CN104745486A - 生产脂质和抗氧化剂的真核微生物 - Google Patents

生产脂质和抗氧化剂的真核微生物 Download PDF

Info

Publication number
CN104745486A
CN104745486A CN201510095502.1A CN201510095502A CN104745486A CN 104745486 A CN104745486 A CN 104745486A CN 201510095502 A CN201510095502 A CN 201510095502A CN 104745486 A CN104745486 A CN 104745486A
Authority
CN
China
Prior art keywords
composition
acid
sequence
lipid
eukaryotic microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510095502.1A
Other languages
English (en)
Other versions
CN104745486B (zh
Inventor
A·M·伯杰
H·瑞迪亚宁塔斯
C·J·巴罗
A·J·温德斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM Nutritional Products AG
Original Assignee
DSM Nutritional Products AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM Nutritional Products AG filed Critical DSM Nutritional Products AG
Priority claimed from CNA2006800296305A external-priority patent/CN101389749A/zh
Publication of CN104745486A publication Critical patent/CN104745486A/zh
Application granted granted Critical
Publication of CN104745486B publication Critical patent/CN104745486B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • A21D8/04Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/065Microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4875Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms

Abstract

公开了与真核微生物有关的组合物和方法,所述真核微生物可产生可被纯化和使用的不饱和脂肪酸。

Description

生产脂质和抗氧化剂的真核微生物
本申请要求以2005年6月7日提交的美国临时申请No.60/688,207和2005年12月16日提交的美国临时申请No.60/751,401作为优先权基础,这两份美国临时申请的全文通过援引的方式纳入本文。
背景技术
大量科学证据表明,(n-3)高度不饱和脂肪酸例如二十二碳六烯酸(DHA)对心血管疾病、慢性炎症和脑障碍有积极作用。另一方面,(n-6)脂肪酸被认为是二十酸类固醇例如前列腺素、白三烯等的中间代谢产物。
目前,这些高度不饱和脂肪酸的主要来源是鱼,已注意到多种深蓝色鱼类(例如沙丁鱼和金枪鱼)体内的DHA和二十碳五烯酸(EPA)的量分别为约20%和10%。然而,若要使用鱼油作为这些脂质的唯一来源尚存在一些缺点,例如串味、不能稳定利用、天然鱼油含量存在差异以及可能累积有害环境的污染物等问题。另外,若想从这些来源获得高度纯化的(n-3)或(n-6)油,优先的分离和纯化会非常困难。
发明内容
所公开的是涉及真核生物破囊壶菌目(thraustochytriales)和破囊壶菌科(Thraustochytriaceae)的组合物和方法,所述真核生物在培养时可产生大量不饱和脂肪酸例如ω3(n-3)和/或ω6(n-6)油,如DHA、EPA和DPA,由于所有这些组合物可被使用,并且由于其生产方式,它们均能被纯化和使用。
附图说明
被纳入并构成本说明书的一部分的附图阐述了几个实施方案,并与说明书一起对所公开的组合物和方法进行了阐述。
图1示出给出对来源于ONC-T18的脂质进行脂肪酸甲基化获得的结果的图。
图2以图表方式描述了在Advocate Harbor收集到的ONC-T18原始分离株和以编号PTA-6245保藏于ATCC的ONC-T18破囊壶菌属种(Thraustochytrium sp.)的分离株之间脂肪酸甲酯的比较情况。所有的峰均通过气相色谱和质谱来鉴定。
图3示出进行ONC-T18生物量最优化实验得到的结果的散点图。这些实验使用被称为Taguchi法的技术,目的是确定在不同培养基条件下ONC-T18的最佳生长条件。
图4示出在最佳条件(实施例4)下生长九天的ONC-T18的脂肪酸生产情况的柱状图。
图5示出如在本文其它地方所述分离得到的产油微生物的图。
图6示出ONC-T18和其它破囊壶菌目的18S rRNA基因之间的关系的分枝系统树。
图7示出在不同条件下ONC-T18的脂质和DHA生产情况。
图8示出由关于本文公开真核生物的生长条件的信息进行改进的图(对Ratledge,C.(2004),Lipid Technol.16:34-39的方法进行改进)。
图9示出所公开的真核生物产生PUFA的推定代谢途径。
图10示出在各种备选的低成本碳源的情况下脂肪酸最大产率和组分的比较情况。
图11示出对收集到的分离株基于其C20和C22PUFA生产情况的分组。结果与两个参照菌株ATCC 20891和MYA-1381相比较。
图12示出菌株ONC-T18的18S rRNA邻接树(Neighbour-joiningtree)。横线代表遗传距离,而方括号给出在该系统树中使用的来源于GenBank的序列。
图13给出在以下3类不同发酵环境下于含有2g L-1酵母提取物、8g L-1L-谷氨酰胺、6g L-1海盐和60g L-1葡萄糖的培养基中生长的ONC-T18的脂肪酸生产情况:琼脂板(1.5%琼脂,25℃,27天)、烧瓶(250ml烧瓶中装有50ml,120RPM,25℃,3天)和5L生物反应器(4lpm空气,pO2 90%,25℃,3天)。
图14给出自破囊壶菌属种ONC-T18分离得到的类胡萝卜素化合物的HPLC色谱图。例如自破囊壶菌属种ONC-T18中分离出虾青素、玉米黄素、角黄素、海胆酮和β-胡萝卜素。
图15示出在装有培养基的5L生物反应器中维持168h的破囊壶菌属种ONC-T18的典型生物量、总脂肪酸(TFA)、DHA生产情况和葡萄糖利用情况,所述培养基含有60g L-1葡萄糖、2g L-1酵母提取物、8g L-1谷氨酸和6g L-1盐(4lpm空气、pO2 90%、25℃,pH 7-9)。
图16给出破囊壶菌属种ONC-T18中虾青素形成所涉及的推定途径。
具体实施方式
在对本发明的化合物、组合物、物品、装置和/或方法进行公开和描述之前,应理解的是,除非另外指明,它们不限于特定合成方法或特定重组生物技术方法,或者除非另外指明,它们不限于具体的试剂,因此理所当然可有所改变。还应理解的是,本文所使用术语其目的仅在于对具体实施方案进行描述,而无意于限定。
本领域的技术人员将会认识到或能确定不仅可以使用常规实验,也可使用本文所描述方法和组合物的特定实施方案的多种等价方案。这些等价方案旨在囊括于下面的权利要求中。
A.定义
除非上下文明确指出相反,说明书和所附权利要求书中所使用的单数形式“一个”、“一种”和“该”包括复数指代对象。因此,例如,“一种药物载体”包括两种或多种这类载体的混合物等。
本文中范围可以表示为从“大约”一个具体的数值,和/或至“大约”另一个具体的数值。当表示为这种范围时,另一个实施方案包括从所述一个具体数值和/或至所述另一个具体数值。类似地,当通过在前面使用“大约”将数值表示为近似值时,应当理解的是,该具体的数值构成另一个实施方案。应当进一步理解的是,每个范围的端点在与另一个端点相关和独立于另一个端点时都是有意义的。还应当理解的是此处公开了许多数值,且除了数值本身外每一个数值在此还以“大约”该具体数值公开。例如,如果公开了数值“10”,那么也公开了“大约10”。还应当理解的是,当公开了一个数值时,也公开了“小于或等于该数值”,“大于或等于该数值”以及数值间可能的范围,这正如本领域技术人员所恰当理解的。例如,如果公开了数值“10”,也公开了“小于或等于10”以及“大于或等于10”。还应理解,在整个本申请中,以多种不同格式提供数据,这些数据代表了端点和起点,以及这些数据点任何组合的范围。例如,如果公开了特定数据点“10”和特定数据点“15”,应该理解,大于、大于或等于、小于、小于或等于、等于10和15,以及10和15之间的数值也认为已经被公开。还应理解的是,两个具体单位之间的每个单位也被公开。例如,若公开了10和15,那么也公开了11、12、13和14。
“降低”或其它形式的降低指的是减少某一事件或特征。应理解的是,这通常与某些标准或预期数值相关,换言之它是相对而言的,但是并不是待指代的标准或相关数值通常所必须的。例如,“降低磷酸化作用“指的是相对于标准或对照减少所发生的磷酸化的量。应理解的是,除非特别指明相反,否则某一化合物或组合物或病症可相对于另一化合物或组合物或病症有所降低。
“抑制”或其它形式的抑制意味着阻止或限制某一具体特征。应理解的是,这通常与某些标准或预期数值相关,换言之它是相对而言的,但是它并非待指代的标准或相关数值通常所必须的。例如“抑制磷酸化作用”指的是相对于标准或对照阻止或限制所发生的磷酸化的量。应理解的是,否非特别指明相反,否则某一化合物或组合物或病症可相对于另一化合物或组合物或病症被抑制。
“阻止”或其它形式的阻止指的是终止某一具体特征或病症。由于阻止通常比例如降低或抑制更为绝对,因此它并不需要与对照进行比较。本文所使用的某些事物可被降低但不能被抑制或阻止,但是可被降低的某些事物也可被抑制或阻止。可以理解的是,使用降低、抑制或阻止时,若未明确指明相反,另外两个单词的使用也被特别公开。因此,若公开了抑制磷酸化作用,则也公开了降低和阻止磷酸化作用。
术语“治疗有效”指的是所使用组合物的量是足以改善某一疾病或障碍的一个或多个病因或症状的量。这种改善仅需降低或改变,而不必消除。
术语“载体”指的是,就使用意图或目的而言,在与某一化合物或组合物混合时,有助于所述化合物或组合物的制备、储存、给药、送递、有效性、选择性或任何其它特征或对其有帮助的化合物、组合物、物质或结构。例如,可对载体进行选择,以将活性成分的任何降解减少到最小并将对于受试者的任何不良副作用减少到最小。
在本说明书的整篇描述和权利要求书中,单词“包括”以及该单词的变化形式如“包含”和“含有”指的是“包括但不限于”,无意于排除例如其它添加剂、组分、整数或步骤。
本文所使用的术语“细胞”还指各个微生物细胞或来源于该细胞的培养物。“培养物”指的是包含相同或不同类型分离细胞的组合物。
术语“代谢产物”指的是在将某一化合物引入生物环境例如患者内时产生的活性衍生物。
在谈及药物组合物和营养组合物时,所使用的术语“稳定”在本领域通常被理解为:在特定储存条件下于指定时期内活性成分的损失少于某一特定量,该量通常为10%。组合物被认为稳定所要求的时间是与每种产品的用途相关的,并由生产该产品、对其进行质量控制和检查、将其输送给批发商或直接输送给消费者(此时在其最终使用之前再次进行保藏)的商业实践规定。包括几个月时间的安全系数在内,药物的最短产品寿命通常为一年,优选18个月以上。本文所使用的术语“稳定”参照了在容易实现的环境条件(例如2℃至8℃的冷藏条件)下储存和运输该产品的那些市场真实情况和能力。
说明书和文末的权利要求书中所提及的某一组合物或物品中某一具体元件或组分的重量份表示:表示为重量份的所述组合物或物品中该元件或组分与任何其它元件或组分之间的重量关系。因此,在含有2重量份组分X和5重量份组分Y的化合物中,所存在的X和Y的重量比为2:5,并且不管该化合物中是否还含有其它组分,X和Y均以该比率存在。
除非明确指出相反,否则某一组分的重量百分比以含有该组分的制剂或组合物的总量为基础。
“分离的”和任何形式例如“分离”指的是某物处于可被操作或被进一步纯化形式的情形。“分离的”及其各种同义形式指的是某物当前所处的状态不同于之前所处的状态。例如,若核糖体RNA分子从生物体取出、合成或通过重组方式产生,则它是“分离的”。通常,某一事物的“分离”是相对于其它某物的分离。例如,如本文所述可通过如下方式分离本文述及的真核生物:例如通过培养真核生物,从而使得该真核生物在不存在可测量(可检测)量的其它生物体的情况下存活。可以理解的是,除非特别指明相反,任何所公开的组合物可如本文所公开的那样分离。
“纯化”和任何形式例如“纯化的”指的是某一物质或化合物或组合物所处状态的同质性比之前更高的状态。可以理解的是,如本文所公开的那样,除非另外指明,某物的纯度可为至少1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23/24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%。例如,若某一指定组合物A的纯度为90%,则这意味着该组合物的90%为A,而该组合物的10%为一种或多种事物,例如分子、化合物或其它物质。例如,若所公开真核微生物例如产生35%DHA,则这可被进一步“纯化”,从而使得最终的脂质组合物具有90%以上的DHA。除非另外指明,否则纯度可由该组合物中组分的相对“重量”确定。可以理解的是,除非特别指明相反,否则任一所公开组合物可如所公开的那样纯化。
“任选的”或“任选地”指的是随后描述的事件或情况出现与否均可,并且该叙述包括其中所述事件或情况出现的情形及其不出现的情形。
“引物”为一小类这样的探针:它们能支持某类酶操作,并且可与靶核酸杂交,从而使酶操作能够发生。引物可由不干扰酶操作、本领域可获得的核酸或核酸衍生物或类似物的任一组合制备。
这份申请中引用了多篇出版物。这些出版物的公开内容通过援引全文纳入本申请中,目的在于更为全面地描述其所属的现有技术。所公开参考文献还通过援引就其中含有的内容分别地和特别地纳入本文,所述内容在该参考文献所依附的句子中进行了阐述。
公开了可用于制备所公开组合物的组分,以及可在所公开方法中使用的组合物自身。在本文中公开了这些物质和其他物质,并且可以理解的是,在公开这些物质的组合、子集、相互作用和群组等时,尽管这些化合物的每种不同的各个和全部的组合和排列可能并未明确地公开,但每种都在此被特别地考虑和描述。例如,如果公开和讨论了破囊壶菌科某一具体的种,并且讨论了对包括破囊壶菌科种在内的生物体所进行的多种修饰,那么除非特别指明相反,否则破囊壶菌科的这些种和可能的修饰的每种和各种组合和排列均得到特别地考虑。因此,如果公开了一类分子A、B和C,并且还公开了一类分子D、E和F,同时公开了组合分子A-D的实例,则即使没有每个逐一列举,每个也单独和共同被认为是有意义的组合,A-E,A-F,B-D,B-E,B-F,C-D,C-E以及C-F被认为公开。同样,这些的任何子集或组合也被公开。因此,例如,A-E、B-F和C-E的子群也被公开。将这一概念适用于本申请的所有方面,包括但不限于制备和应用所公开组合物的方法中的步骤。因此,如果有多个其他步骤可以实施,应当理解的是,所述其他步骤的每一步都可以与所公开方法的任何具体实施方案或实施方案的组合一起来进行。
B.组合物
公开了真核微生物破囊壶菌目,优选具有产生脂质的能力的破囊壶菌属种或裂殖壶菌属(Schizochytrium)种,所述脂质例如脂肪酸,例如不饱和脂肪酸,如ω-3脂肪酸,如ω-6脂肪酸和ω-9脂肪酸,如(n-3)系列的二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)、(n-6)系列的二十二碳五烯酸(DPA)和(n-9)系列的棕榈酸和硬脂酸。所公开的真核微生物还可产生抗氧化剂,例如但不限于类胡萝卜素化合物胡萝卜素(例如β-胡萝卜素)和叶黄素化合物虾青素、玉米黄素、角黄素和海胆酮。
还公开了真核微生物的分离和生长条件。例如,同时分别和共同公开了产生所公开脂质和抗氧化剂的异养生长条件。因此,通过使用这种独特的真核生物,能有效产生(n-3)系列的DHA和/或(n-6)系列的DPA和/或类胡萝卜素系列的抗氧化剂化合物和/或叶黄素系列的抗氧化剂化合物,它们可用作或用于营养制品、食品添加剂、药物或工业加工。
公开了含有真核微生物的组合物,所述真核微生物包括破囊壶菌属种(本文公开的一个实例是ONC-T18菌株,其ATCC保藏编号为PTA-6245)或由其组成。
可以理解的是,还公开了表述为ONC-T18的真核微生物以及自所述生物体分离的任何克隆、经修饰生物体或基因。所公开的生物体具有产生不饱和脂肪酸(如含有ω-3系列的DHA和EPA以及ω-6系列的DPA的脂质)和各种抗氧化剂(如类胡萝卜素、叶黄素和酚类物质)的能力。
还公开了产生含所述化合物的生物量的方法。进一步公开了利用真核微生物来制备ω-3、ω-6和类胡萝卜素化合物的方法。还公开了生产微生物来源(或单细胞来源)的油的方法。
另外,公开了由所公开真核微生物和任何子代(经遗传修饰或以其它方式修饰)所产生的脂肪酸和类胡萝卜素,补充有脂质和抗氧化剂的各种饲料、营养制品、药物和食品,以及将这些化合物用作各种饲料和食品的添加剂的方法。
授权给Barclay的美国专利No.5,130,242公开了一种收集和筛选方法,以分离产生ω-3脂肪酸并具有如下特征的微生物菌株:1)能异养生长;2)产生高含量ω-3脂肪酸;3)单细胞的;4)产生低含量标准的和ω-6脂肪酸;5)无着色的白色或无色的细胞;6)耐热的(如在30℃以上生长的能力);和7)具有广耐盐性(如在较宽范围盐度但优选在低盐度下生长的能力)。
该‘242专利的公开内容还描述了异养生产具有高浓度ω-3脂肪酸的全细胞或经提取的微生物产物的方法,所述全细胞或微生物产物随后可用于动物食品或者人食品。该方法使用了通过该专利公开的收集和筛选方法鉴定的微生物。这些微生物为破囊壶菌目,在磨碎的谷物中培养。为提高ω-3脂肪酸的产生,使用低温胁迫(stressing)和高溶解氧,同时添加抗氧化剂、生长因子、维生素和磷。提取得到的产物含有高浓度的ω-3脂肪酸(如C20:5w3、C22:5w3和C22:6w3)和低浓度的ω-6脂肪酸(如C20:4w6和C22:5w6)。具体而言,C20:5w3与C22:6w3脂肪酸的比率为1:1至1:30。C22:5w3与C22:6w3脂肪酸的比率为1:12至最低仅为痕量的C22:5w3。同样,该微生物产生以重量计占总脂肪酸的0.6至0.72%的DHA、0至5%的DPA和0至18.9%的EPA。
Barclay的美国专利No.6,451,567公开了在含有钠盐(如硫酸钠)的无氯培养基(<3g/L)中培养破囊壶菌和裂殖壶菌的方法。该无氯培养基所得到的细胞团大小小于150μm。所公开方法可生产用于水产养殖用食品的微生物和提取物。该食品的其它组分包括亚麻籽、油菜籽、大豆和鳄梨粉。该微生物每天可产生的ω-3脂肪酸为1.08g/L培养基。该‘567的公开内容进一步描述了各种培养基,所述培养基包括海水、葡萄糖(1、3、5或10g/L)、酵母提取物(0.01、0.2、0.4和5g/L)、其它氮源(例如蛋白水解产物(1g/L)、肝脏提取物(1g/L)、谷氨酸(5g/L)、MSG(3g/L))和其它盐、痕量维生素和矿物质(如KH2PO4、MgSO4和明胶提取物)。
Yokochi等人的美国专利No.6,582,941公开了裂殖壶菌属种菌株SR21和属于同一个种的另一裂殖壶菌菌株,所述种具有产生含高浓度ω-3DHA和/或ω-6DPA和低浓度EPA的脂肪酸组分的能力。同时,公开了培养这类微生物和分离这类脂肪酸的方法。所使用的培养基含有海盐、酵母提取物(0.2、1.0或10g/L)、玉米浆(0.5、1.0或10g/L)、葡萄糖(10-120g/L)和其它盐(例如NH4OAc、磷酸盐)。该脂肪酸组合物含有的DHA以重量计占生物量的约15至20%(以重量计占总脂肪酸的约28%)。该组合物可用于食品(如婴儿奶粉)中。
Bailey等人的美国专利No.6,607,900公开了培养真核微生物(如裂殖壶菌菌种ATCC No.20888)的方法,所述真核微生物能产生的多不饱和脂质(尤其是ω-3和-6脂肪酸)占其生物量的至少20%。该方法包括在含碳源和氮源的培养基中培养该微生物。还公开了使用低溶解氧水平(小于3%)和低氯离子水平(小于3g/L)来提高产率。该微生物具有的脂质产率为至少0.5g/L/h。脂质组分的DHA以重量计占生物量的15%至20%(以重量计占总脂肪酸甲酯的约35%)。
Komazawa等人的美国专利申请公开文本No.2004/0161831公开了具有产生DHA的能力的破囊壶菌菌株(LEFl,ATCC No.FERM BP-08568)。通过在常规培养基中培养,该微生物可产生具有以重量计至少50%DHA的油脂。该油脂可由脂肪酶处理,然后分离DHA。该油脂可用于食品或饮品中,或者可水解DHA来产生山酸。
1.脂肪酸
脂肪酸是以末端带有羧基基团的烃链,如果它们含有至少一个碳碳双键,则被称为不饱和的,而在它们含有多个这样的双键时则被称为多不饱和的。由于这些双键的位置,长链多不饱和脂肪酸(PUFA)或高度不饱和脂肪酸(HUFA)可被分为(n-3)和(n-6)系列。大量科学证据表明,(n-3)高度不饱和脂肪酸例如DHA对心血管疾病、慢性炎症和脑障碍有积极作用。另一方面,(n-6)脂肪酸被认为是二十酸类固醇例如前列腺素、白三烯等的中间代谢产物。
多不饱和脂肪酸可包含1、2、3、4、5、6、7、8、9或10个碳碳双键和/或碳碳三键。例如,多不饱和脂肪酸可包含3-8、4-7或5-6个碳碳双键和/或碳碳三键。
目前,这些高度不饱和脂肪酸的主要来源是鱼,已注意到多种深蓝色鱼类(例如沙丁鱼和金枪鱼)体内的DHA和EPA的量分别为约20%和10%。然而,若要使用鱼油作为这些脂质的唯一来源尚存在一些缺点,例如串味、在利用度方面存在不可控的波动、天然鱼油含量存在差异以及可能累积有害环境污染物等问题。另外,若想从所述来源获得高度纯化的(n-3)或(n-6)油,优先地分离和纯化非常困难。具体而言,新出现的高浓度形式DHA在新生儿补品市场上有很好的前景。若鱼油为所述产品的来源,那么不得不优先地从EPA中大量分离DHA。很显然的是,需要高度纯化的其它来源和生产特定的这些高度不饱和脂肪酸的来源。
除了鱼油之外,各种微生物(主要是海产的)能产生和/或积累(n-3)系列的二十二碳六烯酸。特别有意义的是这样一个事实:微生物生产不会受制于由外界变化例如季节、温度和食品供应等引起的波动。例如,已知以下微生物具有产生DHA的能力:来自深海的细菌海产弧菌(Vibriomarinus)(ATCC 15381)、弧菌种(Vibrio sp.)T3615、深海细菌(Photobacterium profundum)SS9、海洋被孢霉(Mortierella marina)MP-1和Psychromonas kaikoae(ATCC BAA-363T);微藻种例如寇氏隐甲藻(Crypthecodinium cohnii)、隐秘小环藻(Cyclotella cryptica)和高山被孢霉(Mortieralla alpina)(1S-4);以及原生生物破囊壶菌属种(ATCC 20892)、金黄破囊壶菌(Thraustochytrium aureum)(ATCC 34304)和粉红破囊壶菌(Thraustochytrium roseum)。但是,根据利用这些经纯化的生物体的方法,每克生物量/每升产生的二十二碳六烯酸的量较低,介于10至500mg之间。一些实例和代表性的产生微生物油的生物体示于图5。
已表明ω3脂肪酸具有有益效果,并且本文所公开的油和组合物可就其以下作用而得以应用:对囊性纤维化病(Cochrane Database SystRev.3)、类风湿性关节炎(Drugs 63:845-53)、哮喘(Ann AllergyAsthma Immunol 90:371-7)和血栓形成性中风(Prev Cardiol 6:38-1)、心脏保护方面的消炎作用,以及对动脉粥样硬化和心律失常(Prostaglandins Leukot Essent Fatty Acids.63:351-62)的直接作用、在乳腺癌细胞系和前列腺癌细胞系中癌增殖的抑制和在动物实验中减少癌细胞(Am J Clin Nutr 77:532-43),对精神分裂症(J NeuralTransm Suppl 64:105-17)和其它精神病(Can J Psychiatry 48:195-203)的抗紧张作用;可用于正常新生儿发育并用于治疗新生儿感染(Eur JPediatr 162:122-8)免疫营养添加剂,并且它可通过直接减弱引起神经性疼痛和炎性疼痛的神经元病变和神经节病变用于治疗病理性疼痛(Prostaglandins Leukot Essent Fatty Acids 68:219-24)。
2.破囊壶菌科
a)ONC-T18
本文所公开的海生生物ONC-T18是作为产生PUFA的微生物分离群体(trip)的一部分而被收集的,从该群体中分离了60种以上的纯培养物,详细参见表7。另外,从加拿大新斯科舍的Advocate Harbor,Bayof Fundy的盐沼草叶片中也分离到了ONC-T18。通过显微检查和系列培养纯化技术,该菌株被认为是属于破囊壶菌属的单一微生物。所有菌株和两个ATCC比较培养物(ATCC 20891&MYA-1381)均在含0.5%葡萄糖、0.2%蛋白胨、0.2%酵母提取物的海水(SW)中生长,并进行GC(脂肪酸甲酯,FAME)分析。
图6示出ONC-T18和其它与其密切相关的生物体之间推定的关系系统树。
使用经典的松树花粉诱集(pine pollen baiting)技术,然后在选择培养基上培养,最初作为单一微生物分离分离了ONC-T18。具体而言,制备含有5g L-1葡萄糖、2g L-1蛋白胨、2g L-1酵母提取物(在1升0.2μm过滤的海水中)的营养培养基。然后使用Bligh和Dyer提取法以及PUFA气相色谱技术确定ONC-T18的脂肪酸生产情况。色谱结果证实,该菌株能够产生增加量的TFA、DHA和显著量的EPA和DPA。
如本文所述,所公开的真核微生物可用于制备包含DHA、EPA和DPA的脂质或脂肪的方法中,但不限于上述ONC-T18或PTA-6245菌株,而是包括所述菌株的任何衍生物,不论该衍生物是通过遗传修饰、化学诱变、发酵调节还是产生所述菌株的突变体的任何其它方式得到,并由此经这些修饰的产物具有与真核微生物相似的遗传或形态和功能的特征,均包括在上述公开范围内。
公开了能产生具有独特脂质类别特征的脂质组合物的真核微生物,并公开了维持该真核微生物的具有高度功能性及其它价值的这种脂质的稳定、可靠和经济的来源问题的技术方案。因此,本文公开了在产生更多(n-3)系列DHA和(n-6)系列DPA的野生型菌株,以及被设计为在更大程度上产生这些多不饱和脂肪酸的变种和重组菌株。这类变种或重组微生物包括被设计为具有如下特征:在使用相同条件和培养基培养时,它们具有的所述脂质含量较原始野生型菌株产生的那些脂质含量更高。另外,还包括具有如下特征的可被筛选的微生物:它们与相应野生型菌株相比可产生含有相似量的(n-3)系列DHA、EPA和(n-6)系列DPA的脂质,但是所述微生物可有效使用具有更高性价比的底物。
公开了包括真核微生物破囊壶菌目的组合物,其中所述真核微生物可产生不饱和脂肪酸。该多不饱和脂肪酸可为例如ω3或ω6脂肪酸,例如DHA和DPA。
公开了包括真核生物在内的组合物,其中所述组合物可产生脂质。
还公开了一类组合物,其中的脂质包括本文所公开的脂质。
还公开了一类组合物,其中所述真核生物包括多个破囊壶菌目。
还公开了一类组合物,其中所述真核生物具有的18S核糖体RNA基因序列与SEQ ID NO:1具有至少80%的同一性。
可以理解的是,本文所述任何形式的特征,例如真核微生物的遗传学、脂质特征或分类,均可用于表征本文所公开的微生物。真核微生物可包括破囊壶菌科的一种或多种微生物,它们的实例为ATCC编号为20888、20889、20890、20891和20892的微生物。有很多可使用的、与该有机体和它们产生的不饱和脂肪酸相关的特征。可以理解的是,例如,这些特征可以任何组合或排列形式用于限定一个或多个系列的生物体、油或抗氧化剂。例如,一个特征是该生物体自身的类别、该生物体的遗传学身份、该生物体的脂质和抗氧化剂生产情况以及该生物体的生长条件。
b)类别
真核微生物可来自网黏菌门(phylum Labyrinthulomycota)。真核微生物可来自网黏菌纲(class Labyrinthulomycetes)。真核微生物可来自破囊壶菌亚纲(subclass Thraustochytridae)。真核微生物可来自破囊壶菌目(order Thraustochytriales)。真核微生物可来自破囊壶菌科(family Thraustochytriaceae)。真核微生物可来自破囊壶菌属(genus Thraustochytrium)。真核微生物可为破囊壶菌属种。真核微生物可为金黄破囊壶菌(Thraustochytrium aureum)。真核微生物可为粉红破囊壶菌(Thraustochytrium roseum)。真核微生物可为纹状破囊壶菌(Thraustochytrium striatum)。真核微生物可为裂殖壶菌属(genusSchizochytrium)。真核微生物可为裂殖壶菌属种。真核微生物可为任何上面列出真核微生物的修饰形式。真核微生物还可包括所述原核生物纲、目、科或属的任何目前未知或未经分离的成员。真核微生物的组合可为本文公开的任何生物体的任何组合,包括一个或多个破囊壶菌属种、裂殖壶菌属种、金黄破囊壶菌、纹状破囊壶菌和粉红破囊壶菌。
来自破囊壶菌科的真核微生物可为任何上文公开的那些真核微生物。真核微生物可包括ATCC编号为PTA-6245的生物体。
c)遗传学
真核微生物可具有18S rRNA序列SEQ ID NO:1。真核微生物可具有与SEQ ID NO:1具有约90%的同源性或本文公开的任何其它同一性的18S rRNA序列。真核微生物可具有在严格条件或本文公开的任何其它条件下与SEQ ID NO:1或SEQ ID NO:1的一部分杂交的18S rRNA序列。
生物体核酸的序列相似性/同一性和核酸杂交可如本文所述。具体而言,使用BLAST(基本的局部比对搜索工具)算法将SEQ ID NO:1与在基因组数据库GenBank(美国国家生物技术信息中心,美国国家卫生研究所,贝塞斯达,马里兰,美国)中的核酸序列相比较,将SEQ ID NO:1鉴定为与几个真核破囊壶菌属种相关(91%相似性)、与破囊壶菌属种(thraustochytrium sp.)CHN-I[AB126669](94.5%相似性)和破囊壶菌科菌种(thraustochytriidae sp.)Nl-27[AB073308](95.5%相似性)密切相关,并且与纹状破囊壶菌(thraustochytrium striatum)[AF265338]最为密切相关(97.5%相似性)。
3.(1)序列相似性
可以理解的是,如本文所述,术语同源性和同一性的使用意味着与相似性具有相同的含义。因此,例如若在两个非天然序列之间使用单词同源性,则可以理解的是,这并不一定指示这两个序列之间的进化关系,而是着眼于其核酸序列之间的相似性或亲缘关系。许多确定两个进化相关分子之间的同源性的方法可以常规方式应用于任何两个或多个核酸或蛋白,目的是测量序列相似性,而不管它们在进化上是否相关。
一般而言,可以理解的是,确定本文所公开基因和蛋白质的任何已知变体和衍生物、或可能出现的那些变体和衍生物的一种方法是通过按照与特定已知序列的同源性来限定变体和衍生物。本文公开的具体序列的这一同一性也在本文其它地方进行了阐述。一般而言,本文公开的核酸和蛋白质的变体通常与指定序列或天然序列具有至少约50、55、60、65、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98或99%的同源性。本领域的技术人员容易理解如何确定两个蛋白或核酸例如基因的同源性。例如,可在将两个序列进行比对之后计算同源性,从而使得同源性处于最高水平。
计算同源性的另一种方法可通过已公开的算法进行。用于比较的序列的最佳比对可通过如下方法进行:Smith和Waterman的局部同源性算法(Adv.Appl.Math.2:482,1981)、Needle和Qunsch的同源性比对算法(J.MoI.Biol.48:443,1970)、Pearson和Lipinan的相似性搜索方法(Proc.Natl.Acad.Sd.USA 85:2444,1988)、这些算法的计算机化执行(Wisconsin Genetics软件包中的GAP、BESTFIT、FASTA和TFASTA,Genetics Computer Group,575Seience Dr.,Madison,WT)或者检查。
核酸的这种同源性可通过例如在如下文献中公开的算法获得:Zuker,M.Science244:48-52,1989,Jaeger et al.Proc.Natl.Acad.Sci.USA 86:7706-7710,1989,Jaeger et al.Methods Enzymol.183:281-306,1989,至少就其与核酸比对相关的内容通过引用将这些文献纳入本文。可以理解的是,任何方法通常均可使用,并且在某些情况下,这些不同方法的结果可能有所不同,但是本领域的技术人员可以理解,若使用这其中的至少一种方法得到了同一性,则认为该序列具有所述同一性,并在本文中被公开。
例如,本文所使用被认为与另一序列具有特定百分比同源性的序列指的是这样一个序列:它具有通过上述任何一种或多种计算方法计算得到的所述同源性。例如,如果使用Zuker计算方法计算得到第一个序列与第二个序列具有80%的同源性,那么即便通过任何其它计算方法计算发现所述第一个序列与所述第二个序列并没有80%的同源性,所述第一序列与所述第二序列也具有本文所述80%的同源性。作为另一个实例,如果使用Zuker计算方法和Pearson和Lipman计算方法计算得到第一个序列与第二个序列具有80%的同源性,那么即便通过Smith和Waterman计算方法、Needleman和Wunsch计算方法、Jaeger计算方法或任何其它计算方法计算发现所述第一个序列与所述第二个序列并没有80%的同源性,所述第一个序列也与所述第二个序列具有本文所述80%的同源性。作为又一个实例,如果使用每一种计算方法计算得到第一个序列与第二个序列具有80%的同源性(尽管在实践中不同的计算方法通常会计算得到不同的同源性百分比),则所述第一个序列与所述第二个序列具有本文所述80%的同源性。
(2)杂交/选择性杂交
术语杂交通常指至少两个核酸分子例如引物或探针和基因之间的序列驱动的相互作用。序列驱动的相互作用指的是在两个核苷酸或核苷酸类似物或核苷酸衍生物之间以核苷酸特异方式出现的相互作用。例如,G与C相互作用或者A与T相互作用就是序列驱动的相互作用。通常,序列驱动的相互作用出现在核苷酸的Watson-Crick界面或Hoogsteen界面。两个核酸的杂交受本领域技术人员所知的多个条件和参数的影响。例如,反应的盐浓度、pH和温度都会影响到两个核酸分子是否会杂交。
两个核酸分子之间选择性杂交的参数为本领域技术人员所熟知。例如,在某些实施方案中,选择性杂交条件可被定义为严格杂交条件。例如,杂交的严格度受控于杂交和洗涤步骤之一或两者的温度和盐浓度两者。例如,实现选择性杂交的杂交条件可包括:在高离子强度溶液(6×SSC或6×SSPE)中于较Tm(解链温度,在此温度下有一半分子与其杂交伴侣解离)低约12-25℃的温度下杂交,然后在选定的温度和盐浓度的组合下洗涤,以使得洗涤温度较Tm低5-20℃。温度和盐条件容易在预实验中通过经验确定,在该预实验中,固定在滤器上的参照DNA样本与所研究标记核酸杂交,并随后在不同严格条件下洗涤。对于DNA-RNA和RNA-RNA杂交而言,杂交温度通常较高。如上所述,该条件可用于实现严格度,或者为本领域已知(Sambrook et al.,Molecular Cloning:A Laboratory Manual,2nd Ed.,Cold Spring Harbor Laboratory,ColdSpring Harbor,New York,1989;Kunkel et al.Methods Enzymol.154:367,1987,至少就其与核酸杂交相关的内容通过援引将其纳入本文)。DNA:DNA杂交的优选严格条件为在约68℃(在水溶液中)于6×SSC或6×SSPE中,然后在68℃洗涤。如若需要,杂交和洗涤的严格度可随所需互补程度的减少而相应降低,并且还取决于其中任何变异性被搜索区域的G-C或A-T的富集度。同样,如若需要,杂交的严格度可随所需同源性的减少而相应降低,并且还取决于其中任何需要高度同源性区域的G-C或A-T的富集度,这些均为本领域所知。
定义选择性杂交的另一种方法是通过查看一种核酸与另一种核酸结合的量(百分比)。例如,在某些实施方案中,选择性杂交条件是指在至少约60、65、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、91、98、99、100%的限量核酸与不限量核酸结合时的条件。通常,不限量引物为例如10、100或1000倍过量。这类分析可在如下条件下进行:其中限量和不限量引物较其Kd低例如10、100或1000倍,或者其中仅一种核酸分子为10、100或1000倍,或者一种或两种核酸分子高于其Kd
定义选择性杂交的另一种方法是在需要杂交以促进所需酶操作的条件下,查看引物实现酶操作的百分比。例如,在某些实施方案中,选择性杂交条件是在至少约50、55、60、65、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100%的引物在促进酶操作的条件下实现酶操作时的条件;例如,若酶操作是DNA延伸,那么选择性杂交条件是在至少约50、55、60、65、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100%的引物分子被延伸时的条件。优选的条件还包括制造商所建议的那些条件或者本领域认为适合酶进行操作的那些条件。
正如同源性的情况一样,可以理解的是,本文公开了多种确定两个核酸分子之间杂交水平的方法。可以理解的是,这些方法和条件可在两个核酸分子之间给出不同的杂交百分比,但是除非另外指明,否则满足任一方法的参数即可。例如,若需要80%的杂交,并且只要在这其中的任一种方法中的必需参数范围内出现了杂交,则认为它由本文所公开。
可以理解的是,本领域技术人员明白,若某一组合物或方法一起或单独满足这些确定杂交的标准的的任一标准,则该组合物或方法即为本文所公开。
d)所产生的分子的组合物
可以理解的是,本文所公开真核生物能产生多种化合物和组合物。这些化合物和组合物可用作识别标志,即一种鉴定生物体的方式。例如,表征某一生物体的一种方法是通过该生物体产生脂质的生产情况。如本文所述,这些不同的脂质情况既可用于表征该生物体,也可以用于就各种理由进行纯化、操作和收集。
(1)脂质
可以理解的是,每种生物体可产生本文所公开的不饱和脂肪酸的某些生产情况。这些生产情况为该生物体的特征。下面为该生物体的不饱和脂质生产情况和其它脂质生产情况的一些实例。
例如,真核微生物可产生占干细胞生物量至少约4wt%至6wt%(如约5wt%)的脂质或脂肪酸组分,所述脂质或脂肪酸组分包括约0wt%至约2wt%的豆蔻酸(如约1wt%)、约16wt%至约20wt%(如约18wt%)的棕榈酸、约0wt%至约2wt%(如约1wt%)的棕榈油酸、约4wt%至约8wt%(如约6wt%)的硬脂酸、约30wt%至约34wt%(如约32wt%)的油酸、约40wt%至约44wt%(如约42wt%)的亚油酸和约0wt%至约3wt%(如约2wt%)的n-3EPA。
例如,真核微生物还可产生占干细胞生物量至少约1wt%至3wt%(如约1.25wt%)的脂质或脂肪酸组分,所述脂质或脂肪酸组分包括约2wt%至约4wt%(如约3wt%)的豆蔻酸、50wt%至约60wt%(如约55wt%)的棕榈酸、约2wt%至约4wt%(如约3wt%)的棕榈油酸、约16wt%至约20wt%(如约18wt%)的硬脂酸、约9wt%至约13wt%(如约11wt%)的油酸、约1wt%至约3wt%(如约2wt%)的二十碳二烯酸和约6wt%至约10wt%(如约8wt%)的n-3EPA。
真核微生物例如ONC-T18可产生占干细胞生物量至少约30wt%、40wt%、50wt%、60wt%、70%wt%或80wt%(如约80wt%)的脂质组合物。例如,真核微生物可产生脂质组合物,所述脂质组合物包含约25%至约40%的ω-3脂肪酸如n-3DHA(例如以重量计至少15%、20%、25%、30%、35%、40%、45%、50%、55%或60%)、约0%至约3%的ω-3脂肪酸EPA(例如以重量计至少1%或2%)和约4%至约12%的ω-6脂肪酸例如n-6DPA(例如以重量计至少4%、5%、6%、7%、8%、9%或10%)。
可以理解的是,可以基于该真核微生物能够存在的生长条件,对由真核微生物产生的脂质的组合物进行处理。通过改变本文公开的各个参数可对组合物进行处理,以产生例如产率更高的DHA或DPA。例如,操作不会产生更多的实际克数,但是该操作可产生更好的DHA或DPA与EPA和其它所需PUFA的比率,从纯化的角度来看,该比率是所需的。本文讨论了多种处理条件。
图10示出由所公开真核微生物所产生的各种PUFA可能的代谢途径,这与脂肪酸甲酯代谢产物追踪结果一致。使用例如简并引物研究(Metz et al.(2001)Science 293:290-3和Kaulmann&Hertweck(2002)Angew.Chem.Int.Ed.41:1866-9),在本文所公开途径中可被鉴定的蛋白质为聚酮合成酶。使用例如杂交探针,还可鉴定延伸酶和去饱和酶。使用例如杂交探针和/或简并引物研究,还可鉴定脂肪酸合成酶。
4.生长和培养
进行了包括碳、氮(肽氮)、磷和硫、渗压剂和pH在内的表型微孔板(phenotypic microplate)研究。
正交阵列(Taguchi)法用于确定最佳培养基组成和氮、碳和盐浓度的变化情况(Joseph J&Piganatiells JR(1998)IJE Trans,20:247-254)。
若增加搅拌或dO2,则会增加生物量产量和TFA,但减少DHA。若减少搅拌或dO2,则会减少细胞生物量(g),并减少TFA,但增加DHA,而且会减少C16:0、C16:1和C18:1。
若升高温度,则会增加生物量产量和TFA,但减少DHA。若降低温度,则会减少细胞生物量(g),并减少TFA,但增加DHA,而且会减少C16:0、C16:l和C18:l。
来源于所公开真核微生物的细胞生物量可通过接种合适的天然或人工海水培养基(含约2%至约100%的海水)获得。该真核微生物能利用该培养基中的各种营养组分。在该培养基中所使用的碳源的实例为糖类例如葡萄糖、果糖、右旋糖(dextrose)、乳果糖、半乳糖、麦芽三糖、麦芽糖、乳糖、糖原、明胶、淀粉(玉米或小麦),以及糖衍生物如醋酸盐、m-肌醇(来源于玉米浆)、半乳糖醛酸(来源于果胶)、L-岩藻糖(来源于半乳糖)、龙胆二糖、葡糖胺、α-D-葡萄糖-1-磷酸盐(来源于葡萄糖)、纤维二糖(来源于纤维素)、糊精(来源于玉米)和α-环糊精(来源于淀粉),和多元醇例如麦芽糖醇、赤藻糖醇、侧金盏糖醇和油酸例如甘油和tween 80,和氨基糖例如N-乙酰基-D-半乳糖胺、N-乙酰基-D-葡糖胺和N-乙酰基-β-甘露糖胺。而氮源的实例为天然氮源如蛋白胨、酵母提取物、麦芽提取物和鱼粉,或者为有机氮源例如谷氨酸钠,但不限于此。另外,如若必要,磷酸盐例如磷酸钾和磷酸钠、无机盐例如硫酸铵、碳酸氢钠、原钒酸钠、铬酸钾、钼酸钠、亚硒酸钠、硫酸镍、硫酸铜、硫酸锌、氯化钴、氯化铁、氯化锰和氯化钙可仅与螯合剂乙二胺四乙酸一起用作微量养分,或者与该螯合剂以及维生素例如维生素B6、维生素B1、泛酸钙、对氨苯甲酸、核黄素、烟酸、生物素、叶酸和维生素B12一起用作微量养分。在配制好培养基后,使用酸或碱将pH调节至3.0至10.0之间,恰当时,调节至例如pH4.0至6.5之间,并且通过例如高压灭菌对培养基进行灭菌。在温度为4至30℃、优选18至28℃之间,通过通气振荡培养、振荡培养、静止培养、分批培养、连续培养、滚动分批培养或波动培养等,将培养进行1至30天、1至21天、1至15天、1至12天、1至9天或优选3至5天。
以下的条件是可产生一系列脂质的条件的实例,所述脂质在产量方面可用作商品。对ONC-T18的培养条件的研究表明,本文所公开的真核微生物在天然或人工海水、或在含有浓度最低至5%的天然或人工海水的培养基中生长良好。如上所述,加入该培养基中的碳源和氮源可为通常使用的那些碳源和氮源。天然氮源或有机氮源相对而言是等效的,并且该培养基中的总氮浓度保持恒定。将这些碳源或氮源以标准浓度加入培养基中。如本文所公开的那样,若满足这些条件,则会对脂质含量、累积DHA、DPA和EPA的比例或量稍有影响。
对于高浓度发酵ONC-T18而言,能够使用几种方法来增加细胞生物量和脂质产率。这些方法包括分别将培养基中碳和氮的浓度(两者的比率为6:1至15:1、优选6:1至13:1之间,温度为4至30℃、优选18至28℃之间)两者分别从5g L-1至60g L-1升高至100g L-1至160g L-1,和从4g L-1至10g L-1升高至40g L-1至60g L-1。使用这种方法,所产生的生物量和脂质的比例也以相应的水平增加。另外,通过将碳源从5g L-1至60g L-1升高至100g L-1至160g L-1而氮源保持不变,可以增加脂质产量。另外,通过将氮源的量从10g L-1升高至60g L-1而碳源保持不变,可以增加生物量产量,同时维持脂质含量。此外,实验表明生物量和脂质产量随搅拌(范围在100至1000rpm之间,更好地在350至600rpm之间,并且最佳地在350至450rpm之间)的加快而大大提高,并且脂质含量仅有最低限度的降低,脂肪酸生产情况没有减少,并且搅拌在异养发酵早期特别有用。实验还表明,培养基中的溶解氧含量介于1至10%之间、最好是在5%时,可得到最适宜的脂质产量。最后,将醋酸盐、微量元素、金属和维生素加至生产培养基(如上所述)增加了DHA、EPA和DPA相对于其它脂肪酸的产量,而不降低总脂质值。
通过进行上述异养发酵,能持续产生细胞生物量,所述细胞生物量可产生含(n-3)系列DHA的脂质,所述DHA在培养基的浓度较高,不低于5g/升培养基、更优选不低于20g/升培养基。另外,实验表明,在达到最大生物量水平之后,这些脂质中有大部分在培养的对数晚期/过渡期期间累积。然而,在发酵过程中,脂质含量通常不会低于总生物量的25%,通常最大为约80%。上述条件下的培养可使用常规搅拌发酵罐进行。还可使用泡罩塔发酵罐(成批培养或连续培养)或波动发酵罐。
进行脂质分离之前细胞生物量的收集可使用各种常规方法例如离心(如离心式固液分离机(solid-ejecting centrifuge))或过滤(例如交叉流过滤)进行,并且还包括使用加速收集细胞生物量的沉淀剂(例如磷酸钠、氯化钠或聚丙烯酰胺(polyacridamide))。
5.脂质的分离
图7示出随各个参数而变化的脂质和DHA生产情况图。所有这些数据可用于获取关于ONC-T18真核微生物的具体特征。图13示出所公开真核生物的大体的脂肪酸生产情况图。
含有(n-3)系列DHA和(n-6)系列DPA的脂肪可通过如下步骤获得:例如通过碾磨、超声处理来破坏或破裂收集到的细胞生物量,然后使用溶剂例如氯仿、己烷、甲醇、乙醇或通过超临界流体抽提方式进行提取。所得到的含(n-3)系列DHA和(n-6)系列DPA的脂肪在每克干细胞生物量的含量优选高于0.25g,更优选高于0.6g。
所公开真核微生物例如ONC-T18能产生如上述获得的脂质,该真核微生物的各种变种以及各变种的结合可以产生具有如下组成情况的脂质。中性脂质的百分比以重量计为总脂质的至少95%。真核微生物例如ONC-T18产生的中性脂质中脂肪酸的典型组成如下:15%的豆蔻酸、8%的十五酸、35%的棕榈酸、7%的棕榈油酸、1%的硬脂酸、2%的油酸、1%的二十碳五烯酸、6%的二十二碳五烯酸和25%的二十二碳六烯酸(GC谱示于图1)。
所公开真核微生物例如ONC-T18能产生如上述获得的脂质,该真核微生物的各种变种以及各变种的结合可以产生具有如下组成情况的脂质。ONC-T18的中性脂质组分中甘油一酯、甘油二酯和甘油三酯的百分比分别为0%至约2%、0至约2%和96至约100%。而占脂质组分5%至约10%的极性脂质组分包括与中性脂质结合和未与之结合的磷脂酰胆碱、磷脂酰丝氨酸和磷脂酸(phosphotidic acid)。
可以理解的是,这些脂质可以任何组合或排列存在于这些生物体内。还可以理解的是,如上所述,这些脂质的浓度可通过改变生长条件和培养基条件来操控。
(1)脂质浓度
真核微生物可产生含大于等于约4.0g L-1培养基的n-3DHA、EPA和n-6DPA的脂质组分。真核微生物可产生含大于等于约20.0g L-1培养基的n-3DHA、EPA和n-6DPA的脂质组合物。真核微生物可产生含大于等于约14.0g L-1培养基的n-3DHA、EPA和n-6DPA的脂质组合物。真核微生物可产生约1.5g L-1至约5.0g L-1(如约4.6g L-1)的n-3DHA、约0.5g L-1至约1.5g L-1(如约0.22g L-1)的n-3EPA和约0.5g L-1至约1.5g L-1的n-6DPA。另外,真核微生物可产生介于301.2至360.3mg g-1甚至最高达790mg g-1细胞生物量、含有如下物质的脂质组分:豆蔻酸、肉豆蔻稀酸、十五酸、棕榈酸、棕榈油酸、硬脂酸、油酸、亚油酸、二十碳二烯酸、花生四烯酸、二十碳五烯酸、二十二碳六烯酸和二十二碳五烯酸。真核微生物还可产生含有如下物质的组分:44.3至57mg g-1豆蔻酸(等于1134.5至1458.1mg L-1)、0.5至0.65mg g-1肉豆蔻稀酸(等于13.3至16.63mg L-1)、33.5至34.6mgg-1十五酸(等于856.9至885.1mg L-1)、121.9至165.1mg g-1棕榈酸(等于3118.2至4223.3mg L-1-)、7.9至28.5mg g-1棕榈油酸(等于202.l至729mg L-1)、4.38至5.9mg g-1硬脂酸(等于112至151mg L-1)、6.94至9.9mg g-1油酸(等于177.5至253.2mg L-1)、0.4至1.3mg g-1亚油酸(等于11.26至33.3mg L-1)、0.5至1.0mg g-1二十碳二烯酸(等于12.8至25.6mg L-1)、0.4至0.5mg g-1花生四烯酸(等于10.2至13mg L-1)、75至100mg g-1二十二碳六烯酸(等于1918至2560mg L-1)、1.9至6mg g-1二十碳五烯酸(等于48.6至153.5mg L-1)和17.1至33.7mg g-1二十二碳五烯酸(等于437.4至862.1mg L-1),细胞生物量内总脂肪酸含量介于301至790mg g-1之间(等于7700至20,209mg L-1)。
(2)其它分子
真核微生物可进一步产生类胡萝卜素和叶黄素。这类类胡萝卜素和叶黄素的实例包括β-胡萝卜素、番茄红素、虾青素、角黄素、芬尼黄质、玉米黄素、海胆酮、β-隐黄素、辣椒红、黄体素(lutin)、胭脂树橙、β-脱辅基-8-胡萝卜素醛和β-脱辅基-8-胡萝卜素醛-酯。
由所公开真核微生物产生的叶黄素可与同样由所述所公开真核微生物产生的各种PUFA相缀合。
(a)抗氧化剂
通常,抗氧化剂为与氧反应并通常被氧所消耗的化合物。由于抗氧化剂通常与氧反应,所以抗氧化剂还通常与自由基生成物和自由基反应(“The Antioxidants-The Nutrients that Guard Your Body”byRichard A.Passwater,Ph.D.,1985,Keats Publishing Inc.,至少就其与抗氧化剂相关的内容通过援引纳入本文)。组合物可包含任何抗氧化剂,非限制性实例可包括但不限于:可直接清除自由基的非类黄酮抗氧化剂和营养物,包括综合胡萝卜素(multicarotene)、β-胡萝卜素、α-胡萝卜素、γ-胡萝卜素、番茄红素、黄体素和玉米黄素、硒、维生素E、包括α-、β-和γ(生育酚,尤其是α-生育酚等)维生素E的琥珀酸酯和trolox(一种可溶的维生素E类似物)维生素C(抗坏血栓)和Niacin(维生素B3、烟酸和烟酰胺)、维生素A、13-顺式视黄酸、N-乙酰基-L-半胱氨酸(NAC)、抗坏血酸钠、吡咯烷-二硫代-氨基甲酸酯和辅酶Q10;催化破坏自由基的酶类,包括过氧化物酶例如作用于H2O2和例如有机过氧化物的谷胱甘肽过氧化物酶(GSHPX),包括作用于H2O2的过氧化氢酶(CAT)、岐化O2H2O2的超氧化物岐化酶(SOD)、谷胱甘肽转移酶(GSHTx)、谷胱甘肽还原酶(GR)、葡萄糖-6-磷酸脱氢酶(G6PD)以及它们的模拟物、类似物和聚合物(抗氧化酶类的类似物和聚合物例如SOD描述于例如美国专利系列号No.5,171,680,至少就其与抗氧化剂和抗氧化酶类相关的内容通过援引将其纳入本文);谷胱甘肽;血浆铜蓝蛋白;半胱氨酸和半胱胺(β-巯基乙胺)和类黄酮和类黄酮样分子例如叶酸和叶酸盐。抗氧化酶及其模拟物和抗氧化营养物的综述可参见Kumaret al,Pharmac.Ther.39:301,1988和Machlin L.J.and Bendich,FASEB Journal 1:441-445,1987,就其与抗氧化剂相关的内容通过援引将这两篇文献纳入本文。
类黄酮也称为“苯并色酮”,为存在于自然界、具有抗氧化性的水溶性化合物。类黄酮广泛分布于维管植物中,并存在于大量蔬菜、水果和饮料如茶和酒(特别是红酒)中。类黄酮为共轭的芳香族化合物。存在最为广泛的类黄酮是黄酮和黄酮醇(例如杨梅黄酮(3,5,7,3’,4’,5’,-六羟黄酮)、栎皮黄酮(3,5,7,3’,4’-五羟黄酮)、山奈黄素(3,5,7,4’-四羟黄酮)和黄酮芹菜苷配基(5,7,4’-三羟黄酮)和毛地黄黄酮(5,7,3’,4’-四羟黄酮)及其糖苷和栎皮黄酮)。
类胡萝卜素是由多种微生物和植物所产生的重要天然色素,通常为红色、橙色或黄色。在过去类胡萝卜素已被用于饲料、食品和营养制品产业。已知它们是植物生长和光合作用所必需的,并且为人中维生素A的主要膳食来源。膳食性抗氧化剂例如类胡萝卜素(β-胡萝卜素、番茄红素、虾青素、角黄素、玉米黄素、辣椒红、黄体素、胭脂树橙、β-脱辅基-8-胡萝卜素醛和β-脱辅基-8-胡萝卜素醛-酯)展现出显著的抗癌活性,并且在预防慢性疾病中起着重要作用。类胡萝卜素为有效的生物学抗氧化剂,可将单线态氧上的激发能吸收到类胡萝卜素链上,从而导致类胡萝卜素分子的降解,但是可防止其它分子或组织被损害。
氧是代谢功能所必需的,但是它也会攻击细胞。人体具有大量从其细胞中除去氧产生的分子的代谢酶和抗氧化剂。氧化应激被认为是诸多病症的影响因素,所述病症例如类风湿性关节炎、缺血性心脏病和中风、阿尔茨海默痴呆、癌症和衰老等。因此,抗氧化剂具有预防多种疾病的潜能。已从海洋生物来源中分离了几种抗氧化剂化合物;这些抗氧化剂化合物包括虾青素、β-胡萝卜素和其它类胡萝卜素。
类胡萝卜素是天然存在的一组分布广泛的色素,有700种以上的天然脂溶性色素主要由微藻、大藻、细菌和真菌种产生,并且虾青素及其衍生物在商业上受到特别关注。虾青素是极其有效的抗氧化保护剂。然而,与β-胡萝卜素不同,虾青素容易穿过血脑屏障/血视网膜屏障,因此还具有预防脑病和眼病的潜能。临床前研究表明了服用虾青素的各种有益效果,例如:(i)抑制膀胱、结肠、肝脏、乳腺和口腔中的癌形成和生长;(ii)使眼睛的视网膜免受氧化损伤,因此具有抵抗年龄相关性黄斑疾病的作用;(iii)促进免疫活性提高;(iv)提供免于紫外线损伤的保护;以及(v)提供更好的肌耐力。
b)微生物的分离
公开了通过以下方法所获得的来自破囊壶菌科的微生物,所述方法包括:用花粉粒诱集盐水(天然海水或人工盐水)中的营养体(vegetative)样本并进行培养;分离花粉粒并将其转移至异养培养基中并进行培养;鉴定产生脂肪酸的分离株,从鉴定得到的分离株分离来自破囊壶菌科的微生物。其它形式的分离包括辅以合适抗生素的培养基和通过如上所述的显微方式或通过使用18S rRNA基因引物或探针的鉴定。异养培养基可如下文所述。
5.由真核微生物产生的脂质和其它分子
公开了脂质组合物,所述脂质组合物包含约25wt%至约40wt%的n-3DHA,约6wt%至约10wt%的n-6DPA和约0wt%至约3wt%的n-3EPA。
脂质组合物可进一步包含约11wt%至约15wt%(如约13wt%)的豆蔻酸、约7wt%至约11wt%(如约9wt%)的十五酸、约37wt%至约41wt%(如约39wt%)的棕榈酸、约3wt%至约7wt%(如约5wt%)的棕榈油酸、约0至约3wt%(如约1wt%)的硬脂酸或约1wt%至约4wt%(如约2wt%)的油酸。
脂质组合物可含有浓度大于约400mg生物量的n-3DHA,浓度大于100mg生物量的n-6DPA。
脂质组合物还可含有类胡萝卜素。这类类胡萝卜素的实例包括β-胡萝卜素、番茄红素、虾青素、玉米黄素、角黄素、海胆酮、芬尼黄质、辣椒红、黄体素、胭脂树橙、β-脱辅基-8-胡萝卜素醛和β-脱辅基-8-胡萝卜素醛-酯。
一方面,该组合物可含有至少约24wt%的n-3DHA、约1wt%的n-3DPA、约6wt%的n-6DPA和约1wt%的n-3EPA。
6.含有由真核微生物产生的分子的组合物
人和动物(包括海生动物)用的食品、添加剂、药物组合物可包含该组合物(脂质、具有抗氧化剂的脂质和抗氧化剂自身)。
还公开了包含该组合物(脂质、具有抗氧化剂的脂质和抗氧化剂自身)的婴儿配方。
C.方法
1.脂质制备方法
公开了制备脂质组合物的方法,所述方法包括:培养包括来自破囊壶菌科的一种或多种微生物在内的真核微生物,并分离该脂质组合物。
可采用多种方法来回收在多种培养基中发酵得到的细胞生物量,例如通过过滤或离心。然后洗涤、冷冻、冷冻干燥或喷雾干燥细胞,并在无氧环境下储存,以消除氧的存在,然后将其掺入经加工的食品或饲料产品中。
含有(n-3)DHA、EPA和(n-6)DPA等PUFA的细胞脂质还可通过诸如超临界流体抽提等方法、或通过采用溶剂例如氯仿、己烷、甲醇、二氯甲烷或甲醇的抽提法从细胞生物量提取,并且所得到的提取物在负压条件下蒸发,以产生经浓缩的脂质物质样本。ω-3和ω-6PUFA可通过如下步骤进一步浓缩:水解该脂质,并通过采用常规方法例如尿素包合法(urea adduction)或分馏、柱色谱法或通过超临界流体分级分离法浓缩高度不饱和组分。还可破裂或裂解细胞并将脂质抽提至植物油或动物油(如鱼油)中。抽提得到的油可通过通常用于提炼植物油的公知方法(例如通过化学提炼或物理提炼)来提炼。在抽提得到的油作为食用油使用或出售前,这些提炼方法可将杂质从其中除去。提炼之后,该油可直接用作饲料或食品添加剂以产生富含ω-3和/或ω-6的产品。或者,该油可按如下所述进一步加工和纯化,然后用于以上应用,并且还可用于制药。
在产生经浓缩的ω-3或ω-6油的另一种方法中,所收集得到的细胞生物量(新鲜的或经干燥的)可通过公知技术例如超声波处理、液体切力破裂方法、玻珠研磨、高压挤压、冻融或细胞壁的酶消化来破裂或渗裂。破裂细胞中的脂质可使用某种溶剂或溶剂例如己烷、氯仿、乙醚或甲醇的混合物来萃取。除去溶剂,并通过使用任何公知的将甘油三酯转化为游离脂肪酸或脂肪酸的酯的方法(包括碱性水解、酸性水解或酶解)来水解脂质。水解完成之后,不能皂化的化合物被萃取至溶剂例如乙醚、己烷或氯仿中并被除去。然后将剩下的溶液通过加入酸来酸化,并将游离脂肪酸萃取至溶剂例如己烷、乙醚或氯仿中。然后将含有该游离脂肪酸的溶剂溶液冷却至低到足以使非PUFA化合物结晶的温度,随后所述非PUFA化合物可通过过滤、离心或沉淀来除去。结果是剩下的PUFA化合物得到了浓缩并被用作人的营养添加剂、用作食品添加剂或用于药物应用。
同时,公开了通过上文公开方法制备的脂质组合物。
来自破囊壶菌科的微生物可为上文所公开的任何微生物。
a)培养基
异养培养基可包含(人工的或天然的)海盐、一种或多种碳源和一种或多种氮源。该海盐存在的量可为约2.0至约40.0g L-1。标准培养条件(并非针对高浓度发酵,而是针对低成本发酵)下所使用的碳源和氮源的浓度范围分别是5g L-1至60g L-1和4g L-1至10g L-1。对于高浓度发酵而言,标准培养条件下所使用的碳源和氮源的浓度范围分别是分别是100g L-1至160g L-1和40g L-1至60g L-1。油脂积累的趋势是:真核微生物在(如上所述的那些)培养基中生长,其中在约24至约48小时之后氮的提供受到了限制,而碳的提供依然很富裕。该真核微生物继续吸收碳(单糖形式),但是由于缺乏形成相关蛋白质和核酸的氮而不再进行细胞分裂。结果是这些糖被转化成储备油脂,这与RatledgeC.(Lipid Tech.16:34-39,2004)所描述的方式非常相似,图9给出该生物体所特有的这一现象。
氮源可为蛋白胨、酵母提取物、麦精和谷氨酸钠中的一种或多种。氮源还可为玉米浆或棉籽提取物。氮源可含有酵母提取物和/或蛋白胨或谷氨酸单钠。例如,氮源可包括但不限于EMDTM YE-MSG、EMDTM YE、EMDTM Peptone-MSG、SigmaTM YE-MSG、SigmaTM YE、FermtechTM YE-MSG、FermtechTM YE或Fish meal(62%蛋白质)。酵母提取物所存在的量可为约2g L-1。谷氨酸单钠存在的量可为约8g L-1
碳源可为如下物质中的一种或多种:D-海藻糖、甘油、D-葡糖酸、L-乳酸、D,L-苹果酸、D-核糖、Tween 20、D-果糖、乙酸盐、乙酸、α-D-葡萄糖、麦芽糖、胸苷、L-天冬酰胺、D-木糖、Tween 40、α-酮基-戊二酸、蔗糖、L-谷氨酰胺、Tween 80、β-甲基-D-葡糖苷、麦芽三糖、腺苷、延胡索酸、溴代琥珀酸、L-丝氨酸、D-纤维二糖、L-丙氨酰基-甘氨酸、丙酮酸甲酯、L-苹果酸、甘氨酰基-L-脯氨酸、D-palcose、L-来苏糖、丙酮酸、α-D-乳糖、糊精、D-阿拉伯糖、2-脱氧-D-核糖、明胶、右旋糖、淀粉、3-0-β-D-吡喃半乳糖基-D-阿拉伯糖、D-塔格糖、5-酮基-D-葡糖酸、草酰苹果酸(oxalomalic acid)、山梨酸、L-鸟氨酸和二羟基乙酸酯。一方面,碳源可为D,L-苹果酸、D-果糖、D-木糖、延胡索酸、D-纤维二糖、5-酮基-D-葡糖酸、丙酮酸、α-D-乳糖、玉米糊精、明胶、玉米淀粉或小麦淀粉。碳源存在的量可为约1g L-1至60gL-1并且最高至约200g L-1
在一个实例中,培养基含有约5g D-葡萄糖、约2g蛋白胨和约2g酵母提取物/升盐水(天然的或人工的)。在另一实例中,培养基含有约60g D-葡萄糖、约10g酵母提取物/升盐水(天然的或人工的)。在另一实例中,培养基可含有约8g酵母提取物、32g MSG、24g海盐(天然的和人工的)和300g D-葡萄糖/升。
培养基可进一步含有磷酸盐(如磷酸钾和磷酸钠)。培养基可进一步含有无机盐(如硫酸铵、碳酸氢钠、原钒酸钠、铬酸钾、钼酸钠、亚硒酸、硫酸镍、硫酸铜、硫酸锌、氯化钴、氯化铁、氯化镁)。培养基可进一步含有螯合物(如EDTA)。培养基可进一步含有维生素(如维生素B6、维生素B1、泛酸钙、对氨基苯甲酸、核黄素、烟酸、生物素、叶酸和维生素B12)。培养基的pH为约4.0至约6.5。
培养可进行约1至约9天(如约3天至约5天)。培养可在约18至约30℃(如约18-25℃)进行。培养可进一步包括振荡或通气。
分离脂质的过程可包括将该微生物与萃取溶剂相接触。该溶剂可包括选自氯仿、己烷、甲醇或乙醇或超临界CO2的一种或多种溶剂。
该方法可产生本文所公开的任何组合物。
该真核微生物可产生含大于等于约20g L-1培养基的n-3DHA的脂质组合物。该真核微生物可产生含大于等于40g L-1培养基的n-3DHA的脂质组合物。该真核微生物可产生含大于等于80g L-1培养基的n-3DHA的脂质组合物。
2.筛选和鉴定方法
本文所公开的真核微生物可产生含(n-3)系列二十二碳六烯酸和二十碳五烯酸以及(n-6)系列DPA的脂质。这些真核微生物可使用例如以下的筛选方法筛选。可将营养体样本置于装有10mL无菌(0.2μm过滤)天然海水(含有浓度分别为300和500mg L-1的青霉素和链霉素)的20mL小瓶中。然后用无菌花粉粒诱集小瓶,并在18至25℃培养48小时。然后将花粉粒转移至含抗生素(如上所述)的琼脂板上,并在相同条件下培养。挑选球形或蛞蝓形细胞的单个无规则透明集落和非典型的酵母或细菌集落,并在与上述相同的培养基和相同的条件下传代培养。然后使用营养液体培养基根据生长情况和脂肪酸产生情况对这些分离株进行筛选,所述营养液体培养基由0.2μm过滤的天然海水制备,含5gL-1葡萄糖、2g L-1蛋白胨和2g L-1酵母提取物,结果通过对液体培养基进行离心或沉淀收集得到细胞生物量。可使用常规方法直接对脂肪酸进行酯交换,并且脂肪酸甲酯组合物可通过气相色谱分析,筛选产生恰当量n-3系列DHA和n-6系列DPA的菌株用于进一步研究中。
公开了鉴定真核微生物的方法,所述方法包括:用花粉粒诱集海水(天然海水或人工海水)中的营养体样本并进行培养;将该花粉粒转移至异养培养基中并进行培养;并鉴定产生脂肪酸的分离株。
还公开了由上面鉴定得到的真核微生物所产生的脂质组合物。
还公开了由使用所公开真核微生物的方法和本文公开的方法产生的脂质组合物。
还公开了ATCC编号为PTA-6245的真核微生物(ONC-T18)。
还公开了属于破囊壶菌目的真核微生物(ONC-T18),它们具有例如SEQ ID NO:1所示的18S rRNA,并被鉴定为破囊壶菌属种。
还公开了能产生浓度分别高于400mg L-1和100mg L-1的DHA和DPA的真核微生物破囊壶菌属种。
还公开了能通过上述异养发酵产生范围在50至1250mg kg-1的类胡萝卜素以及能产生1至20mg kg-1的虾青素、0.25至10mg kg-1的玉米黄素、1至20mg kg-1的角质素、1至20mg kg-1的海胆酮和1至200mg kg-1的β-胡萝卜素的真核微生物破囊壶菌属种。
还公开了培养真核微生物的方法,该方法包括:在某种条件下培养真核微生物,其中所述条件包括含有如下组成的培养基:人工海盐(营养性海水)形式、2.0至15.0g L-1的氯化钠,酵母提取物形式和谷氨酸单钠形式、浓度分别为2.0和8.0g L-1的氮源和葡萄糖形式、最高至130g L-1的碳。
所公开的方法可培养例如ONC-T18,使得总脂肪酸的至少24%重量为DHA、以重量计至少6%为DPA,并且至少1%为EPA。
所公开的培养方法还可培养例如ONC-T18,从而使得以重量计至少1%为类胡萝卜素物质,其中1至2%并且至少1.2%为虾青素,0.25至1%并且至少0.45%为玉米黄素,5至16%并且至少9%为角质素,1至2%并且至少1.2%为海胆酮以及以重量计12至16%并且14%β-胡萝卜素。
3.核酸
多种本文公开的分子均为基于核酸的分子,包括例如编码例如rRNA以及任何其它本文公开的蛋白质的核酸,以及各种功能性核酸。所公开的核酸由例如核苷酸、核苷酸类似物或核苷酸替代物构成。这些和其它分子的非限制性实例在本文中有述。可以理解的是,例如载体在细胞中表达时,所表达的mRNA通常由A、C、G和U/T构成。同样可以理解的是,例如若反义分子通过例如外源送递被引入细胞或细胞环境,则有利的是,反义分子由可减少反义分子在细胞环境中降解的核苷酸类似物构成。
a)核苷酸和相关分子
核苷酸是含有碱基部分、糖部分和磷酸部分的分子。核苷酸可通过其形成核苷间键合的磷酸部分和糖部分连接在一起。核苷酸的碱基部分可为腺嘌呤-9-基(A)、胞嘧啶-1-基(C)、鸟嘌呤-9-基(G)、尿嘧啶-1-基(U)和胸腺嘧啶-1-基(T)。核苷酸的糖部分为核糖或脱氧核糖。核苷酸的磷酸部分为五价磷酸。核苷酸的非限制性实例为3’-AMP(3’-单磷酸腺苷)或5’-GMP(5’-单磷酸鸟苷)。
核苷酸类似物为含有对碱基、糖或磷酸部分作出某类修饰的核苷酸。对核苷酸的修饰为本领域所熟知,包括例如5-甲基胞嘧啶(5-me-C)、5-羟甲基胞嘧啶、黄嘌呤、次黄嘌呤和2-氨基腺嘌呤,以及在糖或磷酸部分作出的修饰。
核苷酸替代物为与核苷酸具有相似功能性,但是不含磷酸部分的分子,例如肽核酸(PNA)。核苷酸替代物为以Watson-Crick或Hoogsteen方式识别核酸、但通过非磷酸部分的部分连接在一起的分子。核苷酸替代物在与恰当的靶核酸相互作用时也能形成双螺旋型结构。
还能将其它形式的分子(缀合物)与核苷酸或核苷酸类似物连接起来以增强例如细胞摄入。缀合物可通过化学方式连接核苷酸或核苷酸类似物。这类缀合物包括但不限于脂质部分,例如胆固醇部分(Letsingeret al.,Proc.Natl.Acad.Sd.USA,86:6553-6556,1989)。
Watson-Crick相互作用为与核苷酸、核苷酸类似物或核苷酸替代物的Watson-Crick界面的至少一种相互作用。核苷酸、核苷酸类似物或核苷酸替代物的Watson-Crick界面包括基于嘌呤的核苷酸、核苷酸类似物或核苷酸替代物的C1、N1和C6位以及基于嘧啶的核苷酸、核苷酸类似物或核苷酸替代物的C2、N3和C4位。
Hoogsteen相互作用为发生在核苷酸或核苷酸类似物的Hoogsteen界面的相互作用,该界面暴露于双螺旋DNA的大沟中。Hoogsteen界面包括嘌呤核苷酸C6位的活性基团(NH2或O)和N7位。
b)序列
有多个序列与例如SEQ ID NO:1以及本文公开的任何其它核酸和蛋白质(在Genbank公开)相关,并且这些序列和其它序列以及其中所含有的各个子序列通过援引全部纳入本文。
本文提供了多个序列,并且这些序列和其它序列可参见Genbank(www.pubmed.gov)。本领域的技术人员明白如何分辨序列偏差和差异,并明白如何调整与某一具体序列相关的组合物和方法,使其适应其它相关序列。根据本文所公开信息和本领域已知信息,可设计任何序列的引物和/或探针。
c)引物和探针
公开了包括引物和探针在内的组合物,它们能与本文所公开的基因相互作用。在某些实施方案中,引物用于支持DNA扩增反应。通常引物能以序列特异方式被延长。序列特异方式的引物延长包括任何方法,其中与引物杂交或以其它方式相关的核酸分子的序列和/或组合物指导或影响通过引物延长所产生得到的产物的组合物或序列。因此,序列特异方式的引物延长包括但不限于PCR、DNA测序、DNA延长、DNA聚合、RNA转录或反转录。优选以序列特异方式扩增引物的技术和条件。在某些方面,引物可用作本文提及的破囊壶菌或杆菌的种特异性或属特异性探针。在这种情况下,引物可设计来特异性针对真核微生物,并在随后进行PCR反应。然后可通过成功形成PCR产物来确定靶标种的存在。在某些方面,引物还可用于DNA扩增反应,例如PCR或直接测序。可以理解的是,在某些方面,引物还可使用非酶促技术来延长,其中例如用于延长引物的核苷酸或寡核苷酸被修饰,从而使得它们可以发生化学反应来以序列特异方式延长引物。通常,所公开的引物可与核酸或核酸的某一区域杂交,或者它们可与核酸的互补序列或核酸某一区域的互补序列杂交。
d)核酸送递
正如本领域普通技术人员所理解的那样,在包括将外源DNA给予并被摄入受试者的细胞内的上述方法(即基因转导或转染)中,所公开核酸可为裸露DNA或RNA形式,或者该核酸可存在于将该核酸送递至细胞的载体内,藉此编码抗体的DNA片段受到启动子的转录调节。载体可为商购制剂,例如腺病毒载体(Quantum Biotechnologies,Inc.(Laval,Quebec,Canada)。核酸或载体至细胞的送递可通过多种机制。作为一个实例,送递可通过脂质体进行,可使用商购脂质体制剂例如LIPOFECTIN、LIPOFECTAMINE(GIBCO-BRL,Inc.,Gaithersburg,MD)、SUPERFECT(Qiagen,Inc.Hilden,德国)和TRANSFECTAM(PromegaBiotec,Inc.,Madison,WT),以及根据本领域的标准方法开发出来的其它脂质体。另外,所公开核酸或载体可通过电穿孔(由Genetronics公司(San Diego,CA)提供的技术)以及通过SONOPORATION机器(ImaRxPharmaceutical Corp.,Tucson,AZ)进行体内送递。
作为一个实例,载体送递可通过病毒系统,例如可包装重组逆转录病毒基因组的逆转录病毒载体系统进行(参见例如Pastan et al.,Proc.Natl.Acad.ScL U.S.A.85:4486,1988;Miller et al.,Mol.Cell.Biol.6:2895,1986)。该重组逆转录病毒随后可用于感染细胞,并由此将编码主要中和抗体(或其活性片段)的核酸送递至该感染细胞中。当然,将有所改变的核酸引入哺乳动物细胞的确切方法并不限于使用逆转录病毒。对于该方法,还广泛存在其它技术,包括使用腺病毒载体(Mitani et al.,Hum.Gene Ther.5:941-948,1994)、腺伴随病毒(AAV)载体(Goodman et al.,Blood 84:1492-1500,1994)、慢病毒载体(Naidini et al.,Science 272:263-267,1996)和假型逆转录病毒载体(Agrawal et al.,Exper.Hematol.24:738-747,1996)。还可使用物理转导技术,例如通过脂质体送递和受体介导的送递以及其它胞吞机制进行(参见例如Schwartzenberger et al.,Blood 87:472-478,1996)。该公开的组合物和方法可与任何这些或其它通常使用的基因转移方法一起使用。
4.表达系统
被送递至细胞的核酸通常含有表达调控系统。例如,病毒和逆转录病毒系统中的插入基因通常含有启动子和/或增强子,以帮助调控所需基因产物的表达。启动子通常为在距离转录起始位点相对固定的位置时起作用的一个或多个DNA序列。启动子含有RNA聚合酶和转录因子之间发生基本相互作用所必需的核心元件,并且可含有上游元件和应答元件。
可以理解的是,除了下文讨论的通用系统之外,还有多种可用于本文所公开生物体中的转录调控系统。可以理解的是,本文所公开生物体可用本文所阐述的多种基因例如标记基因、或者具有其它所需属性例如增强或独特的生长特征的基因进行转染和转化。
a)病毒启动子和增强子
哺乳动物宿主细胞中控制从载体转录的优选启动子可获自多种来源例如诸如以下的病毒的基因组:多瘤病毒、猿猴病毒40(SV40)、腺病毒、逆转录病毒、乙肝病毒,并且最优选巨细胞病毒,或者来自异源哺乳动物启动子如β-肌动蛋白启动子。SV40病毒的早期和晚期启动子通常以还含有SV40病毒复制起点的SV40限制性酶切片段形式获得,(Fiers et al.,Nature,273:113,1978)。人巨细胞病毒的立即早期启动子通常以HindIII E限制性酶切片段形式获得(Greenway,PJ.etal,Gene 18:355-360,1982)。当然,来自宿主细胞或相关种的启动子也可用于本申请。
增强子通常指在距转录起始位点不固定距离起作用的DNA序列,并且可在转录单位的5’端(Laimins,L.et al.,Proc.Natl.Acad.Sci.78:993,1981)或3’端(Lusky,MX.,et al.,Mol Cell Bio.3:1108,1983)。另外,增强子可位于内含子内(Banerji,J.L.et al.,Cell33:729,1983)以及编码序列自身内(Osborne,T.F.,et al.,Mol CellBio.4:1293,1984)。它们通常长10至300bp,并且它们以顺式方式起作用。增强子起提高从邻近启动子开始的转录的作用。增强子通常还含有介导转录调节的应答元件。启动子还含有介导转录调节的应答元件。增强子通常对基因表达的调控起决定作用。尽管现在已知很多增强子序列来自哺乳动物基因(珠蛋白、弹性酶、白蛋白、甲胎蛋白和胰岛素),但是通常会使用来自真核细胞病毒的增强子进行总体表达。优选的实例为复制起点(100-270bp)晚期侧的SV40增强子、巨细胞病毒早期启动子增强子、复制起点晚期侧的多瘤病毒增强子、和腺病毒增强子。
启动子和/或增强子可被激发其功能的特定化学事件或光特异性地激活。系统可受诸如四环素和地塞米松等试剂调节。还存在通过暴露于辐照例如γ辐照或烷化化疗药剂来增强病毒载体基因表达的方法。
在某些实施方案中,启动子和/或增强子区域可作为组成型启动子和/或增强子,以最大限度表达待转录的转录单位区域。在某些构建体中,即便启动子和/或增强子区域仅在特定时间在特定类型的细胞中表达,它在所有真核细胞类型中也均是具有活性的。这种类型的优选启动子为CMV启动子(650bp)。其它优选的启动子为SV40启动子、巨细胞病毒(全长启动子)和逆转录病毒载体LTE。
已表明,所有特定调节元件均可被克隆并用于构建在特定细胞类型如黑素瘤细胞等中选择性表达的表达载体。胶质细胞原纤维酸性蛋白(GFAP)启动子已被用于在胶质来源的细胞中选择性表达基因。
在真核宿主细胞(酵母、真菌、昆虫、植物、动物、人或有核细胞)中使用的表达载体还可含有终止影响mRNA表达的转录所必需的序列。这些区域被转录为mRNA编码组织因子蛋白的非翻译部分中的多腺苷酸化区段。3’非翻译区域也可包括转录终止位点。优选转录单位也含有多腺苷酸化区域。该区域的一个优点在于它增加了转录单位如mRNA那样被加工和运输的几率。表达构建体中多腺苷酸化信号的鉴定和使用已为本领域公知。优选将同源多腺苷酸化信号用于转基因构建体中。在某些转录单位中,多腺苷酸化区域来源于SV40早期多腺苷酸化信号,并由约400个碱基组成。还优选转录单位仅含有其它标准序列,或者同时含有上述序列,以提高构建体的表达或稳定性。
b)标记
病毒载体可包括编码标记产物的核酸序列。该标记产物用于确定该基因是否被送递至细胞,并且一旦被送递则被表达。优选的标记基因为大肠杆菌LacZ基因(编码β-半乳糖苷酶)和绿色荧光蛋白。
在某些实施方案中,标记可为选择性标记。合适的用于哺乳动物细胞的选择性标记的实例为二氢叶酸还原酶(DHFR)、胸苷激酶、新霉素、新霉素类似物G418、潮霉素和嘌呤霉素。当这类选择性标记被成功转移至哺乳动物宿主细胞中时,若将经转化的哺乳动物细胞置于选择压力下则它可存活。存在两类不同的广泛使用的选择方案。第一类以细胞代谢和突变细胞系的使用为基础,所述突变细胞系缺乏不依赖补给性培养基而生长的能力。两个实例为CHO DHRF细胞和小鼠LTK细胞。这些细胞缺乏在不添加诸如胸苷或次黄嘌呤等营养物的情况下生长的能力。由于这些细胞缺乏完整的核苷酸合成途径所必需的某些基因,因此若没有在补给性培养基中提供所缺少的核苷酸,则它们不能存活。补给培养基的另一途径是将完整的DHFR或TK基因引入缺乏相应基因的细胞中,由此改变其生长需求。未能由DHFR或TK基因转化的各个细胞在非补给性培养基中不能存活。
第二类为显性选择,所述显性选择指用于任一细胞类型中并且不需要使用突变细胞系的选择方案。这些方案通常使用药物来阻止宿主细胞的生长。具有新基因的这些细胞会表达传送药物抗性的蛋白质,并且会在经历选择之后存活。这种显性选择的实例使用药物新霉素(SouthernP.and Berg,P.,J Molec.Appl.Genet.1:327,1982)、麦考酚酸(Mulligan,R.C.and Berg,P.Science 209:1422,1980)或潮霉素(Sugden,B.etal.,Mol.Cell.Biol.5:410-413,1985)。这三个实例采用受真核生物基质控制的细菌基因,以分别赋予对合适的药物G418或新霉素(遗传霉素)、xgpt(麦考酚酸)或潮霉素的抗性。其它实例包括新霉素类似物G418和嘌呤霉素。
5.肽类
a)蛋白变体
如本文所述,本文所公开生物体蛋白的多个变体都是已知的并在本文中被考虑。另外,对于功能已知的破囊壶菌目的菌株而言,存在很多同样可用于所公开方法和组合物的破囊壶菌目蛋白的衍生物。蛋白变体和衍生物为本领域的技术人员所熟知,并且可包括氨基酸序列修饰物。例如,氨基酸序列修饰物通常包括以下三类中的一类或多类:置换变体、插入变体或缺失变体。插入包括氨基端和/或羧基端融合以及单个或多个氨基酸残基的序列间插入。插入通常是比氨基端或羧基端融合的那些插入更小的插入,例如数量级为一至四个残基的插入。免疫原性融合蛋白衍生物,例如那些在实施例中描述的免疫原性融合蛋白衍生物,可通过如下方法制备得到:通过体外交联或通过转化有编码融合物的DNA的重组细胞培养,将大到足以赋予免疫原性的多肽与靶序列融合在一起。缺失的特征在于将一个或多个氨基酸残基从蛋白序列中除去。通常,蛋白分子内任一位置有不超过约2至6个的残基缺失。这些变体通常可通过编码蛋白质的DNA中核苷酸的位点专一诱变制备得到,由此产生编码变体的DNA,并在随后于重组细胞培养物中表达DNA。在序列已知的DNA中预定位点进行置换突变的技术是公知的,例如M13引物诱变和PCR诱变。氨基酸置换通常为一个残基,但是也可同时在多个不同位置出现;插入的数量级通常为约1至10个氨基酸残基;并且缺失的范围为约1至30个残基。缺失或插入优选在相邻残基对进行,即缺失2个残基或插入2个残基。置换、缺失、插入或它们的任一组合可联合起来获得最终的构建体。突变不能将序列置于读码框之外,并优选不会形成可产生mRNA二级结构的互补区域。置换变体为其中至少一个残基被除去并且一个不同残基被插入该位置的那些变体。这类置换通常可依据下表1和2进行,并被认为是保守置换。
功能或免疫性方面的显著改变可通过选择保守性不如表2的那些置换的置换来实现,即选择在对保持下述结构或性质的影响方面差异更显著的残基:(a)置换区域多肽骨架的结构,例如作为片层或螺旋构象,(b)靶位点的分子的电荷或疏水性或者(c)侧链大小。通常被预计会在蛋白性质方面产生的变化最大的置换为以下的这些置换:(a)用亲水残基如丝氨酰基或苏氨酰基置换疏水残基如亮氨酰基、异亮氨酰基、苯丙氨酰基、缬氨酰基或丙氨酰基,(b)用半胱氨酸或脯氨酸置换任何其它残基,(c)用带有正电侧链的残基如赖氨酰基、精氨酰基或组氨酰基置换负电残基如谷氨酰基或天冬氨酰基置换,或者(d)用具有大侧链的残基如苯丙氨酸置换不具有侧链的残基如甘氨酸,在这种情况下,(e)通过增加硫酸化和/或糖基化位点的数目。
表1:氨基酸缩写
氨基酸 缩写
丙氨酸 Ala A
精氨酸 Arg R
天冬酰胺 Asn N
门冬氨酸 Asp D
半胱氨酸 Cys C
谷氨酰胺 GIn Q
谷氨酸 GIu E
甘氨酸 GIy G
组氨酸 His H
异亮氨酸 lie I
亮氨酸 Leu L
赖氨酸 Lys K
蛋氨酸 Met M
苯丙氨酸 Phe F
脯氨酸 Pro P
丝氨酸 Ser S
苏氨酸 Thr T
色氨酸 Trp W
酪氨酸 Tyr Y
缬氨酸 VaI V
表2:氨基酸置换
原始残基 示例性保守置换*
Ala Ser
Arg Lys;Gln
Asn Gln;His
Asp Glu
Cys Ser
Gln Asn;Lys
Glu Asp
Gly Pro
His Asn;Gln
Ile Leu;Val
Leu Ile;Val
Lys Arg;Gln
Met Leu;Ile
Phe Met;Leu;Tyr
Pro Gly
Ser Thr
Thr Ser
Trp Tyr
Tyr Trp;Phe
Val Ile;Leu
*其它为本领域已知
例如,一个氨基酸残基由在生物学和/或化学上相似的另一氨基酸残基所替换被本领域的技术人员称为保守置换。例如,保守置换将用一个疏水残基来替换另一个疏水残基,或者用一个极性残基来替换另一个极性残基。上述置换包括以下组合,例如Gly,Ala;Val,Ile,Leu;Asp,Glu;Asn,Gln;Ser,Thr;Lys,Arg和Phe,Try。每个明确公开序列的这些保守置换变体包括在本文所提供的嵌合(mosaic)多肽范围内。
可采用置换诱变或缺失诱变来插入N-糖基化(Asn-X-Thr/Ser)或O-糖基化(Ser或Thr)位点。半胱氨酸或其它不稳定残基的缺失也可能是所需的。潜在的蛋白酶解位点如Arg的缺失或置换通过例如使碱性残基之一缺失来实现,或通过用谷氨酰胺酰基或组氨酰基残基置换一个残基来实现。
某些翻译后的衍生化作用是由于重组宿主细胞对所表达多肽的作用所致。谷氨酰胺酰基和天冬酰胺酰基残基通常在翻译后脱去酰胺基成为相应的谷氨酰基和天冬氨酰基残基。或者,这些残基在温和的酸性环境下脱去酰胺基。其它翻译后修饰包括脯氨酸和赖氨酸的羟基化,丝氨酰基或苏氨酰基残基的羟基基团的磷酸化,赖氨酸、精氨酸和组氨酸侧链的o-氨基基团的甲基化(T.E.Creighton,Proteins:Structure and MolecularProperties,W.H.Freeman&Co.,San Francisco pp 79-86,1983),N端氨基的乙酰化以及在某些情况下C端羧基的酰胺化。
可以理解的是,定义本文所公开蛋白质的变体和衍生物的一种方法是通过根据其与具体已知序列的同源性/同一性来定义该变体和衍生物。特别公开的是本文公开蛋白质的变体,所述变体与所述序列具有至少60%、70%或75%或80%或85%或90%或95%的同源性。本领域的技术人员容易理解如何确定两种蛋白质的同源性。例如,同源性可在比对这两个序列之后计算得到,从而使得该同源性处于最高水平。
计算同源性的另一种方法可通过已经公布的算法来进行。比较序列的最佳比对可通过以下方法进行:局部同源性算法(Smith and Waterman,1981,Adv.Appl.Math 2:482)、同源性比对算法(Needleman and Wunsch,1970,J.Mol.Bio.48:443)、相似性搜寻方法(Pearson and Lipman,1988,Proc.Natl.Acad.Sci.USA 85:2444)、由计算机完成的这些算法(如Wisconsin遗传学软件包中的GAP、BESTFIT、FASTA和TFASTA,Genetics Computer Group,Madison,WI,U.S.A)或人工检查。
相同类型的核酸同源性可通过例如在以下文献中公开的算法来获得:Zuker,M.Science 244:48-52,1989,Jaeger et al.Proc.Natl.Acad.Sci USA 86:7706-7710,1989,Jaeger et al.Methods Enzymol.183:281-306,1989,至少就其与核酸比对相关的内容通过援引将这些文献纳入本文。
可以理解的是,对保守突变和同源性的描述可以任何组合结合起来,例如与具体序列具有至少70%的同源性的具体实例,其中所述变体为保守突变。
由于本说明书阐述了各种蛋白和蛋白序列,因此要理解的是,编码这些蛋白序列的核酸同样被公开。这将包括与特定蛋白序列相关的所有简并序列,即具有编码一个具体蛋白序列的序列的所有核酸,以及编码所公开的该蛋白序列的变体和衍生物的所有核酸(包括简并核酸)。因此,尽管各个具体核酸序列并未在本文中写出,但是应理解的是,实际上每一个序列均通过所公开的蛋白质序列在本文中被公开和被描述。还要理解的是,当本文中公开了所公开蛋白的具体变体时,尽管没有氨基酸序列表明是哪种具体的DNA序列在生物体内编码该蛋白,,但是编码产生该蛋白的具体菌株中此种蛋白的已知核酸序列同样是已知的,并且在本文中得以公开和描述。
可以理解的是,存在许多可被引入所公开组合物的氨基酸和肽类似物。例如,存在许多D-氨基酸或者具有与表1和表2的所示氨基酸不同的官能取代基的氨基酸。公开了天然存在的肽的对应立体异构体以及肽类似物的立体异构体。这些氨基酸可很容易地通过以下方式被引入多肽链:用所选氨基酸使tRNA分子带电,并利用例如琥珀密码子以位点特异方式将氨基酸类似物插入肽链来对遗传构建体进行基因工程改造(Thorson etal.,Methods in MoI.Biol.77:43-73,1991,Zoller,Curr.Opin.Biotech.,3:348-354,1992;Ibba,Biotechnol.Genet.Eng.13:197-216,1995,Cahill et al.,Trends Biochem.Sci,14:400-403,1989;Benner,Trends.Biotechnol.,12:158-163,1994)至少就其与氨基酸类似物相关的内容通过援引将所有这些文献纳入本文)。
可产生与肽相似但不通过天然肽键连接的分子。例如,连接氨基酸或氨基酸类似物的键可包括CH2NH--、--CH2S--、--CH2-CH2--、--CH=CH--(顺式和反式)、--COCH2--、--CH(OH)CH2—和--CHH2SO--(这些键和其它键可参见Spatola,A.F.in Chemistry and Biochemistry of Amino Acids,Peptides,and Proteins,B.Weinstein,eds.,Marcel Dekker,New York,p.267,1983;Spatola,A.F.,Vega Data(March 1983),Vol.1,Issue3,Peptide Backbone Modifications(概述);Morley,Trends Pharm.Sci.463-468,1980;Hudson,D.et al.,Int.J.Pept.Prot.Res.14:177-185,1979(--CH2NH--、CH2CH2-);Spatola et al.Life Sci38:1243-1249,1986(--CH H2-S);Hann J.Chem.Soc.Perkin Trans.I307-314,1982(--CH--CH--,顺式和反式);Almquist et al.J.Med.Chem.23:1392-1398,1980(--COCH2--);Jennings-White et al.Tetrahedron Lett.,23:2533,1982(--COCH2-);Szelke et al.EuropeanAppln.,EP 45665 CA:97:39405,1982(--CH(OH)CH2--);Holladay et al.Tetrahedron Lett.24:4401-4404,1983(--C(OH)CH2--)和Hruby LifeSci.31:189-199,1982(--CH2--S--),每一篇文献均通过引用纳入本文。特别优选的非肽键是--CH2NH--。可以理解的是,肽类似物可在上述键两端的原子之间具有一个以上的原子,例如b-丙氨酸、g-氨基丁酸等。
氨基酸类似物和肽类似物通常具有增强或所需的属性,例如生产更为经济、化学稳定性更高、药理性质(半衰期、吸收情况、效价、效力等)增强、特异性发生改变(如生物活性范围更广)、抗原性降低等。
D-氨基酸可用于形成更稳定的肽,原因在于D-氨基酸不会被肽酶等所识别。用相同类型的D-氨基酸来对保守序列的一个或多个氨基酸进行全面置换(例如用D-赖氨酸来置换L-赖氨酸)可用来形成更稳定的肽。半胱氨酸残基可用来环化或连接两个或多个肽。这对于迫使肽形成特定构象是有益的(Rizo and Gierasch Ann.Rev.Biochem.61:387,1992,通过援引纳入本文)。
6.添加剂
本文还公开了营养添加剂。营养添加剂为可通过给予受试者或由受试者服用,以提供、供给或增加营养物质(如维生素、矿物质、必需微量元素、氨基酸、肽、核酸、寡核苷酸、脂质、胆固醇、类固醇、糖类等)。一方面,本文公开了含有本文所公开任何一种化合物的营养添加剂。例如,营养添加剂可包括本文所公开的任何一种脂质。这些脂质的脂肪酸残基可为本文所公开的任何脂肪酸(如不饱和或饱和脂肪酸残基)。
营养添加剂可含有任何量本文所公开的化合物,但是通常含有确定可提供给受试者所需剂量的苯二醇衍生物(如CoQ10)和/或脂肪酸的合适量。营养添加剂中所需要的化合物的确切量因受试者而异,这取决于受试者的物种、年龄、体重和整体状况,被治疗的饮食缺陷的严重程度,具体的给药模式等。因此,不能对每一营养添加剂的具体量进行规定。但是,合适的量可由本领域普通技术人员在考虑本文的教导的情况下仅使用常规实验就能确定。在一个具体的实例中,营养添加剂可含有以重量计约0.05至约20%、约1至约7.5%或约3至约5%的化合物。在另一个实例中,营养添加剂可含有以重量计约0.05、0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5、15.0、15.5、16.0、16.5、17.0、17.5、18.0、18.5、19.0、19.5或20.0%的化合物,在合适时任一所述数值可形成终点或起点。在另一方面,当为营养添加剂时,该添加剂可由最高至100%的添加剂构成。
营养添加剂还可含有其他营养物质如维生素、微量元素、矿物质等。此外,营养添加剂可含有其他组分例如防腐剂、抗微生物剂、抗氧化剂、螯合剂、增稠剂、调味剂、稀释剂、乳化剂、分散助剂和/或粘合剂。
营养添加剂通常可口服,并且可为任何适于口服给药的形式。例如,营养添加剂通常可为片剂、凝胶胶囊、胶囊、液体、囊剂或糖浆形式。
7.送递装置
本文所述任何化合物均可掺入送递装置。送递装置的实例包括但不限于微囊、微球、纳米球或纳米颗粒、脂质体、noisome、纳米红质体、固体-液体纳米颗粒、凝胶、凝胶胶囊、片剂、洗剂、膏剂、喷雾剂或乳剂。适合非口服给药的送递装置的其他实例包括多孔微粒pulmosphere。用于本文的具体送递装置的实例如下所述。
可将所公开化合物掺入脂质体中。正如本领域所知,脂质体通常来源于磷脂或其他脂质物质。脂质体由分散于水性介质中的单层或多层含水液晶形成。任何能形成脂质体的无毒、生理上可接受并且可代谢的脂质均可使用。脂质体形式的所公开组合物除含有本文公开的化合物外,还含有稳定剂、防腐剂、赋形剂等。合适的脂质的实例为天然的和合成的磷脂和磷脂酰胆碱(卵磷脂)。制备脂质体的方法为本领域所知。参见例如Prescott,Ed.,Methods in Cell Biology,Volume XIV,Academic Press,New York,p.33et seq.,1976,就其对脂质体及其制备方法的教导通过援引纳入本文。
在其他实例中,脂质体可为阳离子型脂质体(如DOTMA、DOPE、DC胆固醇)或阴离子型脂质体。如若需要,脂质体可进一步包含有助于靶向具体细胞的蛋白质。含有化合物和阳离子型脂质体的组合物的给药可给予至流入靶器官的血液或者被吸入至呼吸道从而靶向呼吸道的细胞。关于脂质体,参见例如Brigham,et al,Am J Resp Cell Mol Biol 1:95-100,1989、Feigner,et al.,Proc Natl Acad Sci USA 84:7413-7,1987和美国专利No.4,897,355,就其对脂质体的教导通过引用纳入本文。作为一个实例,送递可经由脂质体进行,并且可使用商购脂质体制剂例如LIPOFECITN、LIPOFECTAMINE(GIBCO-BRL,Inc.,Gaithersburg,MD)、SUPERFECT(Qiagen,Inc.Hilden,Germany)和TRANSFECTAM(PromegaBiotec,Inc.,Madison,WI)以及根据本领域的标准方法开发的其它脂质体等。还可使用其中化合物自脂质体的扩散或送递是针对特定速率或剂量来设计的脂质体。
本文所述的noisome是可用来送递本文公开组合物的送递装置。Noisome是包含非离子型表面活性剂的多室或单室囊泡。溶质的水溶液被由表面活性剂大分子组装形成的双分子层所包裹。与脂质体类似,noisome也用于靶向送递例如抗癌药,包括氨甲喋呤、多柔比星和免疫佐剂。通常认为它们与transferosome、由两亲糖类制备的囊泡和含有氨基基团的聚合物如壳多糖并不相同。
本文所述的纳米红质体是可用于送递本文公开组合物的送递装置。纳米红质体是由红细胞经由通过确定孔径的滤器的透析而制备得到的纳米囊泡。这些囊泡可被装载上各种生物活性分子的阵列,所述生物活性分子包括本文所公开的蛋白质和组合物。它们通常作为抗肿瘤剂例如博来霉素、放线菌素D等的理想载体,但是也可用于送递类固醇和其他脂质等。
本文所述的人工红细胞是可用于送递本文公开组合物的另一类送递装置。人工红细胞可通过界面聚合法和复合乳化法形成。通常,“细胞”壁由polyphtaloyl L-赖氨酸聚合物/聚苯乙烯构成,内部由来自绵羊红细胞裂解液的血红蛋白溶液构成。微球所负载血红蛋白的颗粒大小通常为约1至约10mm。它们的大小、柔韧度和携氧能力与红细胞相似。
本文所述固体-液体纳米颗粒是可用于送递本发明组合物的另一类送递装置。固体-液体纳米颗粒是纳米颗粒,它们分散于表面活性剂水溶液中。它们由具有单分子层磷脂包被物的固体疏水核心构成,通常由高压匀浆技术制备得到。免疫刺激复合物(ISCOMS)是固体-液体纳米颗粒的实例。它们是40nm笼形超分子装置,含有脂质、胆固醇和疏水抗原,主要用作免疫佐剂。例如,ISCOM可用于延长皮下注射的环孢霉菌A的血浆水平。
本文所述的微球和微囊是可用于送递本文公开组合物的又另一类送递装置。与脂质体送递系统不同,微球和微囊通常并不具有水性核心,而是具有固体聚合物基质或膜。这些送递装置通过以下方法获得:聚合物的控制沉淀法、可溶聚合物的交联法和两种单体的界面聚合法或高压匀浆技术。这些被包封的化合物通过蚀解或自颗粒扩散从储库逐渐释放。已成功开发出短效肽类制剂,例如诸如亮丙瑞林和曲谱瑞林(triptoreline)等的LHRH激动剂。聚(丙交酯-共-乙交酯)(PLGA)微球目前以每月一次和每月三次的剂型形式用于治疗晚期前列腺癌、子宫内膜异位症和其他激素响应病症。亮丙瑞林是一种LHRH超拮抗剂,使用溶剂萃取法/蒸发法可将其掺入多种PLGA基质中。正如所描述的那样,全部这些送递装置均可用于本文所公开方法中。
Pulmosphere是可用于本发明的送递装置的又一类其他实例。Pulmosphere为密度较低(小于约0.1m mL-1)的中空多孔颗粒。Pulmosphere通常具有良好的再分散性,通常通过超临界液体浓缩(supercritical fluid condensation)技术制备。采用某些基质如糖类、人血清白蛋白等的同步喷雾干燥法可提高用于肺部送递的蛋白质和肽(如胰岛素)和其他生物分子的稳定性。这类送递还可由微型乳剂和脂质乳剂完成,这两类乳剂为无需大量输入机械能即能自发形成的超细、超薄、透明的水包油(o/w)乳剂。在该技术中,乳剂可在某一温度下制备,该温度必须较系统的相转移温度要高。在较高温度条件下,该乳剂为油包水(w/o)形式,而在相转移温度下冷却时,该乳剂则反转为o/w。由于其内相非常小,所以它们极其稳定,可用于类固醇和疫苗的缓释。脂质乳剂包含中性脂质核心(即甘油三酯),所述核心通过表面活性剂如卵磷脂甘油三酯和miglyol而被两亲脂质(即磷脂)的单分子层稳定化。它们适合被动靶向和主动靶向。
也研究了其它口服送递系统,所述系统以渗透压调整、pH调整、溶涨调整、改变的密度和浮动系统(density and floating)、粘附性(mucoadhesiveness)等为基础。当前正在使用或研究的依据疾病的昼夜规律送递药物的这些制剂和缓释制剂菌可用来送递本文公开的组合物。
在一个本文公开的具体方面,所公开化合物(包括营养添加剂及其药物制剂)可如本文所述被掺入微囊中。
在本文公开的一个方面,所公开化合物可被掺入微囊中。一方面,微囊含有基本(primary)微囊的聚集物(agglomeration)和本文所述的铬化合物,每个基本微囊个体具有一个主壳(primary shell),其中所述铬化合物被所述主壳包封,其中所述聚集物被外壳包封。这些微囊在本文中被称为“多核微囊”。
另一方面,本文描述了包括铬化合物、主壳和辅壳的微囊,其中所述主壳包封铬化合物,而所述辅壳包封负载物质和主壳。这些微囊在本文中被称为“单核微囊”。
任选地,其它负载物质可与铬化合物一起被包封。负载物质可为在水性混合物中不完全溶解的任何物质。一方面,负载物质为固体、疏水液体或固体和疏水液体的混合物。另一方面,负载物质含有脂肪、油类、脂质、药物(如小分子)、生物活性物质、营养添加剂(如维生素)、香味化合物或它们的混合物。油类的实例包括但不限于动物油(如鱼油、海生哺乳动物油等)、植物油(如油菜籽油或菜籽油)、矿物油、其衍生物或它们的混合物。负载物质可为纯化的或部分纯化的油性物质如脂肪酸或其酯、甘油三酯、或它们的混合物。另一方面,负载物质可为类胡萝卜素(如番茄红素)、填充剂(satiety agent)、香味化合物、药物(如非水溶性药物)、颗粒、农用化合物(如除草剂、杀虫剂、肥料)或水产养殖成分(如饲料、色素)。
一方面,负载物质可为ω-3脂肪酸。ω-3脂肪酸的实例包括但不限于α-亚麻酸(18:3n3)、十八碳四烯酸(18:4n3)、二十碳五烯酸(20:5n3)(EPA)、二十二碳六烯酸(22:6n3)(DHA)、二十二碳五烯酸(22:5n3)(DPA)、二十碳四烯酸(20:4n3)、二十一碳五烯酸(21:5n3)、二十二碳五烯酸(22:5n3),以及它们的衍生物及它们的混合物。ω-3脂肪酸的多类衍生物为本领域所熟知。合适的衍生物的实例包括但不限于酯类例如植物甾醇酯、支链或直链C1-C30烷基酯、支链或直链C2-C30烯基酯、或者支链或直链C3-C30环烷基酯(如植物甾醇酯)和C1-C6烷基酯。油源可来自水生物(如沙丁鱼、毛鳞鱼、大西洋鳕、大西洋鲱、大西洋鲭、大西洋鲱鱼、鲑鱼、沙丁鱼、鲨鱼、鲔鱼等)和植物(如亚麻、蔬菜等)和微生物(如真菌和藻类)。
一方面,负载物质可含有抗氧化剂。抗氧化剂的实例包括但不限于维生素E、CoQ10、生育酚、极性更强的抗氧化剂的脂溶性衍生物如抗坏血酸脂肪酸酯(如抗坏血酸棕榈酸酯)、植物提取物(如迷迭香油、鼠尾草油和牛至油)、海藻提取物和合成抗氧化剂(如BHT、TBHQ、乙氧喹、烷基没食子酸酯、氢醌、生育三烯酸)。
许多不同的聚合物可用于生产单核微囊和多核微囊的壳层。这类聚合物的实例包括但不限于蛋白质、聚磷酸酯、多糖或它们的混合物。另一方面,用于制备单核微囊和多核微囊的壳材进一步包括A型明胶、B型明胶、聚磷酸酯、阿拉伯胶、藻酸盐、壳多糖、角叉菜胶、果胶、淀粉、变性淀粉、α-乳清蛋白、β-乳球蛋白(lactoglobumin)、卵清蛋白、聚山梨酯(polysorbiton)、麦芽糊精、环糊精、纤维素、甲基纤维素、乙基纤维素、羟丙甲基纤维素(hydropropylmethylcellulose)、羧甲基纤维素、乳蛋白质、乳清蛋白、大豆蛋白、油菜籽蛋白、白蛋白、甲壳质、聚丙交酯、聚-丙交酯-共-乙交酯、衍生的甲壳质、壳多糖、聚赖氨酸、各种无机-有机复合材料、或它们的任何混合物。同样虑及的是这些聚合物的衍生物也可使用。另一方面,聚合物可为kosher明胶、non-kosher明胶、Halal明胶或non-Halal明胶。
一方面,单核微囊和多核微囊中一层或多层壳层含有Bloom值小于50的明胶。该明胶在本文中被称为“低Bloom明胶”。Bloom值描述了6.67%的溶液在10℃胶化18小时时形成的凝胶强度。一方面,低Bloom明胶的Bloom值低于40、低于30、低于20或低于10。另一方面,明胶的Bloom值为45、40、35、30、25、20、15、10、9、8、7、6、5、4、3、2、1或0,其中任何两个数值可用来形成一个范围。另一方面,低Bloom明胶存在于多核微囊的主壳和外壳两者之中。一方面,低Bloom明胶为A型明胶。另一方面,低Bloom明胶为Kenney&Ross Ltd.,R.R.#3Shelburne,NS Canada生产的A型明胶。另一方面,在多核微囊的主壳和外壳之中均存在Bloom值为零的明胶。
一方面,用于制备单核微囊或多核微囊的壳层的材料为由两类不同聚合物的混合物所制备得到的二组分系统。一方面,该材料为聚合物组分之间的复合凝聚层。复合凝聚作用是由于两种带有相反电荷的聚合物之间的相互作用所致。一方面,用于生产单核微囊和多核微囊的壳材由以下物质构成:(1)低Bloom明胶和(2)B型明胶、聚磷酸酯、阿拉伯胶、藻酸盐、壳多糖、角叉菜胶、果胶、羧甲基纤维素、乳清蛋白、大豆蛋白、油菜籽蛋白、白蛋白或它们的任何混合物。不同聚合物的摩尔比可有所变化。例如,低Bloom明胶和其它聚合物组分的摩尔比为1:5至15:1。例如,在使用低Bloom明胶和聚磷酸酯时,低Bloom明胶和聚磷酸酯的摩尔比为约8:1至约12:1;在使用低Bloom明胶和B型明胶时,摩尔比为2:1至1:2;而在使用低Bloom明胶和藻酸盐时,摩尔比为3:1至8:1。
壳材(如主壳或外壳)中可包含有操作助剂。操作助剂的使用可有多种原因。例如,它们可用于促进基本微囊的凝聚、稳定乳液系统、改善外壳的性质、控制微囊大小和/或用作抗氧化剂。一方面,操作助剂可为乳化剂、脂肪酸、脂质、蜡、微生物细胞(如酵母细胞系)、粘土或无机化合物(如碳酸钠)。并不希望受缚于理论,但是这些操作助剂可促进微囊的屏障性。一方面,可将一种或多种抗氧化剂加入壳材中。抗氧化性在加工期间(如在凝聚和/或喷雾干燥期间)以及在形成之后的微囊中均是有用的(即延长壳寿命等)。优选使用起多种作用的少量操作助剂。一方面,抗氧化剂可为酚化物、植物提取物或含硫氨基酸。一方面,抗坏血酸(或其盐例如抗坏血酸钠或抗坏血酸钾)可用来促进基本微囊的凝聚、控制微囊大小和用作抗氧化剂。抗氧化剂可使用的量为约100ppm至约12,000ppm,或者约1,000ppm至约5,000ppm。其它操作助剂例如金属螯合物也可使用。例如,乙二胺四乙酸可用来结合金属离子,该金属离子可降低负载物质的催化氧化作用。
一方面,基本微囊(主壳)的平均直径为约40nm至约10μm、0.1μm至约10μm、1μm至约10μm、1μm至约8μm、1μm至约6μm、1μm至约4μm或1μm至约2μm,或者1μm。另一方面,多核微囊的平均直径为约1μm至约2000μm、20μm至约1000μm、约20μm至约100μm或约30μm至约80μm。另一方面,单核微囊的外径为约1μm至2,000μm。
本文所述的微囊通常同时具有高的有效负荷和结构强度。例如,负载物质的有效负荷以重量计占单核微囊或多核微囊的20%至90%、50%至70%或者以重量计占60%。
一方面,美国专利申请公开文本No.2003/0193102(通过援引全文纳入)所公开的方法可用来包封本文所述铬化合物。同样考虑到的是在单核微囊或多核微囊的外壳上可搁置一层或多层额外的壳层。一方面,国际申请公开文本No.WO 2004/041251A1(通过援引全文纳入)所述的技术可用于将额外的壳层附加至单核微囊和多核微囊。
a)药物组合物和营养组合物
这些脂质和抗氧化剂旨在用于动物饲料、药物制剂、营养制品(尤其是婴儿配方)以及用于工业生产中。这也同样包括营养制品的送递形式如凝胶胶囊和常见的微囊化等。
如上所述,组合物也可以以可药用载体形式用于体内给药。“可药用”指的是某种物质并不会在生物学上或其它方面引起不良反应,即该物质可与核酸或载体一起给予受试者,而不会引起任何不良生物学影响或以有害方式与含有该物质的药物组合物的任何其它组分相互作用。正如本领域技术人员所熟知的那样,必然会对载体进行选择,从而使得活性成分降解最少,并使其对于受试者的不良副作用最小化。
组合物可通过口服、胃肠外(如静脉内)途径、肌内注射、腹膜内注射、经皮、体外、局部途径等给药,包括局部鼻内给药或通过吸入器给药。本文所使用的“局部鼻内给药”指的是通过一个或两个鼻孔将组合物送递至鼻内或鼻道,可包括通过喷雾机制或滴注机制或通过雾化核酸或载体来送递。通过吸入器给予组合物可经由通过喷雾或滴注机制的送递通过鼻或嘴进行。送递还可经由插管法直接到达呼吸系统(如肺)的任何区域。所需要的组合物的确切量因受试者而异,这取决于受试者的物种、年龄、体重和整体状况、被治疗的变态性紊乱的严重程度、所使用的具体核酸或载体、其给药模式等。因此,不能对每种组合物的确切量进行规定。但是,合适的量可由本领域普通技术人员在考虑本文的教导的情况下仅使用常规实验就能确定。
若使用组合物的胃肠外给药,那么其特征通常在于通过注射给药。注射剂可制备为常规形式(液体溶液或悬液)、适合在注射前配制成悬浮于液体中的溶液的固体形式或乳液形式。新近作出改进的胃肠外给药方法包括使用缓释系统以维持恒定剂量。参见例如美国专利No.3,610,795,通过援引将其纳入本文。
该物质可存在于溶液、悬液(例如被掺入至微粒、脂质体或细胞中)中。这些物质可经由抗体、受体或受体配体靶向特定的细胞类型。以下参考文献是利用该技术来将特定蛋白靶向肿瘤组织的实例(Senter,et al.,Bioconjugate Chem.,2:447-451,1991;Bagshawe,K.D.,Br.J.Cancer,60:275-281,1989;Bagshawe,et al.,Br.J.Cancer,58:700-703,1988;Senter,et al.,Bioconjugate Chem.,4:3-9,1993;Battelli,et al.,Cancer Immunol.Immunother.,35:421-425,1992;Pietersz andMcKenzie,Immunolog.Reviews,129:57-80,1992和Roffler,et al.,Biochem.Pharmacol.,42:2062-2065,1991)。运载体例如“Stealth”和其它抗体缀合的脂质体(包括介导药物靶向结肠癌的脂质)、通过细胞特异性配体介导DNA靶向的受体、引导肿瘤靶向的淋巴细胞和鼠体内胶质瘤(glicoma)细胞的高度特异性治疗性反转录病毒靶向。以下参考文献是利用该技术来将特定蛋白靶向肿瘤组织的实例(Hughes et al.,CancerResearch,49:6214-6220,1989);和Litzinger and Huang,Biochimica etBiophysica Acta,1104:179-187,1992)。总之,受体以组成型方式或配体诱导方式参与到胞吞途径中。这些受体密集于网格蛋白小窝中,经由笼形蛋白包裹的小泡进入细胞,穿过酸化内体(受体在其中被分选),随后或者再循环至细胞表面被储存于细胞内,或者在溶酶体中被降解。内化途径起着多种作用,例如营养物质的摄入、活化蛋白的除去、大分子的清除、病毒和毒素的机会性进入、配体的解离和降解以及受体水平的调节。很多受体遵循一种以上的胞内途径,这取决于细胞类型、受体浓度、配体类型、配体效价和配体浓度。受体介导的胞吞作用的分子和细胞机制已有综述(Brown and Greene,DNA and Cell Biology 10:399-409,1991)。
(1)可药用载体
包含抗体的组合物可与可药用载体联合用于治疗。
合适的载体及其制剂描述于Remington:The Science and Practiceof Pharmacy(19th ed.)ed.A.R.Gennaro,Mack Publishing Company,Easton,PA 1995。通常,可在制剂中使用恰当量的可药用盐以确保制剂等渗。可药用载体的实例包括但不限于盐水、Ringer’s溶液和葡萄糖溶液。溶液的pH优选为约5至约8,更优选约7至约7.5。其它载体包括缓释制剂例如含有抗体的固态疏水聚合物的半透性基质,该基质为具有一定形状的颗粒形式,例如薄片、脂质体或微粒形式等。对于本领域技术人员而言显而易见的是,某些载体更为优选,这取决于例如给药途径和被给药组合物的浓度。
药物载体为本领域技术人员所知。它们最通常为将药物给予人的标准载体,包括溶液例如无菌水、盐水和生理pH的缓冲溶液。组合物可经肌内或皮下途径给药。其它化合物可依据本领域技术人员所使用的标准方法给予。
除了所选分子之外,药物组合物还可包含载体、增稠剂、稀释剂、缓冲剂、防腐剂、表面活性剂等。药物组合物还可包含一种或多种活性成分例如抗微生物剂、抗炎剂、麻醉剂等。
药物组合物可以多种方式给药,这取决于是需要局部治疗还是全身治疗以及待治疗区域。可通过局部途径(包括眼部途径、阴道途径、直肠途径)、口服途径、吸入途径或肠胃外途径给药,例如通过静脉内滴注、皮下注射、腹膜内注射或肌内注射给药。所公开抗体可通过静脉内途径、腹膜内途径、肌内途径、皮下途径、腔内或经皮途径给药。
胃肠外给药制剂包括无菌水溶液或非水溶液、悬液和乳液。非水溶剂的实例为丙二醇、聚乙二醇、植物油(如橄榄油)和可注射的有机酯(如油酸乙酯)。水性载体包括水、酒精溶液/水溶液、乳液或悬液,包括盐水和缓冲介质。胃肠外运载体包括氯化钠溶液、Ringer’s葡萄糖、葡萄糖和氯化钠、乳酸Ringer’s或不挥发性油。静脉内运载体包括流体和营养补充剂、电解质补充剂(例如以Ringer’s葡萄糖为基础的那些电解质补充剂)等。也可存在防腐剂和其它添加剂,例如抗微生物剂、抗氧化剂、螯合剂和惰性气体等。
局部给药制剂可包含软膏剂、洗剂、膏剂、凝胶、滴剂、栓剂、喷雾剂、液体和粉剂。常规药物载体、水性基质、粉剂基质或油性基质、增稠剂等可能是必不可少的或需要的。
口服给药组合物包含溶于水或非水介质中的粉剂或颗粒剂、悬液或液体、胶囊、囊剂或片剂。增稠剂、调味剂、稀释剂、乳化剂、分散助剂或粘合剂可能是需要的。
一些组合物有可能以可药用酸加成盐或碱加成盐形式给药是有效的,所述加成盐通过与无机酸(如盐酸、氢溴酸、高氯酸、硝酸、硫氰酸、硫酸和磷酸等)和有机酸(如甲酸、乙酸、丙酸、羟乙酸、乳酸、丙酮酸、草酸、丙二酸、琥珀酸、马来酸和富马酸等)反应形成,或通过与无机碱(如氢氧化钠、氢氧化铵、氢氧化钾等)和有机碱(如单烷基胺、二烷基胺、三烷基胺和芳基胺以及取代的乙醇胺等)反应形成。
(2)治疗用途
有效剂量和组合物的给药方案可依据经验确定,并且做出这类决定是在本领域技术人员能力范围内的。组合物给药的剂量范围为大到足以产生其中症状紊乱得到治疗的所需疗效的那些剂量范围。剂量不应大到引起不良副作用,例如不良交叉反应、过敏性反应等。通常,剂量会随以下因素而异:患者年龄、病症、性别和疾病严重程度、给药途径,或者给药方案中是否包含其它药物,并且可由本领域技术人员来确定。若出现任何禁忌症,则该剂量可由各个医师来调整。剂量可有所变化,并且可每日以单剂或多剂给药形式给予,持续一天或几天。指定类别药剂的合适剂量的指南可参见文献。例如,选择合适的抗体剂量的指南可参见关于抗体的治疗用途的文献,如Handbook of Monoclonal Antibodies,Ferrone et al.,eds.,Noges Publications,Park Ridge,NJ.,(1985)ch.22and pp.303-357;Smith et al.,Antibodies in Human Diagnosis and Therapy,Haber etal.,eds.,Raven Press,New York(1977)pp.365-389。单独使用的抗体的典型每日剂量为每天约1μg/kg至最高至100mg/kg体重或更多,这取决于上述因素。
b)靶向送递
所公开脂质体和微囊可经由抗体、受体或受体配体被靶向至特定细胞类型如胰岛细胞。以下的参考文献是为利用该技术来靶向特定组织的实例(Senter,et al,Bioconjugate Chem 2:447-51,1991;Bagshawe,Br JCancer 60:275-81,1989;Bagshawe,et al,Br J Cancer 58:700-3,1988;Senter,et al,Bioconjugate Chem 4:3-9,1993;Battelli,et al,Cancer Immunol Immunother 35:421-5,1992;Pietersz and McKenzie,Immunolog Reviews 129:57-80,1992和Roffler,et al,BiochemPharmacol 42:2062-5,1991)。这些技术可用于各种其它特定的细胞类型。
8.食品
本文还公开了含有本文所公开的任一微囊和乳液的食品。“食品”指的是可由受试者服用(如吃、喝或摄取)的任何物质。一方面,微囊可用作食品的营养添加剂。例如,微囊和乳液可装载有维生素、ω-3脂肪酸和对健康有益的其它化合物。一方面,食品可为烘焙食品、面食、肉制品、冷冻乳制品、乳制品、奶酪制品、蛋制品、调味品、汤粉、点心、坚果制品、植物蛋白制品、硬糖、软糖、家禽产品、经加工的果汁、砂糖(如白砂糖或赤砂糖)、酱油、肉汁、糖浆、营养饮品、饮料、饮料干粉、果酱或果冻、鱼制品或宠物伴侣食品。另一方面,食品为面包、玉米饼、谷类食品、香肠、鸡肉、冰淇淋、酸奶、牛奶、沙拉调味料、米糠、果汁、饮料干粉、面包卷、饼干、薄脆饼干、快餐、水果馅饼或蛋糕。
9.芯片和微阵列
公开了其中至少有一部分地址为本文所公开任一核酸序列中所列出的序列或序列的一部分的芯片。还公开了其中至少有一部分地址为本文所公开任一肽序列中所列出的序列或序列的一部分的芯片。
还公开了其中至少有一部分地址为本文所公开任一核酸序列中所列出的序列或序列的一部分的变体的芯片。还公开了其中至少有一部分地址为本文所公开任一肽序列中所列出的序列或序列的一部分的变体的芯片。
10.计算机可读介质
可以理解的是,所公开的核酸和蛋白质可表示为由氨基酸的核苷酸组成的序列。存在多种方法来显示这些序列,例如,核苷酸鸟苷可表示为G或g。同样,氨基酸缬氨酸可表示为Val或V。本领域的技术人员明白如何以所存在的多种方式中的任何一种方式(每种方式均被认为在本文中公开)显示和表达任一核酸或蛋白序列。在本文中特别考虑的是将这些序列显示于计算机可读介质,例如可商购的软盘、磁带、芯片、硬盘、光盘和视盘或其它计算机可读介质。还公开了所公开序列的二进制代码表示方法。本领域的技术人员明白是何种计算机可读介质。因此,这种计算机可读介质记录、储存或保存了核酸或蛋白序列。
公开了记载有本文所列出的序列和与这些序列相关的信息的计算机可读介质。
11.试剂盒
本文公开了装有可用于实施本文所公开方法或可用于使用或保存本文所公开组合物的试剂的试剂盒。该试剂盒可包含本文所讨论的或者被认为是实施所公开方法所必不可少的或有益的任何试剂或试剂的组合。例如,该试剂盒可包括本文所公开的一种或多种真核微生物以及例如用于培养它们的培养基。该试剂盒还包括例如脂质或抗氧化剂以及使用或者给予这些物质的工具。
12.具有相似功能的组合物
可以理解的是,本文所公开组合物具有某些功能,例如产生一定比率的脂质。本文公开了实现所公开功能的某些结构方面、遗传方面和功能方面的要求,并且可以理解的是,存在多种能实现与所公开结构相关的相同功能的结构、遗传背景以及的功能背景,并且这些结构最终会获得相同的结果,例如产生一定比率的脂质。
D.制备组合物的方法
除非另外明确指明,否则本文所公开组合物和进行所公开方法必不可少的组合物,可通过使用采用该具体试剂或化合物的本领域技术人员已知的任何方法制备得到。
1.核酸合成
例如,核酸例如预备用作引物的寡核苷酸可使用标准化学合成法制备得到,或者使用酶促法或任何其它已知方法产生。这类方法包括在标准的酶消化之后进行核苷酸片段分离(参见例如Sambrook et al,MolecularCloning:A Laboratory Manual,2nd Edition(Cold Spring HarborLaboratory Press,Cold Spring Harbor,N.Y.,1989)Chapters 5,6)和纯粹的合成法,例如通过采用Milligen或Beckman System lPlus DNA合成仪(例如Milligen-Biosearch的型号为8700的自动合成仪,Burlington,MA或ABI 380B型)的氰乙基磷酰胺酸法。用于制备寡核苷酸的合成法同样描述于Ikuta et al.,Ann.Rev.Biochem.53:323-356,1984,(磷酸三酯法和亚磷酸三酯法)和Narang et al.,Methods Enzymol.,65:610-620,1980,(磷酸三酯法)。蛋白核酸分子可使用已知方法例如由Nielsen et al.,Bioconjug.Chem.5:3-7,1994所描述的那些方法来制备。
2.肽合成
产生所公开蛋白质的一种方法是通过蛋白化学技术将两个或多个肽或多肽连接起来。例如,肽或多肽可使用现有的实验设备、采用Fmoc(9-芴甲氧羰基)或Boc(叔丁氧羰基)化学制品(Applied Biosystems,Inc.,Foster City,CA)化学合成。本领域的技术人员容易理解,与所公开蛋白质相对应的肽或多肽可通过例如标准化学反应合成。
例如,可合成某种肽或多肽并且不将其从其合成树脂上切割下来,而可合成其它的肽或蛋白片段并在随后将其从树脂上切割下来,由此暴露出在其它片段上功能被阻断的末端基团。通过肽缩合反应,这两个片段可经由肽键分别在其羧基末端和氨基末端共价连接,从而形成抗体或其片段(Grant GA(1992)Synthetic Peptides:A User Guide.W.H.Freemanand Co.,N.Y.(1992);Bodansky M and Trost B.,Ed.(1993)Principles of Peptide Synthes is.Springer-Verlag Inc.,NY(至少就其与肽合成相关的内容将其纳入本文))。或者,肽或多肽如本文所述在体内独立合成。在分离后,这些相互独立的肽或多肽可经由相似的肽缩合反应被连接起来形成肽或其片段。
例如,克隆得到或合成的肽区段的酶学连接使得相对较短的肽片段可被连接起来产生较大的肽片段、多肽或全部蛋白结构域(Abrahmsen L etal.,Biochemistry,30:4151,1991)。或者,可利用合成肽的天然化学连接由较短的肽片段合成构建大的肽或多肽。这种方法由两步化学反应组成(Dawson et al.Science,266:776-779,1994)。第一步是没有保护的合成肽-硫酯与另一种没有保护的含氨基端Cys残基的肽区段之间发生化学选择反应,从而产生作为初始共价产物、与硫酯连接的中间产物。在不改变反应条件的情况下,该中间产物会经历自发的、快速的分子内反应,从而在连接位点形成天然肽键(Baggiolini M et al.FEBS Lett.307:97-101,1992;Clark-Lewis I et al.,J.Biol.Chem.,269:16075,1994;Clark-Lewis I et al.,Biochemistry,30:3128,1991;Rajarathnam K et al.,Biochemistry 33:6623-30,1994)。
或者,没有保护的肽区段可以化学方式连接,其中由于化学连接而在肽区段之间形成的键是非天然(非肽)键(Schnolzer,M et al.Science,256:221,1992)。该技术已被用于合成蛋白结构域的类似物以及大量相对较纯、具有完全生物活性的蛋白质(de LisleMilton-RC-et in ProteinChemistry IVT Academic Press,New York,pp.257-267,1992)。
3.制备组合物的方法
公开了制备组合物以及制备获得该组合物的中间产物的方法。例如,公开了可产生所需脂质和抗氧化剂的真核微生物以及分离和纯化所需脂质和抗氧化剂的方法。存在多种可用于制备这些组合物的方法,例如合成化学法和标准分子生物学方法。可以理解的是,制备这些和其它所公开组合物的方法被具体公开。
公开了通过用任一核酸转化细胞的方法产生得到的细胞。公开了通过用任一非天然存在的所公开核酸转化细胞的方法产生得到的细胞。
公开了由所公开真核微生物产生得到的任何一种脂质。公开了通过在所公开生物体中表达肽的方法产生得到的任何一种肽。公开了使用组合物的方法
4.将组合物用作研究工具的方法
所公开组合物可以各种方式被用作研究工具,并且用于产生例如脂质和抗氧化剂。
如本文所述,所公开组合物既可用作微阵列中的试剂,也可用作研究或分析现有微阵列的试剂。所公开组合物可用于分离或鉴定单核苷酸多态性的任何已知方法中。组合物还可用于确定例如本文所公开生物体菌株的任何等位基因分析方法中,尤其是等位基因分析,原因在于它与脂质和抗氧化剂的产生相关。组合物还可用于与芯片/微阵列相关的任何已知的筛选分析方法中。组合物还可用于使用所公开组合物的计算机可读装置的任何已知方法,从而例如研究相关性或进行与所公开组合物相关的分子建模分析。
5.基因修饰和基因破坏方法
所公开组合物和方法在可经历这些事件的任何动物中用于靶向的基因破坏和基因修饰。基因修饰和基因破坏指的是以选择性除去或改变生物体例如本文所公开真核生物中的基因或一段染色体为目的的方法、技术和组合物,其方式是通过生物体的复制来延续这种修饰作用。通常,例如,用被设计为可与细胞内所包含的具体染色体或核酸的某一区域同源重组的载体来转化例如本文所述的细胞。该同源重组事件可产生含有被导入至读码框的外源DNA并且具有周围DNA的染色体。这种类型的实验方案使得可以将特异性很高的突变(例如点突变)导入细胞中所包含的基因组中。进行这种类型的同源重组的方法也在本文公开。
实施方案
本文公开了具有18S序列的真核微生物,其中所述18S序列与SEQ IDNO:1列出的序列具有至少94%的同一性。该真核微生物可产生具有图2所示生产情况的不饱和脂肪酸。该真核微生物来自网黏菌门、网黏菌纲、破囊壶菌亚纲、破囊壶菌目、破囊壶菌科和/或破囊壶菌属。该真核微生物可为破囊壶菌属种、金黄破囊壶菌、粉红破囊壶菌或纹状破囊壶菌。该真核微生物还可来自破囊壶菌科并且具有ATCC编号20888、20889、20890、20891或20892。
本文还公开了具有18S序列的真核微生物,其中所述18S序列与SEQID NO:1列出的序列具有至少94%的同一性,其中所述微生物来自裂殖壶菌属。该真核微生物可为裂殖壶菌属种。
本文还公开了具有18S序列的真核微生物,其中所述18S序列与SEQID NO:1列出的序列具有至少94%的同一性,其中该真核微生物含有ω-3或ω-6脂肪酸。该真核微生物还可含有DHA或DPA。
本文还公开了具有18S序列的真核微生物,其中所述18S序列与SEQID NO:1列出的序列具有至少94%的同一性,其中该微生物所产生的脂质或脂肪酸组分为至少约4wt%至6wt%。所述脂质可含有DHA。脂质组合物还可含有占约25wt%脂肪酸组分至约40wt%脂肪酸组分的n-3DHA、占约6wt%脂肪酸组分至约10wt%脂肪酸组分的n-6DPA以及占约0wt%脂肪酸组分至约3wt%脂肪酸组分的n-3EPA。
还公开了包含具有18S序列的真核微生物的组合物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。该组合物可进一步包含有培养基和/或营养物质。
还公开了包含具有18S序列的真核微生物的组合物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,其中所述组合物为生物量。组合物中的真核微生物可来自网黏菌门、网黏菌纲、破囊壶菌亚纲、破囊壶菌目、破囊壶菌科或破囊壶菌属。该真核微生物可为破囊壶菌属种、金黄破囊壶菌、粉红破囊壶菌或纹状破囊壶菌。该真核微生物还可来自破囊壶菌科并且具有ATCC编号20888、20889、20890、20891或20892。
还公开了包含具有18S序列的真核微生物的组合物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,其中所述真核微生物来自裂殖壶菌属。该真核微生物可为裂殖壶菌属种。
还公开了包含具有18S序列的真核微生物的组合物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,该真核微生物可产生具有图2所示生产情况的不饱和脂肪酸。该不饱和脂肪酸含有ω-3或ω-6脂肪酸。该不饱和脂肪酸还含有DHA或DPA。
还公开了包含具有18S序列的真核微生物的组合物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,其中该真核微生物所产生的脂质或脂肪酸组分为至少约4wt%至6wt%。所述脂质可含有DHA。脂质组合物还可含有占约25wt%脂肪酸组分至约40wt%脂肪酸组分的n-3DHA、占约6wt%脂肪酸组分至约10wt%脂肪酸组分的n-6DPA以及占约0wt%脂肪酸组分至约3wt%脂肪酸组分的n-3EPA。
还公开了包含具有18S序列的真核微生物的组合物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少80%的同一性。
还公开了组合物,所述组合物含有占约25wt%脂肪酸组分至约40wt%脂肪酸组分的n-3DHA、占约6wt%脂肪酸组分至约10wt%脂肪酸组分的n-6DPA以及占约0wt%脂肪酸组分至约3wt%脂肪酸组分的n-3EPA。
还公开了制备脂质组合物的方法,所述方法包括:在异氧培养基中培养本文所述的真核微生物,并分离该脂质组合物。还公开了根据该方法制备得到的脂质组合物。
还公开了包含有上述任一组合物的送递装置。例如,公开了一种送递装置,所述送递装置包含有具有18S序列的真核微生物的组合物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。该送递装置可包括微囊、微球、纳米球或纳米颗粒、脂质体、noisome、纳米红质体、固体-液体纳米颗粒、亮丙瑞林、凝胶、凝胶胶囊、片剂、洗剂、膏剂、喷雾剂、乳剂或粉剂。
还公开了包含基本微囊的聚集物和负载物质的微囊,各个基本微囊个体均具有主壳,其中所述负载物质含有任一上述组合物,并被主壳包封,并且其中所述聚集物被外壳包封。主壳和/或外壳可包含表面活性剂、明胶、聚磷酸酯、多糖或它们的混合物。主壳和/或外壳还可包含B型明胶、聚磷酸酯、阿拉伯胶、藻酸盐、壳多糖、角叉菜胶、果胶、淀粉、变性淀粉、α-乳清蛋白、β-乳球蛋白(lactoglobumin)、卵清蛋白、聚山梨酯(polysorbiton)、麦芽糊精、环糊精、纤维素、甲基纤维素、乙基纤维素、羟丙甲基纤维素(hydropropylmethylcellulose)、羧甲基纤维素、乳蛋白质、乳清蛋白、大豆蛋白、油菜籽蛋白、白蛋白、kosher明胶、non-kosher明胶、Halal明胶或non-Halal明胶、或它们的混合物。主壳和/或外壳还可包含复合凝聚层、A型明胶、鱼明胶、Bloom值为约0至约300的明胶、Bloom值为约0至约50的明胶、Bloom值为约51至约300的明胶、Bloom值为约0、约210、约220或约240的明胶、明胶和聚磷酸酯的凝聚层。
所公开微囊的装载物质可包含来自破囊壶菌、裂殖壶菌或它们的混合物的油。该装载物质以重量计为微囊的约20%至约90%或50%至约70%。
所公开微囊的外壳其平均直径为约1μm至约2000μm、约20μm至约1000μm、约30μm至约80μm、约40μm至约10μm或约0.1μm至约5μm。
还公开了包含任一上述组合物、送递装置或微囊的营养添加剂。所公开营养添加剂为片剂、凝胶胶囊、胶囊、液体或糖浆形式。
还公开了包含任一上述组合物、送递装置或微囊的食品。该食品可为烘焙食品、面食、肉制品、冷冻乳制品、乳制品、奶酪制品、蛋制品、调味品、汤粉、点心、坚果制品、植物蛋白制品、硬糖、软糖、家禽产品、经加工的果汁、砂糖、酱油、肉汁、糖浆、营养饮品、饮料、饮料干粉、果酱或果冻、婴儿配方或婴儿食品。该食品还可为鱼肉制品、宠物伴侣食品、家畜饲料或水产养殖饲料。食品还可为面包、玉米饼、谷类食品、香肠、鸡肉、冰淇淋、酸奶、牛奶、沙拉调味料、米糠、果汁、饮料干粉、面包卷、饼干、薄脆饼干、快餐、水果馅饼或蛋糕。
还公开了将组合物送递给受试者的方法,包括给予该受试者任一上述组合物、送递装置、微囊或食品。该受试者可为哺乳动物。该受试者还可以为人。
还公开了任一上述微囊用于制备将负载物质送递给受试者的药物的用途。
还公开了降低受试者体内胆固醇水平、甘油三酯水平或它们的组合的方法,包括给予该受试者有效量的任一上述组合物、送递装置、微囊、营养添加剂或食品的步骤。
还公开了补充受试者体内必需微量元素的方法,所述方法包括给予该受试者有效量的任一上述组合物、送递装置、微囊、营养添加剂或食品的步骤,其中所述组合物、送递装置、微囊、添加剂和食品含有必需微量元素。
还公开了提高受试者体内胰岛素敏感度的方法,包括给予该受试者有效量的任一上述组合物、送递装置、微囊、营养添加剂或食品的步骤。
还公开了减轻受试者高血糖症的方法,包括该受试者有效量的任一上述组合物、送递装置、微囊、营养添加剂或食品的步骤。
还公开了减轻受试者高胆固醇血症的方法,包括该受试者有效量的任一上述组合物、送递装置、微囊、营养添加剂或食品的步骤。
还公开了减少受试者体内脂肪的方法,包括该受试者有效量的任一上述组合物、送递装置、微囊、营养添加剂或食品的步骤。
还公开了促进受试者减肥的方法,包括该受试者有效量的任一上述组合物、送递装置、微囊、营养添加剂或食品的步骤。
还公开了治疗或预防受试者糖尿病的方法,包括该受试者有效量的任一上述组合物、送递装置、微囊、营养添加剂或食品的步骤。
还公开了一种药物制剂,包含任一上述组合物、送递装置或微囊以及药物载体。
还公开了包含有某种组合物的食品,所述组合物包含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。该食品可为烘焙食品、面食、肉制品、冷冻乳制品、乳制品、奶酪制品、蛋制品、调味品、汤粉、点心、坚果制品、植物蛋白制品、硬糖、软糖、家禽产品、经加工的果汁、砂糖、酱油、肉汁、糖浆、营养饮品、饮料、饮料干粉、果酱或果冻、婴儿配方或婴儿食品。该食品还可为鱼制品、宠物伴侣食品、家畜饲料或水产养殖饲料。食品还可为面包、玉米饼、谷类食品、香肠、鸡肉、冰淇淋、酸奶、牛奶、沙拉调味料、米糠、果汁、饮料干粉、面包卷、饼干、薄脆饼干、快餐、水果馅饼或蛋糕。
还公开了降低受试者体内胆固醇水平、甘油三酯或它们的组合的方法,包括给予有效量的组合物、营养添加剂、送递装置或食品的步骤,所述组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ IDNO:1列出的序列具有至少94%的同一性,所述营养添加剂含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述送递装置含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述食品含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。
还公开了补充受试者体内必需微量元素的方法,所述方法包括给予有效量的组合物、营养添加剂、送递装置或食品的步骤,所述组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述营养添加剂含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述送递装置含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述食品含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。
还公开了提高受试者体内胰岛素敏感度的方法,所述方法包括给予有效量的组合物、营养添加剂、送递装置或食品的步骤,所述组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述营养添加剂含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述送递装置含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述食品含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。
还公开了减轻受试者高血糖症的方法,所述方法包括给予有效量的组合物、营养添加剂、送递装置或食品的步骤,所述组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述营养添加剂含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述送递装置含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述食品含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。
还公开了减轻受试者高胆固醇血症的方法,所述方法包括给予有效量的组合物、营养添加剂、送递装置或食品的步骤,所述组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述营养添加剂含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述送递装置含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述食品含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。
还公开了减少受试者体内脂肪的方法,所述方法包括给予有效量的组合物、营养添加剂、送递装置或食品的步骤,所述组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述营养添加剂含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述送递装置含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述食品含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。
还公开了促进受试者减肥的方法,所述方法包括给予有效量的组合物、营养添加剂、送递装置或食品的步骤,所述组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述营养添加剂含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述送递装置含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述食品含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。
还公开了治疗或预防受试者糖尿病的方法,所述方法包括给予有效量的组合物、营养添加剂、送递装置或食品的步骤,所述组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述营养添加剂含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述送递装置含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性,所述食品含有组合物,该组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。
还公开了含有组合物的药物制剂,所述组合物含有具有18S序列的真核微生物,其中所述18S序列与SEQ ID NO:1列出的序列具有至少94%的同一性。
VI实施例
给出以下的实施例旨在为本领域的技术人员提供本申请所要求保护的化合物、组合物、物品、装置和/或方法如何制备和评估的完整公开和描述,纯粹是为了举例说明,而无意于对公开内容作限制。已努力确保数字(如量、温度等)方面的准确性,但是还是应该考虑到会存在某些误差和偏差。除非另外指明,否则份数为重量份数,温度为℃或者室温,压力为大气压或接近大气压。
1.实施例1:ONC-T18破囊壶菌属种菌株的分离
采用了经典的细菌学菌株纯化技术,目的在于从在Advocate Harbor,Nova Scotia收集到的红树树叶分离ONC-T18。在营养培养基(1L 0.2μm过滤的海水中含有5g L-1葡萄糖、2g L-1蛋白胨、2g L-1酵母提取物和15.0g L-1琼脂)中于25℃连续培养ONC-T18,直至获得足够的纯度。随后,配制含有15%人工海水(营养型海水)、添加有氮源和碳源(分别为60g L-1葡萄糖和10g L-1酵母提取物)的液体培养基。用ONC-T18接种该培养基(250ml烧瓶中装有50ml),然后在25℃培养,并通过于120rpm振荡来充气。
通过离心自培养基分离ONC-T18,然后洗涤细胞生物量,再次离心并彻底冷冻干燥。然后对细胞生物量进行称重,目的在于通过所记录的生物量/升培养基的数值来确定培养效率。使用Bligh&Dyer方法从生物量提取脂质组分,随后分离脂肪酸甲酯。通过以下步骤进行酯交换:将冷冻干燥的细胞物质转移至10ml带有螺旋盖的试管中,并将10%甲醇HCl和二氯甲烷加入该试管,使该混合物在90℃反应2小时。然后通过加入己烷:氯仿来提取脂肪酸甲酯,并通过气相色谱(FID)来测量甲酯组分,目的是确定各种微生物和共生群落(ONC-T18)的脂肪酸生产情况。通过比较在酯交换过程的开始(C23:0)和结束(C19:0)时以确定量加入的两个内标(C19:0和C23:0)的GC峰面积,测定了各种脂肪酸甲酯(C14:0至C22:6)的浓度。使用这种方法计算得到的总脂肪酸量/克干细胞生物量以及每种脂肪酸的百分含量示于图2。
通过对这些结果的分析并结合示于图1中的那些结果,可发现ONC-T18表现出产生增加量的DHA以及显著量EPA和DPA的能力。ONC-T18在该非最佳发酵培养基中产生了大约25%DHA、8.0%(n-6)DPA和1.0%EPA。随后基于以下经济所需特征的组合来选择ONC-T18:(1)能最大程度地进行异养生长(与对照菌株相比较);(2)含有高百分比的ω-3高度不饱和脂肪酸;(3)能在便宜的营养物质中生长;(4)具有耐热性以及(5)具有广耐盐性。
另外,将产油微生物的多种不同菌株与ONC-T18进行了比较。这其中的每种微生物均被认为包含有破囊壶菌,并产生表3所示量的油。
表3,[]=mg/g
可以理解的是,如本文所述的ONC-T18一样,通过例如DHA与油总产量的百分比或通过DHA总产量,公开了用通过本文所公开产油力所表示的一系列产油微生物。
2.实施例2:使用遗传技术鉴定真核破囊壶菌属种ONC-T18
使用聚合酶链式反应(PCR)技术和靶向于18S核糖体RNA基因的引物(所有真核生物物种的通用引物),能产生自ONC-T18分离得到的真核微生物结构基因的PCR产物(如实施例1所述)。然后对PCR产物进行测序,并将该对于真核生物物种的序列命名为SEQ ID NO:1(参见图2)。
使用BLAST(基本的局部比对搜索工具)算法,将SEQ ID NO:1与在基因组数据库GenBank(美国国家生物技术信息中心,美国国家卫生研究所,贝塞斯达,马里兰,美国)中的核酸序列相比较,鉴定发现SEQ IDNO:1与纹状破囊壶菌[AF265338]关系最为密切(97.5%相似性)。
ONC-T18破囊壶菌属种的BLAST结果如下所示。
3.实施例3:使用菌株ONC-T18最优化生物量的生产
来源于微生物的(或单细胞的)油的生产取决于多个过程变量,例如初始接种物水平、底物类型、培养基组成、温度和pH。具体而言,使用破囊壶菌菌株、以微生物为基础的高度不饱和脂肪酸的生产表明生物量和脂肪酸生产之间有直接关系。因此,对基本需求的理解或者对参数的最优化是获得最大产量的重要因素。因此,为确定产生增加的脂肪酸量的最佳培养基,进行了初始的生物量最优化实验。具体而言,使用新近开发的以正交阵列为基础的Taguchi法(Joseph J and Piganatiells JR,UE Trans20:247-254,1998),目的在于确定使光密度(与生物量产生直接相关)增加的最佳培养基组成。在这种情况下,使用Taguchi法来理解对生物量产生有影响的变量的累积效应。氮(酵母提取物、蛋白胨、L-谷氨酸盐)、碳(葡萄糖)和盐浓度(人工海盐)的改变对生物量产生有影响。因此,配制了多种液体培养基,所述培养基中含有各种量的酵母提取物、蛋白胨和L-谷氨酸盐(0、4、10、20、50g L-1)和各种量的葡萄糖和盐水溶液(分别为5、40、100、160、200g L-1和0、6、20、30、40g L-1)。依据L25正交阵列以下述方式计算浓度:利用下面的公式,通过使用在48小时和120小时时的信噪比(SNL)辨别所选择的氮培养基:
SNL = - 10 log [ 1 n &Sigma; i = 1 n 1 y i 2 ]
其中,n=水平数目,y=产量(来自三个平行实验的OD600平均值)。
这些实验(特别针对考虑因素生物量)的结果(如附图2所示)表明,与光密度(OD600)最相关的ONC-T18的氮利用率为蛋白胨,然后是酵母提取物,随后是L-谷氨酸盐。但是,以最快生长为基础,则提高生物量产量的最佳氮源是酵母,然后是蛋白胨,随后是L-谷氨酸盐。另外,通过以葡萄糖和盐度(海盐浓度)为变量的相似实验,用于生产ONC-T18生物量的最佳和最便宜的培养基组成为:培养基含有2g L-1酵母提取物、8g L-1MSG、60g L-1葡萄糖和6g L-1海盐。
4.实施例4:用菌株ONC-T18最优化二十二碳六烯酸(DHA)的生产
制备由氮源(蛋白胨、酵母提取物、L-谷氨酸盐(MSG)或它们的组合)和碳源(葡萄糖)(溶解在盐水(人工海水)溶液中)组成的培养基,以与实施例3所描述方式相似的方式确定能最优化生物量和DHA产生的最佳培养基组成(示于表4)。在25℃和130rpm培养三天后,依据实施例1和此处所述的方法,通过气相色谱测定生物量、每升培养基中的总脂肪酸、脂肪酸的重量百分含量、DHA占总脂肪酸的百分含量以及每升培养基中DHA的量,结果示于表4。
在这种情况下,通过使用气相色谱联合质谱和峰值锁定(peaklocking)法,与已知的DHA标准品相比较,测定了DHA。实验系列(experimental package)的结果(其中对天然和有机两种形式的氮的变化均进行了研究)表明,对于生物量和DHA的最佳生产而言,最佳培养基组成中应含有的酵母提取物和L-谷氨酸盐的量均为4.0至6.0g L-1。另一方面,实验系列(研究了加至培养基的钠组分的变化)表明,使用人工海盐可产出最佳的生物量和DHA。此外,实验系列(其中培养基中钠的浓度有所不同)表明,在使用5至15%人工海水L-1dH2O时出现DHA和生物量的最大生产量。实验系列(其中对葡萄糖水平的变化进行了评估)的结果表明,40至少于160g L-1的葡萄糖范围可以得到最佳的生物量和DHA的生产。最后,实验系列的结果表明,在葡萄糖或丙三醇用作碳源时,ONC-T18所产生的细胞生物量和DHA浓度数值是等价的。
表4:培养基组成不同的情况下,DHA生产最优化实验的结果。
5.实施例5:ONC-T18产生最大量DHA的最佳收集时间
在与实施例1中示出的那些培养基组成和条件相同的培养基组成和条件下培养ONC-T18。在此具体情况中,所研究的是为获得最大量DHA、DPA和EPA,ONC-T18应被收集的时间,同时还考虑了获得所述的量必需的时间(参见图3)。
时程实验结果表明,ONC-T18在烧瓶和生物反应器中最优化生产DHA的最佳收集时间分别介于3至5天之间。
6.实施例6:对来源于ONC-T18的脂质进行的分析
使用改进的Bligh&Dyer法提取ONC-T18的总脂质组分。具体而言,在4℃于8ml蒸馏水中将2.0g干细胞生物量过夜复水。将30ml甲醇:氯仿(2:1体积/体积)加入混合物中并在120rpm温和振荡20min,轻轻倒出所得到的上清。然后将沉淀重悬于甲醇:氯仿:H2O(2:1:0.8体积/体积/体积),重复该过程,收集上清并将其转移至分离漏斗中。然后将5ml氯仿和5ml H2O加入漏斗,从而形成两相液体系统。在分离漏斗内充分混合之后,弃去氯仿层,氮气条件下浓缩,重悬于氯仿中并于-20℃保存,直至分析。将大约1μl的总脂质组分点样于多个色谱棒上,使用Iatroscan MK6TLC/FID仪器来分离和分析。
结果分析表明,异养发酵条件下由ONC-T18产生的脂肪酸组分本质上几乎全部是甘油三酯(至少95%)。除了上述中性脂肪酸组分外,ONC-T18还产生可辨别的类胡萝卜素和磷脂组分。通过随后对磷脂组分的分离(首先经过50%Burn,随后经过75%Burn,紧接着通过以溶剂为基础的分离),可确定存在大量复杂的磷脂组分。结果表明,在样本中存在磷脂酰胆碱、磷脂酰丝氨酸和磷脂酸组分。
7.实施例7:使用菌株ONC-T18生产抗氧化剂
使用前述条件和培养基来培养真核生物ONC-T18。异养发酵后所得到的细胞生物量经由离心、过滤或沉淀来收集。细胞通过在3800×g离心收集,并用磷酸盐缓冲盐溶液洗涤。将细胞生物量(刚产生得到的或冷冻干燥的)悬浮于10×体积的丙酮中,200rpm搅拌5分钟,3800×g离心5分钟,并在氮气条件下蒸发浓缩至干燥。然后将该色素立即重悬于极少量的10%丙酮(溶于己烷),并在-20℃保存,直至进行HPLC分析。然后在配备有设定在470nm的可变波长检测器的Agilent 1100HPLC(Agilent,PaloAlto,CA,USA)上鉴定类胡萝卜素提取物。样本通过Symmetry C18保护柱(Waters,Milford,MA,USA)被注射至Bondclone C18反相柱(Phenomenex,Torrance,CA,USA;颗粒为10μm;内径为3.9x 300mm)。注射体积为10μl,所使用的流动相为10%的丙酮(溶于己烷),流速为1.00ml/min,进行25分钟。将类胡萝卜素的峰面积与已知的标准品(在此情况下为虾青素、角质素、β-玉米黄素、玉米黄素、海胆酮和β-胡萝卜素;ChromaDex,Santa Ana,CA,USA)相比较,获得类胡萝卜素的定量数据。在不存在已知标准品例如类胡萝卜素、芬尼黄质的情况下,用虾青素的峰面积来计算其浓度。类胡萝卜素特征的进一步确认通过使用配备有引入Micromass ESI-Q-Tof质谱仪(Waters,Milford,MA,USA)的光敏二极管阵列(Waters model 996)的Waters HPLC经由HPLC-MS进行。随后对ONC-T18的HPLC分析表明,在细胞生物量中存在几种抗氧化剂化合物(50至1250mg/kg)。这些化合物包括范围分别为1至20mg/kg、0.25至10mg/kg、1至20mg/kg、1至20mg/kg和1至200mg/kg的抗氧化剂类胡萝卜素虾青素、玉米黄素、角质素、海胆酮和β-胡萝卜素,以及几种性质尚未被鉴定的类黄酮多酚化合物(flavenoid polyphenoliccompound)。
8.实施例8:与已知微生物的比较
将ONC-T18产生DHA、EPA和DPA的能力与已知微生物的这一能力相比较。通过培养金黄破囊壶菌ATCC 34304、破囊壶菌属种ATCC 20891、破囊壶菌属种ATCC 20892、粉红破囊壶菌ATCC 28210、破囊壶菌属种ATCC 26185、裂殖壶菌属种ATCC 20888、集生裂殖壶菌(Schizochytriumaggregatum)ATCC 28209和Schizochytrium limacinum MYA-1381,测定了培养上述菌株时产生的每升培养基中细胞生物量的量,每克干细胞生物量中脂肪或脂肪酸的百分含量,总脂肪酸中DHA、EPA和DPA的百分含量,和DHA、EPA和DPA的量,还测定了培养本发明的ONC-T18时所获得的DHA、EPA和DPA的产量。
表5.对几种代表性破囊壶菌菌株的脂质生产和生物量特征的比较
如表5所示,很显然的是,在使用本发明的ONC-T18进行培养时,与被测试的其它菌株相比,每升培养基中细胞生物量数值极高。此外,根据本发明,ONC-T18与上述其它菌株相比具有非常高百分含量的脂质。另外,根据本发明,ONC-T18内DHA和DPA的百分含量极高,并且EPA水平表现出与全部被筛选的菌株相当。因此,显然ONC-T18具有在实施例1所述发酵条件下产生大量DHA、EPA和DPA的能力。
9.实施例9:替代碳源的信息
已表明ONC-T18优先在这样一种培养基上生长,其中主要氮源为酵母提取物、谷氨酸钠和/或蛋白胨,主要碳源为D-葡萄糖。基于ONC-T18的详细代谢分布信息,注意到甘油(碳源)同样是可行的替代物质。另外,还对鱼油加工废液(含有甘油)作为成本低廉的营养替代物质的可应用性进行了测试。对甘油的情况进行了如下实验:使用装于500ml烧瓶中的200ml培养基,在25℃、120rpm生长3天。两种鱼油加工废物GWW(甘油水性洗液)和GAW(甘油酸性洗液)的甘油含量占200ml培养基(调节至pH6.5)的40%(体积:体积),并将6%甘油加入200ml培养基(重量:体积)作为对照。
表6.替代碳源研究的脂肪酸、生物量和甘油含量
对这些结果的分析证实,将鱼油废液组分例如副产品甘油用作ONC-T18的大规模发酵的碳源时,尽管导致微生物细胞内的总脂肪酸量减少,但是其中的DHA含量保持不变(图10)。
10.实施例10:细胞干重的扩大培养
可在最大至100,000L的多种反应器结构中培养破囊壶菌属种ONC-T18来生产ω-3油。所有的发酵过程均开始于配制占终体积的10-20%的接种物,它可用于形成发酵培养物。初始培养基组成包含有最高至6g/L海盐、10g/L氮源和60g/L碳源,并在初始发酵24至36小时后进行补料,分批加入另外75g/L碳源,再持续72至96小时,并且温度范围为18-25℃。例如,使用含有6g/L海盐、2g/L酵母提取物、8g/L L-谷氨酸盐和60g/L D-葡萄糖(36小时后再加入75g/L)的培养基在25℃培养96小时,ONC-T18能产生40g/L细胞干重(dcw)、占细胞干重(dcw)80%的总脂肪酸(TFA)/脂质组分(介于C14:0至C24:0之间)和30%的(TFA)DHA。同样,在不影响TFA或DHA含量的情况下,能通过成倍增加氮和碳培养基组分的含量,使得生物量也有相似倍数的增加,从而增加细胞干重。例如,使用含有24g/L海盐、8g/L酵母提取物、32g/L L-谷氨酸盐和300g/L D-葡萄糖的培养基在25℃培养312小时,ONC-T18能产生80g/L的细胞干重(dcw)、占细胞干重(dcw)60%的总脂肪酸(TFA)/脂质组分(介于C14:0至C24:0之间)和38%的(TFA)DHA。
11.实施例11:破囊壶菌属种ONC-T18在各种替代的碳(C)源和氮(N)源中的生长情况以及对细胞干重和脂质的影响
对破囊壶菌属种ONC-T18在各种成本低廉的氮源和碳源中的生长情况进行了研究。将50ml ONC-T18在装有6g/L人工海盐的250ml烧瓶中于25℃培养72小时。碳源和氮源浓度如下所示,与8g/L L-谷氨酸盐联合使用的所列各氮源为2g/L(使用鱼粉的情况例外,该鱼粉用量为4g)。碳源如所示那样变化。全部实验平行进行三次;用于脂肪酸甲酯分析的所有提取均平行进行三次,同时平行进行三次GC注射。
结果表明,破囊壶菌属种ONC-T18在氮源EMD酵母提取物和鱼粉中生长时,可产生优化的细胞干生物量(即比两种对照培养基要高)。相反,使用玉米浆和EMD蛋白胨时,发现脂质含量比对照低,而DHA含量得到优化。最后,发现碳源右旋糖会增加脂质含量,而果糖和右旋糖会产生比对照更高的DHA含量。
表7:破囊壶菌属种ONC-T18的生长情况
缩写:
MSG=L-谷氨酸盐(钠)YE=酵母提取物
12.实施例12:用于分离总脂质和各组分的提取技术
对多种分离所选ω-3油的方法进行了测试,目的是确定最佳的分离效率。这些方法包括:标准的Bligh&Dyer法(Bligh&Dyer,Can J.Biochem.Physiol.,37:912-917,1959)、专门用于破囊壶菌种的联合提取和酯交换法(可对样本进行加工用于快速GC FAME分析)(Lewis et al.,J.Microbiol.Methods,43:107-116,2000)、采用同时皂化的提取法(Cartens et al.,J.Am.Oil Chem.Soc.73:1025-1031,1996)和使用可选择性分离甘油三酯、甘油二酯和甘油单酯的硅胶柱的固相提取法(Pinkart et al.,J.Microbiol.Methods,34:9-15,1998;Bateman&Jenkins,J.Agric.Food Chem.,45:132-135,1997)。
具体而言,将在单次发酵操作(参见实施例1)中产生的40g细胞干重破囊壶菌属种生物量分为0.44g的多个组,并使用各种技术进行分离。所有技术均平行进行三次,并使用通过FID-GC的脂肪酸甲酯确定法来分析效率,同样平行进行三次,并且每个样本平行进行三次。结果表明,各种方法所获得的总脂肪酸含量有所不同,这种波动最可能是由于溶剂:化合物的饱和状况、生物量破坏情况和其它物理条件(如温度和时间)等考虑因素。
表8:分离总脂质和各组分的提取技术
Bligh&Dyer
直接酯交换
同时皂化
固相提取
N.B:以上列出的各数值为使用用于FAME分析的FID-DC的三次平实验的平均值
13.实施例13:
a)材料和方法
(1)破囊壶菌的分离和培养
2002年七月和八月期间,在Nova Scotia,Prince Edward Island,New Brunswick,Newfoundland和Labrador的加拿大东部沿海地区收集了70个海洋样本,包括:互花米草(Spartina alterniflora)、大叶藻(Zostera marina)和泥沙。将样本置于装有如下物质的20mL小瓶中:10mL无菌的0.2μm过滤的天然海水和300mg L-1青霉素和500mg L-1链霉素。依据Bremer,Marine Mycology-A Practical Approach,FungalDiversity Press,Hong Kong,pp 49-61(2000)所述,将悬液用无菌花粉(槭树(Acer sp.))诱集,并在18℃孵育48小时。然后通过接种环转移花粉粒并在含有抗生素的B1琼脂板(1L天然海水含有1g L-1酵母提取物、1g L-1蛋白胨、10g L-1琼脂)上划线并培养。挑选球形或蛞蝓形细胞的单个无规则透明集落和非典型的酵母或细菌集落,并在B1板上至少传代培养三次以进行纯化。
(2)用于脂肪酸筛选的生物量生产
为筛选用于培养和脂肪酸生产的分离株,使用0.2μm过滤的天然海水配制液体培养基,该液体培养基含有2g L-1蛋白胨(BD,Franklin Lakes,NJ,USA)和2g L-1酵母提取物(BD,Franklin Lanes,NJ,USA),通过高压灭菌对培养基灭菌,然后加入5g L-10.2μm滤器过滤除菌的葡萄糖(Sigma-Aldrich,St.Louis,MO,USA)(Bowles et al.,J Biotechnol70:193-202(1999))。通过接种环从琼脂板上接种体积为30mL的培养物,并在设定为100RPM的振荡器上于18℃培养4天。然后将5mL该培养物接种于95ml培养基,并再培养4天(稳定期)。通过在4,500RPM离心收集细胞,用5mL蒸馏水洗涤并再次离心。将细胞沉淀冷冻干燥、称重并在-80℃保存,然后进行脂肪酸的衍生作用分析。
(3)脂肪酸甲酯(FAME)的制备
可通过从Lewis等人(J Microbiol Meth.43:107-116(2000))的直接酯交换方法改进而得的方法进行脂肪酸甲酯(FAME)的提取。具体而言,加入20mg冷冻干燥的物质和3ml酯交换反应混合物(甲醇:盐酸:氯仿(10:1:1体积/体积))。将细胞涡旋振荡10秒钟,以确保生物量均匀分散,并于90℃放置120分钟。在完成酯交换后取出样本并将其冷却至室温。然后加入水(1ml)并涡旋振荡10秒钟。然后通过如下步骤提取FAME:加入3×2ml等份的己烷:氯仿(4:1),涡旋振荡10秒钟,静置,直至获得澄清的液体分离物。
(4)FAME的气相色谱(GC)分析
使用两个内标(各200μl)进行FAME的GC分析。一个是二十六酸(hexacosaenoic acid)(C23:0),在酯交换之间加入;另一个是十九酸(C19:0),在分析之前直接加入。使用Agilent 6890GC(AgilentTechnologies,Palo Alto,CA,USA)进行分析,该仪器配备有内径为30m×0.32m的OMEGAWAX 320熔融石英毛细管柱(Sigma-Aldrich,St.Louis,MO,USA)和火焰离子化检测器(注射体积为1μl,载气为H2,恒定流速为5.0ml min-1,设定在250℃,在275℃时FID检测器的分流比为50:1)。通过使用Trace GC-DSQ质谱仪(Thermo Electron,Boston,MA,USA)并与实验标准品的滞留时间相比较,进行FAME特征的确认。
(5)遗传鉴定
使用MoBio UltraClean Microbial DNA Isolation Kit(MoBioLaboratories,Carlsbad,CA,USA),根据制造商的说明书来提取基因组DNA。用于扩增18S rRNA基因的寡核苷酸引物是从Honda等人(JEukaryot Microbiol.46:631-641(1999))所用的引物改进而来,即T18S1F 5’-CAACCTGGTTGATCCTGCCAGTA-3’和T18S5R5’-TCACTACGGAAACCTTGTTACGAC-3’。20μl的PCR反应混合物含有2UBiolaseTM DNA聚合酶(Bioline,Boston,MA,USA)、1×NH4反应缓冲液、3mM MgCl2、1M甜菜碱(Sigma-Aldrich,St Louis,MO,USA)、200μM混合的PCR核苷酸(Promega,Madison,WI,USA)、各1μM的正向引物和反向引物(MWG Biotech.,High Point,NC,USA)以及100ng基因组DNA模板。在首先于94℃变性3分钟之后,使用Eppendorf Master CycleGradient基因扩增仪(Eppendorf,Westbury,NY,USA)进行PCR扩增,其程序为:94℃45秒、64℃30秒、72℃2分钟,此程序进行30个循环,最后在72℃延长10分钟。使用MoBio UltraClean PCR Clean-upKit(MoBio Laboratories Inc,Carlsbad,CA,USA)来纯化PCR产物,以便使用引物FA2、FA3、RAl、R(Mo et al.,Mar Biol140:883-8892002)、T18S1F和T18S5R来进行直接测序(MWG Biotech.,High Point,NC,USA)。使用DS Gene(Accelrys,San Diego,CA,USA)来对所得到的序列进行比对,并将其与保存在GenBank(Benson et al.,Nucleic Acids Res33:D34-38(2005))的相似微生物的核苷酸序列相比较。然后使用邻接法(Neighbor-Joining method)(Saito and Nei,Mol Biol Evol 4:406-425(1987))形成系统树,并使用1000个自举模拟取样样本(Felsenstein,Evolution 39:783-791(1985))来评估统计学意义。
(6)类胡萝卜素的鉴定
通过在3800×g离心来收集细胞,并用磷酸盐缓冲盐溶液洗涤。然后重悬于10×体积的丙酮(Sigma-Aldrich,St Louis,MO,USA)中,200RPM搅拌5分钟,3,800×g离心5分钟,并通过N2蒸发浓缩至干。之后重悬于极少量的10%丙酮(溶于己烷)中,随后进行HPLC分析。在配备有设定在470nm的可变波长检测器的Agilent 1100HPLC(Agilent,Palo Alto,CA,USA)上进行鉴定。样本通过Symmetry C18保护柱(Waters,Milford,MA,USA)被注射至Bondclone C18反相柱(Phenomenex,Torrance,CA,USA;颗粒为10μm;内径为3.9×300mm)。注射体积为10μl,所使用的流速为1ml/min 10%的丙酮(溶于己烷),进行25分钟。类胡萝卜素特征的进一步确认通过质谱分析法(Micromass ESI-QTof MS,Waters,Milford,MA,USA)进行。各种类胡萝卜素的定量数据以使用标准品(虾青素、玉米黄素、角质素、海胆酮和β-胡萝卜素)来形成校正曲线并将峰面积与确定浓度相比较为基础。
(7)发酵最优化
通过在250ml Erlenmeyer瓶中进行分批培养(130RPM振荡,于25℃培养3天)来检测碳、氮和海盐对脂肪酸和DHA生产的影响。使用Bplus Twin 5L生物反应器(Sartorius BBI Systems Inc.,Betlehem,PA,USA)进行进一步的培养研究。将100ml的接种物接种于装在生物反应器中的4.9L培养基。使用Glucose(HK)Assay Kit(Sigma-Aldrich,St Louis,MO,USA),根据制造商的说明书来测量葡萄糖浓度。在生物反应器中所采用的培养基组分和条件在相关结果部分进行了详细阐述。
b)结果
开发了收集和筛选方法,藉此,使用花粉诱集法和选择性细菌培养基对多种原生生物盘根足虫目(family Labyrinthulida)尤其是裂殖壶菌属和破囊壶菌属进行了分离。该研究涵盖分布于整个Atlantic Canada的20个不同的采集地点,并获得了经显微鉴定的68个纯的菌株。根据Lewiset al.,J Microbiol Meth 43:107-116(2000)的方法,产油菌株(其细胞干重的20%以上均为脂肪酸)的筛选基于以下结果:GC PUFA生产情况、生物量产率、最高TFA、DHA,其次是EPA浓度(图11)。生物量、TFA以及DHA和EPA产率的数值范围分别为100至2300mg L-1、27.1至321.14、5.18至83.63和2.97至21.25mg g-1(图14)。
在液体培养基中生长(68个中的54个)的所有分离株均产生了大量ω-3多不饱和脂肪酸尤其是DHA,该DHA占这些细胞C20至C22总含量的22至80%(图11)。这肯定了之前的结果,即从寒温带环境中分离出来的破囊壶菌具有生产的DHA占所存在总脂肪酸的最高至53%的脂肪酸生产情况(Bowles et al.,J Biotechnol 70:193-202(1999)和Huang et al.,Mar Biotechnol 5:450-457(2003))。特别值得关注的是ONC-T18,它可产生占其C20至C22含量最高至90%的DHA,该DHA大约为细胞内总脂肪酸的35%。已表明该DHA含量与几种用于商业化生产的菌株例如裂殖壶菌属种ATCC 20888(32%)和S.limacinum MYA-1381/SR21(34%)的DHA含量相同(Barclay et al,J Appl Phycol 6:123-129(1994)和Yokochi et al.,Appl Microbiol Biotechnol 49:72-76,(2003))。此外,所有分离株均合成占所鉴定总PUFA的2%至20%w/w的二十碳五烯酸(EPA)(图11)。除了所产生的ω-3油之外,全部分离株中约80%能合成ω-6PUFA、花生四烯酸(AA)或二十二碳五烯酸(DPA),其浓度分别介于1至18%和3至7%w/w之间(图11)。
Huang等人(Mar Biotechnol 5:450-457(2003))认为,对于自日本和斐济的热带沿海水域分离的破囊壶菌而言,可描述的有五种不饱和脂肪酸生产情况,即DHA/DPA(n-6)、DHA/DPA/EPA、DHA/EPA、DHA/DPA/EPA/AA和DHA/DPA/EPA/AA/二十二碳四烯酸(Huang et al.,Mar Biotechnol5:450-457(2003))。就此破囊壶菌(自Atlantic Canada的温带水域分离得到)收集物而言,可确定有四种PUFA生产情况,其中三种与上述的那些相同,即占收集物7.4%的DHA/DPA/EPA、占收集物13%的DHA/EPA和74%的DHA/DPA/EPA/AA,第四种包括5.6%的DHA/EPA/AA的混合物。
通过对18S rDNA基因进行直接测序,ONC-T18被肯定地鉴定为破囊壶菌目(Thraustochytrid)的一员(GenBank编号:DQ374149)。系统进化分析表明,ONC-T18与纹状破囊壶菌T91-6形成了单独的一组(同一性为97.5%)(图12)(Leander and Porter,Mycologia 93:459-464(2001))。而自日本沿海温带水域收集、并被发现是DHA的重要生产者(Carmona etal.,Biosci Biotechnol Biochem 67:884-888(2003)和Huang et al.,Mar Biotechnol 5:450-457(2003))的破囊壶菌科菌种MBIC 11093、N1-27和破囊壶菌属种CHN-1分别表现出与ONC-T18具有96、95.5和94.5%的相似性。图12所示破囊壶菌科的全部成员之间遗传多样性相当低,所有菌种之间的相似性介于97.5-91.0%之间。然而,这些菌种遍布全球,并且有三分之二分离自日本、中国和以色列的热带沿海水域,而剩下的分离自美国、欧洲和加拿大的温带水域。
与破囊壶菌属种KH105或S.limacinum SR21的脂肪酸生产情况相似,ONC-T18的脂肪酸生产情况包括高含量的C22PUFA、极低水平的C18和C20FA,并且出现奇数碳链的饱和脂肪酸(15:0和17:0)。此外,对菌株ONC-T18、SR21和KH105的碳和氮利用情况的分析给出了相似的吸收模式。菌株ONC-T18中n-6DPA的含量介于6-10%之间,在考虑到n-6DPA在生物圈中存在有限时,该含量看起来非常高。然而,据Nakahara等人(J AmOil Chem Soc 73:1421-1426(1996))报道在裂殖壶菌属种SR21(6-10%)中、Ellenbogen等人(Comp Biochem Physiol 29:805-81(1969))报道在金黄破囊壶菌(9.5%)和粉红破囊壶菌(6.6%)中有着相似水平的n-6DPA。
对ONC-T18在三种不同的培养装置((1)琼脂板、(2)锥形烧瓶和(3)生物反应器)并在相同培养基上生长的脂肪酸生产情况(图13)的分析表明,从琼脂板到生物反应器,所存在的PUFA的多样性有所减少,并且TFA总体上升高。具体而言,琼脂板展现出PUFA阵列(array),而在烧瓶和生物反应器中生长的培养物主要为一种或两种中间产物(图13)。金黄破囊壶菌在培养烧瓶中比在搅拌发酵罐中生长更为旺盛(Ilda et al.,JFerment Bioeng 81:76-78(1996),与之相比,ONC-T18在生物反应器中生长更佳。该结果与Nakahara等人(Nakahara et al.,J Am Oil ChemSoc 73:1421-1426(1996))的结果一致,他们发现裂殖壶菌属种SR21对机械搅拌表现出高的抗性,从而在生物反应器条件下生长旺盛。
此外,发现在破囊壶菌属种ONC-T18的平板、烧瓶和生物反应器发酵期间产生类胡萝卜素色素,导致褪为浅橙色。这些抗氧化剂的生产在生物反应器发酵中最活跃,并与脂肪酸生产相伴。另外,通过使用HPLC质谱法,确定这些抗氧化剂化合物被鉴定为与各种PUFA缀合的虾青素、玉米黄素、角质素、海胆酮和β-胡萝卜素(图14)。据报道在原生生物的thraustochytid群的各成员中有着相似的结果。具体而言,已表明集生裂殖壶菌可生产海胆酮和角质素(Valadon,Trans Br Mycol Soc 67:1-15(1976)),而Carmona等人(Biosci Biotechnol Biochem 67:884-888(2003))和Huang等人(Mar Biotechnol 5:450-457(2003))证实,虾青素、海胆酮、角质素、芬尼黄质(并非ONC-T18中的玉米黄素)和β-胡萝卜素由破囊壶菌属种CHI-1(ONC-T18的近亲菌种)生产(图12)。在该研究中,发现这些类胡萝卜素的浓度的数量级比其在CHN-1中的要低,并且主要化合物为β-胡萝卜素而非虾青素。因此,在破囊壶菌某些种内,PUFA和类胡萝卜素生产可联合起来,从而使得所生产的储存脂肪可免于被氧化。
之前已确定,通过改变培养物的生长条件,主要脂肪酸组分(豆蔻酸、棕榈酸和油酸)的相对量可得到某种程度的改变(Ilda et al.,J FermentBioeng 81:76-78(1996))。通过这种方式,可操纵最终的脂肪酸组分,由此可在发酵期间以可控方式操纵所需PUFA的物理性质(Sijtsma et al.,Recent Res Devel Microbiol 2:219-232(1998))。在确定ONC-T18中抑制生物量和ω-3PUFA两者产生的因素的尝试中,对营养培养基中的碳、氮和海盐组分(表9)以及培养时间(图15)进行了控制。
表9:破囊壶菌属种ONC-T18的平均生物量产量(SD<15%)、总脂肪酸(TFA)和DHA含量
在该研究中,由于氮浓度下降,总脂肪酸含量升高,并且在酵母提取物或谷氨酸单钠浓度为1%(w/v)时获得的总脂肪酸含量最高(约80%)。然而,低氮浓度的培养物同样限制了细胞生长,并由此限制了总脂肪酸的产生。在该实验中,使用8g L-1谷氨酸单钠和2g L-1酵母提取物可获得最佳产量:产生26.1g L-1生物量和4.5g L-1DHA(表9)。此外,碳升高到最高至100g L-1有效地提高了DHA产量,这与破囊壶菌属种SR21获得的结果(Yokochi et al.,Appl Microbiol Biotechnol 49:72-76,(2003))一致,而与金黄破囊壶菌所给出的结果相反,在金黄破囊壶菌中,高于10g L-1的葡萄糖浓度是抑制性的(Ilda et al.,J Ferment Bioeng81:76-78(1996))。在葡萄糖培养基中获得了高于4.0g L-1的最高DHA产量,并且产量比金黄破囊壶菌(Bajpai et al.,J Am Oil Chem Soc68:509-514(1991))和粉红破囊壶菌(Li and Ward,J Ind Microbiol13:238-241(1994))的高出五倍,并与裂殖壶菌属种SR21和KH105(Aki etal.,J Am Oil Chem Soc 80:789-794(2003))的相当。最后,ONC-T18展现出典型的广耐盐能力,能耐受的盐度范围为2.0至50.0g L-1,产生的生物量产率在25-30%之间变化(表9)。在同一实验中,发现DHA g L-1值在最佳值(4.6g L-1)和最小值(2.5g L-1)之间的变化最高达到了45%(表9)。
由ONC-T18在168h期间于5L生物反应器中产生得到的生物量、TFA和DHA示于图15。所绘出的生长曲线是在相同条件下获得的几条典型曲线。120h之后获得了最大生物量产量,此时接近碳源(将葡萄糖)耗尽时间点。这也是生物量中的总脂肪酸含量达到最大值(约占生物量的70%)时间点。有意义的是,在培养仅24h之后,DHA含量达到峰值,占总脂肪酸的30%,此后始终维持在20-25%。这些结果与其它产生脂肪酸的破囊壶菌菌株的一致,然而在这些反应出现速度方面有所不同。
c)讨论
此前,大部分对Labyrinturomycota的研究识别到的菌株都不能以高于20%的生物量的量储存脂肪酸。例如,在分离出能累积最高占生物量50%的脂肪的裂殖壶菌属种SR21之前,金黄破囊壶菌是最好的累积者(20%)(Bajpai et al.,J Am Oil Chem Soc 68:509-514(1991))。然而,ONC-T18能累积最高占其生物量80%的脂质。
对于累积油的产油微生物例如ONC-T18,通常应该在具有一定量氮(通常在24至36h之后耗尽)和足量碳源的培养基中生长。一旦氮被耗尽,产油微生物会继续吸收碳源,但是由于缺少氮(由此阻止了蛋白和核酸的合成)而不再能进行细胞分裂。结果是这些碳源(即糖类如葡萄糖)被转化成为储存油。在这方面,认为ONC-T18比其它破囊壶菌菌株例如G13生长更为缓慢(Bowles et al.,J Biotechnol 70:193-202(1999)和Huang etal.,Mar Biotechnol 5:450-457(2003)),然而它以更快速率产生DHA,并表现出合成更高量总脂肪酸的独特能力。最后,值得注意的是ONC-T18能在极低的盐浓度下生长、且具有高的生物量和总脂肪酸产率的能力。这使得它可以在大规模生产时减少了盐水对工业发酵设备的腐蚀性。

Claims (9)

1.真核微生物,其具有ATCC登录号PTA-6245。
2.组合物,其包含具有ATCC登录号PTA-6245的真核微生物。
3.一种制备脂质组合物的方法,所述方法包括:在异氧培养基中培养权利要求1的真核微生物,并分离所述脂质组合物。
4.根据权利要求3的方法制备得到的脂质组合物。
5.一种送递装置,包含权利要求2或4的组合物。
6.一种微囊,包含基本微囊的聚集物和负载物质,各个基本微囊个体均具有主壳,其中所述负载物质含有权利要求4的组合物,并被主壳包封,并且其中所述聚集物被外壳包封。
7.一种营养添加剂,包含权利要求2或4的组合物、权利要求5的送递装置或权利要求6的微囊。
8.一种食品,包含权利要求2或4的组合物、权利要求5的送递装置、权利要求6的微囊或权利要求7的营养添加剂。
9.一种药物制剂,包含权利要求2的组合物。
CN201510095502.1A 2005-06-07 2006-06-07 生产脂质和抗氧化剂的真核微生物 Active CN104745486B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US68820705P 2005-06-07 2005-06-07
US60/688,207 2005-06-07
US75140105P 2005-12-16 2005-12-16
US60/751,401 2005-12-16
CNA2006800296305A CN101389749A (zh) 2005-06-07 2006-06-07 生产脂质和抗氧化剂的真核微生物

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800296305A Division CN101389749A (zh) 2005-06-07 2006-06-07 生产脂质和抗氧化剂的真核微生物

Publications (2)

Publication Number Publication Date
CN104745486A true CN104745486A (zh) 2015-07-01
CN104745486B CN104745486B (zh) 2018-01-16

Family

ID=38163294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510095502.1A Active CN104745486B (zh) 2005-06-07 2006-06-07 生产脂质和抗氧化剂的真核微生物

Country Status (13)

Country Link
US (5) US8163515B2 (zh)
EP (5) EP2447356B1 (zh)
JP (2) JP5886511B2 (zh)
CN (1) CN104745486B (zh)
AU (1) AU2006325040B2 (zh)
CA (1) CA2611324C (zh)
DK (5) DK2468847T3 (zh)
ES (5) ES2909600T3 (zh)
HK (2) HK1116218A1 (zh)
MX (2) MX338235B (zh)
PL (1) PL2447356T3 (zh)
PT (1) PT2468847T (zh)
WO (1) WO2007069078A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106916856A (zh) * 2015-12-28 2017-07-04 丰益(上海)生物技术研发中心有限公司 提高产脂微生物生产奇数碳脂肪酸产量的培养基及方法
US10435725B2 (en) 2005-06-07 2019-10-08 Dsm Nutritional Products Ag Eukaryotic microorganisms for producing lipids and antioxidants
CN113766836A (zh) * 2018-09-14 2021-12-07 费尔曼塔格公司 富含二十二碳六烯酸的微生物油

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2302065A1 (en) 2000-01-19 2011-03-30 Martek Biosciences Corporation Solventless extraction process
WO2007120500A2 (en) * 2006-04-07 2007-10-25 Ocean Nutrition Canada Ltd. Emulsions and microcapsules with substances having low interfacial tension, methods of making and using thereof
CN105154481A (zh) * 2006-08-01 2015-12-16 帝斯曼营养品股份公司 产油微生物及改良这些微生物的方法
MX2010000548A (es) 2007-07-13 2010-03-09 Ocean Nutrition Canada Ltd Desaturasas d4 y elongasas d5.
US20110306102A1 (en) * 2009-02-25 2011-12-15 V. B. Medicare Pvt. Ltd. Improved methods for fermentative production of docosahexaenoic acid
US8207363B2 (en) 2009-03-19 2012-06-26 Martek Biosciences Corporation Thraustochytrids, fatty acid compositions, and methods of making and uses thereof
NZ601757A (en) * 2010-01-19 2015-01-30 Dsm Ip Assets Bv Eicosapentaenoic acid-producing microorganisms, fatty acid compositions, and methods of making and uses thereof
ES2758782T3 (es) 2010-06-01 2020-05-06 Dsm Ip Assets Bv Extracción de lípido de células y productos del mismo
CA2807895A1 (en) * 2010-08-31 2012-03-08 Friesland Brands B.V. Culture medium for eukaryotic cells
AU2012226528B2 (en) 2011-03-07 2015-08-20 Dsm Nutritional Products Ag Engineering thraustochytrid microorganisms
BR122015020126B1 (pt) 2011-07-21 2022-03-03 Dsm Ip Assets B.V Composição contendo óleo microbiano diluído
EP2823034A1 (en) * 2012-03-08 2015-01-14 Friesland Brands B.V. Culture medium for eukaryotic cells
FR2988100B1 (fr) * 2012-03-16 2016-02-05 Fermentalg Production d'acide docosahexaenoique et d'astaxanthine en mode mixotrophe par schizochytrium
US9873880B2 (en) 2013-03-13 2018-01-23 Dsm Nutritional Products Ag Engineering microorganisms
AU2014280235B2 (en) * 2013-06-12 2019-10-03 Anabio Technologies Limited A process for producing microcapsules comprising an active component encapsulated, protected and stabilised within a protein shell
EP2826384A1 (de) 2013-07-16 2015-01-21 Evonik Industries AG Verfahren zur Trocknung von Biomasse
WO2015016720A1 (en) 2013-08-01 2015-02-05 Photonz Corporation Limited Methods for the production of diatom biomass
US11001782B2 (en) 2013-12-20 2021-05-11 Dsm Nutritional Products Ag Methods of recovering oil from microorganisms
KR102552228B1 (ko) 2013-12-20 2023-07-05 디에스엠 아이피 어셋츠 비.브이. 미생물 세포로부터의 미생물 오일의 수득 방법
JP2017500037A (ja) 2013-12-20 2017-01-05 ディーエスエム アイピー アセッツ ビー.ブイ. 微生物細胞から微生物油を入手するための方法
JP6501416B2 (ja) 2013-12-20 2019-04-17 マラ リニューアブルズ コーポレーション 微生物から油を回収する方法
SG11201605052XA (en) 2013-12-20 2016-07-28 Dsm Ip Assets Bv Processes for obtaining microbial oil from microbial cells
CN106029624B (zh) 2013-12-20 2021-12-07 帝斯曼知识产权资产管理有限公司 用于从微生物细胞获得微生物油的方法
CN107075538A (zh) * 2014-05-22 2017-08-18 合成基因组股份有限公司 用于生产二十二碳六烯酸的网粘菌纲菌株
DK3146060T3 (da) 2014-05-22 2020-02-10 Mara Renewables Corp Fremgangsmåder til olieproduktion i mikroorganismer
JP2016067340A (ja) * 2014-10-02 2016-05-09 日健化学株式会社 飲食物
EP3200604B1 (de) 2014-10-02 2021-11-03 Evonik Operations GmbH Verfahren zur herstellung eines futtermittels
CA2958457C (en) 2014-10-02 2022-10-25 Evonik Industries Ag Process for producing a pufa-containing biomass which has high cell stability
BR112017006834B1 (pt) 2014-10-02 2022-04-26 Evonik Operations Gmbh Processo para a preparação de um alimento para animais compreendendo pufas, produto extrudado de alimento para animais e método de criação de animais
EP3200603A1 (de) 2014-10-02 2017-08-09 Evonik Degussa GmbH Pufas enthaltendes futtermittel mit hoher abriebfestigkeit und hoher wasserstabilität
BR112017003556B1 (pt) 2014-10-16 2023-10-03 MARA Renewables Corporation Método em batelada alimentada repetida de cultivo de microorganismos thraustochytrid
DK3207165T3 (da) * 2014-10-16 2020-04-06 Mara Renewables Corp Gentagne fed-batch dyrkningsfremgangsmåder
US9890402B2 (en) 2015-01-24 2018-02-13 Indian Oil Corporation Limited Thraustochytrid based process for treating waste effluents
AR104042A1 (es) * 2015-03-26 2017-06-21 Mara Renewables Corp Producción de alta densidad de biomasa y aceite utilizando glicerol en bruto
KR20180027584A (ko) 2015-07-13 2018-03-14 마라 리뉴어블즈 코퍼레이션 크실로오스의 미세조류 대사를 강화시키는 방법
CA3017799A1 (en) 2016-03-19 2017-09-28 Kiverdi, Inc. Microorganisms and artificial ecosystems for the production of protein, food, and useful co-products from c1 substrates
US10851395B2 (en) 2016-06-10 2020-12-01 MARA Renewables Corporation Method of making lipids with improved cold flow properties
CN109415654A (zh) 2016-07-20 2019-03-01 玛拉可再生能源公司 用于对油进行冬化的两步分馏方法
US10676709B2 (en) 2016-07-20 2020-06-09 MARA Renewables Corporation Flowable microbial oil
CA3047924A1 (en) * 2016-12-22 2018-06-28 MARA Renewables Corporation Methods for producing biomass rich in dha, palmitic acid and protein using a eukaryotic microorganism
EA201891926A1 (ru) 2017-02-03 2019-04-30 Киверди, Инк. Микроорганизмы и искусственные экосистемы для производства белка, продуктов питания и полезных побочных продуктов из субстратов c1
CN109371084B (zh) * 2017-11-16 2022-02-11 中国水产科学研究院南海水产研究所 一种具有抗氧化活性的裂壶藻肽螯合钙的制备方法
JP2022512669A (ja) * 2018-11-02 2022-02-07 マラ リニューアブルズ コーポレーション 栄養価が改善した藻類オイル
WO2023144707A1 (en) * 2022-01-25 2023-08-03 Dsm Ip Assets B.V. Media refinement and nutrient feeding approaches to increase polyunsaturated fatty acid production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138477A1 (en) * 1988-09-07 2003-07-24 Barclay William R. Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US517180A (en) 1894-03-27 Harold wilson
US2076018A (en) 1934-08-07 1937-04-06 Baltimore Paper Box Company Package
FR1601438A (zh) 1968-10-17 1970-08-24
US4295383A (en) 1977-11-11 1981-10-20 W. R. Grace & Co. Variable speed drive
JPS5531324A (en) 1978-08-29 1980-03-05 Fujitsu Ltd Transient noise preventing circuit
IL57712A (en) 1979-07-03 1984-02-29 Yissum Res Dev Co Cultivation of halophilic algae of the dunaliella species for the production of fuel-like product
NO812612L (no) 1980-08-06 1982-02-08 Ferring Pharma Ltd Enzym-inhibitorer.
US4445495A (en) 1982-12-22 1984-05-01 Jax Products Inc. Portable stove with gimbal mounting
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4680314A (en) 1985-08-30 1987-07-14 Microbio Resources, Inc. Process for producing a naturally-derived carotene/oil composition by direct extraction from algae
NO157302C (no) 1985-12-19 1988-02-24 Norsk Hydro As Fremgangsmaate for fremstilling av et fiskeoljekonsentrat.
US5070018A (en) 1986-11-07 1991-12-03 The Board Of Trustees Of The Leland Stanford Junior University Method of controlling gene expression
US4952511A (en) 1987-06-11 1990-08-28 Martek Corporation Photobioreactor
WO1989000606A1 (en) 1987-07-20 1989-01-26 Maricultura, Incorporated Microorganism production of omega-3 (n-3) lipids
US5104803A (en) 1988-03-03 1992-04-14 Martek Corporation Photobioreactor
US5171680A (en) 1988-06-14 1992-12-15 Chiron Corporation Superoxide dismutase analogs having novel binding properties
US5130242A (en) 1988-09-07 1992-07-14 Phycotech, Inc. Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids
US7033584B2 (en) 1988-09-07 2006-04-25 Omegatech, Inc. Feeding Thraustochytriales to poultry for increasing omega-3 highly unsaturated fatty acids in eggs
US20060094089A1 (en) 1988-09-07 2006-05-04 Martek Biosciences Corporation Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids
US5340742A (en) 1988-09-07 1994-08-23 Omegatech Inc. Process for growing thraustochytrium and schizochytrium using non-chloride salts to produce a microfloral biomass having omega-3-highly unsaturated fatty acids
US5985348A (en) 1995-06-07 1999-11-16 Omegatech, Inc. Milk products having high concentrations of omega-3 highly unsaturated fatty acids
US6451567B1 (en) 1988-09-07 2002-09-17 Omegatech, Inc. Fermentation process for producing long chain omega-3 fatty acids with euryhaline microorganisms
US5698244A (en) 1988-09-07 1997-12-16 Omegatech Inc. Method for raising animals having high concentrations of omega-3 highly unsaturated fatty acids
US5340594A (en) 1988-09-07 1994-08-23 Omegatech Inc. Food product having high concentrations of omega-3 highly unsaturated fatty acids
US5232565A (en) 1988-09-27 1993-08-03 The Board Of Trustees Of The Leland Standford Junior University Capillary electrophoretic system
ES2102984T3 (es) 1989-06-14 1997-08-16 Martek Corp Medios para el crecimiento de celulas y procedimiento para preparar los mismos.
US5162051A (en) 1989-11-22 1992-11-10 Martek Corporation Photobioreactor
US5151347A (en) 1989-11-27 1992-09-29 Martek Corporation Closed photobioreactor and method of use
US5407957A (en) 1990-02-13 1995-04-18 Martek Corporation Production of docosahexaenoic acid by dinoflagellates
US5244921A (en) 1990-03-21 1993-09-14 Martek Corporation Eicosapentaenoic acids and methods for their production
US5164308A (en) 1990-05-21 1992-11-17 Martek Corporation Preparation of labelled triglyceride oils by cultivation of microorganisms
US5658767A (en) 1991-01-24 1997-08-19 Martek Corporation Arachidonic acid and methods for the production and use thereof
PH11992043811B1 (en) 1991-01-24 2002-08-22 Martek Corp Arachidonic acid and methods for the production and use thereof
DE69231793T2 (de) 1991-01-24 2001-11-08 Martek Corp Mikrobielle öle und ihre verwendungen
US5168056A (en) 1991-02-08 1992-12-01 Purdue Research Foundation Enhanced production of common aromatic pathway compounds
US5211181A (en) 1991-05-17 1993-05-18 Martek Corporation Apparatus and method for collecting human breath samples
US5272073A (en) 1992-06-30 1993-12-21 Purdue Research Foundation Biocatalytic synthesis of catechol from glucose
US6410281B1 (en) 1992-07-10 2002-06-25 Omegatech, Inc. Reducing corrosion in a fermentor by providing sodium with a non-chloride sodium salt
US5798236A (en) 1992-09-30 1998-08-25 Genencor International, Inc. Synthesis of quinic acid from glucose
US5776736A (en) 1992-12-21 1998-07-07 Purdue Research Foundation Deblocking the common pathway of aromatic amino acid synthesis
US5393669A (en) 1993-02-05 1995-02-28 Martek Biosciences Corp. Compositions and methods for protein structural determinations
WO1994018885A1 (en) 1993-02-24 1994-09-01 Martek Biosciences Corporation True alveolar breath collecting apparatus and method
JPH078215A (ja) 1993-04-30 1995-01-13 Kawasaki Steel Corp ドコサヘキサエン酸含有海洋性微細藻類食品素材およびその製造方法
US5487987A (en) 1993-09-16 1996-01-30 Purdue Research Foundation Synthesis of adipic acid from biomass-derived carbon sources
US5629181A (en) 1993-09-16 1997-05-13 Purdue Research Foundation Synthesis of catechol from biomass-derived carbon sources
US5593853A (en) 1994-02-09 1997-01-14 Martek Corporation Generation and screening of synthetic drug libraries
GB9413758D0 (en) 1994-07-07 1994-08-24 Wellcome Found Heterocyclic compounds
US5583019A (en) 1995-01-24 1996-12-10 Omegatech Inc. Method for production of arachidonic acid
JP2764572B2 (ja) * 1995-04-17 1998-06-11 工業技術院長 ドコサヘキサエン酸生産能を有する新規微生物及びそれを用いたドコサヘキサエン酸の製造方法
EP0823475B1 (en) * 1995-04-17 2009-06-17 National Institute of Advanced Industrial Science and Technology Novel microorganisms capable of producing highly unsaturated fatty acids and process for producing highly unsaturated fatty acids by using the microorganisms
ES2244970T3 (es) 1995-05-30 2005-12-16 Suntory Ltd Huevos de ave domestica con alto contenido de acidos grasos altamente insaturados, procedimiento para su produccion, y uso uso.
ATE214396T1 (de) 1995-06-21 2002-03-15 Martek Biosciences Corp Kombinatorische bibliotheken aus markierten biochemischen verbindungen und verfahren zu ihrer herstellung
GB9514649D0 (en) 1995-07-18 1995-09-13 Zeneca Ltd Extraction of triglycerides from microorganisms
JP3985035B2 (ja) * 1995-09-14 2007-10-03 独立行政法人産業技術総合研究所 (n−6)系ドコサペンタエン酸含有油脂ならびに該油脂の製造方法および用途
US6168912B1 (en) 1996-01-23 2001-01-02 Martek Biosciences Corporation Method and kit for making a multidimensional combinatorial chemical library
CA2250581C (en) 1996-03-28 2008-08-12 Gist-Brocades B.V. Preparation of microbial polyunsaturated fatty acid containing oil from pasteurised biomass
US20030143659A1 (en) 1996-03-28 2003-07-31 Hendrik Louis Bijl Process for the preparation of a granular microbial biomass and isolation of a compound thereform
US6255505B1 (en) 1996-03-28 2001-07-03 Gist-Brocades, B.V. Microbial polyunsaturated fatty acid containing oil from pasteurised biomass
WO1997039106A1 (en) 1996-04-12 1997-10-23 Martek Biosciences Corporation Methods and tools for transformation of eukaryotic algae
AU2956397A (en) 1996-05-15 1997-12-05 Gist-Brocades B.V. Sterol extraction with polar solvent to give low sterol, high triglyceride, microbial oil
US5821266A (en) 1996-07-19 1998-10-13 Michigan State University Antioxidant activity of 3-dehydroshinkimates
DE19629433A1 (de) 1996-07-22 1998-01-29 Hoechst Ag Omega-3-fettsäurenenthaltende Zubereitung aus Mikroorganismen als Prophylaktikum bzw. Therapeutikum gegen parasitäre Erkrankungen beim Tier
DK1785492T3 (da) 1996-07-23 2010-07-26 Nagase Chemtex Corp Fremgangsmåde til fremstilling af docosahexaensyre og docosapentaensyre
US6566583B1 (en) 1997-06-04 2003-05-20 Daniel Facciotti Schizochytrium PKS genes
CA2283422A1 (en) 1997-06-04 1998-12-10 Calgene, Llc Production of polyunsaturated fatty acids by expression of polyketide-like synthesis genes in plants
DE69831674T2 (de) 1997-08-01 2006-06-22 Martek Biosciences Corp. Dha-enthaltende naehrzusammensetzungen und verfahren zu deren herstellung
HUP0003079A3 (en) 1997-08-14 2001-02-28 Martek Biosciences Corp Columb A method for increasing incorporation efficiency of omega-3 highly unsaturated fatty acid in poultry meat
US6111066A (en) 1997-09-02 2000-08-29 Martek Biosciences Corporation Peptidic molecules which have been isotopically substituted with 13 C, 15 N and 2 H in the backbone but not in the sidechains
JP3931219B2 (ja) 1997-09-04 2007-06-13 独立行政法人産業技術総合研究所 高度不飽和脂肪酸含有油脂の製造方法
US6100385A (en) 1998-05-21 2000-08-08 Texaco Inc. Catalytic method for the preparation of lignin phenol surfactants in organic solvents
ATE231186T1 (de) 1998-07-21 2003-02-15 Danisco Lebensmittel
JP2002521030A (ja) 1998-07-22 2002-07-16 セラニーズ ベンチャーズ ゲー・エム・ベー・ハー 圧縮ガスを使用する同一装置における抽出、反応及びクロマトグラフィーによるバイオマスからの脂肪酸の生産規模製造方法
DE19832784A1 (de) 1998-07-22 2000-02-03 Aventis Res & Tech Gmbh & Co Verfahren zur präparativen Gewinnung von Fettsäuren aus Biomasse durch in situ-Extraktion-Reaktion-Chromatographie mit verdichteten Gasen
JP4283351B2 (ja) 1998-08-27 2009-06-24 サントリー酒類株式会社 新規な油脂組成物の製造方法および用途
JP2976027B1 (ja) 1998-08-27 1999-11-10 工業技術院長 海生菌の分離方法
EP1114173A4 (en) 1998-09-18 2005-02-16 Univ Michigan State SYNTHESIS OF VANILLIN FROM A CARBON SOURCE
US6166231A (en) 1998-12-15 2000-12-26 Martek Biosciences Corporation Two phase extraction of oil from biomass
US7247461B2 (en) 1999-01-14 2007-07-24 Martek Biosciences Corporation Nucleic acid molecule encoding ORFA of a PUFA polyketide synthase system and uses thereof
US6613552B1 (en) 1999-01-29 2003-09-02 Board Of Trustees Operating Michigan State University Biocatalytic synthesis of shikimic acid
US6600077B1 (en) 1999-01-29 2003-07-29 Board Of Trustees Operating Michigan State University Biocatalytic synthesis of quinic acid and conversion to hydroquinone
ATE273373T1 (de) 1999-02-26 2004-08-15 Martek Biosciences Corp Verfahren zum abtrennen von einem docosahexaensäure enthaltenden triglyerid aus einem triglyceridgemisch
WO2000051444A1 (fr) 1999-03-04 2000-09-08 Suntory Limited Utilisation d'une matiere contenant de l'acide docosapentaenoique
WO2000054575A2 (en) 1999-03-16 2000-09-21 Martek Biosciences Corporation Infant formulas and other food products containing phospholipids
AU3886000A (en) 1999-03-23 2000-10-09 Board Of Trustees Of Michigan State University Synthesis of 1,2,3,4-tetrahydroxybenzenes and 1,2,3-trihydroxybenzenes using myo-inositol-1-phosphate synthase and myo-inositol 2-dehydrogenase
US7070970B2 (en) 1999-08-23 2006-07-04 Abbott Laboratories Elongase genes and uses thereof
WO2001051598A1 (en) 2000-01-11 2001-07-19 Monsanto Technology Llc Process for making an enriched mixture of polyunsaturated fatty acid esters
EP1250058B1 (en) 2000-01-14 2009-01-07 Epax AS Marine lipid composition for feeding aquatic organisms
EP2302065A1 (en) 2000-01-19 2011-03-30 Martek Biosciences Corporation Solventless extraction process
PL203874B1 (pl) 2000-01-20 2009-11-30 Martek Biosciences Corp Zastosowanie karmy zawierającej źródło kwasu tłuszczowego o długim łańcuchu, mającego co najmniej 20 atomów węgla, w karmieniu królików
EP1251744B2 (en) 2000-01-28 2015-08-26 DSM IP Assets B.V. Enhanced production of lipids containing polyenoic fatty acids by high density cultures of eukaryotic microbes in fermentors
EP1261733A4 (en) 2000-02-24 2005-11-23 Thomas Veach Ii Long PROCESS FOR THE PREPARATION OF CAROTENOIDS, XANTHOPHYLLENE AND APO-CAROTENOIDES USING EUKARYOTIC MICROORGANISMS
US6472190B1 (en) 2000-03-16 2002-10-29 Board Of Trustees Operating Michigan State Univerisity Biocatalytic synthesis of galloid organics
JP3425622B2 (ja) 2000-03-30 2003-07-14 独立行政法人産業技術総合研究所 ラビリンチュラ属菌を用いた高度不飽和脂肪酸含有培養物および高度不飽和脂肪酸含有油脂の製造方法
US6410282B1 (en) 2000-03-30 2002-06-25 Council Of Scientific And Industrial Research Method for enhancing levels of polyunsaturated fatty acids in thraustochytrid fungi
GB0016452D0 (en) * 2000-07-04 2000-08-23 Kilgowan Limited Vitamin K and essential fatty acids
EP1178118A1 (en) 2000-08-02 2002-02-06 Dsm N.V. Isolation of microbial oils
EP1178103A1 (en) 2000-08-02 2002-02-06 Dsm N.V. Purifying crude pufa oils
CA2424570A1 (en) 2000-09-07 2002-03-14 University Of Maryland Biotechnology Institute Use of arachidonic acid for enhanced culturing of fish larvae and broodstock
CN105483142A (zh) 2000-09-28 2016-04-13 生物源食物及科学公司 脂肪酸去饱和酶家族成员fad4、fad5、fad5-2和fad6及它们的应用
US6635451B2 (en) 2001-01-25 2003-10-21 Abbott Laboratories Desaturase genes and uses thereof
TWI324181B (en) 2001-04-16 2010-05-01 Martek Biosciences Corp Product and process for transformation of thraustochytriales microorganisms
US7045683B2 (en) 2001-05-04 2006-05-16 Abbott Laboratories Δ4-desaturase genes and uses thereof
ES2384454T3 (es) 2001-05-14 2012-07-05 Martek Biosciences Corporation Procedimiento para mejorar el sabor, la ternura y la aceptabilidad general por parte del consumidor de la carne de ave de corral
WO2002092540A1 (en) 2001-05-14 2002-11-21 Martek Biosciences Corporation Production and use of a polar lipid-rich fraction containing omega-3 and/or omega-6 highly unsatruated fatty acids from microbes, genetically modified plant seeds and marine organisms
AU2002323409A1 (en) 2001-08-24 2003-03-10 Martek Biosciences Boulder Corporation Products containing highly unsaturated fatty acids for use by women and their children during stages of preconception, pregnancy and lactation/post-partum
CA2463649A1 (en) 2001-10-15 2003-04-24 Barnes-Jewish Hospital Rankl mimics and uses thereof
US7374908B2 (en) 2001-10-16 2008-05-20 National Institute Of Advanced Industrial Science And Technology Microorganism and production of carotinoid compounds thereby
JP2003319795A (ja) 2002-05-07 2003-11-11 National Institute Of Advanced Industrial & Technology スラウストキトリウムによるカロチノイドの製造法
US7172886B2 (en) 2001-12-06 2007-02-06 The Regents Of The University Of California Biosynthesis of isopentenyl pyrophosphate
US7192751B2 (en) 2001-12-06 2007-03-20 The Regents Of The University Of California Biosynthesis of amorpha-4,11-diene
AU2002366642B2 (en) 2001-12-12 2008-12-11 Dsm Ip Assets B.V. Extraction and winterization of lipids from oilseed and microbial sources
US6974592B2 (en) * 2002-04-11 2005-12-13 Ocean Nutrition Canada Limited Encapsulated agglomeration of microcapsules and method for the preparation thereof
CN100536828C (zh) 2002-11-04 2009-09-09 加拿大海洋营养保健品有限公司 具有多重壳的微胶囊及其制备方法
AU2003291063A1 (en) 2002-11-19 2004-06-15 Board Of Trustees Operating Michigan State University Antioxidant and antimicrobial agents and methods of use thereof
JP4310387B2 (ja) 2002-11-22 2009-08-05 株式会社マルハニチロ水産 ω−3系高度不飽和脂肪酸含有部分グリセリド組成物及びその製造方法
JP4280158B2 (ja) 2002-12-27 2009-06-17 富士フイルム株式会社 ドコサヘキサエン酸生産能を有する微生物及びその利用
WO2005068642A2 (en) 2003-10-01 2005-07-28 Board Of Trustees Operating Michigan State University Bacterial synthesis of 1,2,4-butanetriol enantiomers
ES2235642B2 (es) 2003-12-18 2006-03-01 Gat Formulation Gmbh Proceso de multi-microencapsulacion continuo para la mejora de la estabilidad y almacenamiento de ingredientes biologicamente activos.
KR100578282B1 (ko) 2004-02-16 2006-05-11 주식회사 바이오앤진 형질전환 아그로박테리움 튜메파시언스 균주를 이용한코엔자임 큐10의 발효 제조방법
MXPA06013502A (es) 2004-05-21 2007-03-01 Univ California Metodo para mejorar la produccion de compuestos isoprenoides.
JP4796787B2 (ja) 2005-04-28 2011-10-19 富士フイルム株式会社 ラビリンチュラ類への遺伝子導入法
DK2468847T3 (en) 2005-06-07 2017-06-06 Dsm Nutritional Products Ag EUCARYOTIC MICRO-ORGANISMS FOR THE PREPARATION OF LIPIDS AND ANTIOXIDANTS
CN101389749A (zh) 2005-06-07 2009-03-18 加拿大海洋营养食品有限公司 生产脂质和抗氧化剂的真核微生物
JP2009519032A (ja) * 2005-12-16 2009-05-14 アヴェスタゲン リミテッド ドコサヘキサエン酸(dha)産生スラウストキトリウム菌株‐sc1
DE602006015701D1 (de) 2005-12-29 2010-09-02 Abl Biotechnologies Ltd Neuer schizochytrium-limacinum-stamm, der sich für die produktion von lipiden und extrazellulären polysacchariden eignet, sowie verfahren hierfür
CN105154481A (zh) 2006-08-01 2015-12-16 帝斯曼营养品股份公司 产油微生物及改良这些微生物的方法
US8088614B2 (en) 2006-11-13 2012-01-03 Aurora Algae, Inc. Methods and compositions for production and purification of biofuel from plants and microalgae
US7905930B2 (en) 2006-12-29 2011-03-15 Genifuel Corporation Two-stage process for producing oil from microalgae
US8204034B2 (en) 2007-01-10 2012-06-19 Motorola Solutions, Inc. Method and device for transmitting data packets
WO2008089321A2 (en) 2007-01-17 2008-07-24 Joe Mccall Apparatus and methods for production of biodiesel
CA2676556C (en) 2007-01-26 2016-01-19 University Of Miyazaki Method for increasing the content of docosahexaenoic acid in fat-containing materials or in fats and oils
US8993314B2 (en) 2007-07-28 2015-03-31 Ennesys Sas Algae growth system for oil production
WO2009034124A1 (en) 2007-09-12 2009-03-19 Novozymes A/S Omega-3 stabilisation towards oxidation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138477A1 (en) * 1988-09-07 2003-07-24 Barclay William R. Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.SINGH ET AL.: "Docosahexaenoic Acid (DHA) Production by Thraustochytrium sp.ATCC 20892", 《WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY》 *
SHARON T.FRANKLIN ET AL.: "Dietary Marine Algae (Schizochytrium sp.) Increases Concentrations of Conjugated Linoleic,Docosahexaenoic and Transvaccenic Acids in Milk of Dairy Cows", 《THE JOURNAL OF NUTRITION》 *
WILLIAM BARCLAY ET AL.: "Nutritional Enhancement of n-3 and n-6 Fatty Acids in Rotifers and Artemia Nauplii by Feeding Spray-dried Schizochytrium sp.", 《JOURNAL OF THE WORLD AQUACULTURE SOCIETY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435725B2 (en) 2005-06-07 2019-10-08 Dsm Nutritional Products Ag Eukaryotic microorganisms for producing lipids and antioxidants
CN106916856A (zh) * 2015-12-28 2017-07-04 丰益(上海)生物技术研发中心有限公司 提高产脂微生物生产奇数碳脂肪酸产量的培养基及方法
CN113766836A (zh) * 2018-09-14 2021-12-07 费尔曼塔格公司 富含二十二碳六烯酸的微生物油

Also Published As

Publication number Publication date
DK2468847T3 (en) 2017-06-06
PL2447356T3 (pl) 2016-10-31
US8921069B2 (en) 2014-12-30
ES2626018T3 (es) 2017-07-21
EP2468847A1 (en) 2012-06-27
US20130344546A1 (en) 2013-12-26
CA2611324A1 (en) 2007-06-21
CA2611324C (en) 2017-02-14
WO2007069078A3 (en) 2007-11-29
PT2468847T (pt) 2017-06-01
HK1245020B (zh) 2020-04-17
US9719116B2 (en) 2017-08-01
EP2468847B1 (en) 2017-03-29
MX302779B (en) 2012-08-28
WO2007069078A2 (en) 2007-06-21
DK3467096T3 (da) 2022-03-28
ES2576986T3 (es) 2016-07-12
DK2447356T3 (en) 2016-06-06
AU2006325040A1 (en) 2007-06-21
EP1899453A2 (en) 2008-03-19
AU2006325040B2 (en) 2012-04-19
JP2008541779A (ja) 2008-11-27
MX2007015519A (es) 2008-08-29
US20190169660A1 (en) 2019-06-06
DK1899453T3 (en) 2014-03-24
EP2447356A1 (en) 2012-05-02
EP1899453B1 (en) 2013-12-18
US20150218603A1 (en) 2015-08-06
EP3238543A1 (en) 2017-11-01
US20090117194A1 (en) 2009-05-07
US20170335356A1 (en) 2017-11-23
EP2447356B1 (en) 2016-04-20
EP3467096B1 (en) 2022-01-12
ES2451667T3 (es) 2014-03-28
HK1116218A1 (en) 2008-12-19
CN104745486B (zh) 2018-01-16
EP3238543B1 (en) 2019-03-20
MX338235B (es) 2016-04-08
ES2909600T3 (es) 2022-05-09
DK3238543T3 (da) 2019-05-27
JP2014060994A (ja) 2014-04-10
JP5886511B2 (ja) 2016-03-16
US8163515B2 (en) 2012-04-24
ES2729976T3 (es) 2019-11-07
EP3467096A1 (en) 2019-04-10
US10435725B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
CN104745486A (zh) 生产脂质和抗氧化剂的真核微生物
CN105154481A (zh) 产油微生物及改良这些微生物的方法
CN101389749A (zh) 生产脂质和抗氧化剂的真核微生物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant