CN1046031C - 多种水处理特性指示剂的同时监测方法 - Google Patents

多种水处理特性指示剂的同时监测方法 Download PDF

Info

Publication number
CN1046031C
CN1046031C CN93103672A CN93103672A CN1046031C CN 1046031 C CN1046031 C CN 1046031C CN 93103672 A CN93103672 A CN 93103672A CN 93103672 A CN93103672 A CN 93103672A CN 1046031 C CN1046031 C CN 1046031C
Authority
CN
China
Prior art keywords
performance indicators
water quality
emission spectrum
concentration
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN93103672A
Other languages
English (en)
Other versions
CN1079301A (zh
Inventor
J·理查森
G·G·恩斯特龙
J·A·凯利
L·M·凯
M·D·布力克豪斯
S·J·卡勒
K·J·施拉格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BISIDERBOEN Co Ltd
Original Assignee
Biological Environment Regulation Technology Co Ltd
BISIDERBOEN Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biological Environment Regulation Technology Co Ltd, BISIDERBOEN Co Ltd filed Critical Biological Environment Regulation Technology Co Ltd
Publication of CN1079301A publication Critical patent/CN1079301A/zh
Application granted granted Critical
Publication of CN1046031C publication Critical patent/CN1046031C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1813Water specific cations in water, e.g. heavy metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/182Water specific anions in water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods

Abstract

一种用于同时测定一种水质系统中的多种特性指示剂的浓度的方法,包括在波长范围为200至800nm内分析所述水质系统的光谱,并将化学统计学算法应用于该光谱,以同时测定这些特性指示剂的浓度。

Description

多种水处理特性指示剂的同时监测方法
本发明涉及一种用于分析水质系统中一些特性指示剂的方法,尤其是一种用于直接地、连续地和同时地分析水质系统中多种特性指示剂的方法,该方法使得有可能对该系统中的产物有效成分进行最佳控制。
工业系统、市政系统或公用事业系统中的水处理化学过程的运行和控制一般需要监测物理的和化学的这样两种特性指示剂,这些指示剂对于保护处理系统是十分主要的。被监测的化学的和物理的特性指示剂一般包括PH、特殊的阳离子和阴离子、无机的和有机的锅垢抑制剂、缓蚀剂、分散剂和合成聚合物等。成功地进行任何处理程序的关键在于经济原因。在该系统中化学药品的处理保持在最低水平,有时要保持在最高水平。
例如,冷却水、锅炉水和污水系统的控制分析一般仍然依靠手选取样。这些样品基本上是靠常规的人工技术进行分析,这些技术在时间上、经济上和人为误差可能性方面都带有明显的缺陷。事实上,对于大多数和工业水处理过程来说,分析就其性质而论反映的是过去的情况而不是动态的。
许多工业过程需要对工艺水系统进行不间断的监视和特殊的控制。这需要具有连续人工控制调节功能的、快速的、反复的分析,在这些调节装置中,传感器直接耦合到可以监测化学物质进料泵的计算机控制器上。最新的技术涉及利用由测定系统需求量(水流)的微处理机驱动的监测装置。另一种技术涉及测量加到该系统中的惰性成分(加入量与总物料量成正比)。上述两种方法中的任一个都不能提供对有效处理成分的直接分析,并且这两种方法都假定在该系统中有效处理成分的浓度是恒定比例,然而常常并不是这种情况。因此,这两种方法需要另外对有效处理成分进行分析,以保证抑制剂等处于正确的水平。
近来,紫外光、可见光和近红外光检测器已经被用来对多组分系统中的重金属污染物进行定量分析。利用紫外光、可见光、近红外光的吸收或发射光谱等进行的化学物质分析依赖于在整个紫外光和可见光范围内的许多特定波长上的相对吸收或发射特性。在光谱的紫外、可见和近红外(UV-VIS-NIR)区域的吸收和发射是在受紫外-可见光源照射时,在原子的键结构和价电子中出现的能级水平变化的结果。
吸收或发射光谱的重要特征就是它们的位置和强度,它们提供了一种可用来确定定性和定量特性的参数。这些数据是在一个波长范围内许多等距隔开的波长间隔所测的吸收或发射强度的函数。光吸收值由确定被溶液吸收的入射光和该溶液的摩尔浓度之间关系的比尔-朗伯定律来确定。按简化形式,比尔-朗伯定律可作如下说明:
A=abc其中A=被吸收光的总量;
a=确定该介质的吸收度的吸收系数;
b=吸收光程的长度;
c=该溶液的浓度。
吸收也可以借助于将通过一种吸收物质的透射光的密度与当光束中没有吸收物质时的光密度加以比较来加以说明:
T=(I/I0)    和
A=log(1/T)或
A=log(I0/I)=abc其中
T=透射系数;
A=吸收系数;
I=透射光密度;
I0=入射光密度。
根据对于溶液在这很宽的波长范围内所观察到的吸收或发射谱图对这些溶液进行定性和定量分析是可能的。因为所观测到的吸收或发射是溶液中所有的吸收或发射成分的函数。多组分系统或具有很高程度本底干扰的系统就使分析的问题大大地复杂化了。
最新的一些研究成果使得利用紫外-可见吸收或发射光谱学成为水处理领域中一种切实可行的技术。
光纤透镜允许分析器与待分析物质之间有相当大的距离。远距离分析器可以装有一个光源、检测器和电子部分。光纤透镜光缆将光源光传送到一个光导电极,在其中所述的光透过样品,然后被采集并通过一配合光缆被送回到检测器。光导电极可以插入一处理槽或流动液流中,而后在分折完成之后取下来,或为了连续地监测它们可以永久地安装在同一点。这些是两种类型的现场分析。此外,样品管线可以连接到一个含有所述光导电极的流通池上,这是在线分析。
阵列检测器允许按不连续的间隔同时检测很宽的波长范围。这就避免了需要靠在所述光源或在检测之前改变波长来形成若干间隔。相反,可以使用广谱光源,并可以充分加以检测。可以根据会有对分析有价值的吸收或发射特性的波长进行评价。不含对分析有价值的信息的波长和范围可以忽略不计,即使所述检测将包括来自整个范围的信息。
化学统计学可能是实现在线分析的技术中最有意义的进步。这一技术在D.Browm所著“化学统计学”[Anal.Chem.62,84R-101R(1990)]中作了很充分的说明,该文献在此全文加以引用作参考。
化学统计学将统计技术和图谱识别技术应用于化学分析。利用无反应剂紫外-可见-近红外光谱法对化学物质的浓度进行定量评价是依据算法,亦即被称为学习集合的校正顺序中所测参数。学习集合中包括大量已知的用于测定算法参数的已知样品。所需样品的数量取决于母液的复杂性和所存在的光谱干扰数量。这还取决于用于该算法的变是的。作为一种经验法则,样品数量应该至少是所使用的独立的变量的数量的10倍。在存在已知的和未知的干扰时,多样品校正的目的在于最大限度地减少干扰的作用。学习集合溶液必须能代表在由分析器测量的在线溶液中将要涉及的干扰和它们的变化率。
检测复杂化学物质母液中的多个成份的信息的传感器必须依靠真正有效力的分析算法(化学统计学技术),以便提取关于一个具体化学成分的信息。这些化学统计学技术将未知物与经过校正的标准和数据基线进行比较,以便完成先进的类型的聚点分析,并且从所用的未知物中提取其特性作为统计学的和数理的模型形式的信息。
最近,人们业已发现化学统计学技术对于分析水溶液介质(例如废水或其中可含有不同的金属以及其他化学成分的被污染的地下水)中的金属是很有用的。以上所述所有这些化学成分的浓度都可以单独地变化。一些独立成分分组接近的光谱图的搭按产生了一种溶液的光谱图象,所述这种溶液是一些独立成分的组合物。一种分析系统必须不仅能自动地检测所感兴趣的被分析物的某些明显的鉴别特征,它还必须能迅速地分析这些特性,以得出对这些被分析物定性鉴定和对其浓度的定量测量。并且,对于在可变化的本底中可能含有许多可能的干扰物的化学母液来说必须这样做。
Schlager等人的“利用光纤透镜紫外吸收光谱对有毒金属离子进行现场和在线的光谱监测”一文(1991)。公开了有关将化学统计学用于分析水中重金属的情况。Schlager等人的“利用使用新一代新型分析器的化学统计学技术的环境监测”一文(1991)公开了有关将化学统计学应用于环境监测领域的情况。全文被引用的这些参考文献并没有公开同时分析水质系统中多种特性指示剂的内容。
本发明的一个目的是提供一种同时分析水质系统中的多种特性指示剂的方法。
本发明的另一个目的就是提供一种实时地同时分析水质系统中的多种特性指示剂的方法。
本发明还有一个目的是提供一种同时分析水质系统中的多种特性指示剂而不使用衍生试剂的方法。
本发明的特点在于可以在水质系统中同时分析多种特性指示剂而无需用色谱法将一些独立的特性指示剂而无需用色谱法将一些独立的特性指示剂分离或将本底干扰物分离出来。
本发明再一个目的就是提供一种保持一种有效的水处理程序的方法,在该程序中可以对多种特性指示剂进行直接的和连续的监测,以检测其变化并提供控制输入信号,保证水质系统中的某些或全部特性指示剂处于最佳的剂量水平。
根据本发明,业已提供了一种用于同时测量水质系统中多种特性指示剂的浓度的方法,该方法包括分析波长范围在200对800nm的水质系统的紫外、可见和/或近红外光谱以及将化学统计学算法应用于该光谱以便同时确定这些特性指示剂的浓度。
根据本发明,还提供了一种用于同时测量水质系统中的多种特性指示剂以及一种或多种惰性示踪剂的方法,该方法包括分析波长范围为200至800nm的该水质系统的紫外、可见和/或近红外光谱以及将化学统计学算法应用于该光谱,以便同时确定这些特性指示剂和惰性示踪剂的浓度。
本发明涉及一种用于在存在本底液干扰物的条件下同时分析水质系统中的若干特性指示剂而无需昂贵和费时的分离和衍生技术的方法。该方法提供了一些极好的保持上述物料平衡以及利用惰性示踪物技术的极好的控制能力,而在此之前这是不可能的。正如这里所使用的那样,“特性指示剂”这一术语指的是有效处理成分,例如名垢抑制剂、缓蚀剂、润滑剂、金属工作介质、PH调节剂、分散剂、消泡剂、螯合剂、生物杀伤剂、防粘剂、沉淀剂以及可利用紫外、可见和/或近红外光谱测量吸收或发射特性的其它类似物质。这些东西一般是为了保护水质系统,减少维修费、提高效率和/或减少对环境的危害而加入到该系统中的处理剂化学物质。然而,根据本发明,对一些惰性示踪物进行监测和定量是可能的。所述那些示踪物是按与有效处理成分成比例的量加入水质系统的,它们与所述有效成分本身一样容易监测或者更容易监测。此外,还可以根据本发明监测该水质系统中的其它成分,这些成分包括自然产生的本底干扰成分。例如溶解的金属或其它污染物,也包括由于泄漏或工艺过程而带来的污染物。所述特性指示剂在200至2500nm,更好是230至800nm、最好是在230至346nm的波长范围内具有吸收或发射特性。
在这里使用的“水质系统”这一术语不仅指以水为主要成分的纯的水质系统,而且还指含水量少于50%的系统,例如水色油或油色水乳化液。这些系统包括钻孔液、润滑液、防冻液以及其它液体。
因此,现在我们已经公开了可以直接地和连续地利用紫外-可见-近红外光谱仪检测水质系统中的多种特性指示剂和/或一种或多种惰性示踪物的吸收或发射光谱技术。所述光谱仪可以监测离线样品,或在一个优选的实施例中可以装备一个现场或在线透镜插头。总的来说,本发明的方法涉及从一个水质系统中抽取样品,并在200至800nm的波长范围内分析该样品光谱谱图。该水质系统可以加以连续地监测,例如通过一个流通池,或可以采用一些个别的样品,并采用各种流动注射技术进行检测。
在一个优选的实施例中,检测器是一个具有200至800nm波长范围的在线UV-VIS-NIR二级管阵列光谱仪,还可以使用固定波长检测器,在这种检测器中一些独立的元件被固定在指定波长位置上,这些波长一般对应于那种具体的特性指示剂的吸收或发射最大值包括,但不限于分子荧光,原子发射,等。在这里使用电荷耦合器(CCD)分析仪也最可取得。
较为可取的是该检测器所具有的分辩率至少为10nm,更好为2nm,最好为1nm。对于在线光谱分析来说,介质流体需要通过光室(光导电极)。氙灯发出的光径由石英光纤透镜光缆穿过光导电极。所述光透过该溶液并且汇集入第二光纤透镜光缆,由第二光纤透镜光缆传递到光谱仪中。在该光谱仪中,所述光被转换为一种模拟电压,所述模拟电压而后被一台机内计算机读出,在所述计算机中将予先存储的去离子水扫描光谱从样品光谱中扣除,得出“真实的”光谱。
而后,利用化学统计学算法来在整个吸收或发射光谱上提取和分析那些专门用于对那些特定的特性指示剂进行定性和定量鉴定的特征。分析和控制水质系统中的特性指示剂的过程包括四个步骤。
A.定量-特性指示剂的吸收或发射光谱的定量被用来研究学习集合。这一过程一般包括对代表受监测的水质系统的本底母液中的已知浓度的几个特性指示剂样品进行扫描,并且最好包括对取自受监测的系统的一些真实样品进行扫描。把被检测的光谱的信息标以数值,这些数值为所述光谱指定了所述特性指示剂的已知浓度。
B.处理-对原始数据的处理减少了噪声并且为发挥化学统计学算法的作用选择了最佳条件,以便将已知的光谱与未知的光谱进行比较并影响多组分溶液的光谱的具体的特征,以便能对一些单独的特性指示剂进行分析。通常,完成对光谱的处理有助于分析多组分溶液或针对噪声或飘移进行调整。典型的技术包括使用所述吸收或发射光谱的一级或二级导数以及使用富里叶或Walsh变换。如果有两个原始光谱非常相似但不完全相同,检查它们被变换光谱可能会揭示出它们的差别。相反,如果差别是由于存在噪声或飘移而造成的,比较被变换光谱可以发现相似性在原始数据中并不明显。
C.分析-分析吸收或发射数据鉴别出一些个别的特性指示剂并被用来计算在该水质溶液中它们的浓度的近似值。一旦为不同浓度水平的溶剂中的一特性指示剂的一些样品建立起学习装置,就可以利用化学统计学技术进行校正并完成对一个未知溶液的分析。可以使用的化学统计学技术:
1.主要成分分析是一种强有力的变换技术,这种技术将一组相关的变量转化为被压缩得较小的一组不相关的变量。
这种变换的目的在于按以下这样一种方式变换座标系,这种方式就是使得将信息定在较原来的分布方式中更为少的数据上。这就使得通过将原来彼此高度相产的那些变量作为一个单个的整体加以处理而将该变量压缩。在主要成分分析后,一较小组不相关的变量将代表存在于原来那组变量中的大多数信息,但在以下的分析模式中运用起来要容易得多。
通常,2至4个主要成分是引起变量在85%至98%之间变化的原因。与一些具体的特性指示剂相关的主要成分将成为用来精确地估计化学物质浓度的参数。
主要成分分析是较为可取的用于本发明的化学统计学算法。在本发明的一个最佳实施例中,使用的是被变换的主要成分分析。在某些例子中,被减少的那组不相关的变量与所感兴趣的特性指示剂的相关性并不强。这可能是由于存在着其它被分析物或母液的效应。
2.回归分析。通常是多元线性回归,因为为了表征每一个特性指示剂使用了多个波长,并且因为通常监测的是多个特性指示剂。这种回归根据特性指示剂的特征中的明显的变量确定该特殊指示剂的已知浓度的值,然后利用这种信息来确定该信息的最佳配合平面,同时使用最小二乘方技术来确定该平面的每个界线。将未知变量的测量值与该平面配合以便识别该特性指示剂并给其未知的浓度以一个予先确定的值。这种技术一般限于相对来说“清楚”的系统,在该系统中没有明显数量的本底母液干扰。
3.判别或分析。在这种分析之中,在选自校正组的重要的波长处的吸收或发射变量用来使有关特性指示剂的已知浓度的信息组成为一些集合组,结果可以对线性制定界线加以限定以分离那些组。一种未知浓度的特性指示剂可以根据对一些重要的变量的检测与最接近的组匹配。一般说来,该未知浓度的特性指示剂被赋予一个它与之匹配的组的表示特征的值或平均值。这是非常有用的质量筛选技术。在这种技术中,根据所测出的所述样品与所述集合组的比较,该样品被划分为一些确定的种类。然而,为了得到在统计学上重要的结论,这种技术需要大量的基本数据。
D.比较。将由浓度测定而来的计算结果与予先设定的点加以比较就保证了在水质系统中所有的特性指示剂处于最佳剂量水平,而如果这些结果落在予先设定的点之外,则可以相应地对所述剂量加以修正。
在本发明的一个优选的实施例中,使用的是根据使用一级和二级导数任选项的主成分回归逼近法的多样品校正。主要成分的逐步回归允许根据最高的测量系数(r2)值来对每一个特性指示剂选择最精确的方法。
如果根据以上校正顺序所述测定系数仍然低,可以进行进一步的校正步骤。这涉及被变换的主要成分的概念。这样的变换考虑到将所有的有关一个具体的特性指示剂的全部相关信息都浓缩到一个单独的被变换的主要成分中。我们已经发现,使用被变换的主要成分为本发明提供了一种测定微量的UV-VIS-NIR样品的能力,这种样品使用很常见的化学统计学技术是不能定量的。
同时测量多个特性指示剂对于保证向所述水质系统施加保护作用的正确水平是必须的。在许多情况下,一种化学处理成分的作用可以因另一种处理成分的存在或缺乏而受到影响。例如,在冷却水中,流换缓蚀剂可以导致在该系统中腐蚀速率的增加。造成金属离子由于腐蚀而释放出来,可能对控制锅垢的化学物质的效果有很大影响,并且实际上可能使它们从该系统中沉淀出来。于是,如果不及时加以调整的话,一种特性指示剂成分的损失会直接导致另一种特性指示剂的损失。此外,如果单独进行锅垢抑制的注入速度,以补偿由于沉淀所造成的损失。如果沉淀继续生成,这样的一种举动就成问题了。这将增加锅垢的体积,而该系统就可能不能复原了。然而,如果能实现同时测量缓蚀剂和锅垢抑制剂这两种成分,那么就能将缓蚀剂的水平调加在到可接受的水平,然后再调整锅垢抑制剂的浓度。仅仅借助于同时监测该系统中每一种特性指示剂的水平就能做到之一点,并可以采取恰当的办法来解决这一问题。通过将本发明的这种监测装置连接到一个逻辑控制进料系统上,不论在任何时刻,整个工艺都能自动地保持缓蚀剂和锅垢抑制剂保持在最佳水平。
本发明的方法的另一个独特的优点在于能测量处理剂保留或剩余处理剂。在处理过程中,大多数特性指示剂都消耗到一定程度。对一物料中的惰性示踪物加有效成分的测量使得能够连续地测量这种公认的处理剂参数。目前的连续工艺过程没有一种能完成这种按术要求。例如,在这种系统中,将处理剂至少保持在最低水平是有利的。在一种磷酸盐/聚合物程序中,在污水调节过程中聚合物可能被消耗。监测聚合物在供水硬度不正常的条件下只会显示出需求量增加,这指示出缺乏化学药品的投放。监测一种惰性示踪物会显示出正确的物料输入水平。通过将两种测量结合起来并充分同计算机控制逻辑相耦合,将测定出处理剂保留量或剩余的聚合物。此外,一种关键的工艺参数将加以识别,这就是这样一种情况,即测定供水不正常的状态,使得在软化剂超过硬度的正常范围时采取正确的措施。正确的措施就是使软化剂再生。此外,有效成分的消耗也可以加以识别并加以定量,这是一个重要的控制概念。
本发明的方法同样可以用于与其他标准的监测技术组合,以提供对水质系统中的处理程序的强化的综合的控制。这些监测技术包括(但不限于)用于测量PH、电导率、氯气、选择性离子、沉淀物、总硬度的监测器或传感器、比色法、结垢、氧化/还原探头、浊度、折射率、质量平衡以及色谱技术,以及类似的技术和它们的组合。
无需进一步的改进,可以相信,本领域的一个熟练的技术人同利用前面的详细说明就可以将本发明运用的十分完善。提供以下的例子是为了根据本发明的原理来说明本发明,但并不能将它们解释为以任何形式(除所附权利要求书所指出的内容之外)来限制本发明。所有的组分和百分比除另外注明一律用重量表示。
                    实施例
在所给出的所有这些例子中应用了如下操作参数、校正方法和化学技术。
操作参数:在线分析仪
波长200-800nm
分辨率1-2nm    内部操作温度40℃
溶液光程长0.8cm化学统计学技术
学习集合规模(10一70)个样品
校正波长范围(在230-346nm范围内选30个波长位置
根据主要成分的吸收值回归(一级导数或二级导数)的校正。
根据在吸收光谱上的变换的主要成分(一级导数或二级导数)的校正。化学鉴定技术
所有的分析溶液都按体积标准制备。所采用的鉴定技术,包括离子色谱法(钼酸盐)和HPLC(甲苯基三唑)以及标准场试验技术,在样品中被称为“真实”。
用样品所代表的水表示水处理环境范围(0-50ppm钙硬度,锅炉水和冷却水)(50-1000ppm钙硬度,冷却水、工艺水、废水)的水化学样品。
表1给出在冷却水系统中所使用的不同类型的特性指示剂。
        表1    典型冷却水特性指示剂
铁金属缓蚀剂 非铁金属缓蚀剂 锅垢抑制剂 微生物杀伤剂
铬酸盐 TT SSS聚合物 生物杀伤剂A
钼酸盐 MBT SSS/MA聚合物 生物杀伤剂B
亚硝酸盐 BT HEDPA
磷酸盐
苯甲酸盐
DPS-48 (锌络合物),(镧络合物)
钛试剂 (锌络合物),(镧络合物)
表中简写词含义
生物杀伤剂A 5-氯-2-甲基-4-异噻唑啉-3-酮(8.6%)/2-甲基-4-异噻唑啉-3-酮(2.6%)
生物杀伤剂B 四羟基-3,5-二甲基-2H-1,3,5-三噻二嗪-2-硫酮
DPS-48 N,N,二(2-羟基-5-磺酸苯基)甘氨酸,钠盐
钛试剂 儿茶酚二磺酸
TT 甲苯基三唑
MBT 2-氢硫基苯并噻啉
BT 苯并三唑
SSS 苯乙烯磺酸钠
MA 马来酸酐
HEDPA 羟基亚乙基-1,1-二磺酸
表2表示在工业冷却水中同时测量三个特性指示剂。这三个指示剂分别代表一个中碳钢缓蚀剂(钼酸盐)、一个铜缓蚀剂(甲苯基三唑)和一个有机生物杀伤剂(四氧-3,5-二甲基-2H-1,3,5-噻二嗪-2-硫酮)。为每一感兴趣的被分析物选择被变换的主要成分。所选送的水的硬度范围为50-800ppm(以碳酸钙计)。
       表2    同时测量冷却水中三个特性指示剂
样品号 钼酸盐以M0 6+计,ppm 甲苯基三唑ppm 生物杀伤剂Bppm
真实值 测量值 真实值 测量值 真实值 测量值
1 3.78 4.20 14.4 13.06 97 115.0
2 4.5 4.74 2.0 3.30 100 91.1
3 1.64 1.46 10.0 11.80 91 96.8
4 0.84 1.04 5.20 5.80 101 89.2
5 4.4 4.69 2.50 2.50 119 120.8
6 1.33 1.26 0.86 1.29 71 76.8
7 1.71 1.34 0.95 0.82 71 61.7
8 4.98 5.47 7.93 8.15 91 88.3
平均相对误差%11.8% 21% 8.5%
表3说明同时测量水质母液中的两种成分。利用本发明的方法同时测定铁类金属缓蚀剂(钼酸盐)和聚合物锅垢抑制剂(SSS/MAA)聚合物。吸收率的经变换的主要成分选自20个样品学习组合。水的钙硬度为零。
         表3    同时测量水质母液中二个特性指示剂
样品号     钼酸盐以M0 6+ppm  SSS/MAA(25∶75)ppm
真实值     测量值  真实值    测量值
12345678910 1.02.504.03.35.01.85.80.54.52.9     1.012.514.043.365.091.815.880.514.562.90  3.502.05.01.24.56.02.92.50.74.0     3.562.024.971.264.515.962.862.450.734.01
平均相对误差%                            1.0%                                 1.7%
表4给出了一个例子,说明对于弱的UV-VIS-NIR吸收剂(N,N-二(2-羟基-5-磺酸苯基)甘氨酸锌)复合物采用经变换的主要成分比简单的主要成分更有益。
                 表    4
对于冷却水中一种弱的UV-VIS-NIR特性指示剂比较使用主要成分和经变换的主要成分
N,N-二(2-羟基-5-磺酸苯基)甘氨酸锌络合物
10个样品学习组合
AEP=预测平均误差(ppm)样品号      主成分        经变换的主要成分
        AEP           AEP1           2.21          0.0782           2.42          0.0863           2.62          0.2264           3.16          0.3665           2.29          0.0466           2.26          0.3227           2.30          0.6648           2.47          0.260
表5说明在存在相当大量的强UV吸收剂硝酸根的情况下硝酸根的在线测量。这个例子显示出同时测量亚硝酸钠和总有亚硝酸根/硝酸根(以NaNO2计)。这些测量通过从总的亚硝酸根/硝酸根中减去亚硝酸根得出硝酸根的值。这种应用在预测亚硝酸根时有误差,即使在水中含有高浓度硝酸根时也小于10%。
        表5    在线同时测量亚硝酸盐和硝酸盐
样品号     分析值(ppm)  测量值(ppm)
NaNO2 NaNO3(以NaNO2计) NO2/NO3 NaNO2 误差% NO2/NO3(以NaNO2计) 误差%
1 0 0 0  -7.8 - -38.0 -
2 150 0 150  146.8 2.1 84.4 43.7
3 300 0 300  303.7 1.2 247.1 17.6
4 450 0 450  418.9 6.9 362.4 19.5
5 600 0 600  579.0 3.5 527.0 12.2
6 300 100 3381.2  312.0 4.0 323.2 15.2
7 300 200 462.4  303.4 1.1 415.1 10.2
8 300 300 543.5  326.5 8.8 518.7 4.6
9 150 300 393.6  150.6 0.4 356.6 9.4
10 450 300 693.6  437.8 2.7 630.4 9.1
表6说明在存在各种水平的磷酸根(锅炉水中常见的阴离子)的情况下测量锅炉水垢控制特性指示剂。在测量前将样品冷却到室温。对聚合物预测的误差在分析检验方法的5%之内。
                  表    6
在PH值为11.0存在有磷酸根离子的,25℃的锅炉水中的SSS/MA共聚物的检测。样品号    磷酸根    SSS/MA(ppm)   SSS/MA(ppm)
      (ppm)     理论值        测量值1         18        32.0          31.42         26        12            11.83         32        25            24.74         42        9.0           9.05         50        46            46.46         58        29            28.37         64        16            15.98         72        42            41.69         84        21            21.110        92        36            35.8

Claims (20)

1.一种用于同时测量水质系统中的多种特性指示剂的浓度的方法,在该处理水质系统中包含处理该系统所用的成分,该方法包括在波长为200至2500nm的范围内直接测定该水质系统的吸收或发射光谱,以及将化学统计学算法应用于吸收或发射光谱,以使同时测定若干种特性指示剂的浓度。
2.根据权利要求1所述的方法,其特征在于测定特性指示剂浓度的化学统计学算法是通过与对于相应的特性指示剂所预先限定的范围做比较的,如果所述特性指示剂有在预先限定的范围之外,则改变落在这一范围之外的那些特性指示剂的剂量。
3.根据权利要求1所述的方法,其特征在于所述水质系统是一个冷却水系统,一个锅炉水系统,一个脱盐单元,一个废水处理装置,或纸浆或纸处理设备。
4.根据权利要求1所述的方法,其特征在于所述光谱是在200至2500nm的波长范围内用UV-VIS-NIR二极管阵列分光光度计进行分析。
5.根据权利要求1所述方法,其特征在于所述化学统计学算法是根据吸收或发射光谱的主成分为基础而进行分析的。
6.根据权利要求5所述方法,其特征在于所述主成分分析是根据所述吸收或发射光谱的一级导数为基础的。
7.根据权利要求5所述的方法,其特征在于所述主成分分析是根据所述吸收或发射光谱的二级导数为基础的。
8.根据权利要求1所述的方法,其特征在于所述化学统计学算法是根据吸收或发射光谱经变换的主成分分析为基础的。
9.根据权利要求1所述的方法,其特征在于所述的特性指示剂选自以下一组处理剂成分,这些处理剂成分包括锅垢抑制剂、缓蚀剂、润滑剂、金属工作介质、PH调节剂、分散剂、消耗剂、螯合剂、生物杀伤剂、防粘剂、沉淀剂。
10.根据权利要求1所述方法,其特征在于所述水质系统的光谱分析是根据一个离线样品,一个现场样品和一个在线样品而进行的。
11.一种用于同时测量水质系统中的多种特性指示剂浓度的方法,在该系统中包括一种或多种处理成分和至少一种惰性示踪物该方法包括在波长范围200至2500nm之内直接测定该水质系统的吸收或发射光谱,以及用化学统计学算法测定所述特性指示剂和至少一种惰性示踪物的浓度。
12.根据权利要求11所述的方法,其特征在于测定特性指示剂浓度的化学统计学算法是通过与对相应的特性指示剂预先确定的范围加以比较的,如果特性指示剂浓度有落在所述的预定范围之外,则改变落在这一范围之外的那些特性指示剂的剂量。
13.根据权利要求11所述的方法,其特征在于所述水质系统是一个冷却水系统,一个锅炉水系统,一个脱盐单元,一个废水处理装置,或纸浆或纸处理设备。
14.根据权利要求11所述的方法,其特征在于所述光谱是利用UV-VIS-NIR二级管阵列分光光度计在波长为200至800nm范围内进行的。
15.根据权利要求11所述的方法,其特征在于所述统计学算法是根据吸收或发射光谱的主成分的基础进行分析的。
16.根据权利要求15所述的方法,其特征在于所述主成分分析是根据所述吸收或发射光谱的一级导数为基础的。
17.根据权利要求15所述的方法,其特征在于所述主成分分析是根据所述吸收或发射光谱的二级导数为基础的。
18.根据权利要求11所述的方法,其特征在于所述的化学统计学算法是根据吸收或发射光谱的经变换的主成分分析为基础的。
19.根据权利要求11所述的方法,其特征在于所述的特性指示剂选自由以下处理剂成分组成的一组,这些处理剂成分包括锅垢抑制剂、缓蚀剂、润滑剂、金属工作介质、PH调节剂、分散剂、消耗剂、螯合剂、生物杀伤剂、防粘剂、沉淀剂。
20.根据权利要求11所述的方法,其征在于所述的水质系统的光谱是根据一个离线样品、一个现场样品和一个在线样品进行分析的。
CN93103672A 1992-03-04 1993-03-04 多种水处理特性指示剂的同时监测方法 Expired - Fee Related CN1046031C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/845,889 US5242602A (en) 1992-03-04 1992-03-04 Spectrophotometric monitoring of multiple water treatment performance indicators using chemometrics
US845,889 1992-03-04

Publications (2)

Publication Number Publication Date
CN1079301A CN1079301A (zh) 1993-12-08
CN1046031C true CN1046031C (zh) 1999-10-27

Family

ID=25296335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93103672A Expired - Fee Related CN1046031C (zh) 1992-03-04 1993-03-04 多种水处理特性指示剂的同时监测方法

Country Status (16)

Country Link
US (1) US5242602A (zh)
EP (1) EP0559305A2 (zh)
JP (1) JPH0666718A (zh)
KR (1) KR930020163A (zh)
CN (1) CN1046031C (zh)
AU (1) AU669687B2 (zh)
BR (1) BR9300730A (zh)
CA (1) CA2090820C (zh)
FI (1) FI930940A (zh)
MY (1) MY131304A (zh)
NZ (1) NZ245904A (zh)
PH (1) PH29905A (zh)
SG (1) SG46421A1 (zh)
TR (1) TR27811A (zh)
TW (1) TW237517B (zh)
ZA (1) ZA931218B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564965A (zh) * 2011-12-31 2012-07-11 聚光科技(杭州)股份有限公司 基于光谱检测技术的检测方法

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480562A (en) * 1993-12-28 1996-01-02 Lemelson; Jerome H. Method of purifying water controlled by laser scanning
US5948272A (en) * 1986-04-29 1999-09-07 Lemelson; Jerome H. System and method for detecting and neutralizing microorganisms in a fluid using a laser
WO1994020834A1 (en) * 1993-03-01 1994-09-15 Axiom Analytical, Inc. Method of ensuring accurate identification and measurement of solutes
AU5522594A (en) * 1993-03-03 1994-09-08 W.R. Grace & Co.-Conn. A method of directly monitoring the concentrations of microbiocides in aqueous systems
NZ250956A (en) * 1993-03-03 1995-04-27 Grace W R & Co Monitoring concentrations of water treatment compositions using absorbance or emission spectra
US5550630A (en) * 1993-03-19 1996-08-27 The United States Of America As Represented By The Secretary Of Agriculture Spectrophotometric method for structural analysis of organic compounds, polymers, nucleotides and peptides
US5340468A (en) * 1993-03-31 1994-08-23 Hawthorne Treatment Systems, Inc. System for controlling addition of lime to reduce water alkalinity
SE509036C2 (sv) * 1993-06-29 1998-11-30 Foss Tecator Ab Förfarande för mätning av kemiska och fysikaliska parametrar för att karakterisera och klassificera vattensuspensioner
IT1264931B1 (it) * 1993-07-14 1996-10-17 Arcangelo Ventura Dispositivo per il controllo della qualita' di acque depurate particolarmente per impianti biologici di depurazione e simili
US5470482A (en) * 1993-12-27 1995-11-28 Uop Control process for simulated moving bed para-xylene separation
SE9401707L (sv) * 1994-05-18 1995-11-19 Christer Bjoerklund Spektrofotometrisk metod att mäta kvalitets och styrke parametrar hos träd, virke trävaror, flis, spån, massa och papper
SE503101C2 (sv) * 1994-05-18 1996-03-25 Eka Nobel Ab Sätt att bestämma våtstyrkan hos papper och medel för processkontroll genom användning av sättet
SE9401718L (sv) * 1994-05-18 1995-11-19 Eka Nobel Ab Sätt att bestämma parametrarna i papper
JP3261264B2 (ja) * 1994-07-13 2002-02-25 株式会社堀場製作所 多成分水溶液の分析方法およびその分析装置
SE503644C2 (sv) * 1994-10-14 1996-07-22 Eka Chemicals Ab Sätt att bestämma halten organiskt material i effluenter från massa- och pappersbruk
US5567625A (en) * 1994-10-19 1996-10-22 International Business Machines Corporation Apparatus and method for real-time spectral deconvolution of chemical mixtures
US5586049A (en) * 1994-10-19 1996-12-17 International Business Machines Corporation Apparatus and method for generating profiles of constituents of chemical mixtures
US5585919A (en) * 1994-10-19 1996-12-17 International Business Machines Corporation Error minimization apparatus and method for real-time spectral deconvolution of chemical mixtures
GB9422392D0 (en) * 1994-11-05 1995-01-04 Cognitive Solutions Ltd Detector for chemical analysis
US5616457A (en) * 1995-02-08 1997-04-01 University Of South Florida Method and apparatus for the detection and classification of microorganisms in water
SG38866A1 (en) * 1995-07-31 1997-04-17 Instrumentation Metrics Inc Liquid correlation spectrometry
US5680409A (en) * 1995-08-11 1997-10-21 Fisher-Rosemount Systems, Inc. Method and apparatus for detecting and identifying faulty sensors in a process
US5747806A (en) * 1996-02-02 1998-05-05 Instrumentation Metrics, Inc Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
US6040578A (en) * 1996-02-02 2000-03-21 Instrumentation Metrics, Inc. Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy
US5855791A (en) * 1996-02-29 1999-01-05 Ashland Chemical Company Performance-based control system
US5736405A (en) * 1996-03-21 1998-04-07 Nalco Chemical Company Monitoring boiler internal treatment with fluorescent-tagged polymers
US5925572A (en) * 1996-08-07 1999-07-20 University Of South Florida Apparatus and method for in situ pH measurement of aqueous medium
CA2187569A1 (en) * 1996-10-10 1998-04-10 Amy Chiu-Mei Lo Method and knowledge-based system for diagnosis in biological treatment of waste water
US6023065A (en) * 1997-03-10 2000-02-08 Alberta Research Council Method and apparatus for monitoring and controlling characteristics of process effluents
US5985120A (en) * 1997-06-12 1999-11-16 University Of Massachusetts Rapid analysis of analyte solutions
CA2216046A1 (en) * 1997-09-18 1999-03-18 Kenneth Boegh In-line sensor for colloidal and dissolved substances
GB2329756A (en) * 1997-09-25 1999-03-31 Univ Bristol Assemblies of light emitting diodes
US6177276B1 (en) 1997-12-16 2001-01-23 Chemtreat, Inc. Oxidation and measurement of phosphonates in aqueous solutions
US6200134B1 (en) 1998-01-20 2001-03-13 Kerr Corporation Apparatus and method for curing materials with radiation
US6585933B1 (en) 1999-05-03 2003-07-01 Betzdearborn, Inc. Method and composition for inhibiting corrosion in aqueous systems
US6087182A (en) * 1998-08-27 2000-07-11 Abbott Laboratories Reagentless analysis of biological samples
GB9822729D0 (en) * 1998-10-20 1998-12-16 Wrc Plc Release system for a marker substance
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US6068012A (en) * 1998-12-29 2000-05-30 Ashland, Inc. Performance-based control system
EP1072882B1 (en) * 1999-07-29 2004-09-29 Sony International (Europe) GmbH Method and apparatus for identification of plastic materials by optical measurements
US6241788B1 (en) 1999-11-16 2001-06-05 Betzdearborn Inc. Method of stabilizing dye solutions and stabilized dye compositions
DE19963561A1 (de) * 1999-12-23 2001-07-05 Merck Patent Gmbh Verfahren und Vorrichtung zur Online-Analytik von Lösungsmittelgemischen
US7390669B2 (en) * 2000-02-24 2008-06-24 Georgia Tech Research Corporation Simultaneous and rapid determination of multiple component concentrations in a Kraft liquor process stream
US7320593B2 (en) 2000-03-08 2008-01-22 Tir Systems Ltd. Light emitting diode light source for curing dental composites
US6944485B1 (en) * 2000-04-20 2005-09-13 Keith W. Van Meter Hyperbaric resuscitation system and method
US6315909B1 (en) * 2000-05-01 2001-11-13 Nalco Chemical Company Use of control matrix for cooling water systems control
DE60122712T2 (de) * 2000-05-16 2007-09-13 Jeacle Ltd., Stillorgan Photometrische gewässeranalyse
NL1015440C2 (nl) * 2000-06-14 2001-12-17 Vma Vlastuin Mest Applicaties Inrichting voor chemisch analyseren van een zich in een houder bevindende afvalvloeistof, alsmede werkwijze voor het uitvoeren van een chemische analyse van een zich in een houder bevindende afvalvloeistof.
CN100494921C (zh) * 2000-06-16 2009-06-03 特洛伊人技术公司 光辐射传感器系统以及用于测量流体的辐射透射率的方法
DE60133002T2 (de) 2000-06-27 2009-02-26 Alberta Research Council, Edmonton Spektrophotometer mit mehreren weglängen
US6549861B1 (en) 2000-08-10 2003-04-15 Euro-Celtique, S.A. Automated system and method for spectroscopic analysis
EP1311189A4 (en) 2000-08-21 2005-03-09 Euro Celtique Sa Near-BLOOD GLUCOSE MONITORING DEVICE
US6821428B1 (en) * 2002-03-28 2004-11-23 Nalco Company Method of monitoring membrane separation processes
AU2003265308A1 (en) 2002-07-25 2004-02-16 Jonathan S. Dahm Method and apparatus for using light emitting diodes for curing
US7182597B2 (en) * 2002-08-08 2007-02-27 Kerr Corporation Curing light instrument
AU2003298561A1 (en) * 2002-08-23 2004-05-13 Jonathan S. Dahm Method and apparatus for using light emitting diodes
JP4655447B2 (ja) * 2002-10-17 2011-03-23 栗田工業株式会社 水処理装置、水処理方法及び水処理プログラム
CA2512643A1 (en) * 2003-01-07 2004-07-29 Hach Company Classification of deviations in a process
US20050033127A1 (en) * 2003-01-30 2005-02-10 Euro-Celtique, S.A. Wireless blood glucose monitoring system
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
EP1491876A1 (en) * 2003-06-24 2004-12-29 Ecole Polytechnique FTIR ellipsometry device and process for characterization and further identification of samples of complex biogical materials, notably micro-organisms
US7538869B2 (en) * 2004-06-30 2009-05-26 Chemimage Corporation Multipoint method for identifying hazardous agents
JP4231757B2 (ja) * 2003-09-09 2009-03-04 株式会社堀場製作所 溶液中成分濃度測定方法
GB2410800B (en) 2004-02-06 2007-12-12 Statoil Asa Fingerprinting of hydrocarbon containing mixtures
GB2429772B (en) * 2004-04-19 2008-11-12 Trojan Techn Inc Optical radiation sensor system and method for measuring radiation transmittance of a fluid
US7179384B2 (en) * 2004-04-30 2007-02-20 Nalco Company Control of cooling water system using rate of consumption of fluorescent polymer
CA2589570C (en) 2004-06-15 2010-04-13 Henkel Corporation High power led electro-optic assembly
US7679058B2 (en) * 2004-12-16 2010-03-16 The University Of Georgia Research Foundation, Inc. Systems and method for predicting the lime requirement in soils
ATE513776T1 (de) * 2004-12-27 2011-07-15 Diversey Inc Verfahren zum schmieren eines fördersystems
JP4722513B2 (ja) * 2005-03-15 2011-07-13 倉敷紡績株式会社 過酢酸を含む酸溶液の濃度測定のための装置および方法
US8113830B2 (en) * 2005-05-27 2012-02-14 Kerr Corporation Curing light instrument
FR2888936B1 (fr) * 2005-07-21 2007-10-12 Papeteries Matussiere Forest Procede de controle de la qualite alimentaire d'un papier et dispositif pour sa mise en oeuvre
KR100764838B1 (ko) 2006-05-04 2007-10-09 삼성석유화학(주) 고순도 테레프탈산 폐수의 성상분석장치 및 이를 이용한성상분석방법
EP1859873A1 (en) * 2006-05-22 2007-11-28 JohnsonDiversey, Inc. Method and apparatus for washing a glass container
US8047686B2 (en) 2006-09-01 2011-11-01 Dahm Jonathan S Multiple light-emitting element heat pipe assembly
WO2008061315A1 (en) 2006-11-24 2008-05-29 Aqualysis Pty Ltd Chemical analyser
SG152081A1 (en) 2007-10-18 2009-05-29 Yokogawa Electric Corp Metric based performance monitoring method and system
US8009277B2 (en) * 2007-10-26 2011-08-30 International Paper Company Sensor technique for black liquor oxidation control
DE102008039836B4 (de) * 2008-08-27 2012-08-09 Manfred Dausch Vorrichtung und Verfahren zur Bestimmung des Säuregehalts
US9072572B2 (en) 2009-04-02 2015-07-07 Kerr Corporation Dental light device
US9066777B2 (en) 2009-04-02 2015-06-30 Kerr Corporation Curing light device
CN101943658B (zh) * 2009-07-08 2012-05-30 上海衡伟信息技术有限公司 主元分析理论和光谱分析技术结合对水质连续监测的方法
US7960316B2 (en) * 2009-09-25 2011-06-14 Halliburton Energy Services, Inc. Corrosion inhibitor intensifier compositions and associated methods
WO2011153625A2 (en) * 2010-06-10 2011-12-15 Ramila Hishantha Peiris Method for fluorescence-based fouling forecasting and optimization in membrane filtration operations
CN102042965B (zh) * 2010-11-18 2012-07-11 上海衡伟信息技术有限公司 在线宽光谱水质分析仪
US8343771B2 (en) 2011-01-12 2013-01-01 General Electric Company Methods of using cyanine dyes for the detection of analytes
CN102279158A (zh) * 2011-08-09 2011-12-14 上海衡伟信息技术有限公司 光谱水质在线预警预报系统
EP2828640B1 (en) * 2012-03-19 2021-07-07 Ormeci Beckers, Banu PROCESSES for regulation and monitoring of an amount of flocculating agent added to a process stream
WO2014053971A1 (en) * 2012-10-01 2014-04-10 Abb Technology Ltd. A system and a method for tracking plant-wide fault
US9266797B2 (en) 2013-02-12 2016-02-23 Ecolab Usa Inc. Online monitoring of polymerization inhibitors for control of undesirable polymerization
WO2014144389A1 (en) * 2013-03-15 2014-09-18 Advantage Controls, Llc System and process for detecting phosphonate
US10597308B2 (en) * 2013-11-25 2020-03-24 Kurita Water Industries Ltd. Water treatment plant controlling method and controlling program, and water treatment system
US9399622B2 (en) 2013-12-03 2016-07-26 Ecolab Usa Inc. Nitroxide hydroxylamine and phenylenediamine combinations as polymerization inhibitors for ethylenically unsaturated monomer processes
WO2016046719A1 (en) 2014-09-23 2016-03-31 Maytronics Ltd. Multi parameter swimming pool fluid analysis and regulating method and device
EP3059229A1 (en) 2015-02-17 2016-08-24 Evonik Degussa GmbH Method for the epoxidation of an olefin with hydrogen peroxide
WO2016131649A1 (en) 2015-02-17 2016-08-25 Evonik Degussa Gmbh Method for the epoxidation of an olefin with hydrogen peroxide
US20170183243A1 (en) * 2015-03-26 2017-06-29 Doug Reitmeyer Systems and arrangements for mitigating environmental damage caused by storm water carried pollution
WO2016183666A1 (en) * 2015-05-19 2016-11-24 Formarum Inc. Water treatment system and method
CN106706541A (zh) * 2015-07-17 2017-05-24 中国钢铁股份有限公司 分散剂浓度检测装置
US11085118B2 (en) * 2016-04-14 2021-08-10 Nch Corporation Composition and method for inhibiting corrosion and scale
US10351453B2 (en) * 2016-04-14 2019-07-16 Nch Corporation Composition and method for inhibiting corrosion
US11104587B2 (en) 2016-04-14 2021-08-31 Nch Corporation System and method for automated control, feed, delivery verification, and inventory management of corrosion and scale treatment products for water systems
US20180121889A1 (en) * 2016-10-28 2018-05-03 Wipro Limited Method and system for dynamically managing waste water treatment process for optimizing power consumption
IT201600122231A1 (it) * 2016-12-01 2018-06-01 Lw S R L Metodo per misurare la concentrazione di un additivo anti-sporcamento in un flusso di acqua salina circolante in un impianto di desalinizzazione e relative applicazioni.
US20200231466A1 (en) * 2017-10-09 2020-07-23 Zijun Xia Intelligent systems and methods for process and asset health diagnosis, anomoly detection and control in wastewater treatment plants or drinking water plants
US11307138B2 (en) * 2019-03-12 2022-04-19 Paul Hattingh Testing method for residual organic compounds in a liquid sample
EP3825283B1 (en) * 2019-11-21 2024-04-10 Grundfos Holding A/S A method for abating the presence of a selected chemical substance in wastewater flowing in a wastewater channel system
US11215624B2 (en) 2020-01-08 2022-01-04 Paul Lighton Fluid monitoring systems and methods

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929073A (ja) * 1982-08-09 1984-02-16 Hitachi Plant Eng & Constr Co Ltd 腐植酸含有廃水処理の自動制御方法
SE8401773L (sv) * 1984-03-30 1985-10-01 Boh Optical Ab Frekvens- och effektreglering hos laserdioder
DE3625490A1 (de) * 1986-07-28 1988-02-04 Kernforschungsz Karlsruhe Multikomponenten-prozessanalysensystem
US4783314A (en) * 1987-02-26 1988-11-08 Nalco Chemical Company Fluorescent tracers - chemical treatment monitors
CA1325583C (en) * 1987-12-11 1993-12-28 Gary L. Baker Visual analytical tracer and method for detection and quantitative analysis for water treatment chemicals
US4992380A (en) * 1988-10-14 1991-02-12 Nalco Chemical Company Continuous on-stream monitoring of cooling tower water
US4966711A (en) * 1989-02-27 1990-10-30 Nalco Chemical Company Transition metals as treatment chemical tracers
US5121443A (en) * 1989-04-25 1992-06-09 Spectra-Physics, Inc. Neural net system for analyzing chromatographic peaks
EP0418799B1 (en) * 1989-09-20 1995-11-29 Kurashiki Boseki Kabushiki Kaisha Quantitative determination method of chemicals for processing semiconductor and an apparatus thereof
US5132096A (en) * 1990-03-23 1992-07-21 Nalco Chemical Company Monitoring performance of a water treating agent by measuring and resolving optical voltage analogs
US5006311A (en) * 1990-03-23 1991-04-09 Nalco Chemical Company Monitoring performance of a treating agent added to a body of water
US5121337A (en) * 1990-10-15 1992-06-09 Exxon Research And Engineering Company Method for correcting spectral data for data due to the spectral measurement process itself and estimating unknown property and/or composition data of a sample using such method
AU5522594A (en) * 1993-03-03 1994-09-08 W.R. Grace & Co.-Conn. A method of directly monitoring the concentrations of microbiocides in aqueous systems
NZ250956A (en) * 1993-03-03 1995-04-27 Grace W R & Co Monitoring concentrations of water treatment compositions using absorbance or emission spectra

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564965A (zh) * 2011-12-31 2012-07-11 聚光科技(杭州)股份有限公司 基于光谱检测技术的检测方法

Also Published As

Publication number Publication date
SG46421A1 (en) 1998-02-20
MY131304A (en) 2007-08-30
EP0559305A2 (en) 1993-09-08
FI930940A0 (fi) 1993-03-03
TW237517B (zh) 1995-01-01
KR930020163A (ko) 1993-10-19
NZ245904A (en) 1995-03-28
FI930940A (fi) 1993-09-05
TR27811A (tr) 1995-08-29
CN1079301A (zh) 1993-12-08
PH29905A (en) 1996-09-16
EP0559305A3 (zh) 1995-07-05
AU669687B2 (en) 1996-06-20
US5242602A (en) 1993-09-07
JPH0666718A (ja) 1994-03-11
BR9300730A (pt) 1993-09-08
ZA931218B (en) 1993-09-17
CA2090820C (en) 2002-05-07
CA2090820A1 (en) 1993-09-05
AU3319793A (en) 1993-09-09

Similar Documents

Publication Publication Date Title
CN1046031C (zh) 多种水处理特性指示剂的同时监测方法
CN100578196C (zh) 超声波协同臭氧消解光度法测量水体总氮总磷的方法
CN100541171C (zh) 紫外光协同臭氧消解光度法测量水体总氮总磷的方法
Maqbool et al. Seasonal occurrence of N-nitrosamines and their association with dissolved organic matter in full-scale drinking water systems: Determination by LC-MS and EEM-PARAFAC
Marhaba et al. Rapid identification of dissolved organic matter fractions in water by spectral fluorescent signatures
CN113916847B (zh) 一种基于光谱技术和线性支持向量算法的水质检测方法
Li et al. Global calibration model of UV-Vis spectroscopy for COD estimation in the effluent of rural sewage treatment facilities
M. Carstea et al. Quality assessment of Romanian bottled mineral water and tap water
US9157849B2 (en) Changed optical path measuring device for component concentration of water and measuring method thereof
CN108507955A (zh) 多光谱同步检测水体化学需氧量的装置及方法
EP0614085A1 (en) A method for directly monitoring the concentrations of water treatment compositions in steam generating systems
CN105445211B (zh) 一种基于紫外吸收光谱法的水质趋势预测方法
Roig et al. UV monitoring of sugars during wine making
Van den Broeke On-line and in-situ UV/vis spectroscopy
CN1101128A (zh) 直接监测含水系统中杀微生物剂浓度的方法
Lourenço et al. Development of PLS calibration models from UV‐VIS spectra for TOC estimation at the outlet of a fuel park wastewater treatment plant
Feuerstein et al. The simultaneous determination of Pb, Cd, Cr, Cu, and Ni in potable and surface waters by GFAAS according to international regulations
Marhaba et al. Rapid prediction of disinfection by-product formation potential by fluorescence
Tang et al. Combining near-infrared spectroscopy and chemometrics for rapid recognition of an Hg-contaminated plant
CN1098071A (zh) 用于处理合水体系的紫外响应聚合物
Liu et al. A review on optical measurement method of chemical oxygen demand in water bodies
Moros et al. Screening of humic and fulvic acids in estuarine sediments by near-infrared spectrometry
Zhao et al. A new spectrum technique based on direct detection of light intensity absorbed
Poryvkina et al. Spectral fluorescent signatures (SFS) in characterisation of water environment
Paulo Monitoring of biological wastewater treatment processes using indirect spectroscopic techniques

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: RAGE SI CO.,LTD. TO: BATES DEERE BERNE CO., LTD.

CP03 Change of name, title or address

Address after: American Pennsylvania

Applicant after: Bisiderboen Co., Ltd.

Address before: American New York

Applicant before: Regus Plc

C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee