CN1129170C - 制造有源矩阵器件的方法 - Google Patents

制造有源矩阵器件的方法 Download PDF

Info

Publication number
CN1129170C
CN1129170C CN99124809A CN99124809A CN1129170C CN 1129170 C CN1129170 C CN 1129170C CN 99124809 A CN99124809 A CN 99124809A CN 99124809 A CN99124809 A CN 99124809A CN 1129170 C CN1129170 C CN 1129170C
Authority
CN
China
Prior art keywords
circuit
semiconductor film
drive circuit
buffer circuit
active matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN99124809A
Other languages
English (en)
Other versions
CN1258931A (zh
Inventor
小山润
河崎祐司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1258931A publication Critical patent/CN1258931A/zh
Application granted granted Critical
Publication of CN1129170C publication Critical patent/CN1129170C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/982Varying orientation of devices in array

Abstract

每根数据线的数据保持控制信号提供给并联在一起的多个源极跟随器。并联的源极跟随器是至少一个只用激光照射一次的第一跟随器和至少一个照射两次的第二跟随器的组合。用于结晶的激光照射的宽度等于源极跟随器的间隔乘以一个不小于3的整数。

Description

制造有源矩阵器件的方法
技术领域
本发明涉及由薄膜晶体管构成的有源矩阵型显示器件的驱动电路。具体地说,本发明涉及有源矩阵型显示器件的驱动电路,其中采用源极跟随器作为模拟缓冲器,从而它们的特性变化得到了抑制。
背景技术
有源矩阵型显示器件是这样一种显示器件,其中象素排列在矩阵的交点,每个象素与一个开关元件相连,通过开关元件的导通/截止来控制图象信息。这种类型的显示器件采用液晶、等离子体或其它材料或状态作为显示媒体,它们的光学特性(反射率、折射率、透射率发光强度等)都可以通过电来加以改变。在本发明中,特别是采用具有栅极、源极和漏极的场效应晶体管(三端元件)作为开关元件。
在以下对本发明的描述中,矩阵的一行是指这样一种结构,其中与所述行平行放置的信号线(栅极线)与所述行的晶体管的栅极电极相连。一列是指这样一种结构,其中与所述列平行放置的信号线(源极线)与所述列的晶体管的源极(或漏极)电极相连。驱动栅极线的电路称为栅极驱动电路,驱动源极线的电路称为源极驱动电路。
在栅极驱动电路中,对应于垂直方向上栅极线的数目的移位寄存器的级成直线排列并相互串联,产生有源矩阵型显示器件的垂直扫描时序信号。以这种方式,有源矩阵型显示器件的薄膜晶体管通过栅极驱动电路进行开关操作。
在源极驱动电路中,对应于水平方向上源极线的数目的移位寄存器的级成直线排列并相互串联,产生有源矩阵型显示器件的显示图象数据的水平图象数据。模拟开关通过与水平扫描信号同步的闩锁脉冲导通/截止。以这种方式,通过源极驱动电路,电流提供给有源矩阵型显示器件的薄膜晶体管,控制液晶单元的定向。
图9示意性地表示一种常规的有源矩阵型显示器件。有两种多晶硅薄膜晶体管制造工艺:高温工艺和低温工艺。在高温工艺中,多晶硅淀积在形成在石英基片上的绝缘膜上,并且形成作为栅极绝缘膜的加热氧化的SiO2。然后,形成栅极电极,植入N型或P型离子,并形成源极和漏极电极。于是,多晶硅薄膜晶体管便制造出来了。
在低温工艺中,硅通过两种方法结晶:固相生长和激光热处理。用固相生长法,例如通过将形成在玻璃基底上的绝缘膜上的非晶硅膜进行600℃和20小时的热处理,得到多晶硅膜。用激光热处理法,通过将激光施加在玻璃基底表面的非晶硅上,从而只对膜表面部分在高温下进行热处理,得到多晶硅膜。
一般通过以上一种或两种方法得到晶膜。
然后通过等离子体CVD形成作为栅极绝缘膜的SiO2膜。这之后,形成栅极电极,植入N型或P型离子,并形成源极和漏极电极。于是,多晶硅薄膜晶体管便制造出来了。
源极驱动电路通过对有源矩阵型显示器件的有源矩阵板进行垂直扫描向其提供图象数据,该电路包括移位寄存器、薄膜晶体管构成的模拟开关、电容器构成的模拟存储器和薄膜晶体管构成的模拟缓冲器。
模拟缓冲器是需要的,因为由于源极线的大的承载容量,模拟存储器不能直接驱动有源矩阵型显示器件的薄膜晶体管。
模拟缓冲器的薄膜晶体管具有源极跟随器的结构。如图6A和6B所示,对每根数据保持控制信号线提供一个单一的薄膜晶体管,这样来制造薄膜晶体管,以便它们以有规律的间隔来排列。
图6A表示采用N沟道薄膜晶体管的一个例子。另外,也可以采用P沟道薄膜晶体管(参见图66)或两种类型的晶体管。
构成常规的有源矩阵型显示器件源极驱动电路的模拟缓冲器具有以下问题。
每个模拟缓冲器具有单个结构为源极跟随器的薄膜晶体管。当薄膜晶体管制造工艺中如上所述用激光热处理作为结晶手段时,玻璃基底上的硅膜用宽度为L的带状激光照射,同时沿X轴方向即水平方向(参见图7A)对其扫描,以便使硅结晶,因为不存在如此大尺寸的激光器可以一次照射大面积的基底。
当激光每次以恒定的长度沿X轴方向移动而进行照射时,会出现照射重叠问题。由于带状激光的宽度L不必与源极跟随器的间隔d一致(参见图7B),所以激光的照射量根据激光结晶步骤中的硅膜的位置而变化。
因此,从上述硅膜生产出来薄膜晶体管中会出现位置变化即特性变化,一个薄膜晶体管到另一个之间的阈值电压Vth在VthL至VthH的范围内变化,这取决于X轴上的位置X(参见图8)。在激光束相互重叠的位置,阈值电压Vth具有小的值,而在激光束不重叠的位置,具有大的值。结果,源极跟随器的输出电压的幅度发生了变化,这直接导致施加到液晶器件的电压的变化。
图11表示普通白色液晶器件的施加电压与透射率特性之间的关系。可以理解,阈值电压Vth的变化量ΔVth引起了相应的透射率的变化,它将在被显示的图象中反映出来。
如上所述,根据其位置源极驱动电路的输出电压发生了不希望的变化,这导致了有源矩阵型显示器件的象素显示不均匀。
发明内容
本发明的一个目的是减小有源矩阵型显示器件中的象素显示不均匀。
与常规的器件不同,其中对每根数据线的数据保持控制信号提供一个单一的模拟缓冲器,本发明的特征在于数据保持控制信号与并联在一起的多个源极跟随器相连。此外,根据本发明的一个最佳实施例,并联的源极跟随器是这样一种组合,其中包括为了结晶由激光照射的至少一个源极跟随器和由激光照射两次的至少一个源极跟随器。
结晶用的激光照射的宽度L最好大于源极跟随器的间隔d,并等于间隔d乘以不小于3的整数n。此外,本发明的特征在于2至n-1个源极跟随器并联在一起。通过把照射不同次数的源极跟随器加以组合,可以抑制薄膜晶体管的阈值电压的变化。
虽然以上提到了源极跟随器的间隔和激光照射的宽度,但是术语“源极跟随器的间隔”也可以用另一术语“象素间隔”代替,因为一般来说它们是等同的。
附图说明
图1是根据本发明的第一实施例的有源矩阵型显示器件的模拟缓冲器的电路图;
图2是根据本发明的第二实施例的有源矩阵型显示器件的模拟缓冲器的电路图;
图3是根据本发明的第三实施例的有源矩阵型显示器件的模拟缓冲器的电路图;
图4是根据本发明的第四实施例的有源矩阵型显示器件的模拟缓冲器的电路图;
图5是根据本发明的第五实施例的有源矩阵型显示器件的模拟缓冲器的电路图;
图6A和6B是用于常规的有源矩阵型显示器件的模拟缓冲器的例子的电路图;
图7A和7B示意性地表示在常规的模拟缓冲器的制造步骤中的激光照射;
图8表示用于常规的模拟缓冲器中的薄膜晶体管的阈值电压Vth与薄膜晶体管制造工艺中激光照射位置X之间的关系;
图9示意性地表示常规的有源矩阵型显示器件;
图10A-10F表示互补反相器电路的制造工艺;以及
图11表示普通白色液晶器件的施加电压与透射率特性之间的关系。
具体实施方式
首先参照图10A-10F描述用于本发明的薄膜晶体管的制造工艺。
通过实施例来描述互补反相器电路。通过在氧气氛中的溅射,在玻璃基底上(低碱玻璃、石英玻璃等;例如Corning 7059)形成厚度为1,000-3,000的二氧化硅膜作为底层氧化膜。为了提高生产率,可以用通过等离子体CVD分解和淀积TEOS得到的膜。
然后,通过等离子体CVD或LPCVD淀积厚度为300-5,000最好是500-1,000的非晶硅膜,并通过留在550℃至600℃的还原气氛中4-48小时进行结晶。上述步骤以后,通过进行激光照射(波长:308或248nm)提高结晶度。如此结晶的硅膜形成岛状区域1和2。通过溅射在上面形成700-1,500的二氧化硅膜3。
接着,通过电子束发射或溅射,形成1,000至3μm的铝膜(包括重量百分比为1%的Si或重量百分比为0.1-0.3%的Sc)。然后通过旋转涂覆形成光刻胶(例如由Tokyo Ohka Kogyo有限公司生产的OFPR800/30cp)。通过光刻胶形成之前的阳极氧化形成厚度为100-1,000的氧化铝膜,以便提供与光刻胶的良好的粘附性,并且在接下来的阳极氧化步骤中通过抑制来自光刻胶的漏电流仅在侧面形成多孔的阳极氧化膜。使光刻胶和铝膜形成图样,即一起蚀刻,形成栅极电极4和5,以及掩模6和7(参见图10A)。
在所得结构上通过向它提供电解液中的电流进行阳极氧化,形成厚度在3,000-6,000之间例如5,000的阳极氧化膜8和9。可以进行阳极氧化,例如用柠檬酸、草酸、磷酸、铬酸、硫酸等的3%至20%的酸水溶液,并对栅极施加10-30V的恒定电压。在本实施例中,通过施加10V的电压,在30℃的草酸中持续20-40分钟进行阳极氧化。阳极氧化膜8和9的厚度受阳极氧化的时间控制(参见图10B)。
去除掩模6和7以后,栅极电极4和5再次施加电解液中的电流。这次用包括酒石酸、硼酸和硝酸的乙二醇溶液(总量为3%至10%)。当溶液的温度大约为10℃即低于室温时,得到优异的氧化膜。结果,在栅极电极4和5的上面和侧面形成了阻挡型阳极氧化膜10和11。阳极氧化膜10和11的厚度正比于施加电压。例如,施加电压为150V,阳极氧化膜的厚度为2,000。阳极氧化膜10和11的厚度由所需的偏置确定。最好厚度小于3,000,因为需要大于250V的高电压来产生比3,000厚的阳极氧化膜,这将对薄膜晶体管产生不利的影响。在本实施例中,电压增至80-150V,适合的电压是根据阳极氧化膜10和11的所需的厚度选择的。
应注意的是,阻挡型阳极氧化膜10和11形成在多孔的阳极氧化膜8和9以及栅极4和5之间,而不是形成在多孔的阳极氧化膜8和9的外面,但形成阻挡型的阳极氧化膜10和11的步骤稍后进行。
然后,通过干蚀刻(或湿蚀刻)对绝缘膜3进行蚀刻。蚀刻深度可以任意确定;即可以在底层有源层1和2暴露之前一直进行蚀刻,或者可以中途停止蚀刻。考虑到生产率、产量和一致性,希望在到达有源层1和2之前一直进行蚀刻。在这种情况下,具有初始厚度的绝缘膜12和13留在绝缘膜(栅极绝缘膜3)部分中,上面覆盖着阳极氧化膜8和9或栅极电极4和5(参见图10C)。
然后去除阳极氧化膜8和9。蚀刻剂最好是磷酸型溶液,例如磷酸、乙酸和硝酸的混合酸。用磷酸型蚀刻剂,多孔的阳极氧化膜8和9的蚀刻速率是阻挡型阳极氧化膜10和11的蚀刻速率的10倍以上。因此,用磷酸型蚀刻剂,阻挡型阳极氧化膜10和11基本不被蚀刻。因此,阻挡型阳极氧化膜内的栅极电极得到了保护。
通过将加速N型或P型杂质离子植入上述结构的有源层1和2形成源极和漏极。更具体地说,首先对左边的覆盖了掩模14的薄膜晶体管区通过离子掺杂法掺入相对低速(典型的加速电压:5-30kV)的磷离子。在本实施例中,加速电压设为20kV。用磷化氢(PH3)作为掺杂气体。剂量为5×1014至5×1015cm-2。在这一步骤中,磷离子不能渗入绝缘膜13,它们只植入表面暴露的有源区2的那些部分中,以形成N沟道薄膜晶体管的漏极15和源极16(参见图10D)。
接下来,也是通过离子掺杂法掺入相对高速(典型的加速电压:60-120kV)的磷离子。在本实施例中,加速电压设为90kV,并且剂量为1×1013至5×1014cm-2。在这一步骤中,磷离子渗入绝缘膜13,到达底层部分。然而,由于剂量小,形成了低浓度的N沟道区17和18(参见图10E)。
磷掺杂完成以后,去除掩模14。以与上述类似的方式,此次将N沟道薄膜晶体管区掩蔽,在P沟道薄膜晶体管区中形成源极19、漏极20和低浓度的P型区21和22。通过用KrF准分子激光(波长:248nm;脉宽:20nsec)照射使杂质离子植入有源区1和2。
最后,通过CVD在作为中间层绝缘膜23的整个表面上形成厚度为3,000-6,000的二氧化硅膜。形成薄膜晶体管的源极和漏极的接触孔之后,形成铝引线和电极24-26。此外,在200℃至400℃下进行氢热处理。这样采用薄膜晶体管的互补反相器电路便制成了(参见图10F)。
虽然以上描述是针对反相器电路的,但是用类似方式也能制造其它电路。此外,虽然以上描述是针对共面薄膜晶体管的,但是也可用于其它类型的薄膜晶体管,如反参差(inverse-stagger)型薄膜晶体管。
下面描述本发明的实施例。
图1表示本发明的第一实施例。在本实施例中,源极跟随器以间隔d排列,激光照射宽度L等于3d。两个源极跟随器相互并联。用(1,m)代表源极跟随器矩阵,激光首先施加在源极跟随器(p,q)、(p+1,q)、(p+2,q)、(p,q+1)、(p+1,q+1)和(p+2,q+1)上。
然后移动激光,以便照射源极跟随器(p+2,q)、(p+3,q)、(p+4,q)、(p+2,q+1)、(p+3,q+1)和(p+4,q+1)。实际上,第一次激光照射之后,移动安装在X-Y平台上的基底,然后进行第二次照射。
此外,对源极跟随器(p+4,q)、(p+5,q)、(p+6,q)、(p+4,q+1)、(p+5,q+1)和(p+6,q+1)进行下一次激光照射。
以上述方式,用激光对源极跟随器(p,q)、(p,q+1)、(p+2,q)、(p+2,q+1)、(p+4,q)、(p+4,q+1)、(p+6,q)和(p+6,q+1)照射两次。于是它们具有图8所示的阈值电压VthL
另一方面,用激光对源极跟随器(p+1,q)、(p+1,q+1)、(p+3,q)、(p+3,q+1)、(p+5,q)和(p+5,q+1)只照射一次。于是它们具有阈值电压VthH
通过相互并联源极跟随器(p,q)和(p+1,q),源极跟随器(p+2,q)和(p+3,q),源极跟随器(p+4,q)和(p+5,q),源极跟随器(p+1,q+1)和(p+2,q+1),以及源极跟随器(p+3,q+1)和(p+4,q+1),如图1所示,源极跟随器的特性均衡了,于是减小了由激光照射引起的特性变化。换句话说,在每个组合的源极跟随器中,一个源极跟随器具有较高的结晶度TFT,而另一个则具有较低的结晶度TFT。
图2表示本发明的第二实施例。在本实施例中,源极跟随器以间隔d排列,激光照射宽度L等于4d。三个源极跟随器相互并联。
激光首先施加在源极跟随器(p,q)、(p+1,q)、(p+2,q)、(p+3,q)、(p,q+1)、(p+1,q+1)、(p+2,q+1)、(p+3,q+1)、(p,q+2)、(p+1,q+2)、(p+2,q+2)和(p+3,q+2)上。
然后移动激光,以便照射源极跟随器(p+3,q)、(p+4,q)、(p+5,q)、(p+6,q)、(p+3,q+1)、(p+4,q+1)、(p+5,q+1)、(p+6,q+1)、(p+3,q+2)、(p+4,q+2)、(p+5,q+2)和(p+6,q+2)。
由于用激光对源极跟随器(p,q)、(p,q+1)、(p,q+2)、(p+3,q)、(p+3,q+1)、(p+3,q+2)、(p+6,q)、(p+6,q+1)和(p+6,q+2)照射两次,所以它们具有阈值电压VthL(参见图8)。
由于用激光对源极跟随器(p+1,q)、(p+2,q)、(p+1,q+1)、(p+2,q+1)、(p+1,q+2)、(p+2,q+2)、(p+4,q)、(p+5,q)、(p+4,q+1)、(p+5,q+1)、(p+4,q+2)和(p+5,q+2)只照射一次,所以它们具有阈值电压VthH(参见图8)。
通过分别相互并联源极跟随器(p,q)、(p+1,q)和(p+2,q),源极跟随器(p+3,q)、(p+4,q)和(p+5,q),源极跟随器(p+1,q+1)、(p+2,q+1)和(p+3,q+1),源极跟随器(p+4,q+1)、(p+5,q+1)和(p+6,q+1),以及源极跟随器(p+2,q+2)、(p+3,q+2)和(p+4,q+2),如图2所示,每种组合的三个源极跟随器中的一个用激光照射两次,其余两个源极跟随器只照射一次。通过以上述方式组合源极跟随器,使每组的源极跟随器都一致,因此消除了由激光照射引起的特性变化。
图3表示本发明的第三实施例。在本实施例中,源极跟随器以间隔d排列,激光照射宽度L等于4d。两个源极跟随器相互并联,形成一个模拟缓冲器,其中相邻缓冲器的一个源极跟随器位于二者之间。
激光首先施加在源极跟随器(p,q)、(p+1,q)、(p+2,q)、(p+3,q)、(p,q+1)、(p+1,q+1)、(p+2,q+1)和(p+3,q+1)上。
然后移动激光,以便照射源极跟随器(p+3,q)、(p+4,q)、(p+5,q)、(p+6,q)、(p+3,q+1)、(p+4,q+1)、(p+5,q+1)和(p+6,q+1)。
由于用激光对源极跟随器(p,q)、(p,q+1)、(p+3,q)、(p+3,q+1)、(p+6,q)和(p+6,q+1)照射两次,所以它们具有阈值电压VthL(参见图8)。
由于用激光对源极跟随器(p+1,q)、(p+2,q)、(p+1,q+1)、(p+2,q+1)、(p+4,q)、(p+5,q)、(p+4,q+1)、和(p+5,q+1)只照射一次,所以它们具有阈值电压VthH(参见图8)。
通过相互并联源极跟随器(p,q)和(p+2,q),源极跟随器(p+1,q)和(p+3,q),源极跟随器(p+4,q)和(p+6,q),源极跟随器(p,q+1)和(p+2,q+1),源极跟随器(p+1,q+1)和(p+3,q+1),以及源极跟随器(p+4,q+1)和(p+6,q+1),如图3所示,每种组合的两个源极跟随器中的一个用激光照射两次,另一个源极跟随器只照射一次。通过以上述方式组合源极跟随器,使每组的源极跟随器都一致,因此消除了由激光照射引起的特性变化。
图4表示本发明的第四实施例。在本实施例中,源极跟随器以间隔d排列,激光照射宽度L等于4d。以倾斜方向放置的两个源极跟随器相互并联。
激光首先施加在源极跟随器(p,q)、(p+1,q)、(p+2,q)、(p+3,q)、(p,q+1)、(p+1,q+1)、(p+2,q+1)和(p+3,q+1)上。
然后移动激光,以便照射源极跟随器(p+3,q)、(p+4,q)、(p+5,q)、(p+6,q)、(p+3,q+1)、(p+4,q+1)、(p+5,q+1)和(p+6,q+1)。
通过相互并联源极跟随器(p,q)和(p+1,q+1),源极跟随器(p+1,q)和(p+2,q+1),源极跟随器(p+2,q)和(p+3,q+1),源极跟随器(p+3,q)和(p+4,q+1),源极跟随器(p+4,q)和(p+5,q+1),以及源极跟随器(p+5,q)和(p+6,q+1),如图4所示,源极跟随器的特性均衡了,于是减小了由激光照射引起的特性变化。
图5表示本发明的第五实施例。在本实施例中,源极跟随器以间隔d排列,激光照射宽度L等于4d。以倾斜方向放置的三个源极跟随器相互并联。
激光首先施加在源极跟随器(p,q)、(p+1,q)、(p+2,q)、(p+3,q)、(p,q+1)、(p+1,q+1)、(p+2,q+1)、(p+3,q+1)、(p,q+2)、(p+1,q+2)、(p+2,q+2)和(p+3,q+2)上。
然后移动激光,以便照射源极跟随器(p+3,q)、(p+4,q)、(p+5,q)、(p+6,q)、(p+3,q+1)、(p+4,q+1)、(p+5,q+1)、(p+6,q+1)、(p+3,q+2)、(p+4,q+2)、(p+5,q+2)和(p+6,q+2)。
由于用激光对源极跟随器(p,q)、(p,q+1)、(p,q+2)、(p+3,q)、(p+3,q+1)、(p+3,q+2)、(p+6,q)、(p+6,q+1)和(p+6,q+2)照射两次,它们具有阈值电压VthL(参见图8)。
由于用激光对源极跟随器(p+1,q)、(p+2,q)、(p+1,q+1)、(p+2,q+1)、(p+1,q+2)、(p+2,q+2)、(p+4,q)、(p+5,q)、(p+4,q+1)、(p+5,q+1)、(p+4,q+2)和(p+5,q+2)只照射一次,它们具有阈值电压VthH(参见图8)。
通过相互并联源极跟随器(p,q)、(p+1,q+1)和(p+2,q+2),源极跟随器(p+1,q)、(p+2,q+1)和(p+3,q+2),源极跟随器(p+2,q)、(p+3,q+1)和(p+4,q+2),源极跟随器(p+3,q)、(p+4,q+1)和(p+5,q+2),以及源极跟随器(p+4,q)、(p+5,q+1)和(p+6,q+2),如图5所示,每种组合的三个源极跟随器中的一个用激光照射两次,其余两个源极跟随器只照射一次。通过以上述方式组合源极跟随器,使每组的源极跟随器都一致,因此消除了由激光照射引起的特性变化。
如上所述,通过并联采用薄膜晶体管的源极跟随器,本发明可以抑制由于激光照射区的重叠引起的阈值电压Vth的变化,从而减小了象素显示的不均匀度。
虽然已经描述了本发明的最佳实施例,但是应懂得,本发明不限于这些具体实施例。本领域的一般技术人员可以进行各种修改。例如,可以用其它具有相同功能的元件如运算放大器代替源极跟随器。

Claims (27)

1.一种制造有源矩阵器件的方法,所述器件具有一个由薄膜晶体管矩阵构成的有源矩阵电路和一个给所述有源矩阵电路提供信号的源极驱动电路,该驱动电路至少包括多个沿第一方向以间距d排列的模拟缓冲器,所述方法包括下列步骤:
在整个基底上形成半导体膜;
用光束照射所述半导体膜,其中在所述半导体膜表面处的横截面在正交于所述第一方向的第二方向上伸长;
用光束沿第一方向扫描所述半导体膜,使所述半导体膜晶化;和
用所述光束晶化过的半导体膜至少形成所述有源矩阵电路和所述模拟缓冲器;
其中光束的所述横截面在第一方向的宽度等于间距d的n倍,这里n为整数,
其中每个所述模拟缓冲器都包含多个源极跟随器,这些源极跟随器沿所述第一方向排列且彼此并联连接。
2.如权利要求1所述的方法,其特征在于,所述光束为脉冲激光束。
3.一种制造有源矩阵器件的方法,所述器件具有一个由薄膜晶体管矩阵构成的有源矩阵电路和一个给所述有源矩阵电路提供信号的源极驱动电路,该驱动电路至少包括多个沿第一方向以间距d排列的缓冲电路,所述方法包括下列步骤:
在整个基底上形成半导体膜;
用光束照射所述半导体膜,其中在所述半导体膜表面处的横截面在正交于所述第一方向的第二方向上伸长;
用光束沿第一方向扫描所述半导体膜,使所述半导体膜晶化;和
用所述光束晶化过的半导体膜至少形成所述有源矩阵电路和所述缓冲电路;
其中光束的所述横截面在第一方向的宽度大于缓冲电路的间距d,
其中每个所述缓冲电路都包含多个源极跟随器,这些源极跟随器沿所述第一方向排列且彼此并联连接。
4.如权利要求3所述的方法,其特征在于,所述光束为脉冲激光束。
5.一种制造有源矩阵器件的方法,所述器件具有多个有源矩阵元件和至少一个驱动电路,该驱动电路通过多个信号线给所述有源矩阵元件提供信号,并包括多个接所述信号线的缓冲电路,所述方法包括下列步骤:
在整个基底上形成半导体膜;
用光束照射所述半导体膜使该半导体膜晶化;和
用晶化过的半导体膜作为有源层形成所述有源矩阵元件和所述缓冲电路;
其中每个所述缓冲电路至少包括第一和第二元件电路,它们相应于对应的信号线之一彼此并联连接。
6.如权利要求5所述的方法,其特征在于,还包括用所述晶化过的半导体膜形成所述驱动电路,该驱动电路为源极驱动器,用于向所述多个开关元件提供视频信号。
7.如权利要求5所述的方法,其特征在于,所述第一和第二元件电路通过所述形成有源矩阵元件和缓冲电路的步骤形成,它们都是跟随电路。
8.如权利要求5所述的方法,其特征在于,所述第一和第二元件电路通过所述形成有源矩阵元件和缓冲电路的步骤形成,它们都是源极跟随电路。
9.如权利要求5所述的方法,其特征在于,所述缓冲电路在整个基底上沿第一方向排列,且所述光束在所述半导体膜处沿正交于所述第一方向的第二方向上的横截面是伸长的。
10.如权利要求5所述的方法,其特征在于,所述缓冲电路之一中的第一元件电路通过所述形成有源矩阵元件和缓冲电路步骤形成,其电气特性与所述缓冲电路之一的第二元件电路不同。
11.一种制造有源矩阵器件的方法,所述器件具有多个象素和至少一个驱动电路,该驱动电路通过多个大致沿第一方向延伸的信号线驱动所述多个象素,所述驱动电路包括多个接所述信号线的缓冲电路,所述方法包括下列步骤:
在整个基底上形成半导体膜;
用线状激光束照射所述半导体膜使该半导体膜晶化,其中所述线状激光束在所述半导体膜处的横截面在所述第一方向上伸长。
将照射过的半导体膜制成多个半导体岛的图形,各岛包括一沟道形成区;
毗邻所述半导体岛形成多个栅极,以形成多个薄膜晶体管;
用所述薄膜晶体管的至少一部分形成所述缓冲电路,其中各所述缓冲电路都至少包括第一和第二电路,各电路至少包括所述多个薄膜晶体管之一;
其中各所述缓冲电路中的第一和第二电路相应于对应的信号线之一彼此并联连接,且与所述信号线之一有关的第一或第二电路位于毗邻所述信号线之一的另一信号线的延长线上。
12.如权利要求11所述的方法,其特征在于,所述多个栅极位于整个所述半导体岛上。
13.如权利要求11所述的方法,其特征在于,所述多个栅极位于所述半导体岛下方。
14.如权利要求11所述的方法,其特征在于,所述横截面伸长方向正交于所述缓冲电路放置的方向。
15.一种制造有源矩阵器件的方法,所述器件具有多个象素和至少一个驱动电路,该驱动电路通过多个信号线连接,并包括与多个沿第一方向延伸的信号线连接的缓冲电路,所述方法包括下列步骤:
在整个基底上形成半导体膜;
用线状激光束照射所述半导体膜使该半导体膜晶化,其中所述线状激光束在所述半导体膜处的横截面在所述第一方向上伸长;
将照射过的半导体膜制成多个半导体岛的图形,各岛包括一个沟道形成区;
毗邻所述半导体岛形成多个栅极,以形成多个薄膜晶体管;
用所述薄膜晶体管至少形成所述缓冲电路,各所述缓冲电路至少包括第一和第二电路,各电路含有所述多个薄膜晶体管中的至少一个;
其中缓冲电路之一的所述第一或第二电路位于沿所述第一方向的与另一缓冲电路的所述第一或第二电路的同一线路上。
16.如权利要求15所述的方法,其特征在于,所述多个栅极位于整个所述半导体岛上。
17.如权利要求15所述的方法,其特征在于,所述多个栅极位于所述半导体岛下方。
18.如权利要求15所述的方法,其特征在于,所述横截面伸长方向正交于所述缓冲电路放置的方向。
19.一种制造有源矩阵器件的方法,所述器件具有多个象素和至少一个通过多个沿第一方向延伸的信号线接所述多个象素的驱动电路,该驱动电路包括接所述多个信号线的缓冲电路,所述方法包括下列步骤:
在整个基底上形成半导体膜;
用线状激光束照射所述半导体膜使该半导体膜晶化,其中所述线状激光束具有在所述第一方向上伸长的横截面;
用晶化过的半导体膜形成所述缓冲电路;
其中接所述信号线之一的所述缓冲电路至少之一位于所述信号线至少之一的延长线上和毗邻该信号线之一的信号线的至少另一信号线上。
20.如权利要求19所述的有源矩阵器件,其特征在于,所述驱动电路是一源极驱动电路。
21.一种制造有源矩阵器件的方法,所述器件具有多个有源矩阵元件和至少一个驱动电路,该驱动电路通过多个大致沿第一方向延伸的信号线给所述有源矩阵元件提供信号,所述驱动电路包括接所述多个信号线的缓冲电路,所述方法包括下列步骤:
在整个基底上形成半导体膜;
用激光束照射所述半导体膜使该半导体膜晶化,其中所述激光束具有在所述第一方向上伸长的横截面;和
用晶化过的半导体膜形成所述有源矩阵元件和所述缓冲电路;
其中缓冲电路至少之一的一部分位于沿所述第一方向的与至少另一缓冲电路的一部分的同一线路上。
22.如权利要求21所述的方法,其特征在于,所述缓冲电路至少包括第一和第二电路。
23.如权利要求21所述的方法,其特征在于,
所述各缓冲电路沿与所述第一方向倾斜的方向放置。
24.如权利要求23所述的方法,其特征在于,还包括用所述晶化过的半导体膜形成所述驱动电路,该驱动电路是源极驱动电路,用于向开关元件提供视频信号。
25.如权利要求23所述的方法,其特征在于,所述第一和第二电路通过所述形成有源矩阵元件和缓冲电路的步骤形成,它们都是跟随电路。
26.如权利要求23所述的方法,其特征在于,所述第一和第二电路通过所述形成有源矩阵元件和缓冲电路的步骤形成,它们都是源极跟随电路。
27.如权利要求23所述的方法,其特征在于,所述缓冲电路都沿正交于所述第一方向的第二方向放置。
CN99124809A 1994-04-22 1999-11-10 制造有源矩阵器件的方法 Expired - Lifetime CN1129170C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP107573/1994 1994-04-22
JP10757394 1994-04-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN95103478A Division CN1065340C (zh) 1994-04-22 1995-04-22 有源矩阵显示器件驱动电路及制造方法

Publications (2)

Publication Number Publication Date
CN1258931A CN1258931A (zh) 2000-07-05
CN1129170C true CN1129170C (zh) 2003-11-26

Family

ID=14462606

Family Applications (5)

Application Number Title Priority Date Filing Date
CNB2004100557929A Expired - Lifetime CN100362398C (zh) 1994-04-22 1995-04-22 显示器件
CNB991248104A Expired - Lifetime CN1169106C (zh) 1994-04-22 1995-04-22 有源矩阵器件
CN2006101016619A Expired - Lifetime CN1917187B (zh) 1994-04-22 1995-04-22 制造半导体器件的方法
CN95103478A Expired - Lifetime CN1065340C (zh) 1994-04-22 1995-04-22 有源矩阵显示器件驱动电路及制造方法
CN99124809A Expired - Lifetime CN1129170C (zh) 1994-04-22 1999-11-10 制造有源矩阵器件的方法

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CNB2004100557929A Expired - Lifetime CN100362398C (zh) 1994-04-22 1995-04-22 显示器件
CNB991248104A Expired - Lifetime CN1169106C (zh) 1994-04-22 1995-04-22 有源矩阵器件
CN2006101016619A Expired - Lifetime CN1917187B (zh) 1994-04-22 1995-04-22 制造半导体器件的方法
CN95103478A Expired - Lifetime CN1065340C (zh) 1994-04-22 1995-04-22 有源矩阵显示器件驱动电路及制造方法

Country Status (4)

Country Link
US (5) US6057183A (zh)
KR (2) KR100297866B1 (zh)
CN (5) CN100362398C (zh)
TW (1) TW280037B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW280037B (en) * 1994-04-22 1996-07-01 Handotai Energy Kenkyusho Kk Drive circuit of active matrix type display device and manufacturing method
JP3897826B2 (ja) * 1994-08-19 2007-03-28 株式会社半導体エネルギー研究所 アクティブマトリクス型の表示装置
JPH0869967A (ja) * 1994-08-26 1996-03-12 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JPH09321310A (ja) 1996-05-31 1997-12-12 Sanyo Electric Co Ltd 半導体装置の製造方法
JPH1187720A (ja) * 1997-09-08 1999-03-30 Sanyo Electric Co Ltd 半導体装置及び液晶表示装置
JPH1184418A (ja) * 1997-09-08 1999-03-26 Sanyo Electric Co Ltd 表示装置
TW408246B (en) * 1997-09-12 2000-10-11 Sanyo Electric Co Semiconductor device and display device having laser-annealed semiconductor element
JPH11214700A (ja) 1998-01-23 1999-08-06 Semiconductor Energy Lab Co Ltd 半導体表示装置
JP3524759B2 (ja) 1998-03-26 2004-05-10 三洋電機株式会社 表示装置のドライバ回路
JPH11338439A (ja) 1998-03-27 1999-12-10 Semiconductor Energy Lab Co Ltd 半導体表示装置の駆動回路および半導体表示装置
JP3844613B2 (ja) 1998-04-28 2006-11-15 株式会社半導体エネルギー研究所 薄膜トランジスタ回路およびそれを用いた表示装置
JP4497596B2 (ja) 1999-09-30 2010-07-07 三洋電機株式会社 薄膜トランジスタ及び表示装置
US6602765B2 (en) * 2000-06-12 2003-08-05 Seiko Epson Corporation Fabrication method of thin-film semiconductor device
US6831299B2 (en) 2000-11-09 2004-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6777885B2 (en) * 2001-10-12 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Drive circuit, display device using the drive circuit and electronic apparatus using the display device
JP2003204067A (ja) * 2001-12-28 2003-07-18 Semiconductor Energy Lab Co Ltd 表示装置およびそれを用いた電子機器
JP3923341B2 (ja) * 2002-03-06 2007-05-30 株式会社半導体エネルギー研究所 半導体集積回路およびその駆動方法
US6930328B2 (en) * 2002-04-11 2005-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
KR100848098B1 (ko) * 2002-06-24 2008-07-24 삼성전자주식회사 박막 트랜지스터 기판 및 그 제조 방법
WO2004066248A1 (ja) * 2003-01-17 2004-08-05 Semiconductor Energy Laboratory Co., Ltd. 電流源回路、信号線駆動回路及びその駆動方法並びに発光装置
JP4531343B2 (ja) 2003-03-26 2010-08-25 株式会社半導体エネルギー研究所 駆動回路
US7081774B2 (en) * 2003-07-30 2006-07-25 Semiconductor Energy Laboratory Co., Ltd. Circuit having source follower and semiconductor device having the circuit
US7018468B2 (en) * 2003-11-13 2006-03-28 Sharp Laboratories Of America, Inc. Process for long crystal lateral growth in silicon films by UV and IR pulse sequencing
JP2008009276A (ja) * 2006-06-30 2008-01-17 Canon Inc 表示装置及びそれを用いた情報処理装置
US8451921B2 (en) * 2009-10-28 2013-05-28 Qualcomm Incorporated Method and an apparatus for adaptively learning a sparse impulse response of a continuous channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931787A (en) * 1987-05-29 1990-06-05 U.S. Philips Corporation Active matrix addressed display system
US5145808A (en) * 1990-08-22 1992-09-08 Sony Corporation Method of crystallizing a semiconductor thin film
US5194853A (en) * 1991-03-22 1993-03-16 Gtc Corporation Scanning circuit
US5264383A (en) * 1991-06-28 1993-11-23 U.S. Philips Corp. Method of manufacturing a thin film transistor

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330363A (en) * 1980-08-28 1982-05-18 Xerox Corporation Thermal gradient control for enhanced laser induced crystallization of predefined semiconductor areas
JPS58127318A (ja) * 1982-01-25 1983-07-29 Nippon Telegr & Teleph Corp <Ntt> 絶縁層上への単結晶膜形成方法
JPS58162032A (ja) 1982-03-20 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> 結晶化法
JPS58176929A (ja) * 1982-04-09 1983-10-17 Fujitsu Ltd 半導体装置の製造方法
US4466179A (en) * 1982-10-19 1984-08-21 Harris Corporation Method for providing polysilicon thin films of improved uniformity
JPS59161014A (ja) * 1983-03-03 1984-09-11 Seiko Instr & Electronics Ltd 半導体薄膜結晶化方法
JPS59229834A (ja) 1983-06-13 1984-12-24 Hitachi Ltd 電荷転送装置
JPS61116334A (ja) 1984-11-09 1986-06-03 Seiko Epson Corp アクテイブマトリクスパネル
JPS6219855A (ja) 1985-07-19 1987-01-28 Hitachi Ltd 露光装置
EP0235819B1 (en) * 1986-03-07 1992-06-10 Iizuka, Kozo Process for producing single crystal semiconductor layer
JPH0652712B2 (ja) 1986-03-07 1994-07-06 工業技術院長 半導体装置
JPH01237697A (ja) 1988-03-18 1989-09-22 Hitachi Ltd 液晶駆動回路
US4860107A (en) * 1988-03-28 1989-08-22 Thomson Consumer Electronics, Inc. Video display driver apparatus
JPH0242717A (ja) * 1988-08-03 1990-02-13 Hitachi Ltd エネルギービーム照射方法
JP2767858B2 (ja) * 1989-02-09 1998-06-18 ソニー株式会社 液晶ディスプレイ装置
US5108964A (en) * 1989-02-15 1992-04-28 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
JPH0738104B2 (ja) 1989-06-07 1995-04-26 日本電気株式会社 液晶駆動回路
US5327290A (en) * 1989-10-13 1994-07-05 Minolta Camera Kabushiki Kaisha Compact size zoom lens system
JPH03166589A (ja) 1989-11-27 1991-07-18 Toshiba Micro Electron Kk 差動増幅回路
US5247375A (en) * 1990-03-09 1993-09-21 Hitachi, Ltd. Display device, manufacturing method thereof and display panel
JPH0470897A (ja) * 1990-07-12 1992-03-05 Nec Corp 液晶表示パネルの駆動回路およびその駆動方法
JPH04282869A (ja) * 1991-03-11 1992-10-07 G T C:Kk 薄膜半導体装置の製造方法及びこれを実施するための装置
US5365875A (en) * 1991-03-25 1994-11-22 Fuji Xerox Co., Ltd. Semiconductor element manufacturing method
JPH0561432A (ja) * 1991-08-29 1993-03-12 Sharp Corp 液晶ドライバ回路
US5589847A (en) * 1991-09-23 1996-12-31 Xerox Corporation Switched capacitor analog circuits using polysilicon thin film technology
JPH0591447A (ja) * 1991-09-25 1993-04-09 Toshiba Corp 透過形液晶表示装置
JPH05107558A (ja) * 1991-10-17 1993-04-30 Seiko Epson Corp アクテイブマトリクス基板及びアクテイブマトリクス基板の製造方法
KR100269350B1 (ko) * 1991-11-26 2000-10-16 구본준 박막트랜지스터의제조방법
JPH05175235A (ja) * 1991-12-25 1993-07-13 Sharp Corp 多結晶半導体薄膜の製造方法
US5372836A (en) * 1992-03-27 1994-12-13 Tokyo Electron Limited Method of forming polycrystalling silicon film in process of manufacturing LCD
GB9207527D0 (en) * 1992-04-07 1992-05-20 Philips Electronics Uk Ltd Multi-standard video matrix display apparatus and its method of operation
JP2697507B2 (ja) * 1992-08-28 1998-01-14 セイコーエプソン株式会社 液晶表示装置
SG46344A1 (en) * 1992-11-16 1998-02-20 Tokyo Electron Ltd Method and apparatus for manufacturing a liquid crystal display substrate and apparatus and method for evaluating semiconductor crystals
US5403762A (en) * 1993-06-30 1995-04-04 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a TFT
JP2603418B2 (ja) * 1993-02-23 1997-04-23 株式会社ジーティシー 多結晶半導体薄膜の製造方法
US5589406A (en) * 1993-07-30 1996-12-31 Ag Technology Co., Ltd. Method of making TFT display
US5477073A (en) * 1993-08-20 1995-12-19 Casio Computer Co., Ltd. Thin film semiconductor device including a driver and a matrix circuit
JP3442449B2 (ja) * 1993-12-25 2003-09-02 株式会社半導体エネルギー研究所 表示装置及びその駆動回路
TW280037B (en) * 1994-04-22 1996-07-01 Handotai Energy Kenkyusho Kk Drive circuit of active matrix type display device and manufacturing method
JP3067949B2 (ja) * 1994-06-15 2000-07-24 シャープ株式会社 電子装置および液晶表示装置
TW418338B (en) * 1997-03-03 2001-01-11 Toshiba Corp Display apparatus with monolithic integrated driving circuit
US6023174A (en) * 1997-07-11 2000-02-08 Vanguard International Semiconductor Corporation Adjustable, full CMOS input buffer for TTL, CMOS, or low swing input protocols
JPH11214700A (ja) * 1998-01-23 1999-08-06 Semiconductor Energy Lab Co Ltd 半導体表示装置
JPH11213665A (ja) * 1998-01-26 1999-08-06 Mitsubishi Electric Corp 半導体回路装置およびその使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931787A (en) * 1987-05-29 1990-06-05 U.S. Philips Corporation Active matrix addressed display system
US5145808A (en) * 1990-08-22 1992-09-08 Sony Corporation Method of crystallizing a semiconductor thin film
US5194853A (en) * 1991-03-22 1993-03-16 Gtc Corporation Scanning circuit
US5264383A (en) * 1991-06-28 1993-11-23 U.S. Philips Corp. Method of manufacturing a thin film transistor

Also Published As

Publication number Publication date
US20010045931A1 (en) 2001-11-29
KR950034033A (ko) 1995-12-26
CN1258931A (zh) 2000-07-05
KR100302530B1 (ko) 2001-11-22
US7459355B2 (en) 2008-12-02
CN1917187B (zh) 2010-11-17
CN1169106C (zh) 2004-09-29
US7027022B2 (en) 2006-04-11
CN1567405A (zh) 2005-01-19
CN1917187A (zh) 2007-02-21
KR100297866B1 (ko) 2001-10-24
US7015057B2 (en) 2006-03-21
US20010011970A1 (en) 2001-08-09
US6057183A (en) 2000-05-02
TW280037B (en) 1996-07-01
CN1065340C (zh) 2001-05-02
CN100362398C (zh) 2008-01-16
US20030153111A1 (en) 2003-08-14
US20060189105A1 (en) 2006-08-24
CN1269573A (zh) 2000-10-11
CN1128869A (zh) 1996-08-14

Similar Documents

Publication Publication Date Title
CN1129170C (zh) 制造有源矩阵器件的方法
CN1146057C (zh) 有源矩阵显示装置
CN1156016C (zh) 金属绝缘体半导体类型的半导体器件及其制造方法
US6346718B1 (en) Electro-optic device, drive substrate for electro-optic device and method of manufacturing the same
CN1146058C (zh) 有源矩阵显示器件
US6194837B1 (en) Display device with thin film transistor (TFT) and organic semiconductor film in a luminescent element
TWI240416B (en) Flat panel display and method of manufacturing the same
CN1514469A (zh) 结晶掩模、非晶硅结晶方法及利用其制造阵列基板的方法
CN100335956C (zh) 图像显示装置
CN1704827A (zh) 一种液晶显示器件及其制造方法
CN1584721A (zh) 液晶显示装置及其制造方法
JP3101178B2 (ja) アクティブマトリクス型表示装置の駆動回路及びその製造方法
JP3375814B2 (ja) アクティブマトリクス表示装置
CN1622178A (zh) 有源矩阵型显示器及其制造方法
TW583890B (en) Manufacturing method of active type organic electroluminescent display
CN1901168A (zh) 薄膜晶体管阵列及其驱动电路的制造方法
JP2003179073A (ja) アクティブマトリクス表示装置
CN1881057A (zh) 液晶显示器件
JPH10207397A (ja) アクティブマトリクス型表示装置の作製方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20150422

Granted publication date: 20031126