CN1074715C - 具有低可见光透射率和低可见光反射率的光学装置 - Google Patents

具有低可见光透射率和低可见光反射率的光学装置 Download PDF

Info

Publication number
CN1074715C
CN1074715C CN95196693A CN95196693A CN1074715C CN 1074715 C CN1074715 C CN 1074715C CN 95196693 A CN95196693 A CN 95196693A CN 95196693 A CN95196693 A CN 95196693A CN 1074715 C CN1074715 C CN 1074715C
Authority
CN
China
Prior art keywords
film
visible light
visible
transmission
irrelevant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN95196693A
Other languages
English (en)
Other versions
CN1169127A (zh
Inventor
P·Y·扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bekaert NV SA
Original Assignee
Deposition Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deposition Technology Inc filed Critical Deposition Technology Inc
Publication of CN1169127A publication Critical patent/CN1169127A/zh
Application granted granted Critical
Publication of CN1074715C publication Critical patent/CN1074715C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/02Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing by fusing glass directly to metal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Abstract

本发明提供一种太阳能控制薄膜,它包括:第一透明衬底材料片,其上薄而不相干的透明金属薄膜有效地部分遮挡可见光的透射,并且具有预选的可见光反射率;第二透明衬底材料片,其上薄而不连贯的透明金属薄膜有效地部分遮挡可见光的透射,并且具有预选的可见光反射率;以及粘结剂层,它将所述第一片与第二片结合起来,它们的金属薄膜相互面对并且彼此隔开和光学去耦。

Description

具有低可见光透射率和低可见光反射率的光学装置
发明领域
本发明涉及具有低可见光透射率和低可见光反射率的光学装置(诸如太阳能控制窗口薄膜)及其制造方法。
背景技术
玻璃染色工业需要一类太阳能控制涂层或者薄膜,其可见光透射率(VLT)小于50%,最好不超过30%。与此同时,工业界要求这些涂层或薄膜的可见光反射率(VLR)小于15%,最好不超过10%。在窗口玻璃工业中,对于普通用于太阳能控制的金属化塑料薄膜,可以通过增加薄膜上金属层的厚度降低可见光透射率或者VLT,但是这会引起可见光反射率或VLR的增加。例如,VLT为25%的典型金属涂层太阳能薄膜具有30-35%以上的VLR。这样VLT与VLR的目标是互相矛盾的,不存在可以为工业界接受的折衷办法。现在通常的情况是将VLT设定在能够接收的水平上,而VLR则保持为高于所希望的值。
另一种满足工业界的途径是采用染色塑料薄膜或者薄片,它们或者单独使用或者作为金属薄膜或金属层的衬底。但是染色薄膜的太阳能性能极差并且会随时间的推移而褪色。因此染色薄膜没法提供令工业界满意的解决方案。
另一种试图降低VLT金属化薄膜的VLR途径是在靠近金属薄膜或金属层处施以二氧化钛或铟锡氧化物涂层以控制反射在窄的光谱带内。按照经典光学,夹在高折射率材料层之间的金属薄膜能使可见光透射率增加,也即所谓的感应透射,并减少反射。这实际上一般需要70-100钠米厚的二氧化钛或者铟锡氧化物,它们生产起来很费时且难以控制。因此这条途径业已证明太贵以致不增实增,并且即使这样最多也只是部分解决VLT/VLR的分歧。
美国专利4,799,745(复审认可为B,799745)公布了采用Fabry-Perot干涉滤光片的红外反射薄膜,它由(诸如银、金、铂、钯、铝、铜、镍及其合金)一类的两层或两层以上的透明金属层构成,直接用相邻的内插介质间隔层加以分隔,适合这些间隔层的可以为铟、锡、钛、硅、铬和铋的氧化物。作为专利479745一部分发布的相关美国专利5071206则揭示了一种彩色校正红外反射薄膜,它由带有7层直接相邻的电介质与银的交替层衬底组成。虽然这些薄膜具有低的可见光反射率,但是它们需要淀积5-7层金属溅射材料,这样的成本较高并且不容易做。随着可见光透射率的降低,任务变得更为困难。
PCT申请WO94/04356揭示的一种碳基聚合物薄片的反射率可通过在其上溅射沉积折射率大于聚合物的不连续树枝状无机电介质材料层而加以减少。无机材料可以是起始金属(选自钽、铌、钛、铪、钨和锆)的氧化物、氮化物或氮氧化物。起始涂层可以包含有次级金属(选自铟、锡和锌)的氧化物、氮化物或氮氧化物的覆盖层加以补足。当在多平面窗口单元内作为内部塑料表面采用时,涂层以最少的色彩和雾使通过聚合物薄膜的透射率增加。这样虽然反射率降低,但是透射率却没有降低。
因此工业界还是强烈需要开发一种具有VLT和VLR两者均低的廉价涂层和/或涂膜。
发明内容
本发明的目标是提供一种改进的光学装置,特别是改进的太阳能控制薄膜,它具有低的可见光透射率和低的可见光反射率,本发明还提供一种廉价的制造方法。
本发明的另一目标是提供一种改进的太阳能控制薄膜和/或涂层,它具有良好的太阳能衰减特性以及低的VLT和低的VLR特性。
按照本发明,通过薄膜光学技术、现代材料科学和新颖的解决VLT/VLR分歧的途径来获得这些改进的薄膜和/或涂层。具体而言,与已有技术的实际相反,本发明首先着力于反射而后才是透射。
尤其本发明的特定目标是,首先开发一种光学装置或部件,它体现为一定程度的可见光透射控制并具有异常低的可见光反射率降低;其次,将两个或更多个的装置或部件组合起来以实现所需的透射控制水平。
本发明的第一方面在于采用非常薄而非厚的合适于控制光透射的金属层或薄膜。适合于上述目的的金属包括金、银、镍、铬、镍-铬合金和不锈钢。当这些金属薄层或薄膜被磁控阴极溅射淀积到衬底上时,得到的薄膜倾向于非连续的树枝状和不相个。金属并不形成相干的、表面光滑的连续层。由于薄膜平面的不规则性,金属不具有闪亮或镜面状的反射面。相反,光被散射和吸收,从而使金属薄膜具有低的VLR。
由于金属薄膜或涂层较薄,所以并不给涂覆的衬底以所希望的可见光阻挡作用,也即涂覆衬底的VLT远大于所需的水平。按照本发明提供的以下办法,使可见光的阻挡作用增加而VLT下降,即通过将两个或两个以上的涂覆衬底组合为一个合成薄膜,其中金属覆的诸表面是合成结构中的内部表面,并且是光学去耦的,从而使涂层的光阻挡作用联合,也即累加在一起以获得所希望的低VCT水平,而同时保持单个金属涂层表面的低VLR。是使金属表面通过多个涂覆衬底叠加用的内插粘附层成为单一的合成薄膜加以光学去耦。
因此本发明提供极为便宜的太阳能控制薄膜,它具有低的VLT和低的VLR,并且只包含层叠的两个或两个以上的部件或亚单元,每个由带有非相干的薄金属薄膜的衬底构成。
通过结合有向一个或多个亚单元添加将使合成透射率和/或反射率降低或者增加合成薄膜可见光吸收的材料,可以获得对膜的反射率、透射率和/或赔度的进一步控制。
如上所述,经典光学指出,将金属层夹在折射率高的材料层之间将进一步降低金属的反射率。因此在实现本发明提出的新途径时,更可取的是应将高折射率的一个或多个涂层与上述低VLR金属薄膜结合使用。虽然至今用于此目的上述材料(例如氧化钛)当然可以继续用于减少反射率,但是本发明提供特别重要的第二个新的方面。
本发明的第二个方面在于采用合成的高含氧BiOx作为高折射率的优选材料来制造质量优秀、性能杰出的低反射率装置或者部件,并且造价便宜。
在其第二个方面中,本发明基于这样一个发现,即当Bi在受控氧分压气氛下同氧进行磁控阴极反应溅射,使沉积在或接近金属光学层膜上的BoOx膜中氧对Bi的原子比落在大约1.7-2.5以内,则层膜可见光反射率大大降低。
反应溅射合成的BiOx(x=1.7-2.5)薄膜具有2.5-2.7的可见光光学折射率,堪与TiO2的相比,且明显高于其它的可见光透明材料。此外,合成BiOx的动态淀积速率远大于TiO2的,并且更容易控制,从而能容易、快速、经济地制造以提供质量极高的高折射率涂层。
衬底、高折射率材料层和极薄的非连续或不相干金属薄膜的组合提供一种光学装置、部件或者亚单元,它们制造起来非常便宜并且具有极低的VLR以及一定程度的VLT控制。
于是本发明的第三方面在于以这样一种方式组合这些两层以上的亚单元或者部件,俾使以获得所需的VLT水平单个部件的VLT控制因素叠加或组合起来。部件组合最好是通过用内插的粘合层进行层叠并结合在一起来达到,以便限定独立的干涉滤光片,后者借助内插粘合层光学上加以去耦。在两单元组合中,每层金属薄膜将提供大约50%的可见光透射控制,而在三单元组合中,每层金属薄膜将提供大约1/3的可见光透射控制。
这样,通过联合两个或两个以上的亚单元(每个由低反射率金属薄膜和高折射率材料薄膜或层,特别是BiOx(x=1.7-2.5)构成),本发明提供的太阳能控制薄膜和/或涂层,具有良好的太阳能输出特性、低的可见光反射率和低的可见光透射率。
作为本发明的一个目标同样提供一种高效、经济地大量生产改进了的太阳能薄膜和涂层的方法。
按照本发明较佳实施例的方法,首先将衬底材料的普通透明薄膜或片,通过磁控阴极溅射合,在那里溅射沉积上高折射率的材料层于衬底。比较好的是高折射率材料包括Bi通过磁控阴极溅射合,在那里溅射沉积上受控氧分压气氛同氧下这样进行反应,俾使合成的高含氧BiOx的原子比约为1.7-2.5。合成BiOx的动态淀积速率非常高,因而方便迅速且经济将涂层或薄膜涂覆在衬底上。于是将涂覆衬底经过磁控阴极溅射台,在那里迅速而经济地镀上一层极薄金属膜于高折射率的涂层上。
两层涂层或薄膜的溅射淀积可以通过将衬底两次通过一单合溅射装置或者沿衬底行进路径一次通过两个或更多个溅射出来实现。衬底可以包括玻璃或塑料的薄片或者连续的网状物。在任何情况下,衬底十分有效、迅速地涂覆以高折射率的薄层和不相干的金属薄层,从而便宜地提供性能大大加强的太阳能控制装置或部件。
最终的装置或部件具有十分低的可见光反射率和主要取决于金属薄膜本性和厚度大的一定程度的可见光透射率。通过将两层或更多的装置或部件层叠起来,基本上可以方便地获得任何所希望的可见光透射率控制。
通过采用不同材料作为合成产品的多种涂层可以进一步改变光学性能。
本发明因此提供大为改进的低VLT和低VLR光学装置以及有效而又经济地大量制造这些装置的工艺。
通过以下结合附图对本发明的描述将可以进一步明了本发明的这些目标和其它优点。
附图的简要说明
图1为按照本发明太阳能控制薄膜的较佳实施例的剖面放大图,它由本发明的两个低反射率装置或部件组成;
图2为图1合成结构的不同实施例的相似示意图;
图3为按照本发明太阳能控制薄膜的较佳实施例的示意图,它由本发明的三个低反射率装置或部件构成;正被显示的薄膜粘附在玻璃或窗口的平板上;
图4为图3合成结构的不同实施例的相似示意图;
图5为本发明和普通太阳能控制薄膜的特性透射和反射谱的比较图;
图6为本发明和普通太阳能控制薄膜的特性透射和吸收谱的比较图;
图7为制造本发明的低反射率装置或部件的设备示意图;以及
图8为铋反应溅射时逐步增加氧分压下动态淀积速率与高氧含量的铋氧化物中原子比之间的相关示意图。
实施发明的较佳方式
以下详细描述发明人目前认为是实现其发明的最佳模式的较佳实施例。
在本说明书和所附权利要求中所用的术语含义如下:
“可见光辐射”或“光线”是指波长介于380-750钠米的电磁波辐射(CI标准)。
“透明”指能够透射可见光辐射的性能。
“可见光透射”、“可见光透射率”和“缩写VLT”是意指透射通过透明光学装置例如窗口的可见光部分的百分比
“可见光反射”、“可见光反射率”和“缩写VLR”是指被光学装置反射的可见光部分的百分比
“可见光吸收”、“可见光吸收率”和“缩写VLA”是意指被光学装置吸收的可见光部分的百分比。通常VLT,VLR,VLA之和应为100%。
“SC”或“遮挡系数是窗口系统的太阳能控制能力效率的结构量度。它表示为通过任何给定窗口系统的太阳热增益与同样条件下但窗是干净的的、没有遮挡的双强度窗玻璃制成时将发生的太阳热增益之比。遮挡系数越低,窗口控制太阳能的能力越高。给予干净玻璃的数值为1.00。小于1.00的SC表示比单面干净玻璃具有较好的热衰减。
对金属层或薄膜的“不相干”意指缺乏相干性,缺少有序的连续性或排列,由分立的元素组成,不一致,不均匀。
“溅射淀积”或“被溅射淀积的”意指工艺或者工艺的产品,其中利用磁控溅射设备将材料层淀积在衬底上。
图1示出按照本发明的合成太阳能控制薄膜较佳实施例的局部剖面放大图。在图1中,标号为10的合成薄膜由两个光学亚单元、部件或装置12组成,每个后者由衬底14、高折射率的材料层16和薄而非连续的不相干、树枝被状金属层18组成。
衬底14可以包括普通用于太阳能控制薄膜的任何透明支撑材料,特别是网状的柔性聚合物薄膜。较佳的聚合物通常是PET(Polyethylenetherephthalate)薄膜,厚度约为1-2密耳直到50密耳。薄膜的折射率通常在1.4-1.7之间。
层16由折射率大于衬底14的材料构成,比较好的是折射率为2.0或以上。同样比较可取的是,该材料是能相对容易地溅射淀积到衬底上的一种。合适的材料包括普通的铬氧化物(CrO,CrO2,CrO3)、Nb2O5、TiO2和Si3N4,所有这些都可以直接或者通过反应溅射淀积到衬底14上。然而正如下面将要详细描述的那样,作为高折射率层16的比较好的材料是含氧量高的合成Bi氧化物,氧、Bi的原子比(A/R)约为1.7-2.5。普通的Bi氧化物Bi2O3对可见光的吸收率太大,以致不能考虑为光学材料,无异是乃非层16的候选者。通过在受控氧分偏压气氛下溅射Bi,可以形成含氧量高的Bi氧化物,它的吸收率不大,折射率为2.4-2.7。
高折射率材料层16的厚度将随合成薄膜10所需的VLT和层18所述金属的厚度变化,所有这些都是相关的。一般情况下,对于VLT等于或大于20-25%的VLT的合成薄膜,层16的厚度将在0.1-10纳米左右的量级,而对于VLT等于或小于20-25%的合成薄膜则将在大约0-50钠米量级。
对于成功实施本发明来说,合成薄膜10中每个光学亚单元或者部件12的属层18的形成非常苛刻。每层18的反射率或者VLR必须与合成薄膜10所需的VLR几乎相同或合理地相近,并且同时还必须提供合理水平的可见光遮挡效应以便让合理的少量亚单元一起使合成薄膜的VLT将减至所需百分比的VLT上。为了实现这些矛盾的目标,每层金属层18必须是能够散射、扩散和/或吸收可见光的不相干薄膜,但却具有足够的厚度以使部分遮挡或者减少可见光透射过亚单元12。按照本发明,这可以通过溅射淀积一层所选的金属薄层来实现。
溅射淀积极薄的层或金属涂层导致正被演积的金属成簇状,很象单块岩石或森林中的树木。薄膜或涂层是不相干的并且可以说是树枝状卵石状。金属不会充满成为相干、表面平滑的高反射层,犹如一旦淀积持续至超过一定厚度时交发生的那样。一般而言,金属层厚度不应超过20钠米量级,比较可取的应约在1-20钠米之间,而最好是在2-5钠米之间,这取决于所需或规定的VLT。对于本发明所预期的低反射率薄膜,该涂层应足够薄且不规则,从而使得每层金属层18的VLR不超过大约12%的量级。
所用金属比较好的选自金、银、铬、镍及其合金以及不锈钢。层16和18材料的选择将决定合成薄膜的颜色。例如,带有合理欠涂层的银将倾向于产生蓝色薄膜,而不锈钢则将倾向于产生灰色薄膜。通过使亚单元或部件12之一采用不同于其他亚单元或部件12所用的材料来制作可以获得其它变化,这是允许的,因为在合成膜10中该亚单元实际上是彼此相互隔离而且光学去耦合的。
如图1所示,两个亚单元或光学部件12层叠在一起,其金属涂层表面彼此并列放置,并被一普通叠层粘合剂的内插透明层20隔开。因此在合成结构中,两个亚单元12的可见光遮挡能力累加在一起并可将合成薄膜的VLT减至所需的水平上。另外还可以采用高折射率的材料层16来补足不相干的金属薄膜18以进一步减小透射率和/或反射率并/或增加吸收率。这样折射层16和金属层18乃相互地、可变化地互相依赖于所期望的结果,也即规定的合成薄膜10的VLT,VLR,颜色和暗度。
为了完成窗口薄膜工业所用的产品,衬底14之一的暴露表面涂有抗划伤和耐磨损的硬涂层22,而另一衬底14的暴露表面则涂以压敏粘合剂24以便于将合成薄膜层叠至窗口、镶有玻璃的单元或其类似物上。在膜使用之前,该压敏粘合剂24由通常的释放薄片加以保持和防护。正如技术中所贯用的那样,最好是在压敏粘合剂24中结合有紫外线吸收添加剂及其类似物。
图2示出简化了的图1合成薄膜的替换物。虽然图2的替换物不象图1结构那样能够提高对VLT和VLR的相同控制能力,但尽管如此,它包含的实用而便宜的膜,具有合理的低VLT和VLR控制特性,适合于比设代成图1结构所需要求少的应用场合。由于两者的结构相似,所以图2中与图1相对应或相同的元件采用相同的标号,只是增加了前缀”a”。正如将经看到的那样,两种结构的差异在于图2省略了高折射率材料层16。
对于规定可见光透射率相对较高(25-50%),且需要较低但不是极低的可见光反射率(13%)并且不需暗的有色薄膜的太阳能应用来说,图2简化了的合成结构将是完全足够适用的。
具有不可少的可见光遮挡效应的金属薄膜可以容易地被溅射淀积成足够薄而不规则的层以便提供VLR低至9-10%。作为一个特例,构筑成如图2所示的太阳能控制薄膜具有两层铬薄膜18a(每层以2.5nm的厚度溅射淀积在相应衬底14a上)产生的合成薄膜,其VLT为45%和VLR为9%。在另一个例子中,铬层厚度增加到3.5nm以产生VLT为25%而VLR为13%的合成薄膜。和普通具有单个金属层并且提供25%VLT的太阳能薄膜相比,其VLR将为30%以上。
因此,不管是图1移动复杂结构还是图2的简单结构,本发明在可见光反射率和制造成本上具有明显优势。而且当规范有关变得比上述更为严格时,可能不得不依赖于将图1和图2的结构混合起来,也即两种控制元件12/12a由图1更复杂的滤光片12之一和图2简单的单元12app g构成。
当规范变得甚至更为严格时,则必须求助于图3和图4的结构,其中太阳能薄膜粘合在玻璃平板28上。在图3和图4的结构中,通过采用图1中描述的三种控制单元,使可见光透射率和可见光反射率减至极低的水平。由于部件的相似性和基本上一样,故用和图1中相同的标号于图3和4,只是在图3加上后缀b,而在图4则加上后缀c。
参见图3,本发明的太阳能控制薄膜10b由三个亚单元12b构成,每个后者又由聚合物衬底14b、高折射率涂层16b和薄而不相干的金属薄膜18b构成。三个亚单元按这样的关系进行安装,即让三个金属表面18b在合成部件10b的内部并且通过粘合剂20b的内插层彼此层叠在一起。每个粘合剂层的厚度约为0.5-5.0微米。实际上该组件与图1的相同,只是把第三个亚单元12b夹在原先的两个亚单元之间。
通过采用3个甚至更多的金属薄膜18b,可使合成薄膜的VLT减至极低的水平,例如20%或以下,而单独的薄膜18b可以保持得足够薄和不规则,也即呈树枝状,从而提供极低的VLR,例如10%或以下。高折射率层16b也有助于获得极低的VLR,并且无论何时当暗度成分所需的特性时,还给层膜以暗度。
压敏粘合剂24b层提供于合成薄膜的外表面14b之一上面以粘合在窗口28上,并提供抗划伤和耐磨的硬涂层22b于另一外表面14b上以防在冲洗窗口时不会损坏。
合成薄膜10b一般将粘合在窗口28的内表面上或房间一侧。如图3和图4所示,窗口的右侧表面是内表面或房间一侧,其上粘有合成膜,而左侧表面则面向门外。在图3中,内部或中央亚单元12b的金属层18b面对着玻璃或窗口的平板28,从而使窗口的室内和室外的反射率相同,也即VLR(玻璃)=VLR(房间)。
图4所示的合成薄膜10c与图3所示的合成薄膜10b相同,除了内部或中央的亚单元12c是相反的以外,也即使金属表面18c面向室内。这导致组件玻璃一侧的VLR降低而略微增加室内一侧的VLR,也即VLR(玻璃)<VLR(房间)。因此通过如图4所示那样对亚单元进行定向,可以使外部反射率VLR(玻璃)比图3组件的降低几个百分点。
如上结合图2对图1太阳能薄膜的更改所讨论那样,当规范规定最终产品允许省略高折射率层时,则图3和4中16b、16c的一层、两层或全部均可加以省略。
为了将本发明的太阳能控制薄膜与现有通用太阳能控制薄膜进行评比,采用和通用太阳能控制薄膜相同的PET作衬底并溅射沉积相同的不连续的铬层层,且省略氧化物或高折射率预涂层来制造样品。于是将铬涂层薄膜叠加在粘合剂上以形成图2所示由两个衬底与两层铬组成的合成薄膜样品(称作DC2)以及如图3所示,由三个衬底和三层铬组成的合成薄膜样品(称作TCr)。按照图1还制备了一种样品(称作DCr1)。这些薄膜随后经过VLR和VLA特性测试,并与有的通用太阳线薄膜进行比较。
本发明的受让人加洲圣地亚哥的沉积公司制造了各种太阳能控制薄膜,它们由涂覆单层金属的聚合物衬底构成,这些金属包括Ti:不锈钢(SS)、或铟康(in cone)或NiCr,以及多层膜,并且以Solar Bronze的商标出售,它由聚合物衬底、不锈钢薄层、铜薄层和不锈钢薄层组成。这些薄膜每种均以许多不同的质量等级出售,具有不同的可见光透射率成阻挡特性。通常用光线阻挡效率来衡量质量等级,也即当solar Bronze膜具有的可见光透射率在25%而可见光阻挡能力为75%时标识为“75SB”。同样,“75Ti”和“75SS”分别标识涂钛和不锈钢并且可见光阻挡能力各为75%而可见光透射率各为25%的产品。
为了区分研究开发和试验阶段其间的目的,本发明的太阳能层膜则以不同的符号加以标识,也即用两位数标识可见光透射率而不是阻挡能力。这样,“DCr2-45”薄膜是一种按照图2构造并且具有45%VLT的膜。同样,”Tcr-30”薄膜是一种具有三层不连续的铬层(无氧化物预涂层),且VLT为30%的膜。
测试结果清楚地表明,本发明的薄膜在降低VLR方面的效果,正如以下比较所示。
薄膜类型         VLT    VLR    VLA    SC
SB50             45     19     36     -46
SS50             0      14     36     -67
Ti50             49     15     35     -64
NiCr50           44     15     41     -59
DCr2-45          44     9      47     -66
SB75             23     35     44     -27
SS75             23     30     48     -41
Ti75             23     30     48     -41
NiCr75           20     31     49     -37
DCr2-25          23     13     64     -52
DCr1-20          20     12     68
TCr30            30     10.5   59     -56
TCr20            20     10.5   69     -49
本发明的效果还可以用图5和图6加以证明,它们分别比较了若干太阳能薄膜有不同可见光透射(VLD)下可见光反射率(VLR)和吸收率的情况。图中说明对本发明太阳能薄膜的测试结果,包括由三层铬膜构成的“TCr”,按图2所示由两层铬膜“DCr2”构成的以及按图1的两层铬膜组成的“DCr1”,并且相互以及与钛薄膜“Ti”和Solar Bronze薄膜“SB”进行比较。不锈钢和镍/铬薄膜的曲线与”Ti”的非常相似,因而为清楚起见予以省略。
如图所示,本发明的太阳能薄膜与通用薄膜相比,具有小得多的反射率和大得多的吸收率。该图还说明,采用三层金属而不是两层金属可降低VLR,而通过加入高折射率层还可以进一步降低。
如前述表格的数据同样表明的那样,本发明的太阳能薄膜的屏蔽系数“SC”与通用薄膜相比,即使仅由实验样品确定,也保持在相当好的水平上。而开发高折射率材料层将进一步改善此屏蔽系数。
除了性能极大改善以外,本发明的太阳能薄膜采用普通的磁控溅射设备和普通的薄膜叠加设备可以非常有效而经济地生产。溅射设备用来生产太阳能控制亚单元12、12a,12b和12c,然后将它们组装和叠加在一起成前述任何一种取向。
适合溅射形成亚单元的设备形式之一示意说明于图。
该设备由真空室40构成,上面装备有抽真空用的设施(未示出)以及向真空室或室的被选部分引进诸如氩一类隋性气体,和/或诸如氧一类气体(准备与靶材料反应以沉积反应涂层于网状物,例如靶材料的氧化物)的设施42和43。该真空室配备有未绕的卷轴46,因此接受待涂的连续网状对应材料的滚筒以及待绕的卷轴48,因此缠绕上面已有涂层的网状衬底材料。衬底网状物可包括通常用于溅射操作的任何材料,例如,PET一类聚合物。正如虚线所示,网状物50由多个导滚52引导进入至通过至少一个,最好两个涂覆台。在所示的设备中,涂覆以沿着网状物行进方向,依次包括第一溅射积分56和第二溅射沉积台58。
配备速度可变的网状物驱动系统(未示出)将网状物以取决于所希涂覆特性的预选速度输送通过涂覆台。通常将精筒网状物全部涂覆上,随后移出真空室。
两个淀积台56和58最好的具有相同的构造并分别包括内部激冷的旋转鼓56a,58a,长直径相对较大,用于支撑和冷却网状物,以及一个或多个磁控阴极,用以溅射沉积涂层于网状物上56b,58b。每个阴极承载着材料靶56c,58c,它受到离子轰击而沉积到网状物50上。
为了实现本发明,用挡板59把两个淀积台相互隔离从而可以在两个台上进行不同的溅射操作,但全在同一其空室内,且均单次通过网状物。在本发明的较佳实施例中,第一站台56用以注积高折射率于材料的层16,16b或16c于衬底,而第二台58则用来淀积不连续金属薄膜18,18a,18b或者18c,从而使衬底从未绕卷轴到待绕卷轴一次通过使形成亚单元12,12a,12b或12c。
顺着流动方向,从每个站台56、58配备上光学监视器62a,62b用以监控每项涂层操作,并确保衬底上涂层合适的厚度和成分。
如上所述,在第二站台待淀积的材料是非常薄面不连续的金属或合金薄膜,比较好的是金、银、镍和铬及合金以及不锈钢。这些金属的溅射非常直接,特别是由于薄膜的厚度,也即1-29纳米,所以实现起来容易而且快速。金属最好在惰性气体分压气氛下溅射,惰性气体经入口43引入基本上封闭的站58。
光学薄膜中通常采用的高折射率材料均淀积较慢且难,特别是折射率最高的钛氧化物。为了增强氧化物的沉积速率以保持与金属膜的同步,可证明有必要增加站台56的磁控阴极数和/或添加另外的氧化物淀积台于56和58之间。大家知道,高折射率化合物可用其自身作靶56c,或在反应气体(例如O2,和/或N2,通过入口42引入站台56)分压气氛下金属靶自身可以反应溅射。即使这样,由于TiO2在衬底上的淀积速率如此之慢,造成工艺冗长,而最终产品如此昂贵,以致从生产经济考虑,可决定改用其它的氧化物和氮化物,即使折射率明显低于所需的。
虽然文献上报导Bi2O3用于远红外范围,但由于其在可见光波谱中的高吸收,而未被考虑作为可见,因此通用太阳能薄膜市场上并没有找到它的应用。
本发明的提出部分在于发现,含氧量高(x>=1.7)的合成BiOx薄膜对光的吸收不强,并提供堪与TiO2相比的极高折射率。更重要的是,在本发明的工艺中,合成BiOx的淀积速率是TiO2的25倍或以上,从而在经济上可以接受并且性能更好。
淀积BiOx薄膜可以通过反应溅射淀积、反应蒸发淀积和真空电弧淀积来实现,但是如图7所示目前比较好的是采用反应溅射淀积。特别是靶56c由Bi构成并且在氧分压气氛下溅射,可改变氧分压以获得合成铋氧化物具有氧与Bi的原子比至少为1.7-2.5,也即BiOx(x=1.7-2.5)。
衬底50上淀积的合成BiOx(x=1.7-2.5)膜的厚度可以根据所希性能从大约0.1-50nm之间变化。推荐的厚度变化范围是对于VLT=>35%的太阳能薄膜是0.1-10nm,对于VLT=<35%的太阳能薄膜是10-50nm。生长速率一般从20英尺/分钟(fpm)到50fpm视膜厚而定。对于大多数由本发明实现的应用,能够接受的是以50fpm生产40纳米厚的薄膜。
但是所需Bi的氧化程度也将进入生产方程。图8包括合成氧化铋BiOx的反应溅射淀积速率、氧与Bi的原子比以及溅射真空室内氧分压之间的相互关系。在图8中,氧分压(OPP)沿着横坐标作图,动态淀积速率(DDR)沿着左边的纵坐标作图,而原子比(AR)沿着右侧的纵坐标。下降的曲线为DDR而AR则为上升曲线。DDR从两次测试中计算得到。AR由氦离子束卢瑟福背散射测量和俄歇电子谱剖面确定,以通常的Bi2O3体材料作为校对标准。出于未知的原因,俄歇谱剖面总是比卢瑟福背散射产生的AR多,尤其高AR值。尽管如此,值得指出的是随着OPP的增加,AR增加并且当AR等于或超过1.7时薄膜变得清晰起来。
正如图8所示,AR为1.8的BiOx约在氧分压为7.5E-ST(7.5×10-5 Torr)和DDR约为3.5nmXcm**2/j(用厚度nm乘以面积cm2除以能量示)下淀积;而AR为2.5的BiOx可以在OPP为12E-5T和DDR约为2.5nmXcm**2/j下产生。相反,TiO2的反应溅射的DDR一般为0.1nmXcm**2/j。因此,本发明提供的合成BiOx(x=>1.7)淀积速率是TiO2的25-35倍,这在经济上很有价值,特别是由于其折射率指标基本相同。而且,BiOx淀积速率的提高便于氧化物以金属沉积时相同的网状物速度进行沉积,从而为本发明太阳能控制薄膜提供十分经济的生产。
考虑到生长速率和所有涂层质量,比较好的AR将在1.8-2.2之间。
俄歇谱剖面测量表明,衬底上的BiOx涂层非常均匀。扫描电子显微镜在50000倍下进一步表明,增加OPP以产生AR为1.7或以上的BiOx的薄膜,其涂层表面变得极其光滑和均匀,从而显著减少吸收,并为本发明的实施提供理想的高折射率膜。
本发明由此提供经济地大量制造具有低可见光透射率和低可见光反射率的高度耐用的太阳能控制薄膜。
因此,业已表明以方便、经济和实用的方式获得了本发明的目标和优点。
虽然此处说明并描述了本发明的较佳实施例,但要明白,其中可以进行各种变化,重新布置和页改而不背离所附权利要求限定的本发明范围。

Claims (16)

1.一种太阳能控制薄膜,它具有低可见光透射率和低可见光反射率,其特征在于包括:
第一透明衬底材料片,其上薄而不相干的透明金属薄膜有效地部分遮挡可见光的透射,并且具有预选的可见光反射率;
第二透明衬底材料片,其上薄而不连贯的透明金属薄膜有效地部分遮挡可见光的透射,并且具有预选的可见光反射率;以及
粘结剂层,它将所述第一片与第二片结合起来,它们的金属薄膜相互面对并且彼此隔开和光学去耦,
被结合的片形成合成薄膜,其可见光透射率阻挡效应接近等于不相干薄膜阻挡效应之和,而可见光反射率基本上刚好等于其中一个不相干薄膜的可见光反射率,每个不相干薄膜的可见光反射率当可见光透射率约为50%或以下时使合成薄膜的可见光反射率不超过大约12%,当可见光透射率约为35%或以下时不超过大约15%,而当可见光透射率约为25%或以下时不超过大约20%。
2.如权利要求1所述的太阳能控制薄膜,其特征在于,所述衬底材料片中至少有一个承受有高折射率的材料层束衬底与不相干金属薄膜之间以进一步控制合成薄膜的可见光透射率和可见光反射率。
3.如权利要求2所述的太阳能控制薄膜,其特征在于高折射率材料选自氮化硅、铬、铌和钛的氧化物,以及铋的合成氧化物,后者的氧与铋的原子比约在1.7-2.5之间。
4.如权利要求1所述的太阳能控制薄膜,其特征在于薄而不相干的金属薄膜选自金、银、镍、铬及其合金以及不锈钢。
5.如权利要求1所述的太阳能控制薄膜,其特征在于包括第三透明衬底材料薄片,其上薄而不相干的透明金属薄膜有效地部分遮挡可见光的透射,并且具有如其它不相干薄膜基本相同的低可见光反射率,将所述第三片夹在并且实际上结合在所述第一和第二片之间,使其上的不相干金属薄膜与所述第一和第二片的不相干金属薄膜互相隔开并且光学去耦。
6.如权利要求5所述的太阳能控制薄膜,其特征在于所述衬底材料片的一片、两片或全部承受有高折射率的材料层于衬底与不相干金属薄膜之间以进一步控制合成薄膜的可见光透射率和可见光反射率。
7.如权利要求1所述的太阳能控制薄膜,其特征在于包括一层位于合成薄膜一侧的压敏粘合剂,用来将其与窗户结合,而在合成薄膜另一侧面上的保护涂层则用以防止薄膜的损伤。
8.一种太阳能控制薄膜,它具有低可见光透射率和低可见光反射率,其特征在于包括:
第一透明衬底材料片,其上有高折射率材料的薄透明层和叠盖在高折射率材料上面的薄而透明的不相干金属涂层薄膜,后者有效地部分遮挡可久光透射通过被涂覆的衬底且具有预选的可见光反射率;
第二透明衬底材料片,其上有高折射率材料的薄透明层和叠盖在高折射率材料上面的薄而透明的不相干金属薄膜涂层,后者有效地部分遮挡可见光透射穿过被涂覆的衬底,并且具有预选的可见光反射率;以及
粘结剂层,它将所述第一片与第二片结合起来,它们的金属薄膜相互面对并且彼此隔开和光学去耦,
被结合的片形成合成薄膜,其可见光透射率阻挡效应接近等于诸不相干薄膜阻挡效应之和,而可见光反射率基本上刚好等于其中一个不相干薄膜的可见光反射率,每个不相干薄膜的可见光反射率当可见光透射率小于大约25%时使合成薄膜的可见光反射率不超过大约20%,当可见光透射率小于大约35%时不超过大约15%,而当可见光透射率高至大约50%时不超过大约12%。
9.如权利要求8所述的太阳能控制薄膜,其特征在于包括第三透明衬底材料薄片,其上薄而不相干的透明金属薄膜有效地部分遮挡可见光的透射,并且具有如其它不相干薄膜相同的低可见光反射率,将所述第三片夹在并且实际上结合在所述第一和第二片之间,使其上的不相干金属薄膜与所述第一和第二片的不相干金属薄膜互相隔开并且光学去耦。
10.如权利要求8所述的太阳能控制薄膜,其特征在于高折射率材料包括反应淀积在衬底上的合成氧化铋,其中氧与铋的原子比在1.7-2.5之间。
11.如权利要求8所述的太阳能控制薄膜,其特征在于高折射率材料选自铬、铌和钛的氧化物以及氮化硅。
12.一种具有低可见光透射率和低可见光反射率的太阳能控制薄膜的制造方法,其特征在于包括以下步骤:
在透明衬底上淀积一层薄而不相干的透明金属涂层它有效地部分遮挡透射过衬底的可见光,并且足够薄而不相于以及具有预选的可见光反射率;
将多个涂层的衬底如此装配成合成薄膜俾使合成薄膜的薄而不相干的透明金属涂层在内部相互面对,并且彼此隔开和光学去耦,而且使得诸金属涂层一起提供的联合可见光阻挡效应足以提供通过合成薄膜预选的低可见光透射率水平,以及
将诸涂层衬底叠加起来以提供一合成薄膜,其联合的可见光透射率阻挡效应接近等于诸不相干薄膜阻挡效应之和,而可见光反射率基本上刚好等于其中一个不相干薄膜的可见光反射率,每个不相干薄膜的可见光反射率使得当可见光透射率小于大约25%时合成薄膜的可见光反射率不超过大约20%,当可见光透射率小于大约35%时不超过大约15%,而当可见光透射率高至大约50%时不超过大约12%。
13.如权利要求12所述的方法,其特征在于,将涂覆的衬底彼此叠加,并通过一个或多个粘合剂内插层使彼分隔和光去耦。
14.如权利要求12所述的方法,其特征在于,包括在衬底上首先淀积高折射率材料的薄透明层并随后在高折射率材料上淀积金属涂层。
15.如权利要求14所述的方法,其特征在于高折射率材料的折射率至少为2.0。
16.如权利要求12所述的方法,其特征在于包括在衬底上反应溅射淀积合成的氧化铋,其中氧与铋的原子比为1.7-2.5,随后在合成的氧化铋上淀积薄的金属涂层。
CN95196693A 1994-11-01 1995-10-26 具有低可见光透射率和低可见光反射率的光学装置 Expired - Lifetime CN1074715C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08332922 US5513040B1 (en) 1994-11-01 1994-11-01 Optical device having low visual light transmission and low visual light reflection
US08/332,922 1994-11-01

Publications (2)

Publication Number Publication Date
CN1169127A CN1169127A (zh) 1997-12-31
CN1074715C true CN1074715C (zh) 2001-11-14

Family

ID=23300457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95196693A Expired - Lifetime CN1074715C (zh) 1994-11-01 1995-10-26 具有低可见光透射率和低可见光反射率的光学装置

Country Status (11)

Country Link
US (2) US5513040B1 (zh)
JP (1) JP2993740B2 (zh)
KR (1) KR100264402B1 (zh)
CN (1) CN1074715C (zh)
BR (1) BR9509561A (zh)
CA (1) CA2204008C (zh)
DE (1) DE19581828C2 (zh)
GB (1) GB2309414B (zh)
MX (1) MX9703175A (zh)
TW (1) TW281730B (zh)
WO (1) WO1996013379A1 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033782A (en) * 1993-08-13 2000-03-07 General Atomics Low volume lightweight magnetodielectric materials
JPH08271880A (ja) * 1995-04-03 1996-10-18 Toshiba Corp 遮光膜,液晶表示装置および遮光膜形成用材料
JP3739478B2 (ja) * 1996-03-25 2006-01-25 株式会社アルバック 反射防止多層膜とその成膜方法並びにその成膜装置
DE19745881B4 (de) * 1997-10-17 2004-07-22 Applied Films Gmbh & Co. Kg Wärmeschutz-Schichtsystem
EP0913712A1 (en) * 1997-10-29 1999-05-06 N.V. Bekaert S.A. Multilayer electrically conductive anti-reflective coating
JPH11142602A (ja) * 1997-11-07 1999-05-28 Murakami Corp 反射防止構造
US6452652B1 (en) * 1998-06-12 2002-09-17 National Semiconductor Corporation Light absorbing thin film stack in a light valve structure
US6034813A (en) * 1998-08-24 2000-03-07 Southwall Technologies, Inc. Wavelength selective applied films with glare control
US6188512B1 (en) 1998-11-02 2001-02-13 Southwall Technologies, Inc. Dual titanium nitride layers for solar control
US6440551B1 (en) * 1999-06-14 2002-08-27 Cpfilms, Inc. Light-stable colored transparent composite films
US6650478B1 (en) 1999-08-20 2003-11-18 Cpfilms Inc. Optical filter for a window
US6759945B2 (en) * 2001-03-29 2004-07-06 Vtec Technologies, Inc. Variable transmittance birefringent device
US7057805B2 (en) 2001-10-22 2006-06-06 Commonwealth Laminating & Coating, Inc. Solar control film containing carbon black and process for preparing the solar control film
US7063893B2 (en) 2002-04-29 2006-06-20 Cardinal Cg Company Low-emissivity coating having low solar reflectance
US7122252B2 (en) 2002-05-16 2006-10-17 Cardinal Cg Company High shading performance coatings
WO2004011382A2 (en) 2002-07-31 2004-02-05 Cardinal Cg Compagny Temperable high shading performance coatings
EP1536251B1 (en) * 2002-08-21 2015-07-29 Sumitomo Metal Mining Co., Ltd. Visible light absorbing film, structural body having the visible light absorbing film, and visible light absorbing ink for forming visible light absorbing film
KR100890258B1 (ko) * 2002-09-14 2009-03-24 쇼오트 아게 코팅된 물체
JP4501152B2 (ja) * 2003-09-24 2010-07-14 日本電気硝子株式会社 ガラス物品
US20050186415A1 (en) * 2003-11-21 2005-08-25 Mccormick Chris E. Protective laminate for windshields
CN100345001C (zh) * 2005-08-25 2007-10-24 中国科学院上海技术物理研究所 一种具有低透射率、反射率和发射率的表面涂层
US8404303B2 (en) * 2006-09-21 2013-03-26 Solutia Singapore Pte. Ltd. Separated gray metal and titanium nitride solar control members
WO2009085741A2 (en) * 2007-12-28 2009-07-09 3M Innovative Properties Company Infrared reflecting films for solar control and other uses
DE102009025428A1 (de) * 2009-06-16 2010-12-23 Schott Solar Ag Dünnschichtsolarzelle und Verfahren zur Herstellung
US10654748B2 (en) 2010-03-29 2020-05-19 Vitro Flat Glass Llc Solar control coatings providing increased absorption or tint
US9932267B2 (en) 2010-03-29 2018-04-03 Vitro, S.A.B. De C.V. Solar control coatings with discontinuous metal layer
US10654747B2 (en) 2010-03-29 2020-05-19 Vitro Flat Glass Llc Solar control coatings with subcritical copper
US9469782B2 (en) 2011-12-02 2016-10-18 Cpfilms Inc. Catalysts for thermal cure silicone release coatings
JP6200131B2 (ja) * 2012-03-28 2017-09-20 富士フイルム株式会社 ポリマーシート、太陽電池用裏面保護シートおよび太陽電池モジュール
WO2014024873A1 (ja) * 2012-08-06 2014-02-13 コニカミノルタ株式会社 光反射フィルムおよびこれを用いた光反射体
KR101460241B1 (ko) 2013-01-17 2014-11-11 (주)앤디포스 광반사 현상이 개선된 차량용 윈도우 필름
JP6423198B2 (ja) * 2014-08-05 2018-11-14 日東電工株式会社 赤外線反射フィルム
WO2016044162A2 (en) * 2014-09-15 2016-03-24 Saint-Gobain Performance Plastics Corporation Optical film including an infrared absorption layer
WO2016196919A1 (en) * 2015-06-03 2016-12-08 Saint-Gobain Performance Plastics Corporation Solar control film
CN110786078B (zh) 2017-06-23 2022-09-09 东洋制罐集团控股株式会社 柔性装置用基板
US11078718B2 (en) 2018-02-05 2021-08-03 Vitro Flat Glass Llc Solar control coatings with quadruple metallic layers
US10830933B2 (en) 2018-06-12 2020-11-10 Guardian Glass, LLC Matrix-embedded metamaterial coating, coated article having matrix-embedded metamaterial coating, and/or method of making the same
US10562812B2 (en) 2018-06-12 2020-02-18 Guardian Glass, LLC Coated article having metamaterial-inclusive layer, coating having metamaterial-inclusive layer, and/or method of making the same
KR20210035771A (ko) * 2018-07-23 2021-04-01 오사까 가스 가부시키가이샤 방사 냉각 장치
JP7318565B2 (ja) * 2020-03-03 2023-08-01 信越化学工業株式会社 反射型マスクブランクの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487197A (en) * 1981-04-29 1984-12-11 Glaverbel Solar control panel
US4838648A (en) * 1988-05-03 1989-06-13 Optical Coating Laboratory, Inc. Thin film structure having magnetic and color shifting properties
US5140457A (en) * 1990-11-13 1992-08-18 Bausch & Lomb Incorporated Reflector for display lighting

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556640A (en) * 1968-03-01 1971-01-19 Perkin Elmer Corp Interference filter with dielectric tuning layers
US3776805A (en) * 1971-09-07 1973-12-04 Minnesota Mining & Mfg Solar control products
FR2276601A1 (fr) * 1974-06-27 1976-01-23 France Etat Filtres de bande et application a la fabrication de lunettes de protection
US4797317A (en) * 1984-09-27 1989-01-10 Gila River Products, Inc. Solar control window film
US4634637A (en) * 1985-11-22 1987-01-06 Gila River Products, Inc. Solar control film
US5071206A (en) * 1986-06-30 1991-12-10 Southwall Technologies Inc. Color-corrected heat-reflecting composite films and glazing products containing the same
US4799745A (en) * 1986-06-30 1989-01-24 Southwall Technologies, Inc. Heat reflecting composite films and glazing products containing the same
JP2509215B2 (ja) * 1987-04-24 1996-06-19 ホ−ヤ株式会社 反射防止能を有する透明導電性フイルム
JPH0517233Y2 (zh) * 1987-07-10 1993-05-10
US5306547A (en) * 1990-12-14 1994-04-26 Southwall Technologies Inc. Low transmission heat-reflective glazing materials
EP0564134B1 (en) * 1992-03-31 1999-12-29 Canon Kabushiki Kaisha Anti-reflection coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487197A (en) * 1981-04-29 1984-12-11 Glaverbel Solar control panel
US4838648A (en) * 1988-05-03 1989-06-13 Optical Coating Laboratory, Inc. Thin film structure having magnetic and color shifting properties
US5140457A (en) * 1990-11-13 1992-08-18 Bausch & Lomb Incorporated Reflector for display lighting

Also Published As

Publication number Publication date
GB2309414A (en) 1997-07-30
KR100264402B1 (ko) 2000-09-01
JP2993740B2 (ja) 1999-12-27
CA2204008C (en) 2000-06-20
GB2309414B (en) 1998-07-22
AU684413B2 (en) 1997-12-11
DE19581828T1 (de) 1997-09-18
MX9703175A (es) 1997-10-31
JPH10508263A (ja) 1998-08-18
CA2204008A1 (en) 1996-05-09
DE19581828C2 (de) 2000-07-13
BR9509561A (pt) 1997-09-16
AU4197096A (en) 1996-05-23
GB9708725D0 (en) 1997-06-18
US5513040B1 (en) 1998-02-03
WO1996013379A1 (en) 1996-05-09
CN1169127A (zh) 1997-12-31
TW281730B (zh) 1996-07-21
USRE36308E (en) 1999-09-21
KR970706959A (ko) 1997-12-01
US5513040A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
CN1074715C (zh) 具有低可见光透射率和低可见光反射率的光学装置
CN1125996C (zh) 具有眩光控制的波长选择应用薄膜
EP1558950B1 (en) An infra-red reflecting layered structure
EP2089743B1 (en) A solar control film
US5783049A (en) Method of making antireflective coatings
KR100667637B1 (ko) 적층체 및 그의 제조 방법
EP0655974B1 (en) Antireflection coatings
CN1208274C (zh) 吸收式低辐射膜玻璃及其生产工艺
CN1639081A (zh) 带有有耐磨耗性能的抗反射涂层的透明基底
KR20170105537A (ko) 다층 적층 기판
KR100721731B1 (ko) 반사방지 코팅층의 수소화
JPS60187671A (ja) 反応スパツタリング法による積層被膜の形成方法
CN103926642B (zh) 红外截止滤光膜
JP2746602B2 (ja) 分光フイルター
RU2190692C1 (ru) Низкоэмиссионное покрытие, нанесенное на прозрачную подложку
AU684413C (en) Optical device having low visual light transmission and low visual light reflection
JP5895089B1 (ja) 熱線遮蔽積層体および該積層体を用いた窓ガラス
JP2000028804A (ja) 反射防止積層体およびその製造方法
WO2016199661A1 (ja) 熱線遮蔽積層体および該積層体を用いた窓ガラス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: N.V. BEKAERT S.A.

Free format text: FORMER OWNER: MSC SPECIAL FILM STOCK CO., LTD.

Effective date: 20021129

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20021129

Address after: Zwickau, Belgium

Patentee after: N.V. Bekaert S. A.

Address before: American California

Patentee before: MCS Special Film Inc.

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1046582

Country of ref document: HK

CX01 Expiry of patent term

Granted publication date: 20011114

EXPY Termination of patent right or utility model