CN1093432C - 催化氧化脱氢的方法及催化剂 - Google Patents

催化氧化脱氢的方法及催化剂 Download PDF

Info

Publication number
CN1093432C
CN1093432C CN97191805A CN97191805A CN1093432C CN 1093432 C CN1093432 C CN 1093432C CN 97191805 A CN97191805 A CN 97191805A CN 97191805 A CN97191805 A CN 97191805A CN 1093432 C CN1093432 C CN 1093432C
Authority
CN
China
Prior art keywords
platinum
catalyst
hydrocarbon
stone
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97191805A
Other languages
English (en)
Other versions
CN1209759A (zh
Inventor
横山近文
沙米尔S·巴得瓦
阑尼D·史密特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minnesota Review Committee, University of
University of Minnesota
Original Assignee
Minnesota Review Committee, University of
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Review Committee, University of filed Critical Minnesota Review Committee, University of
Publication of CN1209759A publication Critical patent/CN1209759A/zh
Application granted granted Critical
Publication of CN1093432C publication Critical patent/CN1093432C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with noble metals

Abstract

一种由至少含有两个碳原子的烷属碳氢化合物或其混合物制备单-烯烃的方法,包括在铂催化剂存在下反应该碳氢化合物和分子氧。此催化剂主要是由Sn或Cu所改质的铂所组成,且其是支撑在一陶瓷单石(monolith)上。

Description

催化氧化脱氢的方法及催化剂
发明背景
发明领域
本发明涉及一种氧化/脱氢催化剂,及一种在此氧化/脱氢催化剂及含氧气体存在下进行可脱氢碳氢化合物脱氢的方法。
碳氢化合物的脱氢是一种重要的商业程序,这是因为工业程序中需要大量的脱氢碳氢化合物当作进料的原故,例如脱氢碳氢化合物可用来制备各种的产品,像清洁剂,高辛烷值汽油,及其它像药学产物的物质。塑胶和合成橡胶是其它可用脱氢碳氢化合物生产的产物。特定脱氢程序的一个例子为脱氢异丁烷以制备异丁烯,此异丁烯可醚化制成汽油辛烷改质剂、聚合化成具粘附性的粘着剂、粘度指数添加剂和塑胶抗氧化剂。
各种网状陶瓷结构已描述于下述文献中:美国专利第4,251,239描述具有增加表面积多孔性陶瓷的具有凹槽过滤器(fluted filter);美国专利第4,568,595揭示一种网状陶瓷发泡体,其表面具有陶瓷烧结涂覆物以关闭细胞单元;美国专利第3,900,646号揭示一种陶瓷发泡体,具有镍涂覆,接着以蒸气程序沉积铂;美国专利第3,957,685号揭示镍或铂涂覆在阴(negative)图像陶瓷金属/陶瓷或金属发泡体上;美国专利第3,998,758号揭示一种陶瓷发泡体,具有两层的镍、钴或铜沉积于其上,其中第二层以铝、镁或锌补强;美国专利第4,810,685和4,863,712号揭示以活性物质涂覆的阴(negative)图像的网状发泡体,像钴、镍或钼涂覆物;美国专利第4,308,233号揭示一种网状陶瓷发泡体,具有活化氧化铝涂覆物及贵金属涂覆物用作废气催化剂;美国专利第4,253,302号揭示一种发泡体的陶瓷,具有铂/铑催化剂当作废气催化剂;及美国专利第4,088,607号揭示一种陶瓷发泡体,具有由含贵金属,像氧化锌、铂及钯的组成物涂覆的活性氧化铝层。
本发明所采用的支撑物一般是描述于美国专利第4,810,685号中所揭示的支撑物,其使用适当的物质当作基层,且一般业界称之为“单石(monoliths)”。
具有各种催化剂沉积于其上的单石也可用于制造合成气体(PCT WO90/06279)及硝酸(美国专利第5,217,939号)。
美国专利第4,940,826(Freide,et al)揭示具有至少两个碳原子的气态烷属碳氢化合物或其混合物和含分子氧气体在一支撑铂催化剂上接触反应而氧化脱氢,其中、此支撑物是氧化铝,像γ氧化铝球及单石,像堇青石或蓝铁石。所欲的产物是相对应的烯烃。
已揭示各种用于单石/贵金属的改质物(modifiers)。加拿大专利第2,004,219号列出第IV族元素当作单石的涂覆物质,美国专利第4,927,857号揭示一种和蒸气重组程序连结使用的以铜补充的铂/单石部份氧化催化剂。但这些前案资料中皆没有建议于氧化脱氢上使用经改质的铂/单石催化剂。
发明概要
简要的说,本发明涉及一种由具有至少两个碳原子的气态烷属碳氢化合物或其混合物制备单-烯烃的方法,包括在单石支撑物上以Sn或Cu改质的铂催化剂存在下使该碳氢化合物和分子氧反应制备,且较佳的在单石支撑物上实质上不存在Pd及Rh。此催化剂主要是由在陶瓷单石支撑物上的Sn或Cu改质的铂所组成,较佳的是氧化铝或氧化锆单石支撑物。
本发明的技术方案是在于:提供一种由具有至少两个碳原子的气态烷属碳氢化合物或其混合物制造单-烯烃的方法,其特征在于:包括在主要组成是经Sn,Cu或其混合物改质的铂且是支撑在一陶瓷单石上的铂催化剂存在下反应该碳氢化合物和分子氧。
前述的方法,其特征在于:锡是以相对于铂的原子比例0.5-7∶1的量存在。
前述的方法,其特征在于:铜是以相对于铂的原子比例0.5-<3∶1的量存在。
前述中任一项的方法,其特征在于:该气态烷属碳氢化合物及该氧的流速为60,000至10,000,000hr-1GHSV范围内。
前述中任一项的方法,其特征在于:该气态烷属碳氢化合物包括具有两个至二十个碳原子的烷或其混合物。
前述中任一项的方法,其特征在于:该烷属碳氢化合物及分子氧在反应前是被预热的。
本发明的另一技术方案在于:提供一种适用于氧化脱氢反应的催化剂组成物,其特征在于:主要是由Pt及有效改质量的Sn,Cu或其混合物所形成。
前述的催化剂,其特征在于:具相对于Pt为0.5∶1至7∶1原子比例量的Sn或0.5至<3.0∶1原子比例量的Cu,该Pt及其和Sn及/或Cu所形成的混合物是沉积在一陶瓷单石上。
前述的催化剂,其特征在于:该陶瓷单石是选自氧化铝及氧化锆。
前述的催化剂,其特征在于:该陶瓷单石具有每一直线英寸具有30至80个孔及少于70m2/克的表面积。
以下结合附图进一步说明本发明的结构特征及目的。
附图简要说明:
图1显示Sn和Cu改质Pt单石催化剂和只有Pt比较下,乙烷转化率对乙烷∶氧比例的函数。
图2显示Sn和Cu改质Pt单石催化剂和只有Pt比较下,乙烯选择率对乙烷∶氧比例的函数。
图3显示Sn和Cu改质Pt单石催化剂和只有Pt比较下,乙烯产率对乙烷∶氧比例的函数。
图4显示Sn和Cu改质Pt单石催化剂和只有Pt比较下,CO选择率对乙烷∶氧比例的函数。
图5显示Sn和Cu改质Pt单石催化剂和只有Pt比较下,CO2选择率对乙烷∶氧比例的函数。
图6显示Sn和Cu改质Pt单石催化剂和只有Pt比较下,H2选择率对乙烷∶氧比例的函数。
图7显示Sn和Cu改质Pt单石催化剂和只有Pt比较下,H2O选择率对乙烷∶氧比例的函数。
图8描绘乙烷的转化率和乙烯的选择性为Sn∶Pt比例的函数。
图9说明进料预热对乙烷转化率、乙烯选择性及乙烯产率的影响。
图10显示使用Sn和Cu-改质Pt单石,正-丁烷转化率对丁烷∶氧比例的函数。
图11显示Sn和Cu改质Pt单石催化剂和只有Pt比较下,异丁烷转化率对异-丁烷∶氧比例的函数。
较佳实施例的仔细说明
陶瓷支撑物的组成物可是任何氧化物或氧化物的组合物,其在接近1000℃的高温下是安定的。此支撑物质应具有低热延展系数。氧化物支撑物的成份在高温下应是不会产生相分离的,因为相分离可能导致坚固性的损失。氧化物支撑物的成份在高反应温度下也不应变成可挥发的。适合的氧化物支撑物包括Al(α-Al2O3),Zr,Ca,Mg,Hf和Ti的氧化物。也能制造这些物质的组合物,使得其热膨胀系数和反应器容器的热膨胀系数相等。
支撑物质的结构和组成是非常重要的,支撑物的结构影响流经催化剂的流动途径,亦即影响输送至催化剂表面或由催化剂表面输送出的效率,因而影响催化剂的效率。支撑物结构应是具有30至80孔/英寸的巨孔性结构。此孔能产生反应物及在发泡支撑陶瓷体中形成的产物流动的弯曲路径。由陶瓷物或金属单石中通出的直线通道只有在孔径非常小(>80孔/英寸)时才能产生合适的流动动力。
本发明较佳的催化剂主要是由陶瓷发泡体单石,较佳地氧化锆或α-氧化铝支撑的由Sn或Cu(或使用Sn及Cu的混合物)改质的铂所组成。铂沉积在陶瓷表面的量应是0.2至90wt.%,较佳地2至10wt.%,且更佳地是在钯、铑及金不存在或实质不存在下。现在发现钯会引起催化剂焦化(coke up)且失活催化剂非常快,因此必须排除任何可能影响催化剂效率量的钯。虽然铑不会导致催化剂失活,但产物分布是较差的。
较佳地,此Pt及改质的Sn或Cu是支撑在α-氧化铝或氧化锆陶瓷发泡单石上,其每英寸具有30至80个孔,50至90%的空洞部份,如此反应剂可产生弯曲的行径路线。Pt和改质剂也可支撑在一由α-氧化铝,氧化锆,氧化钛,氧化镁,氧化钙,或氧化半金属(halfnium oxide)所组成的任何组合物上,如此即使高达1100℃的温度也是安定的,且不会产生有害的相分离,因而丧失催化剂的完整性。
除了Sn和Cu外,其它数种金属也可用作改质剂。Pt/Ag相对于单独的Pt存在有具竞争力的转化率及C2H4选择性。使用Ag的实例相等于下述的实例,但对于不良催化剂(Pt/Mg,Pt/Ce,Pt/Ni,Pt/La,Pt/CO)的实例较不具推广性的。其它金属的加入会降低转化率及选择性,如以乙烷说明,其次序为Sn>Cu>Pt(单独)>Ag>Mg>Ce>Ni>La>CO。C2H4的选择性降低时,则主要形成类似的气体(syngas)(CO+H2)。Pt/Au不能以C2H6+O2起始反应。NH3和O2被使用来起始Pt/Au催化剂的活性,然而,即使在N3的存在下,导入C2H6会快速的停止催化剂活性。包含各种金属催化剂的结果列于表I。
                                表I
金属的转化率
催化剂  原子比例     反应    C2H6的  SC2H4  Scox    YC2H4  最大YC2H4
                     温度℃  转化率%  %       %       %      (在C2H6∶O2)
  Pt     0           920     69.7      64.9     26.9    45.3      52.7(1.5)
Pt/Sn    1           912     71.5      68.2     24.1    48.8      55.3(1.5)
Pt/Sn    3           905     72.8      68.0     24.4    49.5      55.4(1.5)
Pt/Sn    7           920     75.7      69.0     21.9    52.3      57.4(1.7)
Pt/Cu    1           928     74.4      68.1     23.8    50.7      55.0(1.7)
Pt/Cu    3         在C2H6+O2中熄灭不反应
Pt/Ag    1                   62.6      64.3     26.4    40.2      51.6(1.7)
Pt/Mg    3           943     65.1      60.6     33.6    39.5      43.4(1.7)
Pt/Ce    3           905     60.2      49.7     47.7    29.9      31.2(1.7)
Pt/La    3           905     56.0      41.7     56.0    23.4      24.8(1.7)
Pt/Ni    1           905     58.7      46.3     50.4    27.2      29.3(1.7)
Pt/Co    1           873     50.8      26.8     71.4    13.1      15.3(1.7)
Pt/Au    1         在C2H6+O2中熄灭不反应
备注:所有的转化率,选择性及温度是在C2H6∶O2=1.9,及5slpm和没有预热情况下测量,所有催化剂的Pt负载量是wt%。
适用于本发明的烷属烃一般是在温度从25至400℃,及压力在0.1至5atm下会蒸发的烷属烃,通常是C2至C20碳原子烷类,其型式可是单独存在或以混合物的型式存在,且较佳的具有2至8个碳原子。合适的烷类包括乙烷,丙烷,正丁烷,异丁烷,正戊烷,异戊烯,正己烷,异己烷,正庚烷,异庚烷,辛烷和异辛烷。因为较佳实施例包括了至反应区进料的预热,因此加热烷属烃进料至室温以上以获得蒸气态的进料的必须性是可考虑的。
进料可包括线型或含支链的烷类。现已观察到在富含燃料的正丁烷氧化脱氢反应中,氧完全被消耗掉,然而异丁烷的氧化则没有。此氧消耗的重要发现得到一异丁烷氧化有速率限制步骤,理论上这些反应的速率应和必须断裂的C-H键强度有关,因此可先预热那些具有强C-H键的进料,增加起始步骤的速率。通常进料可预热至0至500℃的温度范围,较佳地25至400℃的范围。
本发明揭示碳氢化合物的催化性氧化脱氢。碳氢化合物和氧的混合物在一定的组成范围内是可燃烧的,而在本发明中,进料组成物是在上述碳氢化合物的燃烧范围极限之外。在所有情况下,进料组成物是在燃烧范围极限上的富含燃料的一边。此组成物的范围是在燃烧成CO2和H2O的燃料和氧气化学计量比例的2至16倍。一些摩尔比例列于下表II:
                              表II
燃料    操作燃料∶氧摩尔比例         较佳燃料∶氧摩尔比例
乙烷          0.8-2.5                      1.5-2.0
丙烷          0.5-1.5                      0.8-1.3
正丁烷        0.45-1.0                     0.6-0.8
异丁烷        0.45-2.25                    1.4-2.1
当稀释剂减少且反应剂预热后,可燃烧范围限制会加宽,但在较高燃料-氧比的情况下是较佳的(离可燃烧范围愈远)。此较佳范围的考量是依据催化剂的效率,以及安全和附加利益而定。
在本发明的操作条件下,烯烃裂解,CO岐化,且可发生碳反相蒸气流的重组,及导致焦化的形成。现发现改变催化剂的接触时间,则可控制这些二级反应的时间的量。烯烃产物流动速率愈高,则其和催化剂接触的时间愈短,烯烃的选择性愈高,焦化的情形较少。
本发明揭示一种在自动控温反应器中,于微秒范围内的时间,催化性氧化脱氢碳氢化合物的方法。当使用孔洞率50至90%,深度0.2至1cm的陶瓷发泡单石时,在催化剂接触时间从0.1至20微秒的范围内可获致高产率的单-烯烃。在操作条件下,此相当于GHSV值60,000至3,000,000hr-1
流速是在60,000-10,000,000hr-1GHSV范围内,较佳地可使用300,000至3,000,000hr-1GHSV。
在本发明的操作条件下,可推定以下数个反应可发生,亦即(1)完全燃烧(强放热反应);(2)部份氧化成类似气体(放热);(3)氧化脱氢(放热);(4)脱氢(吸热)及裂解(吸热)。
所有的反应程序可在自动温控下进行,放热反应所产生的热可供应吸热反应所需的热,因此此反应不需额外供应热。
然而,供应适当的热至此系统可获致改良的结果。预热进料可改变整个产物的分布,如从放热较多的反应(燃烧和部份氧化)至较少的放热反应(氧化脱氢)和吸热反应(脱氢和裂解)。因为氧是限制性的反应剂,所以此项改变将改善反应转化率。选择性也可获致改善,这是因为较少的放热反应和较多的吸热反应之故。
实施例
用于下述实施例的反应器包括一石英管,内径为18mm,其中含有催化剂单石,且是以高温氧化铝-氧化矽布密封在管外,以防止催化剂边缘周围的反应剂气体渗漏。为了减少幅射热的损失和具有较佳的绝热操作条件,放进催化剂后立刻接着放进惰性单石挤出的氧化铝热屏蔽。接近反应区的管外侧是绝缘的。
以如下的方法制备双金属催化剂Pt/M(M=Sn,Cu,Ag,Mg,Ce,La,Ni,CO和Au):首先由浸渍H2PtCl6水溶液而将Pt加至α-Al2O3发泡单石上(17mm直径×10mm长,每英寸45个孔(ppi),在真空和室温下干燥样品,接着于氧气中在100℃下锻烧0.5小时,及在350℃下锻烧2小时。第二种金属由浸渍相对等金属盐的水溶液而加入:SnCl2,Cu(NO3)2,AgNO3,Mg(NO3)2,Ce(NO3)3,La(NO3)3,Ni(OOCCH3)2,CO(OOCCH3)3,及AuCl3。然后在真空下,以室温干燥,及于氧气中在100℃下锻烧0.5小时,700℃下锻烧1.5小时,然后于氢气中还原1.5小时。在所有实例中,Pt的负载量为2或5wt%,其它金属的负载量列于表1。
催化剂是由沉积Pt(成份的混合物,或各个成份顺序的)在商业化生产的陶瓷发泡单石上制备而得,此发泡单石(由Hi-Tech Ceramics,Inc.公司生产)是由α-Al2O3或ZrO2所组成,每一直线英寸具有30,45或80个孔(ppi)。重要的是这些催化剂不是微孔性结构。这些单石是未被清洗-涂覆的,且估计约有表面积少于70cm2/克。适当的催化剂包含0.2至20wt%的Pt,及相对于Pt原子比例0.5至7∶1的锡,或相对于Pt原子比例0.5至<3∶1的铜。
气体流至反应器中是由流量控制器控制,此控制器对于所有气体的精确度为±0.1slpm,进料流量速率的范围在室温和大气压下为总共5slpm,相当于30cm/s的表面速度(亦即进料气流由催化剂上升气流的速度,在反应条件下,于单石中大约250cm/s)。对于乙烷氧化反应,乙烷∶氧的比例在固定氮稀释(30%)下为从1.5至2.1,而对于丁烷氧化,在50%氮气下,丁烷∶氧的比例为从0.8至1.4。在所有的操作中,反应器压力维持在1.4atm,操作时是以O2当作氧化剂。N2基本上加入进料的1个百分比当作GC校正的内标准,反应温度约1000℃,接触时间约为0.2至40msec。产物气流通过加热的不锈钢线,而后至自动气相层析上分析。关掉反应器时先关掉烷类再关掉氧。
产物气体是以装置有单一Hayesep DB填充管的气相色层分析仪分析。为了正确测量出浓度,对于除了H2O以外的所有物质皆使用一标准测定,但H2O是由氧原子的平衡而获得较可靠的值。氮被用来当作内GC校正标准;如下所述,选择性数据是以碳原子或氢原子为标准计算。
为了将产物气体的浓度转化为所给予进料基准的摩尔量,使用所测量的N2浓度计算因化学反应所导致的摩尔数改变。因为N2在此反应系统中是惰性的,因此产物气体对进料气体的摩尔比是反比于产物气体中N2浓度和进料气体中N2浓度的比。各个物质的浓度可重复估计测量至±2%。
温度是由位于催化剂单石正后方的惰性单石中间通道内的石英管后方插入的热偶计监视,反应器是在稳定温度下操作,而此温度是放热反应和吸热反应所产生的热及反应器本身所漏失的热的函数。
虽然此方法是在自动温控及进料气体在室温下进行,但开始时仍需提供热以起始反应。接近产物合成气体化学计量组成的碳氢化合物和空气的混合物被喂入反应器中,且加热反应剂至各种起始温度(如C2至C4碳氢化合物为约230℃),在点火后,移去外部热源(除非有指示需要预加热进料),反应参数调整至所欲的状况,分析前即建立稳定的状态(约10分钟)。当催化剂没有被烷和氧的混合物起始,如Ag当作改质剂,则使用NH3/O2起始,然后以烷类渐渐的替换NH3。于数小时内在许多催化剂样品上重覆取后数据。
对于C2H6的氧化,所有催化剂产生的主要产物为C2H4,CO,CO2,CH4,H2,及H2O,也可测得少量的C2H2,C3H6,C3H8及C4H8,通常这些选择率低于2%。氧化的转化率高于97%,如此反应都可完成。
实施例1
乙烷
Pt,Pt/Sn和Pt/Cu催化剂
图1,2和3显示在Pt,Pt/Sn(Sn∶Pt=7∶1),及Pt/Cu(Cu∶Pt=1∶1)上乙烷氧化脱氢的C2H6的转化率,C2H4的选择性,及C2H4的产率,其为进料组成的函数(2.0是乙烯化学计量的比例)。当进料组成增加时,在三种催化剂上转化率降低,而选择性增加。加入Sn可大幅提高转化率(约7%)及选择性(约5%),其在进料25℃时产生最高的C2H4产率57%。Pt/Cu也显示比Pt有较高的转化率及较高的选择性,最大值为55%。如图4,5,6和7所示,Pt/Sn和Pt/Cu两者和Pt比起来有CO选择性低约5-9%,CO2选择性高约1-2%。在少量产物中,Pt/Sn和Pt/Cu催化剂比Pt催化剂形成更多的C2H2和C4H8。加入Sn或Cu抑止CO产生,且提升烯烃和乙炔的形成,但没有大幅改变CH4的选择性。
反应温度当C2H6∶H2的比例从1.5增加至2.1时,则从1000降低至900℃;在这三种催化剂的反应温度是相同的,误差范围为±20℃。
数小时后没有观察到催化剂的失活或蒸发现象,也没有观察到在催化剂上形成大量的焦碳。
实施例2
乙烷
Pt,Sn和Cu的负载量
图8显示C2H6转化率及C2H4选择性以Sn∶Pt比例为函数作图,其中进料是接近氧化脱氢的化学计量(C2H6∶O2=1.9)。Sn∶Pt比例增加时转化率增加;反过来说,加入少量的Sn(Sn∶Pt=1∶1)可大幅提高选择性,再加入则只会稍微增加选择性。
如下所述,Pt/Cu(Cu∶Pt=1∶1)和Pt∶Sn比起来显示出具竞争性的结果。然而,Pt/Cu(Cu∶Pt=3∶1)在C2H6和O2混合物中不能被起始。使用NH3∶O2混合物起始,但当NH3改变为C2H6时催化剂停止反应。
虽然具有5wt%Pt负载的样品的C2H6转化率低于具有2wt%Pt负载的样品1%,但此5wt%Pt负载样品几乎相同于1wt%Pt负载的样品。加入Sn至5wt%Pt上也同时提高转化率及C2H4选择性。5wt%Pt/Sn(Sn∶Pt=1∶1)和2wt%Pt/Sn(Sn∶Pt=1∶1)比起来存在有具竞争性的结果(转化率高1%,选择性低1%)。此事实证明不管Pt的负载量多少,Sn确实当作乙烷氧化的提升剂。5wt%Pt/Cu(Cu∶Pt=1∶1)及2wt%Pt/Cu(Cu∶Pt=3∶1)两者皆不能自动温控操作。
实施例3
预热
图9显示预热在Pt/Sn(7∶1)催化剂上对转化率,选择性及产率的影响,其中C2H1∶O2=1.9。反应气体预热至400℃,则转化率从77%增加至89%,选择性从69%降低至65%,产率从53%增加至58%。
实施例4
正丁烷
正丁烷的氧化脱氢是在Pt,Pt/Sn(Sn∶Pt=3),及Pt/Cu(Cu∶Pt=1)上检视。Pt/Sn和Pt/Cu催化剂和Pt比起来(以进料组成为函数作图)皆显示较高的C4H10转化率(约16%)。对于此三个催化剂,当C4H10∶O2比例增加时,则对于C2H4及COx的选择性降低,而对C3H6的选择性增加,C4H8的选择性只有3-5%,且当C4H10∶O2比例增加时,C4H8的选择性稍微增加。C2H4于正C4H10中的选择性在Pt/Sn及Pt/Cu催化剂上比Pt催化剂高很多,然而C3H6的选择性在Pt/Sn及Pt/Cu上比Pt上低很多。
实施例5
异丁烷
异丁烷的氧化类似正丁烷。Pt/Sn(Sn∶Pt=3)及Pt/Cu(Cu∶Pt=1)两种催化剂皆比Pt催化剂具有较高的转化率(高15-25%)(图11)。以i-C4H10处理,主要的烯烃是i-C4H8(约30%)及C3H6(约30%)。在所有三种催化剂中,当C4H10∶O2比例增加时,对于C2H4的选择性减少,而对C3H6和i-C4H8的选择性增加。作为转化率的函数,Pt/Sn和Pt/Cu比Pt催化剂在高转化率时对烯烃和乙炔存在有较高的选择性。
XRD
反应后以X-射线绕射光谱测定Pt及Pt/Sn催化剂(Sn∶Pt=1∶1及7∶1)。对于Pt催化剂,除了α-Al2O3支撑物外只观察到Pt金属吸收峰;另一方面,Pt/Sn催化剂只观察到PtSn及Pt3Sn吸收峰,而没有Pt金属吸收峰。PtSn∶Pt3Sn的比例对于Pt∶Cu(1∶7)时比Pt∶Sn(1∶1)时高。这些结果很清楚的显示对于Pt/Sn催化剂,Pt只有以Pt3Sn及PtSn合金的型式存在于支撑物上。
加入Sn或Cu至氧化脱氢反应的Pt-单石上可提升烷类的转化率及烯烃的选择性,且可压抑COx的形成。因为对于Pt/Sn催化剂,Pt只有以PtSn及Pt3Sn合金的型式存在,所以可推得PtSn和Pt3Sn合金是活性位址,且对于C2H4的形成比Pt更具选择性。

Claims (18)

1.一种由具有至少两个碳原子的气态烷属碳氢化合物或其混合物制造单-烯烃的方法,它包括在主要组成是经Sn,Cu或其混合物改质的铂且是支撑在一陶瓷单石上的催化剂存在下,在自热氧化脱氢条件下,使该碳氢化合物或碳氢化合物的混合物与分子氧接触,制得相应的烯烃。
2.根据权利要求1的方法,其特征在于:锡是以相对于铂的原子比例0.5-7∶1的量存在。
3.根据权利要求1或2的方法,其特征在于:铜是以相对于铂的原子比例0.5-<3.0∶1的量存在。
4.如权利要求1或2的方法,其特征在于所述陶瓷单石包括氧化铝或氧化锆。
5.如权利要求1或2的方法,其特征在于按陶瓷单石和铂催化剂的总重量计,铂的含量为0.2-10重量%。
6.根据权利要求1或2的方法,其特征在于:该气态烷属碳氢化合物及该氧的流速为60,000至10,000,000hr-1GHSV范围内。
7.根据权利要求1或2的方法,其特征在于:该气态烷属碳氢化合物包括具有两个至二十个碳原子的烷烃或其混合物。
8.如权利要求1或2的方法,其特征在于所述碳氢化合物和分子氧的混合物的进料组成物是燃烧成CO2和H2O的燃料和氧的化学计量比例的2至16倍。
9.如权利要求1或2的方法,其特征在于所述烷属碳氢化合物或碳氢化合物的混合物和分子氧被预热至25-400℃的温度。
10.如权利要求1或2的方法,其特征在于所述陶瓷单石是发泡陶瓷单石。
11.一种用于氧化脱氢的催化剂组合物,它主要由沉积在单石载体上与锡形成合金的铂组成,锡与铂的原子比为0.5∶1-7∶1,用X-射线衍射法未发现未形成合金的铂。
12.一种催化剂组合物,它主要包括沉积在载体上由铜和锡的混合物改性的铂。
13.一种催化剂组合物,它主要包括沉积在载体上由铜改性的铂。
14.如权利要求11-13中任何一项所述的催化剂组合物,其特征在于所述载体包括一种单石,该单石包括Al、Zr、Ca、Mg、Hf、Ti的氧化物或其混合物。
15.如权利要求11-13中任何一项所述的催化剂组合物,其特征在于所述载体是发泡陶瓷单石。
16.如权利要求11-13中任何一项所述的催化剂组合物,其特征在于所述载体每一直线英寸具有30至80个孔及少于70m2/克的表面积。
17.如权利要求11-13中任何一项所述的催化剂组合物,其特征在于按载体和铂催化剂的总重量计,铂的含量为0.2-10重量%。
18.如权利要求12-13中任何一项所述的催化剂组合物,其特征在于铜与铂的原子比为0.5∶1至小于3.0∶1。
CN97191805A 1996-01-22 1997-01-22 催化氧化脱氢的方法及催化剂 Expired - Fee Related CN1093432C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58938796A 1996-01-22 1996-01-22
US08/589,387 1996-01-22

Publications (2)

Publication Number Publication Date
CN1209759A CN1209759A (zh) 1999-03-03
CN1093432C true CN1093432C (zh) 2002-10-30

Family

ID=24357797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97191805A Expired - Fee Related CN1093432C (zh) 1996-01-22 1997-01-22 催化氧化脱氢的方法及催化剂

Country Status (11)

Country Link
US (4) US5905180A (zh)
EP (1) EP0888181B1 (zh)
JP (1) JP2000503988A (zh)
KR (1) KR19990081883A (zh)
CN (1) CN1093432C (zh)
AU (1) AU723775B2 (zh)
BR (1) BR9707167A (zh)
CA (1) CA2243828A1 (zh)
DE (1) DE69739018D1 (zh)
ES (1) ES2310416T3 (zh)
WO (1) WO1997026987A1 (zh)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602481B1 (en) * 1998-03-09 2003-08-05 Osaka Gas Company Limited Catalyst for removing hydrocarbons from exhaust gas and method for clarification of exhaust gas
BR9913487A (pt) * 1998-09-03 2001-05-22 Dow Chemical Co Processo autotérmico para produção de olefinas e composição de catalisador
ATE244695T1 (de) * 1998-09-03 2003-07-15 Dow Global Technologies Inc Autothermisches verfahren zur herstellung von olefinen
AU2858400A (en) * 1999-01-25 2000-08-07 University Of Delaware Oxidative dehydrogenation process and catalyst
KR100341866B1 (ko) * 1999-11-16 2002-06-24 조 정 래 산화제를 이용한 탈수소 복합 금속촉매의 성능 개선방법
JP2003517986A (ja) * 1999-12-21 2003-06-03 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 炭化水素供給物の接触部分酸化方法
US6392109B1 (en) 2000-02-29 2002-05-21 Chevron U.S.A. Inc. Synthesis of alkybenzenes and synlubes from Fischer-Tropsch products
GB0006384D0 (en) 2000-03-16 2000-05-03 Bp Chem Int Ltd Process for production of olefins
US6441263B1 (en) * 2000-07-07 2002-08-27 Chevrontexaco Corporation Ethylene manufacture by use of molecular redistribution on feedstock C3-5 components
GB0025081D0 (en) * 2000-10-13 2000-11-29 Bp Chem Int Ltd Process for monitoring loss of reaction
GB0119327D0 (en) * 2001-08-08 2001-10-03 Johnson Matthey Plc Catalyst
MXPA02011489A (es) * 2001-12-04 2003-06-30 Rohm & Haas Procesos mejorados para la preparacion de olefinas, acidos carboxilicos insaturados y nitrilos insaturados, a partir de alcanos.
US20030129121A1 (en) * 2002-01-04 2003-07-10 Conoco Inc. Integrated oxidative dehydrogenation/carbon filament production process and reactor therefor
US7303606B2 (en) * 2002-01-08 2007-12-04 The Boc Group, Inc. Oxy-fuel combustion process
US7390768B2 (en) * 2002-01-22 2008-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Stabilized tin-oxide-based oxidation/reduction catalysts
CA2478794A1 (en) * 2002-03-13 2003-09-25 Conocophillips Company Controlled-pore catalyst structures and process for producing synthesis gas
US7145051B2 (en) * 2002-03-22 2006-12-05 Exxonmobil Chemical Patents Inc. Combined oxydehydrogenation and cracking catalyst for production of olefins
US20030208095A1 (en) * 2002-05-06 2003-11-06 Budin Lisa M. Particulate supports for oxidative dehydrogenation
US7255848B2 (en) * 2002-10-01 2007-08-14 Regents Of The Univeristy Of Minnesota Production of hydrogen from alcohols
US20040068153A1 (en) * 2002-10-08 2004-04-08 Conoco Inc. Rare earth metals as oxidative dehydrogenation catalysts
US20040068148A1 (en) * 2002-10-08 2004-04-08 Conoco Inc. Oxidative dehydrogenation of hydrocarbons using catalysts with trace promoter metal loading
US7262334B2 (en) * 2002-11-13 2007-08-28 Regents Of The University Of Minnesota Catalytic partial oxidation of hydrocarbons
US6872753B2 (en) * 2002-11-25 2005-03-29 Conocophillips Company Managing hydrogen and carbon monoxide in a gas to liquid plant to control the H2/CO ratio in the Fischer-Tropsch reactor feed
DE10304155A1 (de) * 2003-02-03 2004-08-05 Basf Ag Verfahren zur oxidativen Reinigung eines Sauerstoff und eine brennbare Komponente enthaltenden Abgases
US7122492B2 (en) * 2003-02-05 2006-10-17 Exxonmobil Chemical Patents Inc. Combined cracking and selective hydrogen combustion for catalytic cracking
EP1622719A1 (en) * 2003-02-05 2006-02-08 Exxonmobil Chemical Patents Inc. Combined cracking and selective hydrogen combustion for catalytic cracking
US7122494B2 (en) * 2003-02-05 2006-10-17 Exxonmobil Chemical Patents Inc. Combined cracking and selective hydrogen combustion for catalytic cracking
US7125817B2 (en) * 2003-02-20 2006-10-24 Exxonmobil Chemical Patents Inc. Combined cracking and selective hydrogen combustion for catalytic cracking
US7122493B2 (en) * 2003-02-05 2006-10-17 Exxonmobil Chemical Patents Inc. Combined cracking and selective hydrogen combustion for catalytic cracking
US20040158112A1 (en) * 2003-02-10 2004-08-12 Conocophillips Company Silicon carbide-supported catalysts for oxidative dehydrogenation of hydrocarbons
TW200422289A (en) 2003-02-18 2004-11-01 Bp Chem Int Ltd Auto thermal cracking reactor
JP3951127B2 (ja) * 2003-02-28 2007-08-01 国立大学法人静岡大学 ジメチルエーテル水蒸気改質触媒およびその製造方法
US6946493B2 (en) * 2003-03-15 2005-09-20 Conocophillips Company Managing hydrogen in a gas to liquid plant
US6958363B2 (en) * 2003-03-15 2005-10-25 Conocophillips Company Hydrogen use in a GTL plant
US20040192546A1 (en) * 2003-03-27 2004-09-30 Zhongyuan Dang Catalyst for the low temperature oxidation of methane
GB0312966D0 (en) * 2003-06-05 2003-07-09 Bp Chem Int Ltd Process for the production of olefins
US20050042163A1 (en) * 2003-08-20 2005-02-24 Conocophillips Company Metal loaded carbon filaments
US20050081444A1 (en) * 2003-10-17 2005-04-21 General Electric Company Catalytic partial oxidation processor with heat exchanger for converting hydrocarbon fuels to syngas for use in fuel cells and method
US20050089464A1 (en) * 2003-10-22 2005-04-28 General Electric Company Production Of Syngas For Fuel Cells Using Multiple Catalyst Configuration
US20050089465A1 (en) * 2003-10-22 2005-04-28 General Electric Company Thermally Managed Catalytic Partial Oxidation Of Hydrocarbon Fuels To Form Syngas For Use In Fuel Cells
FR2862238B1 (fr) * 2003-11-14 2006-11-17 Solvay Catalyseur a base d'alumine contenant du titane et procede en phase gazeuse utilisant un tel catalyseur
US7067455B2 (en) * 2003-11-21 2006-06-27 Conocophillips Company Copper modified catalysts for oxidative dehydrogenation
WO2005116168A1 (en) 2004-05-25 2005-12-08 Regents Of The University Of Minnesota Production of olefins having a functional group
KR101193163B1 (ko) * 2005-10-21 2012-10-19 삼성에스디아이 주식회사 일산화탄소 산화 촉매 및 그의 제조 방법
KR100728121B1 (ko) * 2005-11-29 2007-06-13 삼성에스디아이 주식회사 직접 산화형 연료 전지 시스템
DE102005057696A1 (de) * 2005-12-02 2007-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Katalysator, Verfahren zu dessen Herstellung und dessen Verwendung
US7999144B2 (en) 2006-09-01 2011-08-16 Velocys Microchannel apparatus and methods of conducting catalyzed oxidative dehydrogenation
NO327431B1 (no) * 2006-09-08 2009-06-29 Yara Int Asa Fremgangsmate og anordning for fangst av platinagruppeelementer
US8198058B2 (en) * 2007-03-05 2012-06-12 Offerman John D Efficient use of biogas carbon dioxide in liquid fuel synthesis
US7655213B2 (en) * 2008-05-13 2010-02-02 General Electric Company Direct oxidation of sulfur with carbon dioxide recycle
DE102008036724A1 (de) * 2008-08-07 2010-02-11 Uhde Gmbh Hochporöse Schaumkeramiken als Katalysatorträger zur Dehydrierung von Alkanen
USD843119S1 (en) 2016-09-09 2019-03-19 The Glad Products Company Film with pattern
CN102649556B (zh) * 2011-02-25 2014-07-23 中国石油化工股份有限公司 含co气体原料氧化脱氢的方法
CA2828727A1 (en) 2011-03-02 2012-09-07 Mark Allen Nunley Methods for integrated natural gas purification and products produced therefrom
KR101306814B1 (ko) * 2011-06-01 2013-09-10 금호석유화학 주식회사 직접 탈수소화 반응용 지르코니아계 촉매, 이의 제조방법, 및 이를 이용한 부텐의 제조방법
DE102011107933A1 (de) 2011-07-19 2013-01-24 Thyssenkrupp Uhde Gmbh Prozessintensivierung von Dampfreformern durch Verwendung angepasster Katalysatoren
KR101270162B1 (ko) * 2011-09-20 2013-05-31 한국과학기술연구원 노르말-부탄의 직접 탈수소화 반응용 담지촉매 및 이를 이용한 부텐의 제조방법
US9352306B2 (en) * 2012-07-03 2016-05-31 Basf Se Catalyst and process for removing oxygen from hydrocarbon streams
US9963407B2 (en) 2013-06-18 2018-05-08 Uop Llc Fluidized catalyst circulation reactor for paraffin oxydative dehydrogenation
WO2015031363A1 (en) * 2013-08-30 2015-03-05 Exxonmobil Chemical Patents Inc. Oxygen storage and production of c5+ hydrocarbons
EP3099653A1 (de) * 2014-01-30 2016-12-07 Linde Aktiengesellschaft Verdünnung der reaktanden einer oxidativen dehydrierung von alkanen mit kohlendioxid
US10132042B2 (en) 2015-03-10 2018-11-20 The Procter & Gamble Company Fibrous structures
GB201515393D0 (en) * 2015-08-28 2015-10-14 Univ Cardiff Method of producing compound alkenyl group
WO2018034050A1 (ja) * 2016-08-17 2018-02-22 三井金属鉱業株式会社 メタン酸化触媒
USD849420S1 (en) 2016-09-09 2019-05-28 The Glad Products Company Film with pattern
USD850800S1 (en) 2016-10-13 2019-06-11 The Glad Products Company Film with pattern
USD845649S1 (en) 2016-10-13 2019-04-16 The Glad Products Company Film with pattern
USD845648S1 (en) 2016-10-13 2019-04-16 The Glad Products Company Film with pattern
USD845647S1 (en) 2016-10-13 2019-04-16 The Glad Products Company Film with pattern
US11408129B2 (en) 2018-12-10 2022-08-09 The Procter & Gamble Company Fibrous structures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1033949A (zh) * 1987-12-17 1989-07-19 环球油品公司 层状的脱氢催化剂颗粒
EP0332289A2 (en) * 1988-03-08 1989-09-13 The British Petroleum Company P.L.C. A process for the production of mono-olefins by the catalytic oxidative dehydrogenation of gaseous paraffinic hydrocarbons having two or more carbon atoms
US4931419A (en) * 1987-10-21 1990-06-05 Pro-Catalyse Catalyst for the conversion of vehicular exhaust gases and process for preparing the catalyst
CN1055303A (zh) * 1990-02-07 1991-10-16 斯南普罗吉蒂联合股票公司 碳原子数为2-5的链烷烃脱氢的催化组合物
CN1069483A (zh) * 1991-08-09 1993-03-03 英国石油有限公司 生产单烯烃的工艺方法
CN1103010A (zh) * 1993-11-26 1995-05-31 中国科学技术大学 含铜、镧氧化物和铂、铑的三效催化剂及其制法
WO1996013475A1 (en) * 1994-10-27 1996-05-09 Regents Of The University Of Minnesota Catalytic oxidative dehydrogenation process

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562797A (en) * 1969-01-09 1971-02-09 Monsanto Co Production of mono-olefins
US3617518A (en) 1969-06-20 1971-11-02 Exxon Research Engineering Co Inhibition of hydrogenolysis
US3670044A (en) * 1969-07-18 1972-06-13 Phillips Petroleum Co Catalytic dehydrogenation process
CA938278A (en) 1970-04-13 1973-12-11 C. Pitkethly Robert Platinum containing catalysts and their use
US4053556A (en) 1971-06-16 1977-10-11 Johnson, Matthey & Co., Limited Catalysis
US3998758A (en) * 1973-02-21 1976-12-21 Clyde Robert A Supported catalyst
US3900646A (en) * 1973-02-21 1975-08-19 Robert A Clyde Method of plating metal uniformly on and throughout porous structures
US4169815A (en) 1973-11-15 1979-10-02 Phillips Petroleum Company Catalyst for dehydrogenation process
US3957688A (en) * 1973-11-15 1976-05-18 Phillips Petroleum Company Catalytic dehydrogenation process
US4088607A (en) * 1974-01-19 1978-05-09 Kali-Chemie Aktiengessellschaft Catalyst and method of preparing same
US3957685A (en) * 1974-02-27 1976-05-18 Helmut Heide Process for producing catalyst supports or catalyst systems having open pores
US4087259A (en) * 1974-09-20 1978-05-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for partially oxidizing hydrocarbons
US4162235A (en) 1976-06-17 1979-07-24 Johnson, Matthey & Co., Limited Catalysts
US4078743A (en) 1976-06-24 1978-03-14 Samson Borisovich Kogan Catalyst for dehydrogenation of paraffin hydrocarbons to olefins and method of preparing same
US4080394A (en) 1976-07-19 1978-03-21 Uop Inc. Using a nonacidic catalyst containing a platinum group metal, cobalt and gallium
LU76107A1 (zh) 1976-10-29 1978-05-16
SE7800987L (sv) 1977-02-04 1978-08-05 Johnson Matthey Co Ltd Katalysator
GB1604246A (en) 1977-06-08 1981-12-02 Johnson Matthey Co Ltd Catalysts for oxidation and reduction processes
JPS5417414A (en) * 1977-07-08 1979-02-08 Nippon Soken Inc Exhaust gas purifying system
US4251239A (en) * 1978-08-28 1981-02-17 Clyde Robert A Multi-purpose ceramic element
US4308233A (en) * 1980-03-10 1981-12-29 Bridgestone Tire Company Limited Device for purification of exhaust gas
US4381641A (en) 1980-06-23 1983-05-03 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4440874A (en) 1982-04-14 1984-04-03 Engelhard Corporation Catalyst composition and method for its manufacture
US4927857A (en) * 1982-09-30 1990-05-22 Engelhard Corporation Method of methanol production
US4844837A (en) * 1982-09-30 1989-07-04 Engelhard Corporation Catalytic partial oxidation process
US5023276A (en) * 1982-09-30 1991-06-11 Engelhard Corporation Preparation of normally liquid hydrocarbons and a synthesis gas to make the same, from a normally gaseous hydrocarbon feed
US4863707A (en) 1982-09-30 1989-09-05 Engelhard Corporation Method of ammonia production
US5039510A (en) 1983-03-25 1991-08-13 Imperial Chemical Industries Plc Steam reforming
US4568595A (en) * 1984-04-26 1986-02-04 Morris Jeffrey R Coated ceramic structure and method of making same
GB8408804D0 (en) * 1984-04-05 1984-05-16 British Petroleum Co Plc Conversion process
IN164007B (zh) * 1984-09-04 1988-12-24 Halcon Sd Group Inc
GB8426344D0 (en) * 1984-10-18 1984-11-21 British Petroleum Co Plc Conversion process
GB8501401D0 (en) * 1985-01-19 1985-02-20 Bp Chem Int Ltd Oxidative dehydrogennation of lower hydrocarbons
CH668006A5 (de) 1986-04-17 1988-11-30 Lonza Ag Katalysator zur reduktiven umwandlung von stickoxiden in abgasen.
US4827071A (en) * 1986-06-09 1989-05-02 Arco Chemical Technology, Inc. Ceramic membrane and use thereof for hydrocarbon conversion
US4652687A (en) * 1986-07-07 1987-03-24 Uop Inc. Process for the dehydrogenation of dehydrogenatable hydrocarbons
DE3765377D1 (de) * 1986-09-10 1990-11-08 Ici Plc Katalysatoren.
US4957992A (en) * 1987-04-21 1990-09-18 Kao Corporation Hair cosmetic composition
US4902664A (en) 1987-08-13 1990-02-20 Engelhard Corporation Thermally stabilized catalysts containing alumina and methods of making the same
CA2004218A1 (en) * 1988-11-30 1990-05-31 Joseph D. Korchnak Production of methanol from hydrocarbonaceous feedstock
CA2004219A1 (en) * 1988-11-30 1990-05-31 Michael Dunster Production of hydrogen from hydrocarbonaceous feedstock
US4902849A (en) * 1989-02-06 1990-02-20 Phillips Petroleum Company Dehydrogenation process
US5073657A (en) * 1989-09-19 1991-12-17 Union Carbide Chemicals And Plastics Company Inc. Vapor phase modifiers for oxidative coupling
FR2658433B1 (fr) * 1990-02-19 1994-05-13 Rhone Poulenc Chimie Catalyseurs pour le traitement des effluents gazeux contenant des composes du soufre et procede de traitement de ces effluents.
GB9010709D0 (en) 1990-05-12 1990-07-04 Johnson Matthey Plc Catalytic reduction
US5264200A (en) 1990-05-31 1993-11-23 Monsanto Company Monolithic catalysts for conversion of sulfur dioxide to sulfur trioxide
US5152976A (en) * 1990-11-16 1992-10-06 Texaco Inc. Process for producing high purity hydrogen
FR2670400B1 (fr) * 1990-12-13 1993-04-02 Inst Francais Du Petrole Procede de preparation de catalyseurs multimetalliques.
GB9109948D0 (en) * 1991-05-08 1991-07-17 Minnesota Mining & Mfg Negative-acting thermographic materials
JPH04371231A (ja) * 1991-06-18 1992-12-24 N E Chemcat Corp 排気ガス浄化用触媒
US5219816A (en) 1991-12-20 1993-06-15 Exxon Research & Engineering Company Dehydrogenation catalysts and process for preparing the catalysts
US5436383A (en) * 1992-03-02 1995-07-25 Institut Francais Du Petrole Process for the dehydrogenation of aliphatic hydrocarbons saturated into olefinic hydrocarbons
US5439859A (en) * 1992-04-27 1995-08-08 Sun Company, Inc. (R&M) Process and catalyst for dehydrogenation of organic compounds
US5217939A (en) * 1992-05-11 1993-06-08 Scientific Design Company, Inc. Catalyst for the prduction of nitric acid by oxidation of ammonia
ES2127241T3 (es) * 1992-06-24 1999-04-16 Shell Int Research Procedimiento para la oxidacion parcial catalitica de hidrocarburos.
DE4221011A1 (de) 1992-06-26 1994-01-05 Basf Ag Schalenkatalysatoren
US5316661A (en) * 1992-07-08 1994-05-31 Mobil Oil Corporation Processes for converting feedstock organic compounds
GB9217685D0 (en) * 1992-08-20 1992-09-30 British Petroleum Co Plc Process for the production of mono-olefins
US5258567A (en) 1992-08-26 1993-11-02 Exxon Research And Engineering Company Dehydrogenation of hydrocarbons
NL9300833A (nl) 1993-05-13 1994-12-01 Gastec Nv Werkwijze voor de produktie van waterstof/koolmonoxide mengsels of waterstof uit methaan.
GB9316955D0 (en) * 1993-08-14 1993-09-29 Johnson Matthey Plc Improvements in catalysts
US5648582A (en) * 1993-08-20 1997-07-15 Regents Of The University Of Minnesota Stable, ultra-low residence time partial oxidation
US6040266A (en) 1994-02-22 2000-03-21 Ultramet Foam catalyst support for exhaust purification
FR2729090A1 (fr) 1995-01-11 1996-07-12 Inst Francais Du Petrole Catalyseurs de reduction selective des oxydes d'azote en azote en milieu oxydant, procede de preparation et utilisation
US5639929A (en) * 1995-04-17 1997-06-17 Regents Of The University Of Minnesota Oxidative dehydrogenation process
US5677260A (en) 1995-06-23 1997-10-14 Indian Petrochemicals Corporation Limited Catalyst composite for dehydrogenation of paraffins to mono-olefins and method for the preparation thereof
US5658497A (en) 1995-12-05 1997-08-19 Shell Oil Company Process for the catalytic partial oxidation of hydrocarbons using a certain catalyst support
US5654491A (en) * 1996-02-09 1997-08-05 Regents Of The University Of Minnesota Process for the partial oxidation of alkanes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931419A (en) * 1987-10-21 1990-06-05 Pro-Catalyse Catalyst for the conversion of vehicular exhaust gases and process for preparing the catalyst
CN1033949A (zh) * 1987-12-17 1989-07-19 环球油品公司 层状的脱氢催化剂颗粒
EP0332289A2 (en) * 1988-03-08 1989-09-13 The British Petroleum Company P.L.C. A process for the production of mono-olefins by the catalytic oxidative dehydrogenation of gaseous paraffinic hydrocarbons having two or more carbon atoms
CN1055303A (zh) * 1990-02-07 1991-10-16 斯南普罗吉蒂联合股票公司 碳原子数为2-5的链烷烃脱氢的催化组合物
CN1069483A (zh) * 1991-08-09 1993-03-03 英国石油有限公司 生产单烯烃的工艺方法
CN1103010A (zh) * 1993-11-26 1995-05-31 中国科学技术大学 含铜、镧氧化物和铂、铑的三效催化剂及其制法
WO1996013475A1 (en) * 1994-10-27 1996-05-09 Regents Of The University Of Minnesota Catalytic oxidative dehydrogenation process

Also Published As

Publication number Publication date
CA2243828A1 (en) 1997-07-31
WO1997026987A1 (en) 1997-07-31
BR9707167A (pt) 1999-04-06
US6548447B1 (en) 2003-04-15
DE69739018D1 (de) 2008-11-13
US6072097A (en) 2000-06-06
ES2310416T3 (es) 2009-01-01
EP0888181B1 (en) 2008-10-01
EP0888181A4 (en) 2000-01-05
US5905180A (en) 1999-05-18
US6846773B1 (en) 2005-01-25
CN1209759A (zh) 1999-03-03
AU1698497A (en) 1997-08-20
KR19990081883A (ko) 1999-11-15
AU723775B2 (en) 2000-09-07
EP0888181A1 (en) 1999-01-07
JP2000503988A (ja) 2000-04-04

Similar Documents

Publication Publication Date Title
CN1093432C (zh) 催化氧化脱氢的方法及催化剂
AU754523B2 (en) Autothermal process for the production of olefins
TW509671B (en) Catalyst and processes for the selective hydrogenation of unsaturated compounds in hydrocarbon streams
EP0227750A1 (en) Method and catalyst for the conversion of methane
CZ20004900A3 (cs) Katalyzátor a způsob parciální katalytické oxidace dvěma katalyticky aktivními kovy
EP0332289A2 (en) A process for the production of mono-olefins by the catalytic oxidative dehydrogenation of gaseous paraffinic hydrocarbons having two or more carbon atoms
US7135603B2 (en) Process for the production of olefins
AU2001274338A1 (en) Process for the production of olefins
JP2009279584A (ja) 接触的還元及び酸化方法
US6452061B1 (en) Catalytic oxidative dehydrogenation process
US20110301392A1 (en) Variation of tin impregnation of a catalyst for alkane dehydrogenation
US8158550B2 (en) Multilayer catalyst, process for the preparation and use thereof in the partial oxidation of hydrocarbons in gaseous phase
AU777051B2 (en) Process for the production of olefins
CN1418181A (zh) 烯烃的生产方法
KR102639656B1 (ko) 알케인의 탈수소화 반응용 담지 촉매 및 이를 이용한 알켄의 제조 방법
JPH074530B2 (ja) 炭化水素脱水素触媒
KR920010009B1 (ko) 탄화수소 탈수소화 반응촉매
RU2327519C2 (ru) Способ получения олефинов
Wang et al. Studies of carbon deposition over Rh-CeO2/Al2O3 during CH4/CO2 reforming
MXPA01002280A (es) Proceso autotermico para la produccion de olefinas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1043864

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20021030

Termination date: 20100222