US5525436A (en) 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
US5629104A (en) * 1994-11-23 1997-05-13 Detroit Center Tool Modular electrical energy device
US6054230A (en) 1994-12-07 2000-04-25 Japan Gore-Tex, Inc. Ion exchange and electrode assembly for an electrochemical cell
US5514487A (en) * 1994-12-27 1996-05-07 Ballard Power Systems Inc. Edge manifold assembly for an electrochemical fuel cell stack
DE19513292C1 (de) 1995-04-07 1996-08-22 Siemens Ag Brennstoffzelle
US5543239A (en) 1995-04-19 1996-08-06 Electric Power Research Institute Electrode design for solid state devices, fuel cells and sensors
AU5780096A (en) * 1995-05-25 1996-12-11 Honda Giken Kabushiki Kaisha Fuel cell and method for its control
GB2311237B (en) 1995-06-07 1999-04-14 Gore & Ass Porous composite
US5654109A (en) 1995-06-30 1997-08-05 The Dow Chemical Company Composite fuel cell membranes
US5827602A (en) 1995-06-30 1998-10-27 Covalent Associates Incorporated Hydrophobic ionic liquids
US5879826A (en) * 1995-07-05 1999-03-09 Humboldt State University Foundation Proton exchange membrane fuel cell
US20020127452A1 (en) 1995-08-25 2002-09-12 Ballard Power Systems Inc. Electrochemical fuel cell with an electrode having an in-plane nonuniform structure
US5607785A (en) 1995-10-11 1997-03-04 Tanaka Kikinzoku Kogyo K.K. Polymer electrolyte electrochemical cell and process of preparing same
US5747185A (en) * 1995-11-14 1998-05-05 Ztek Corporation High temperature electrochemical converter for hydrocarbon fuels
DE19544323A1 (de) 1995-11-28 1997-06-05 Magnet Motor Gmbh Gasdiffusionselektrode für Polymerelektrolytmembran-Brennstoffzellen
US6183898B1 (en) 1995-11-28 2001-02-06 Hoescht Research & Technology Deutschland Gmbh & Co. Kg Gas diffusion electrode for polymer electrolyte membrane fuel cells
US5624769A (en) * 1995-12-22 1997-04-29 General Motors Corporation Corrosion resistant PEM fuel cell
JP3413012B2 (ja) 1996-03-18 2003-06-03 株式会社東芝 溶融炭酸塩型燃料電池
US6054228A (en) * 1996-06-06 2000-04-25 Lynntech, Inc. Fuel cell system for low pressure operation
US5925039A (en) 1996-06-12 1999-07-20 Iti Medical Technologies, Inc. Electrosurgical instrument with conductive ceramic or cermet and method of making same
IT1284072B1 (it) * 1996-06-26 1998-05-08 De Nora Spa Cella elettrochimica a membrana provvista di elettrodi a diffusione gassosa contattati da portacorrente metallici lisci e porosi a
US6051343A (en) 1996-09-25 2000-04-18 Tdk Corporation Polymeric solid electrolyte and lithium secondary cell using the same
US5964991A (en) 1996-09-26 1999-10-12 Ngk Insulators, Ltd. Sintered laminated structures, electrochemical cells and process for producing such sintered laminated structures
US5798187A (en) * 1996-09-27 1998-08-25 The Regents Of The University Of California Fuel cell with metal screen flow-field
US5773161A (en) 1996-10-02 1998-06-30 Energy Research Corporation Bipolar separator
US6037073A (en) * 1996-10-15 2000-03-14 Lockheed Martin Energy Research Corporation Bipolar plate/diffuser for a proton exchange membrane fuel cell
US5789091C1 (en) * 1996-11-19 2001-02-27 Ballard Power Systems Electrochemical fuel cell stack with compression bands
US5707755A (en) 1996-12-09 1998-01-13 General Motors Corporation PEM/SPE fuel cell
US6080290A (en) 1997-01-03 2000-06-27 Stuart Energy Systems Corporation Mono-polar electrochemical system with a double electrode plate
US6146780A (en) 1997-01-24 2000-11-14 Lynntech, Inc. Bipolar separator plates for electrochemical cell stacks
JP3583897B2 (ja) 1997-04-11 2004-11-04 三洋電機株式会社 燃料電池
US6329094B1 (en) 1997-05-14 2001-12-11 Sanyo Electric Co., Ltd. Polymer electrolyte fuel cell showing stable and outstanding electric-power generating characteristics
JP3988206B2 (ja) 1997-05-15 2007-10-10 トヨタ自動車株式会社 燃料電池装置
JP3769882B2 (ja) 1997-06-06 2006-04-26 トヨタ自動車株式会社 燃料電池装置および燃料電池装置の温度調整方法
US5989741A (en) 1997-06-10 1999-11-23 E.I. Du Pont De Nemours And Company Electrochemical cell system with side-by-side arrangement of cells
US5776625A (en) 1997-06-18 1998-07-07 H Power Corporation Hydrogen-air fuel cell
US6001502A (en) 1997-06-27 1999-12-14 Plug Power, L.L.C. Current conducting end plate of fuel cell assembly
US6416895B1 (en) 2000-03-09 2002-07-09 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
US6106964A (en) 1997-06-30 2000-08-22 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
US6232008B1 (en) 1997-07-16 2001-05-15 Ballard Power Systems Inc. Electrochemical fuel cell stack with improved reactant manifolding and sealing
JP2001510932A (ja) * 1997-07-16 2001-08-07 バラード パワー システムズ インコーポレイティド 電気化学的燃料電池における膜電極組立体(mea)のための弾性シールおよび該シールの製造方法
US6248469B1 (en) 1997-08-29 2001-06-19 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
JP3817045B2 (ja) 1997-09-12 2006-08-30 四国化成工業株式会社 溶融塩型高分子電解質
JP3481093B2 (ja) * 1997-09-22 2003-12-22 三洋電機株式会社 燃料電池用セルユニット
US6042959A (en) 1997-10-10 2000-03-28 3M Innovative Properties Company Membrane electrode assembly and method of its manufacture
US5916701A (en) 1997-10-30 1999-06-29 Lockheed Marin Tactical Defense Systems, Inc. Secured anode seal for a fuel cell
US6040072A (en) * 1997-11-19 2000-03-21 Lynntech, Inc. Apparatus and method for compressing a stack of electrochemical cells
US6096449A (en) 1997-11-20 2000-08-01 Avista Labs Fuel cell and method for controlling same
US6387556B1 (en) 1997-11-20 2002-05-14 Avista Laboratories, Inc. Fuel cell power systems and methods of controlling a fuel cell power system
US6030718A (en) * 1997-11-20 2000-02-29 Avista Corporation Proton exchange membrane fuel cell power system
US6077620A (en) 1997-11-26 2000-06-20 General Motors Corporation Fuel cell system with combustor-heated reformer
US5935726A (en) 1997-12-01 1999-08-10 Ballard Power Systems Inc. Method and apparatus for distributing water to an ion-exchange membrane in a fuel cell
WO1999030381A1 (en) 1997-12-10 1999-06-17 Minnesota Mining And Manufacturing Company Bis(perfluoroalkylsulfonyl)imide surfactant salts in electrochemical systems
US6194099B1 (en) 1997-12-19 2001-02-27 Moltech Corporation Electrochemical cells with carbon nanofibers and electroactive sulfur compounds
US5972530A (en) 1998-01-13 1999-10-26 Electrochem, Inc. Air-cooled, hydrogen-air fuel cell
DE19805683A1 (de) 1998-02-12 1999-08-19 Forschungszentrum Juelich Gmbh Bipolare Platte mit nichtmetallischer Beschichtung
US6297185B1 (en) 1998-02-23 2001-10-02 T/J Technologies, Inc. Catalyst
US6040076A (en) * 1998-03-03 2000-03-21 M-C Power Corporation One piece fuel cell separator plate
US6132895A (en) 1998-03-09 2000-10-17 Motorola, Inc. Fuel cell
US6024848A (en) * 1998-04-15 2000-02-15 International Fuel Cells, Corporation Electrochemical cell with a porous support plate
JP3632468B2 (ja) 1998-04-22 2005-03-23 トヨタ自動車株式会社 燃料電池用ガスセパレータおよび該燃料電池用ガスセパレータを用いた燃料電池
JP4707786B2 (ja) 1998-05-07 2011-06-22 トヨタ自動車株式会社 燃料電池用ガスセパレータの製造方法
GB9810440D0 (en) 1998-05-16 1998-07-15 Secr Defence Multi element fuel cell system
US6117287A (en) * 1998-05-26 2000-09-12 Proton Energy Systems, Inc. Electrochemical cell frame
US6171374B1 (en) 1998-05-29 2001-01-09 Ballard Power Systems Inc. Plate and frame fluid exchanging assembly with unitary plates and seals
US6660419B1 (en) 1998-06-30 2003-12-09 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell
US6444346B1 (en) 1998-07-21 2002-09-03 Matsushita Electric Industrial Co., Ltd. Fuel cells stack
EP1108268B1 (de) 1998-08-10 2003-03-19 Siemens Aktiengesellschaft Vorrichtung und verfahren zur nutzung der abwärme einer luftgekühlten brennstoffzellenbatterie
US6117577A (en) 1998-08-18 2000-09-12 Regents Of The University Of California Ambient pressure fuel cell system
EP0981175B1 (en) 1998-08-20 2012-05-02 Panasonic Corporation Polymer electrolyte fuel cell stack
DE19840517A1 (de) 1998-09-04 2000-03-16 Manhattan Scientifics Inc Gasdiffusionsstruktur senkrecht zur Membran von Polymerelektrolyt-Membran Brennstoffzellen
US6207312B1 (en) 1998-09-18 2001-03-27 Energy Partners, L.C. Self-humidifying fuel cell
GB9821156D0 (en) * 1998-09-29 1998-11-25 Nat Power Plc Manufacturable electrochemical cell
US6174616B1 (en) * 1998-10-07 2001-01-16 Plug Power Inc. Fuel cell assembly unit for promoting fluid service and design flexibility
US6287717B1 (en) 1998-11-13 2001-09-11 Gore Enterprise Holdings, Inc. Fuel cell membrane electrode assemblies with improved power outputs
US6124051A (en) * 1998-11-13 2000-09-26 Phoenix Analysis And Design Technologies Fuel cell stack with novel cooling and gas distribution systems
US6180275B1 (en) 1998-11-18 2001-01-30 Energy Partners, L.C. Fuel cell collector plate and method of fabrication
US6194095B1 (en) * 1998-12-15 2001-02-27 Robert G. Hockaday Non-bipolar fuel cell stack configuration
GB9901337D0 (en) * 1999-01-21 1999-03-10 Capital Controls Ltd Membrane-supporting frame assembly for an electrolytic cell
US6761990B1 (en) * 1999-01-21 2004-07-13 Asahi Glass Company, Limited Solid polymer electrolyte fuel cell
US7416803B2 (en) 1999-01-22 2008-08-26 California Institute Of Technology Solid acid electrolytes for electrochemical devices
US6602631B1 (en) * 1999-01-26 2003-08-05 Lynntech Power Systems, Ltd. Bonding electrochemical cell components
US6214487B1 (en) 1999-02-01 2001-04-10 Motorola, Inc. Integral sensors for monitoring a fuel cell membrane and methods of monitoring
US7550216B2 (en) 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
US6110612A (en) * 1999-04-19 2000-08-29 Plug Power Inc. Structure for common access and support of fuel cell stacks
US6890677B2 (en) 1999-05-06 2005-05-10 Sandia Corporation Fuel cell and membrane
US6503654B2 (en) * 1999-05-19 2003-01-07 George A. Marchetti Thin graphite bipolar plate with associated gaskets and carbon cloth flow-field for use in an ionomer membrane fuel cell
US6403245B1 (en) * 1999-05-21 2002-06-11 Microcoating Technologies, Inc. Materials and processes for providing fuel cells and active membranes
EP1063717B1 (en) 1999-06-22 2011-09-28 Sanyo Electric Co., Ltd. Stable and high-performance fuel cell
US6159626A (en) 1999-07-06 2000-12-12 General Motors Corporation Fuel cell system logic for differentiating between rapid and normal shutdown commands
CA2309025A1 (en) 1999-07-06 2001-01-06 General Motors Corporation Fuel cell stack monitoring and system control
WO2001004097A2 (en) 1999-07-08 2001-01-18 Covalent Associates, Inc. Cyclic delocalized cations connected by spacer groups
US6451471B1 (en) 1999-07-15 2002-09-17 Teledyne Energy Systems, Inc. Conductivity fuel cell collector plate and method of fabrication
EP1073138B1 (en) 1999-07-26 2012-05-02 Tigers Polymer Corporation Sealing structure of fuel cell and process for molding rubber packing
US6200698B1 (en) 1999-08-11 2001-03-13 Plug Power Inc. End plate assembly having a two-phase fluid-filled bladder and method for compressing a fuel cell stack
US6635378B1 (en) 1999-08-16 2003-10-21 Hybrid Power Generation System, Llc Fuel cell having improved condensation and reaction product management capabilities
US6322919B1 (en) 1999-08-16 2001-11-27 Alliedsignal Inc. Fuel cell and bipolar plate for use with same
US6358641B1 (en) * 1999-08-20 2002-03-19 Plug Power Inc. Technique and arrangement to align fuel cell plates
US6218039B1 (en) * 1999-08-25 2001-04-17 Plug Power, Inc. Clamping apparatus and method for a fuel cell
US6280870B1 (en) * 1999-08-26 2001-08-28 Plug Power Inc. Combined fuel cell flow plate and gas diffusion layer
US6383677B1 (en) 1999-10-07 2002-05-07 Allen Engineering Company, Inc. Fuel cell current collector
US6649031B1 (en) 1999-10-08 2003-11-18 Hybrid Power Generation Systems, Llc Corrosion resistant coated fuel cell bipolar plate with filled-in fine scale porosities and method of making the same
US6428921B1 (en) 1999-10-22 2002-08-06 General Motors Corporation Fuel cell stack compression method and apparatus
US6350539B1 (en) 1999-10-25 2002-02-26 General Motors Corporation Composite gas distribution structure for fuel cell
US6406806B1 (en) 1999-11-09 2002-06-18 General Motors Corporation Fuel cell voltage monitoring and system control
US6720105B2 (en) 1999-11-17 2004-04-13 Neah Power Systems, Inc. Metallic blocking layers integrally associated with fuel cell electrode structures and fuel cell electrode stack assemblies
US6255012B1 (en) 1999-11-19 2001-07-03 The Regents Of The University Of California Pleated metal bipolar assembly
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
DE19960815A1 (de) 1999-12-16 2001-07-19 Siemens Ag Brennstoffzellenblock
US6447943B1 (en) 2000-01-18 2002-09-10 Ramot University Authority For Applied Research & Industrial Development Ltd. Fuel cell with proton conducting membrane with a pore size less than 30 nm
JP2001216987A (ja) 2000-01-31 2001-08-10 Honda Motor Co Ltd 燃料電池用加湿システム
US6770394B2 (en) * 2000-02-11 2004-08-03 The Texas A&M University System Fuel cell with monolithic flow field-bipolar plate assembly and method for making and cooling a fuel cell stack
DE10007763B4 (de) 2000-02-20 2017-04-06 General Motors Corp. (N.D.Ges.D. Staates Delaware) Brennstoffzellenanordnung
CA2400677C (en) 2000-03-08 2010-03-02 Ballard Power Systems Inc. Membrane exchange humidifier
JP4366872B2 (ja) 2000-03-13 2009-11-18 トヨタ自動車株式会社 燃料電池用ガスセパレータおよび該燃料電池用セパレータの製造方法並びに燃料電池
JP3606514B2 (ja) 2000-04-13 2005-01-05 松下電器産業株式会社 積層型燃料電池システム
US6686080B2 (en) 2000-04-18 2004-02-03 Plug Power Inc. Fuel cell systems
US6544679B1 (en) * 2000-04-19 2003-04-08 Millennium Cell, Inc. Electrochemical cell and assembly for same
US7326480B2 (en) * 2000-05-17 2008-02-05 Relion, Inc. Fuel cell power system and method of controlling a fuel cell power system
US6468682B1 (en) 2000-05-17 2002-10-22 Avista Laboratories, Inc. Ion exchange membrane fuel cell
JP4575551B2 (ja) 2000-05-30 2010-11-04 本田技研工業株式会社 燃料電池用ガス供給装置
WO2002009208A2 (en) * 2000-07-20 2002-01-31 Proton Energy Systems Compression member for proton exchange membrane electrochemical cell system
US6566004B1 (en) 2000-08-31 2003-05-20 General Motors Corporation Fuel cell with variable porosity gas distribution layers
US6531238B1 (en) 2000-09-26 2003-03-11 Reliant Energy Power Systems, Inc. Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly
AU2001294752A1 (en) * 2000-09-27 2002-04-08 Proton Energy Systems, Inc. Integral membrane support and frame structure
US6779351B2 (en) 2000-09-27 2004-08-24 Idalex Technologies, Inc. Fuel cell systems with evaporative cooling and methods for humidifying and adjusting the temperature of the reactant streams
US6869720B2 (en) * 2000-09-27 2005-03-22 Proton Energy Systems, Inc. Method and apparatus for maintaining compression of the active area in an electrochemical cell
US6485854B1 (en) 2000-10-19 2002-11-26 General Motors Corporation Gas-liquid separator for fuel cell system
CA2325768A1 (en) 2000-11-10 2002-05-10 Karl T. Chuang Electrochemical process for oxidation of propane to propylene
US6733639B2 (en) * 2000-11-13 2004-05-11 Akzo Nobel N.V. Electrode
DE10061959A1 (de) 2000-12-13 2002-06-20 Creavis Tech & Innovation Gmbh Kationen-/protonenleitende, mit einer ionischen Flüssigkeit infiltrierte keramische Membran, Verfahren zu deren Herstellung und die Verwendung der Membran
US6497975B2 (en) 2000-12-15 2002-12-24 Motorola, Inc. Direct methanol fuel cell including integrated flow field and method of fabrication
US6613468B2 (en) * 2000-12-22 2003-09-02 Delphi Technologies, Inc. Gas diffusion mat for fuel cells
JP2004527902A (ja) 2000-12-23 2004-09-09 ルー,ウエン イオン性液体を内蔵する長寿命共役ポリマー電気化学デバイス
JP3596761B2 (ja) * 2000-12-27 2004-12-02 松下電器産業株式会社 高分子電解質型燃料電池
DE10100455A1 (de) 2001-01-08 2002-07-11 Creavis Tech & Innovation Gmbh Neuartige Polymerbindersysteme mit ionischen Flüssigkeiten
US6423437B1 (en) 2001-01-19 2002-07-23 Enable Fuel Cell Corporation Passive air breathing fuel cells
US6977122B2 (en) 2001-03-27 2005-12-20 The University Of Chicago Proton conducting membrane for fuel cells
RU2183370C1 (ru) * 2001-04-12 2002-06-10 ЗАО Индепендент Пауэр Технолоджис "ИПТ" Модуль топливных элементов и батарея на его основе
US6913848B2 (en) 2001-05-31 2005-07-05 Plug Power Inc. Fuel cell reactant control
US6720101B1 (en) 2001-06-08 2004-04-13 Palcan Fuel Cell Co. Ltd Solid cage fuel cell stack
US6753036B2 (en) 2001-07-16 2004-06-22 The Regents Of The University Of California Method for fabrication of electrodes
US6838205B2 (en) * 2001-10-10 2005-01-04 Lynntech, Inc. Bifunctional catalytic electrode
US6653009B2 (en) 2001-10-19 2003-11-25 Sarnoff Corporation Solid oxide fuel cells and interconnectors
US6805990B2 (en) 2001-10-24 2004-10-19 Fuelcell Energy, Ltd. Flat plate fuel cell stack
US6863838B2 (en) 2001-10-25 2005-03-08 3M Innovative Properties Company Zwitterionic imides
US6703155B2 (en) * 2001-11-13 2004-03-09 Avista Laboratories, Inc. Power tap device, fuel cell stack, and method of dividing a fuel cell stack
US20030170521A1 (en) * 2001-11-16 2003-09-11 Zhengming Zhang Proton exchange membrane (PEM) for a fuel cell
CA2413591A1 (en) 2001-11-28 2003-05-28 Ballard Power Systems Inc. Fuel cell system for operation at pressures below the pressure of the surrounding environment and method of operation thereof
DE60236314D1 (en) 2001-11-29 2010-06-17 Ube Industries Polyelektrolytzusammensetzungen
US20030134178A1 (en) * 2001-12-21 2003-07-17 3M Innovative Properties Company Precompressed gas diffusion layers for electrochemical cells
US6716549B2 (en) 2001-12-27 2004-04-06 Avista Laboratories, Inc. Fuel cell having metalized gas diffusion layer
CN100349314C (zh) * 2002-01-03 2007-11-14 尼电源系统公司 其上具有共形导电层的多孔燃料电池电极结构
US6844101B2 (en) * 2002-01-04 2005-01-18 Ballard Power Systems Inc. Separator with fluid distribution features for use with a membrane electrode assembly in a fuel cell
US6890680B2 (en) 2002-02-19 2005-05-10 Mti Microfuel Cells Inc. Modified diffusion layer for use in a fuel cell system
JP2003272671A (ja) 2002-03-15 2003-09-26 Riken Corp 固体高分子電解質型燃料電池のセルユニット
WO2003083982A2 (en) * 2002-03-22 2003-10-09 Richards Engineering Power generation system having fuel cell modules
DE10214872A1 (de) 2002-04-04 2003-10-16 Creavis Tech & Innovation Gmbh Zusammensetzungen aus kationischen Polymeren mit Amidinium-Gruppen und ionischen Flüssigkeiten
US7018732B2 (en) 2002-04-15 2006-03-28 Hydrogenics Corporation System and method for management of gas and water in fuel cell system
US6989216B2 (en) * 2002-04-29 2006-01-24 Texaco Ovonic Fuel Cell Llc Fuel cell with overmolded electrode assemblies
US6828057B2 (en) 2002-04-29 2004-12-07 Energy Conversion Devices, Inc. Fuel cell with framed electrodes
US6764786B2 (en) 2002-05-08 2004-07-20 Utc Fuel Cells, Llc Fuel cell stack having an improved pressure plate and current collector
WO2003098730A2 (en) * 2002-05-16 2003-11-27 Ballard Power Systems Inc. Electric power plant with adjustable array of fuel cell systems
US7270906B2 (en) 2002-06-24 2007-09-18 Delphi Technologies, Inc. Solid-oxide fuel cell module for a fuel cell stack
US20040077519A1 (en) 2002-06-28 2004-04-22 The Procter & Gamble Co. Ionic liquid based products and method of using the same
US7060169B2 (en) 2002-08-14 2006-06-13 Mst Technology Gmbh Electrochemical cell for gas sensor
US6838202B2 (en) * 2002-08-19 2005-01-04 General Motors Corporation Fuel cell bipolar plate having a conductive foam as a coolant layer
US6841285B2 (en) 2002-08-28 2005-01-11 Ballard Power Systems Inc. Impregnation of ion-exchange membranes to improve electrochemical fuel cell performance
US6794068B2 (en) 2002-08-29 2004-09-21 General Motors Corporation Fuel cell stack design and method of operation
US7005209B1 (en) * 2002-10-04 2006-02-28 The Texas A&M University System Fuel cell stack assembly
US7001687B1 (en) * 2002-10-04 2006-02-21 The Texas A&M University System Unitized MEA assemblies and methods for making same
US7390591B2 (en) 2002-10-15 2008-06-24 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
JP4351431B2 (ja) 2002-10-28 2009-10-28 本田技研工業株式会社 燃料電池スタック
US7067209B2 (en) 2002-10-31 2006-06-27 Utc Fuel Cells, Llc High temperature reactant recycling for PEM fuel cell humidification
US20040086775A1 (en) 2002-11-06 2004-05-06 Lloyd Greg A. Fuel cell having a variable gas diffusion layer
US7205062B2 (en) * 2002-11-22 2007-04-17 The Research Foundation Of State University Of New York Fuel cell stack
US7294425B2 (en) 2002-12-23 2007-11-13 Semgreen, L.P. Channel-less proton exchange membrane fuel cell
US7070874B2 (en) 2002-12-24 2006-07-04 Fuelcell Energy, Inc. Fuel cell end unit with integrated heat exchanger
US6887610B2 (en) * 2003-01-21 2005-05-03 General Motors Corporation Joining of bipolar plates in proton exchange membrane fuel cell stacks
US7309535B2 (en) 2003-02-12 2007-12-18 Ovonic Fuel Cell Company, Llc Air breathing fuel cell having bi-cell unit cells
US6960404B2 (en) 2003-02-27 2005-11-01 General Motors Corporation Evaporative cooled fuel cell
US7195836B2 (en) * 2003-03-07 2007-03-27 General Motors Corporation Polymeric separator plates
US6916572B2 (en) * 2003-03-19 2005-07-12 Ird Fuel Cells A/S Interlocking isolator for fuel cells
US7247398B2 (en) 2003-04-14 2007-07-24 General Motors Corporation System stack contingency and efficiency switching
US6939636B2 (en) * 2003-04-28 2005-09-06 Relion, Inc. Air cooled fuel cell module
US20050118185A1 (en) * 2003-06-18 2005-06-02 Cell Center Cologne Gmbh Recombinant immunoreceptors
US7205057B2 (en) * 2003-06-19 2007-04-17 Angstrom Power Inc. Integrated fuel cell and heat sink assembly
TWM248035U (en) 2003-07-11 2004-10-21 Asia Pacific Fuel Cell Tech Cooling device of air-cooling type fuel battery set
CN1571204A (zh) 2003-07-14 2005-01-26 亚太燃料电池科技股份有限公司 气冷式燃料电池组的冷却装置
US6986959B2 (en) 2003-07-22 2006-01-17 Utc Fuel Cells, Llc Low temperature fuel cell power plant operation
US6942941B2 (en) * 2003-08-06 2005-09-13 General Motors Corporation Adhesive bonds for metalic bipolar plates
US8172998B2 (en) 2003-08-21 2012-05-08 Virginia Tech Intellectual Properties, Inc. Ionic solvents used in ionic polymer transducers, sensors and actuators
WO2005027244A2 (en) 2003-09-10 2005-03-24 Hollingsworth & Vose Company Fuel cell gas diffusion layer
US6974648B2 (en) 2003-09-12 2005-12-13 General Motors Corporation Nested bipolar plate for fuel cell and method
US8227134B2 (en) 2003-10-15 2012-07-24 University Of Iowa Research Foundation Self-hydrating membrane electrode assemblies for fuel cells
JP4217891B2 (ja) 2003-10-17 2009-02-04 信越化学工業株式会社 燃料電池用電解質膜及び燃料電池用電解質膜・電極接合体の製造方法
US7067214B2 (en) 2003-10-27 2006-06-27 Utc Fuel Cells, Llc PEM fuel cell stack assembly with isolated internal coolant manifold
US7071121B2 (en) * 2003-10-28 2006-07-04 Hewlett-Packard Development Company, L.P. Patterned ceramic films and method for producing the same
US7160642B2 (en) 2003-10-30 2007-01-09 Hewlett-Packard Development Company, L.P. Fuel cell stack assembly and method of fabrication
US7297428B2 (en) 2003-10-31 2007-11-20 3M Innovative Properties Company Registration arrangement for fuel cell assemblies
US20050106440A1 (en) 2003-11-19 2005-05-19 Honda Motor Co., Ltd. Proton conductor and method for producing the same
US7214442B2 (en) 2003-12-02 2007-05-08 Los Alamos National Security, Llc High specific power, direct methanol fuel cell stack
CA2499104A1 (en) 2004-03-11 2005-09-11 Celgard Llc Direct methanol fuel cell
BRPI0511950A (pt) 2004-06-10 2008-01-29 California Inst Of Techn métodos de produzir um material de eletrólito para uma célula de combustìvel de ácido sólido e de depositar um eletrólito sobre um substrato, célula de combustìvel, e, métodos de preparar partìculas de uma camada de eletrocatalisador para uma célula de combustìvel de ácido sólido, de depositar um eletrocatalisador sobre um substrato e de selar uma célula de combustìvel
US20060134498A1 (en) * 2004-12-22 2006-06-22 Hamm Robert L Fuel cell stack and method of making same
US20060199061A1 (en) 2005-03-02 2006-09-07 Fiebig Bradley N Water management in bipolar electrochemical cell stacks
US20070042252A1 (en) 2005-08-16 2007-02-22 Kazarinov Rudolf F Solid state, thin film proton exchange membrane for fuel cells
US20080032174A1 (en) 2005-11-21 2008-02-07 Relion, Inc. Proton exchange membrane fuel cells and electrodes
US7833645B2 (en) 2005-11-21 2010-11-16 Relion, Inc. Proton exchange membrane fuel cell and method of forming a fuel cell
US20080171255A1 (en) * 2006-08-09 2008-07-17 Ultracell Corporation Fuel cell for use in a portable fuel cell system
US20080138684A1 (en) * 2006-12-06 2008-06-12 3M Innovative Properties Company Compact fuel cell stack with uniform depth flow fields
US8026020B2 (en) 2007-05-08 2011-09-27 Relion, Inc. Proton exchange membrane fuel cell stack and fuel cell stack module
US9293778B2 (en) 2007-06-11 2016-03-22 Emergent Power Inc. Proton exchange membrane fuel cell
US8003274B2 (en) 2007-10-25 2011-08-23 Relion, Inc. Direct liquid fuel cell
US9614232B2 (en) 2007-12-28 2017-04-04 Altergy Systems Modular unit fuel cell assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108005A (zh) * 1993-04-30 1995-09-06 德·诺拉·帕尔梅利有限公司 设有离子交换膜的和双极金属板的改进电化学电池

Also Published As

Publication number Publication date
US8192889B2 (en) 2012-06-05
US20110300467A1 (en) 2011-12-08
BRPI0810205A2 (pt) 2014-10-21
US8026020B2 (en) 2011-09-27
CN103401011A (zh) 2013-11-20
WO2008140659A1 (en) 2008-11-20
US8597846B2 (en) 2013-12-03
CN101711440A (zh) 2010-05-19
US20080280178A1 (en) 2008-11-13
CN101711440B (zh) 2014-10-22
US20120214078A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
CN103401011B (zh) 质子交换薄膜燃料电池堆叠和燃料电池堆叠模块
US8110316B2 (en) Fuel cell
US9054350B2 (en) Fuel cell stack
US20050095485A1 (en) Fuel cell end plate assembly
US9318758B2 (en) SOFC stack with temperature adapted compression force means
EP2235778B1 (en) Modular unit fuel cell assembly
US10497949B2 (en) Electro-chemical reaction unit and fuel cell stack
US9147889B2 (en) Composite separator for polymer electrolyte membrane fuel cell and method for manufacturing the same
CN108091898A (zh) 用于燃料电池的极板和燃料电池垛
US20080014492A1 (en) Compression assembly, solid oxide fuel cell stack, a process for compression of the solid oxide fuel cell stack and its use
US10476087B2 (en) Fuel-cell power generation unit and fuel-cell stack
US20090123784A1 (en) Fuel cell module
JP5136051B2 (ja) 燃料電池
US20180159148A1 (en) Fuel cell stack and method for manufacturing fuel cell stack
JP2023144595A (ja) 電気化学反応セルスタック
CN115537860A (zh) 一种pem水电解制氢用的膜电极组件及其制备方法
CN117242208A (zh) 用于从水中生产氢气和氧气的水电解堆
CN113937327A (zh) 膜电极组件、燃料电池单体、燃料电池和车辆
JP2008251310A (ja) 燃料電池モジュール及び燃料電池
WO2013034163A1 (en) Fuel cell stack with thin endplate with integrated gas distribution tubes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180511

Address after: American New York

Patentee after: Emerging energy companies

Address before: Washington State

Patentee before: Relion Inc.

TR01 Transfer of patent right