CN1148794A - 适用于低饱和度的脉冲血氧计和传感器 - Google Patents

适用于低饱和度的脉冲血氧计和传感器 Download PDF

Info

Publication number
CN1148794A
CN1148794A CN95193200A CN95193200A CN1148794A CN 1148794 A CN1148794 A CN 1148794A CN 95193200 A CN95193200 A CN 95193200A CN 95193200 A CN95193200 A CN 95193200A CN 1148794 A CN1148794 A CN 1148794A
Authority
CN
China
Prior art keywords
light
spectrum
pick
detector
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95193200A
Other languages
English (en)
Other versions
CN1100514C (zh
Inventor
J·R·卡斯西安尼
P·D·曼海梅
S·L·尼尔利希
S·J·腊斯克威兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NELLCOR PARITANBENIT CO
Original Assignee
NELLCOR PARITANBENIT CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NELLCOR PARITANBENIT CO filed Critical NELLCOR PARITANBENIT CO
Publication of CN1148794A publication Critical patent/CN1148794A/zh
Application granted granted Critical
Publication of CN1100514C publication Critical patent/CN1100514C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1464Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters specially adapted for foetal tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0242Special features of optical sensors or probes classified in A61B5/00 for varying or adjusting the optical path length in the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Abstract

一种脉冲血氧计传感器(410),其中包括对于低氧饱和度最优化以最大程度地减少人为扰动影响的光源。可取的是,采用一个红光光源(112)和红外光源(114),其中红光光源(112)的平均波长在700-790nm之间。红外光源(114)可以具有与用于具有高饱和度的病人的已有技术相同的平均波长。本发明的传感器还通过设置发光管(112、114)与光探测器(116)之间的间隔以使测量对于人为扰动的敏感性最小而实现最优化。本发明将所选择的波长最优化以使红光光源和红外光源的吸收系数与散射系数的乘积更接近一致。这种最优化处理使得当有扰动现象,诸如力的变化、组织成分变化和氧饱和度本身变化存在时测量值更加确定。

Description

适用于低饱和度的脉冲血氧计和传感器
发明背景技术
脉冲血氧计用于在手术室、观察室、特护病房连续监测成人、儿童和新生儿的动脉血氧饱和度,在普通病房中的应用也在不断增加。此外还需要产房中用脉冲血氧计在分娩过程中监测胎儿的供氧状态,以及用于监测心脏病人的血氧状态。
脉冲血氧计通常用于其动脉血氧饱和度大于90%,即动脉血液中功能血红蛋白的90%以上是氧合血红蛋白,不到10%的血红蛋白是还原血红蛋白的患者。这类患者的氧饱和度很少低于70%。如果氧饱和度降低到这样低的一个值,就会表现出不健康的临床症状,通常需要手术。在这种情况下,高度准确地测定血氧饱和度与临床的关系不象确定其随时间变化的趋势与临床的关系密切。
常规的两波长脉冲血氧计从两个发光二极管(LEDs)向搏动组织床发射光,并用位于相对表面的(透射型脉冲血氧计),或位于相邻表面的(反射型脉冲血氧计)一个光电二极管收集透射光。发光二极管和光电探测器封装在一个可重复使用的或一次性使用的传感器中,该传感器与脉冲血氧计和电路部分和显示部分相连。脉冲血氧计中的“脉冲”来自于在心脏血液循环过程中组织中动脉血液的时间变化量,由于循环重复的光衰减,光探测器输出的信号经过处理后生成所熟知的体积描记图波形。为了测量氧饱和度,两个发光二极管中至少有一个的主要波长必须选择在电磁光谱中氧合血红蛋白(HbO2)的吸收与还原血红蛋白(Hb)的吸收不同的某个点处。两个发光二极管中的第二个的波长必须选择在该光谱的一个不同点上,此外,这一点上Hb与HbO2之间的吸收率差别与第一波长处是不同的。市售的脉冲血氧计利用了可见光谱中660nm附近的近红波段的一个波长,和可见光谱中880-940nm范围内的近红外波段的另一个波长(见图1)。如在本申请中所使用的含义,“红”波长或“红”波谱是指电磁波谱中600-800nm的部分;“近红”是指600-700nm的部分;“远红”是指700-800nm的部分;“红外”或“近红外”是指800-1000nm的部分。
检测和处理光探测器中产生的光电流以测量红光和近红光信号的调制比。如图2所示,可以看到这个调制比与动脉氧饱和度的相关性很好。可以通过在一组病人、健康的志愿者或动物的活体内测量动脉氧饱和度(SaO2),再测定与该测量范围相应的调制比来实验标定脉冲血氧计和脉冲血氧计传感器。所观测到的相关性则反过采用于在实时测量的调制比值的基础上测算氧饱和度(SpO2)。(如本申请中所用的含义,SaO2表示在活体内测得的官能饱和度,而SpO2表示利用脉冲血氧计测量的官能饱和度。)
常规脉冲血氧计所使用的发光管波长的选择基于以下几个因素,但是并不局限于这些,即信号穿过充血组织的最佳透射性、对于动脉血氧饱和度变化的敏感度、和市售发光二极管在所需波长的发光强度和有效性。通常,两个波长之一选自HbO2的消光系数与Hb的消光系数明显不同的吸收光谱区域(图1)。这个接近660nm的区域中还原血红蛋白对光的吸收率与氧合血红蛋白对光的吸收率之比最大。660nm波段的高强度发光二极管也容易购得。为了数值上的便利,红外波长通常选择在接近805nm的区域(等吸光点),或选择在880-940nm波段内,在这一波段由于Hb和HbO2成反比的吸收关系可以得到增强的灵敏度。不过,使用波长在660nm波段和900nm波段的一对发光二极管的脉冲血氧计在低血氧饱和度情况下都表现出准确度下降。
发明概述
根据本发明,通过使第一和第二光源的波长谱最优化实现了利用脉冲血氧计对于低动脉氧饱和度的更加准确的测量,从而与采用常规的第一和第二波长谱相比改善了对于低饱和度值的饱和度测量,而同时却使对于高饱和度值的饱和度测量受到的不利影响减到最小程度。已经发现如果第一波光谱的预期的或预计的吸收率和散射率比选择常用的波长光谱时,例如采用中心在660nm的第一波长和中心在880-940nm范围内任何一点的第二波长时更加接近,最好是等于第二波长光谱的吸收率和散射率,则可以明显提高在低饱和度下的计算准确性。
本发明解决了一个长期的需求,即对可以在低氧饱和度情况,即饱和度等于或小于80%、75%、70%、65%、或60%时比现有技术中的脉冲血氧计能够更加准确地测量动脉血氧饱和度的脉冲血氧计传感器和系统的需求。这种传感器和系统对于测量分娩过程中的活胎儿的动脉血氧饱和度是十分有用的,在这种情况下最重要和有意义的饱和度范围通常是15%到65%;对于测量活着的心脏病人的动脉血氧饱和度也是特别有用的,这种病人的静脉血液会在心脏中明显地分流到他们的动脉中,所以对于他们十分重要和有意义的饱和度范围大约是在50%到80%之间。相对照而言,一个通常的健康人的饱和度大于90%。当一个活体,人或动物的饱和度处于较低范围时本发明是有用的。
除了在低饱和度时可以更准确地测量动脉血氧饱和度,当存在人为的扰动并且发生在所监视的对象上时,本发明的传感器、监视器和系统还可以更好和更加准确地测量氧饱和度。
当利用该第一和第二波长谱测得的组织的吸收率和散射率与具有特殊意义的饱和度值接近时,就会改善利用第一和第二波长实际测得的组织饱和度的对应性和一致性,于是有力地减小了由于人为扰动导致的误差。例如,当一个波长的光被吸收的比率明显高于其它波长的光时,其它波长的光会更显著地穿透到组织中。当被检测的组织特别不均匀时,光穿透深度的差别对于动脉血氧饱和度测量的准确性具有明显的相反的影响。
人为扰动包括,但是不限于,任何对于被检测的介质的相对的光学特性的测量具有影响的人为效应。人为扰动包括,但是不限于,以下所列:
(1)利用传感器检测的组织成分随着测试对象的不同而不同,即,其中脂肪、骨质、脑髓、皮肤、肌肉、动脉、静脉等等的相对含量的变化;
(2)被检测的组织中血红蛋白浓度的变化,例如由脉管扩张或脉管收缩,和任何其它影响血液在被检测组织中的灌注的物理原因所引起的变化;
(3)施加在传感器和被检测的组织之间的力量的变化,于是影响到附近组织中存在的血量。
在一个实施例中,本发明提供一种具有适合于胎儿血氧饱和度范围的光源,并且能够最大程度地免除人为扰动的胎儿脉冲血氧计传感器。可取的是使用一种远红和红外光源,其中远红光源的平均波长为700-790nm。红外光源可以具有与已有技术中用于高饱和度患者的装置相同的平均波长,即800-1000nm之间。在本申请中所使用的“高饱和度”的意思是指动脉血氧饱和度大于70%,最好大于75%,或者大于80%,也可以大于90%。
本发明的胎儿传感器还特别适于调整发射光进入组织的位置与被探测光从组织中出射的位置之间的间距以使对人为扰动的敏感降到最低。
根据一个优选实施例,光电传感器(例如,LEDs和光电探测器)位于光进出组织的部位。根据另一个实施例,光电传感器远离组织,例如在血氧计监视器中,一些光纤将传感器与用光纤末端照射的组织相连,被组织散射的光由一根光纤的末端采集。最好是采用多根光纤或光纤束。
本发明人认识到胎儿典型的血氧饱和度范围为5-65%,通常为15-65%,相比之下,一个典型的具有正常(高)饱和度的病人的饱和度为90%以上。此外,胎儿传感器受到增加的人为扰动的影响。胎儿血氧计的另一个独特的特点是传感器一般从阴道插入,它停留的准确位置预先是不知道的。
本发明认识到所有这些对于胎儿血氧计或低饱和度病人用的血氧计独有的特征,并提供了一种最适于免除人为扰动影响的传感器。这种适宜性是通过牺牲对于饱和度值变化的灵敏度而实现的。这种折衷的结果是可以更加可靠地计算饱和度,而这对于使用已有技术方法的人来说不是显而易见的,因为已有技术方法的目的是使对饱和度值的变化的灵敏度最大。为实现这些适宜性所作的改进对于反射型和透射型脉冲血氧计传感器都是可以应用的。在美国专利申请No.07/752168中记载了一种可用于本发明的胎儿透射型脉冲血氧计结构的实例,该申请已转让给本发明的受让人,其公开内容在本申请中引用作为参照内容。在美国专利US-4830014中记载了一种可应用于本发明的非胎儿用透射型脉冲血氧计结构,其公开内容在本申请中引用作为参照内容。
附图简介
图1为氧合血红蛋白(HbO2)和还原血红蛋白(Hb)相对于表示现有技术中近红和红外LED波长的波长的吸收特征谱图;
图2为红/红外调制比相对于血氧饱和度的关系图;
图3为表示光透过组织的处在不同深度的不同层的示意图;
图4A表示对于不同的饱和度值在一定范围波长内衰减系数和散射系数变化的曲线图;
图4B为图4A中各种值的列表;
图5为表示一个传感器在胎儿上放置的示意图;
图6为本发明的LED的光谱图;
图7-18表示对于不同的红光和红外光波长组合的调制比和作为饱和度函数的饱和度误差的实验模式;
图19-23表示在羊身上所作的实验中对于发光管波长和发光管探测器间隔的不同组合,饱和度和由于施加力产生的误差的实验数据图;
图24和图25为表示本发明传感器结构的示意图;
图26A-B为用于本发明的单封装、双发光管封装的示意图;
图27为本发明的脉冲血氧计的方框图。
对于优选实施例的详细描述
对于本发明的胎儿传感器设计的理解需要对传感器工作环境有所了解。图3表示可以放置一个传感器的典型的胎儿位置处的组织层面。一般来说,有第一层皮肤12,其下也许是一层脂肪14、一层肌肉16和一层骨骼18。这仅仅是为了说明目的画出的一个简单的示意图。不同位置处的轮廓和层次可以有所变化。例如,在前额处骨头更接近表面,相反,在颈部肌肉更接近表面。这种随位置不同而产生的变化可以产生在由于组织成分变化产生的效应概述中所说的第一种类型的人为扰动。
从发光管20到光探测器22的基本光路用箭头24和26表示。箭头24表示几乎直接从发光管20进入探测器22的光,基本上是经过含有很少血液的组织,从一个分流到另一个之中。另一方面,箭头26表示另一条光路中光的较深穿透。穿透的深度受到光波长和饱和度的影响。例如,在低饱和度情况下,红外光比近红光穿透得更深。由于红外光信号穿过更多不同的层次,较深的穿透会产生红外光和红光信号之间的不希望产生的变化。
图3中还表示使用发光管28的效果,发光管28在组织上与探测器30的距离比上述的第一对20、22之间的距离更大。如所看到的,这种更大的间距导致在组织中的穿透深度更大,如箭头32和34所示。因此,虽然由于有更多的光被组织吸收和更长的光传播距离而使光更大地衰减,从而降低了在探测器中接收到的信号的强度,但是较大的间距也增加了穿透的深度。
在概要中所述的第二种扰动是在不同病人的组织之间或者随着时间变化血液浓度的变化。较低的浓度会导致较低的吸收率,使穿透深度增加。本发明人计算出光子在组织中的平均穿透深度与吸收率和散射系数的乘积相关,这个计算结果与Weiss等人的发现是一致的,参见“从被照射的组织中再发射的光子穿透深度的统计”一文,该文章发表在现代光学杂志1989年第36卷第3期349-359,354页,该篇文献在本申请中作为参考文献。
电磁波谱中可见光和近红外光在组织中的吸收是由血红蛋白的吸收特征所决定的。血红蛋白的吸收系数在一些文献中可以找到,例如Zijistra等人在临床化学37/9,1633-1638,1991中发表的“胎儿和成人的氧合血红蛋白、脱氧血红蛋白、碳氧血红蛋白和正铁血红蛋白的吸收光谱”一文(此文在本申请中作为参考文献)。虽然普遍认为对于波长的相对灵敏度与所用测量方法无关,但是所测量的组织的散射系数受到测量方法和处理数据的数学模型的影响。本发明人所采用的组织散射系数是根据漫散射理论得出的,取自Schmitt的“脉冲血氧计中多种散射效应的简单光子漫散射分析”,生物医学工程IEEE学报,Vol.38,No.12,1991年12月,此文在本申请中作为参考文献。
图4A为表示0%、40%、85%和100%血氧饱和度情况下对于600nm-1000nm波长范围内光波的吸收和散射系数乘积的曲线图。对于85-100%组织血氧饱和度,如曲线101上A点和B点所示对于通常所选择的一对波长(即660nm和892nm),吸收系数散射系数的乘积具有良好的平衡或相关性。
对于较低的组织血氧饱和度,曲线102上的C点和D点表明660nm的近红光和892nm的红外光的吸收系数和散射系数的乘积之间存在明显的不协调,对于近红光的吸收和散射更强。这种吸收和散射的明显不匹配导致用近红光和红外光检测组织的结果差别极大,因而明显地降低了动脉氧饱和度计算的准确性。此外,当需要准确计算较大范围的低动脉血氧饱和度时,例如在监测一个处于分娩过程中的胎儿时,其动脉血氧饱和度可以从15%扩展到65%,从图4A中可以明显地看出不仅近红光和红外光的吸收率和散射率之间存在明显的不匹配,而且不匹配量随着动脉血氧饱和度的变化而非常显著地改变,因此造成对动脉血氧饱和度计算随着动脉血氧饱和度的变化而具有不同的准确性。
另一方面,图4A中曲线102上的D点和E点表明了本发明的一个优选实施例所选择的第一和第二波长,即732nm和892nm的优点,这两个波长在40%的组织氧饱和度情况下比现有技术中的一对波长660nm和892nm具有更接近平衡的吸收和散射特性。可以理解,由于该732nm波长光的消光和散射系数与该892nm波长光的消光和散射系数更加接近地一致,所以用这两个波长的光对组织的检测结果的重合会得到改善。此外,732nm波长光与660nm相比,其作为氧饱和度函数的消光和散射系数的变化较小,因此能够在较宽的饱和度范围内更好和更准确地计算氧饱和度。图4A中所示的氧饱和度值与动脉血氧饱和度值更加相关。一般来说,一个给定的组织氧饱和度对应于一个较高的动脉氧饱和度值。例如,发明人计算出85%的组织氧饱和度对应于大约100%的动脉氧饱和度。
本发明的一个优选实施例是使用于测算分娩过程中的胎儿动脉氧饱和度的传感器的波长最优化,在所说分娩过程中所检测的饱和度通常低于70%,典型的监测范围在15%-65%之间。由于人为扰动在数量和幅度上都很强,所以努力使胎儿传感器所使用的两个波长的吸收率和散射率一致或平衡是十分有用的。例如,对于一个表面反射型传感器,采用已有技术很难知道传感器会放置到胎儿的什么部位。例如,有时它会放置在头部,而有时则会放置在面颊部。因而,组织成分会随着每次的使用而不同。此外,由于在分娩过程中作用在传感器上的力是变化的,所以又会产生其它的人为扰动。
本发明的另一个实施例是将本发明的传感器用于饱和度在50%-80%之间的心脏病患者,对于他们来说计算的准确性是十分重要的。
图5表示一个传感器410在一个胎儿412上的放置状态。该传感器通过一根缆线414与一个位于外部的脉冲血氧计监视器相连。如从图中所见,传感器410嵌入阴道壁416与胎儿412之间。在这个实施例中,传感器位于胎儿头部的侧面。传感器的嵌入在直接位于传感器下面的皮肤上施加了一个力,这减少了光信号从中通过部分的血液量,从而增加了得到准确的血氧饱和度读数的难度。
在选择一个最佳的LED波长时,必须牢记LED有一定频宽,并不象激光器那样是一个单一窄波段波长的器件。图6表示本发明的传感器所用的一个优选波长的频谱分布,如图所示远红波长735nm为峰值波长。但是,箭头510表示在强度近似为峰值波长的50%时的波长分布大约为25nm宽。此外,在制造LED的过程中,很难严密地控制平均波长。例如订货商指定了一个特定的波长,诸如在本发明的一个实施例中为735nm,而应当预料到所接收的LED的实际的平均波长可能偏离指定波长10、20或更多纳米。通过检测和挑选一般可以达到较窄的离散范围。
图27是实施本发明的一个脉冲血氧计的方框图。从光源210发出的光进入病人组织212,发生散射并被光探测器214所探测。一个包含光源和光探测器的传感器200还可以包含一个编码器216,该编码器提供光源210的指示信号以使血氧计可以选择用于计算氧饱和度的适宜的标定系数。编码器216可以,例如,是一个电阻器。
传感器200与一个脉冲血氧计220相连。血氧计包括一个与一条内部总线224相连的微处理器222。与该总线相连的还包括一个RAM存储器226和一个显示器228。一个时间处理单元(TPU)230向光驱动电路232提供定时控制信号,该光驱动电路控制什么时间光源210照明,如果使用了多个光源,则对于不同的光源使用复路定时信号控制。TPU230还控制信号从光电探测器214通过一个放大器233和一个开关电路234的选通。如果使用了多个光源,则根据多个光源中哪一个处于照明状态,在适当的时间对这些信号进行采样。接收到的信号经过一个放大器236、一个低通滤波器238、和一个模数转换器240。然后将数字数据存储在一个串行模块(QSM)242中,以便在以后当QSM242充满后卸载到RAM26中。在一个实施例中,对于所接收的多个光波长或波谱可以有独立的滤波器和A/D转换器的多个平行电路。
一个探测器和解码器模块242确定编码器216中光源的波长。实现这个目的的电路的一个实施例记载在一同转让的US-4770179中,该专利说明书在本申请中引用作为参考文献。
在与光电探测器214所接收的光相应的所接收信号值基础上,微处理器222采用已知的算法计算氧饱和度。这些算法需要一些与例如所使用的光波长对应的系数,这些系数可以通过实验确定。它们存储在一个存储器ROM246中。对于任何一对波长所选择的一组特定的系数是根据由对应于在某一传感器200中的某一光源的编码器216所指示的值确定的。在一个实施例中,可以设计多个电阻器值以选择不同组的系数。在另一个实施例中,同样的电阻器被用于从适合于与一个近红光源或远红光源配对的一个红外光源的系数中进行选择。可以利用控制输入装置254的控制输入信号来确定是选择近红组还是远红组。控制输入装置254可以是,例如脉冲血氧计上的一个开关,一个键盘,或是一个输入来自远处的主计算机的指令的端口。
本发明的发明人采用数学模型和实验样机两种方式来使所提出的传感器实现最优化。存在许多用于描述组织中的光散射的数学模型。发明人所采用的数学模型假定在均匀的组织床中的散射是各向同性的。尽管这是组织中光散射的真实性质的一种简化(组织是不均匀的,光是基本向前方散射的),但是这些模型对于描述脉冲血氧计的操作,和对于许多设计参数的灵敏度是有用的。
利用这样一个模型,可以实现不同波长的LED选择组合。将组织特性数字化定义,对于所考虑的每对波长计算出SaO2和调制率之间的基本(标定)相关性。生理条件的变化可以通过修正一个或多个数字化定义的物理参数来模拟。再利用所得到的调制比计算出SpO2,将其中误差最小的饱和度范围标记出来。对于80%以上的动脉饱和度,已有技术选择的660nm和890nm这一对波长具有最佳性能,而对于低于70%的动脉饱和度,735nm配以890nm波段的发光器件则具有更高的可靠性。
图7至图18表示相对于各种红光和红外光LED波长对,将组织血液体积量改变到基本值的四分之一时的预期误差。A图(如图7A)表示调制比与SaO2的关系图。B图(如图7B)表示饱和度误差与SaO2的关系图。这种扰动模拟在病人群体内血量变化、组织中贫血、局部缺血、或局部放血的效果。
在下面的图表中表示了相对于几对红光和红外光波长,对组织中血液浓度变化标定的灵敏度。在每种情况中,LED没有次级辐射,扰动范围为组织中标称血液浓度2%到0.5%。
        红外光LED
 红光LED   805nm   890nm   940nm
  660nm     7    8    9
  700nm   10
  730nm    11   12   13
  760nm    14   15   16
  790nm   17   18
图7-9表示在常规脉冲血氧计中存在的特性的类型。图10-18表示当LED波长选择在700-900nm频谱范围时最佳特性区域从饱和度在80%以上变化到较低饱和度时的偏移。光散射受到氧合作用变化的影响最小,但是当组织中的还原血红蛋白转变为氧合血红蛋白时或者当相反过程发生时光吸收受到明显的影响。当两个频道在充血组织中的散射和吸收特性达到平衡时就会形成脉冲血氧计的最佳特性区域。当由两个频道所测得的组织量具有很好的重叠性时平衡就达到了,这要求两个波长的光的穿透深度一致。在较高饱和度的情况下,当一对波长中红光发光管波长在660nm波段时达到最佳平衡,而在较低饱和度情况下,由于使用了730nm波段的红光发光管而改善了平衡。红外光LED波长从805nm变化到940nm对于特性没有明显的影响。
当脉冲血氧计采用接近730nm和890nm的一对LED时,调制比相对于氧饱和度变化的灵敏度(即,例如图1中曲线的斜率)与使用660nm和890nm波长的LED时相比降低了,但是对于除氧饱和度以外的组织特性的测量值变得更加确定了。调制比测量值中由于诸如仪器电子噪声、数字化、或环境光影响等因素产生的噪声变得更加重要,但是通常可以通过很好地设计仪器和适当的信号处理而加以克服。但是当发光管波长是在主要关注的饱和度范围基础上进行选择时,由于组织光学特性产生的偏移和偏差对于这些波长的选择的意义不大了。
本发明人利用样机在羊身上进行了实验。实验观测支持在脉冲血氧计设计中采用735nm波段的红光LED,它在较低饱和度范围内对于人为扰动具有更好的适应能力。反射型脉冲血氧计传感器是采用常规的660nm-890nmLED对,和735nm-890nmLED对制造的。
图19-23表示沿X轴表示的氧饱和度从大约100%到小于10%范围内的测量结果。这些曲线图表示相对于每个实际的饱和度值(SaO2)计算出来的饱和度值(SpO2)。同时还从放置在左股骨动脉中的动脉导管中抽取血样测定实际的饱和度。SaO2利用实验室等价血氧计(仪器标号IL282或辐射计OSM-3)测得。这些值就是在这些图中的X轴上采用的值。
如所看到的,图19、20和22中的对角线表示当计算值等于从动脉血管中测得的实际值时所需要的结果。图19、20和22中所示的检测是将传感器抵住皮肤并施加大约50克的标称力而进行的。
采用660nm的传感器,使发光管/探测器在组织上中心与中心之间相隔14mm,如19表示传感器标定对于所探测组织类型是非常敏感的。在头部和在颈部上标定结果是非常不同的。
采用735nm的传感器,使发光管/探测器在组织上中心与中心之间相隔5.8mm,如图20所示头部与颈部之间的偏差大大减小了。但是对于表面贫血实质上仍然是敏感的。这在图21中表现得很清楚,该图表示了人为扰动(在传感器上施加力)的影响。
图22表示当发光管/探测器中心与中心之间相隔14mm采用735nm传感器时对位置的不敏感性。图23表示这个传感器对于施加到该传感器上的力(人为的扰动)也是不敏感的。
实验证明对于735nm/890nm的LED波长,将发光管/探测器中心与中心之间间隔从5.8mm增大会使对人为扰动的敏感程度降低,当发光管/探测器间隔等于或大于10mm时可以实现优良的特性。
模拟计算和实际实验都表明通过使红光波长在700-790nm的最佳范围内可以改善饱和度测量的可靠性。此外,通过增加发光管与探测器之间的间隔可以使当有力作用时饱和度测量误差减小。
作用在传感器上的力引起表面组织的贫血,进一步增大了由于组织的不均匀性造成的差异,或造成发光管与探测器之间光的分流,从而造成饱和度计算的误差。通过加宽发光管/探测器之间的间隔可以对此加以补偿,这使得从红光和红外光LED中发出的光在组织中穿透得更深,从而一般来说增加了它们穿透具有相同组成的组织结构的可能性,如图3所示。
图24为本发明的一个实施例中的一个传感器的俯视图。传感器表面110上安装有一个远红光LED112和一个红外光LED114。它们与一个探测器116的中心距为14mm。可取的是,远红光和红外光LED的中心之间间距不超过0.5mm。传感器表面通过一根电缆118与一个用于连接到脉冲血氧计的连接器120相连。图25为图24中传感器的侧视图,表示传感器的可转动部分122和传感器背面132。当将传感器放进子宫时,子宫将会在传感器背面132施加一个力,并使转轴122变形。如所看到的,这个技术导致有一个力作用在该传感器上,从而使得传感器-胎儿之间有良好的接触,但是有可能造成组织中局部贫血。应当记住任何传感器实施例都有可能造成局部贫血。
模拟计算和实验测量表明脉冲血氧计中调制比与饱和度的相关性与组织的光学性质有关,通过选择发光管波长可以对变化的人为扰动的灵敏度产生影响。对于高氧饱和度,选择660nm和890nm波段发光管适合于稳定的脉冲血氧计计算,而在低饱和度情况下,700-790nm和890nm波段的发光管性能更好。利用与上述相同的分析,其它波长组合可以从光谱中可见光及近红外光部分中选择。但是,目前,从仪器的总体设计考虑(例如电子信噪比和在反射型探头中采用窄间距部件时可能造成的光的分流),更愿意采用所讨论的波长。利用所述分析,还可能实现脉冲血氧计的其它改进。图19-23表示利用一些传感器样机所作检测的结果。
图26A和图26B为包含图24和25中所示发光管112和114的一体化封装结构的前视图和侧视图。两个发光管都封装在一个半导体管中,以使封装更加紧凑,从而实现最小化,这对于胎儿传感器应用是十分有利的。在图26A所示的实施例中,发光管模112利用导电环氧树脂胶130粘结到基板132上。基板132采用金属板,其外面部分134构成该封装的外部导线。发光管114安装在金属板136的顶部,其外面部分138形成第二导线。
发光管114的电子连接是通过导线138向上穿过导电环氧树脂胶的一端和在导线焊点140上的另一端构成的,所说焊点与另一导线134相连。同样,导线134通过导电环氧树脂胶130与第二发光管112相连,发光管112的另一端通过导线焊点142与导线138相连。所以,如所看到的,在两根导线134和138上施加具有第一极性的电压将使其中一个发光管发光,而关闭另一个,而翻转极性则使发光和关闭的发光管颠倒过来。这些发光管和它们相应的基板都封装在一个外壳144中,该外壳可能是例如塑料制成的。
图26B为侧视图,从侧面表示封装外壳144,表示从发光管112、114中发出的光146。图26A-26B中所示结构是紧凑的,适用于胎儿传感器的用途。可取的是,两个发光管112中心之间的距离小于2mm。这种外壳布线的方式使得该外壳具有两根导线,与四根导线不同,后者需要使用两个分开的发光管外壳。
另一种方案是采用一个远红光和一个红外LED,选择两个不同波长光谱的其它方法也是可以采用的。例如,可以使用激光元件而不是LED。或者,可以使用白光或其它光源同时使其波长对探测器而言是最优化的。这可以通过在光源或者探测器的前面使用适合的滤色器,或者通过使用一个对波长敏感的探测器而实现。如果使用了几个滤色片,可以将它们放置在探测器或者发光管前面,或者可以使滤光片在一个发光管或探测器前面交替地活化。
在宽饱和度范围内使用的脉冲血氧计可以利用多个波长对(例如与一个900nm发光管配对的660nm和730nm波段的发光管两种组合),选择用于在所测算的氧饱和度值的基础上计算SpO2的适合的发光管对。
这样一种脉冲血氧计可以用两个或多个红光LED来实现,或者采用一个光源和多个滤光片,或多个波长敏感的探测器来实现。根据病人的饱和度范围,可以使用不同的红光波谱。
如那些本领域技术人员所理解的,在不脱离本发明的基本特征的前提下可以采用其它具体方式实现本发明。根据本发明波长是可以变化的而仍然保持最优化。而且,根据本发明的构思还可以使用光波导管、光纤、多个滤光片、或多个探测器。可以使用与图25所示的转轴结构不同的传感器,例如球胆结构以使传感器可以浮起和保持在胎儿身上。所以,本发明的范围取决于所附的权利要求书。

Claims (52)

1、一种测量血氧饱和度的方法,包括以下步骤:
提供一个传感器和一个脉冲血氧计;
选择一个光源和一个光探测器;
使由所说光探测器接收的从所说光源发出的光的波长谱对于小于80%的氧饱和度值最优化;
将所说传感器放置在病人身上;和
利用所说传感器和所说脉冲血氧计测定所说的血氧饱和度。
2、如权利要求1所述的方法,其特征在于:所说的最优化步骤是针对一个胎儿的氧饱和度进行的。
3、如权利要求2所述的方法,其特征在于:包括对于小于65%的氧饱和度值使所说波长谱最优化的步骤。
4、如权利要求2所述的方法,其特征在于:包括对于大于15%的氧饱和度值使所说波长谱最优化的步骤。
5、如权利要求2所述的方法,其特征在于还包括以下步骤:
将一个探测器放置在所说传感器上;
使所说光源与所说探测器的间距最优化以减小所说传感器对于人为扰动的敏感程度;
由所说的探测器利用通过所说胎儿散射出来的光测量从所说光源发出的光强度。
6、如权利要求4所述的方法,其特征在于:所说光入射到所说组织中的位置与从所说组织中收集所说光的位置之间的间距至少为10mm。
7、如权利要求1所述的方法,其特征在于:所述的接收到的光包括红光光谱和红外光光谱,所说红光光谱和红外光光谱都具有与充血组织相关的消光和吸收系数,所说最优化步骤包括在所说红光谱和红外光谱中选择波长谱的步骤,所说红光谱和红外光谱各自的消光和散射系数的乘积形成第一值和第二值,所说第一值与第二值之间的比值对于0-65%的氧饱和度值范围的大部分为0.5-2。
8、如权利要求2所述的方法,其特征在于:所接收的光包括红光谱和红外光谱,所说最优化步骤包括使用在适用于具有高饱和度的病人的所说红外光谱范围中的第一光谱,并使该红光谱与适于胎儿的第二光谱适配。
9、如权利要求8所述的方法,其特征在于:所说第二光谱的平均波长在700-900nm之间。
10、如权利要求8所述的方法,其特征在于:所说第二光谱包括强度至少为所说第二光谱中其它任何波长光强度的50%的735nm波长的光。
11、如权利要求2所述的方法,其特征在于:所说最优化步骤,与在具有高饱和度的病人情况下的最佳穿透深度相比,增加了所说光在一个胎儿中的穿透深度。
12、如权利要求1所述的方法,其特征在于:所说最优化步骤减小了所说测定步骤对于人为扰动的敏感性。
13、如权利要求1所述的方法,其特征在于:所说最优化步骤包括选择所说的光源使之具有所需要的波长谱的步骤。
14、如权利要求1所述的方法,其特征在于:所说最优化步骤包括选择探测有限光谱的所说光探测器的步骤。
15、如权利要求1所述的方法,其特征在于:所说最优化步骤包括将所说光源滤光以通过所需波长光谱的步骤。
16、如权利要求1所述的方法,其特征在于:它还包括对于大于80%的氧饱和度值交替地使由所说光探测器接收到的、从所说光源中发出的所说波长谱最优化的步骤。
17、一种测量胎儿血氧饱和度的方法,它包括以下步骤:
提供一个传感器和一个脉冲血氧计;
选择一个光源和一个光探测器;
用所说探测器探测包括红光谱和红外光谱的光;
从红外光谱中选择适用于测量具有高饱和度的病人的氧饱和度的波长谱;
将所说红光谱的一个波长谱对于15-65%的氧饱和度最优化到平均波长在700-790nm,所说最优化增加了血氧饱和度测量不受人为扰动影响的可能;
将所说传感器放置在所说胎儿身上;
在光从所说胎儿身体的某一部分散射之后由所说光探测器测量从所说光源中发出的至少两个光信号的强度;和
利用所说强度和所说脉冲血氧计测定所说血氧饱和度。
18、如权利要求17所述的方法,其特征在于它还包括从所探测的通过所说胎儿的身体的一个部位散射的光中测定第三光信号的步骤,该第三光信号具有小于700nm的平均波长,并且对于大于65%氧饱和度值被最优化。
19、一种使用脉冲血氧计测量病人的血氧饱和度的方法,它包括以下步骤:
针对一个传感器选择一个光源和一个光探测器;
由所说探测器探测的光包括第一和第二光谱,每个光谱具有与充血组织相关的消光和吸收系数;
通过选择波长谱使所说光谱最优化,所说波长谱各自的消光和散射系数的乘积构成第一值和第二值,所说第一值和第二值之间的比值对于0-65%的饱和度值的大部分范围在0.5-2之间;
将所说传感器放置到所说病人身上;和
利用所说传感器和所说脉冲血氧计测定所说血氧饱和度。
20、如权利要求19所述的方法,其特征在于还包括交替地使所说光谱对于大于65%的氧饱和度值范围最优化的步骤。
21、一种测量胎儿中血氧饱和度的方法,它包括以下步骤:
提供一个传感器和一个脉冲血氧计;
选择一个远红光和红外光源以及一个光探测器;
由所说探测器探测包括用于测量具有高饱和度病人的氧饱和度的红外波长谱的光,所探测光包括平均波长为700-790nm之间的远红波长谱;
将所说光源放置在一体化封装的外壳中,并将所说外壳安装在所说传感器上;
将所说传感器放置在所说胎儿身上;
在光通过所说胎儿身体的一个部位散射之后由所说光探测器测量从所说光源发出的光的强度;和
利用所说强度和所说脉冲血氧计测定所说血氧饱和度。
22、如权利要求21所述的方法,其特征在于还包括以下步骤:
选择一个第二红光光源;
选择具有小于700nm的平均波长的所说第二红光光源的波长谱;和
选择性激活所说第一和第二红光光源中的一个或两者。
23、一种胎儿脉冲血氧计,它包括:
一个外壳;
安装在所说外壳中的至少一个光源;
安装在所说外壳中的至少一个探测器;
用于探测被胎儿组织散射的光的装置,所说光包括红外光谱,所说红外光谱的范围适用于测量高氧饱和度病人的氧饱和度,所探测的光还包括红光谱,所说红光谱的平均波长在700-790nm之间;和
安装在所说外壳中的所说探测器与所说光源隔开,并设置在探测从所说光源发出的光的位置。
24、如权利要求23所述的传感器,其特征在于:所说的光源包括至少一个LED。
25、如权利要求23所述的传感器,其特征在于:所说的光源包括红光和红外光源,它们与所说探测器分开至少10mm。
26、如权利要求23所述的传感器,其特征在于:所说光源包括红光和红外光源,所说光源与所说探测器分开至少14mm。
27、如权利要求23所述的传感器,其特征在于:所说装置包括可发射有限光谱的光源。
28、如权利要求23所述的传感器,其特征在于:所说装置包括设置在所说光源和所说探测器之间的滤光片,用于通过限定的光谱。
29、如权利要求23所述的传感器,其特征在于:所说装置包括对波长敏感的探测器,该探测器探测限定的光谱。
30、如权利要求23所述的传感器,其特征在于它还包括:
用于提供具有平均波长小于700nm的红光光谱的装置。
31、如权利要求30所述的传感器,其特征在于:
所说用于提供平均波长在700-790nm之间的红光光谱的装置是一个第一发光二极管;和
所说用于提供平均波长小于700nm的红光光谱的装置是一个第二发光二极管。
32、用于测量血氧饱和度的一种脉冲血氧计传感器,它包括:
一个光源;
一个光探测器;
所说光源和所说光探测器中的一个包括产生具有第一和第二光谱的光的装置,对于每个光谱在充血组织中的消光和吸收系数的乘积最优化,这些乘积构成第一值和第二值,在小于80%的氧饱和度的大部分范围内所说第一值与第二值之间的比值在0.5-2之间。
33、如权利要求32所述的传感器,其特征在于:所说的光源和所说的探测器间隔至少14mm。
34、如权利要求32所述的传感器,其特征在于:它还包括用于产生具有平均波长小于700nm的红光光谱的装置。
35、一种用于测量胎儿血氧饱和度的脉冲血氧计传感器,包括:
一个辐射源;
一个辐射探测器;
所说源和所说探测器中至少一个被最优化以减小在饱和度低于65%的情况下血氧饱和度测量对于人为扰动的敏感性。
36、如权利要求35所述的传感器,其特征在于:所说的辐射源包括红光和红外光LED,它们与所说的探测器间隔至少10mm。
37、如权利要求35所述的传感器,其特征在于:所说的辐射源包括红光和红外光LED,它们与所说的探测器间隔14mm。
38、如权利要求35所述的传感器,其特征在于它还包括用于在氧饱和度大于65%的情况下交替地使所说源和探测器最优化的装置。
39、如权利要求38所述的传感器,其特征在于它还包括一个平均波长小于700nm的第二红光光源。
40、一种用于测量胎儿血氧饱和度的传感器,它包括:
一个红外光源,其具有用于测量具有高饱和度的病人的氧饱和度的波长谱;
一个平均波长在700-790nm之间的深红光光源;和
一个将所说红光源和红外光源封闭在其中的一体式封装外壳,所说外壳安装在所说传感器上。
41、一种使用脉冲血氧计的方法,包括以下步骤:
从一个传感器接收由从组织散射光得到的至少第一和第二信号,所说光具有至少第一和第二波长谱,所说第一和第二谱是对于小于80%的氧饱和度值最优化的;和
利用适合于所说第一和第二最优化光谱的系数计算氧饱和度。
42、一种测量胎儿血氧饱和度的方法,包括以下步骤:
提供一个传感器和一个脉冲血氧计;
选择一个光源和一个远红和红外光探测器;
由所说探测器探测包括用于测量具有高饱和度病人的氧饱和度的一个红外光波长谱的光,所探测的光包括平均波长在700-790nm之间的远红波长谱;
将所说光探测器放入一个单独的封装外壳并将所说的外壳安装在所说的传感器上;
将所说传感器放在所说胎儿身上;
用所说光探测器测量从所说光源发出的光在通过所说胎儿身上的一个部位散射之后的强度;
利用所说强度和所说脉冲血氧计确定所说血氧饱和度。
43、如权利要求42所述的方法,它还包括以下步骤:
选择所说的探测器以探测第二红光光谱;
从所说平均波长小于700nm的第二红光光谱中选择一个波长谱;和
有选择地探测所说第一或第二红光光谱中的一个或者两者。
44、一种脉冲血氧计,包括:
一个输入连接器,用于从传感器中接收利用通过组织上散射的光得到的至少第一和第二信号,所说光具有至少第一和第二波长谱;
一个存储器,用于存储适合于所说第一和第二光谱的系数,所说光谱是对于小于80%的氧饱和度值最优化的;和
一个处理器,其与所说的存储器和所说的输入连接器相连,用于采用所说的系数计算氧饱和度。
45、如权利要求44所述的脉冲血氧计,其特征在于:所说的第一波长谱的平均波长在700-790nm之间。
46、如权利要求45所述的脉冲血氧计,其特征在于它还包括:
一个探测器,其与所说连接器相连、用于探测从一个传感器传送的指示平均波长在700-790nm之间的所说第一波长谱的编码信号。
47、如权利要求46所述的脉冲血氧计,其特征在于它还包括:
一个解码器,其与所说的探测器和所说的存储器相连,用于根据所说编码信号从所说存储器中选择适合的系数。
48、如权利要求46所述的脉冲血氧计,其特征在于:所说的探测器还包括向在所说传感器中的一个阻抗元件通以电流的装置,所说的阻抗元件的值标示所说第一波长谱平均波长在700-790nm之间。
49、一个胎儿脉冲血氧计,它包括:
一个输入连接器,用于从所说传感器中接收由通过胎儿组织中散射出来的光得到的至少第一和第二信号,所说光至少包括红光和红外光谱;
一个存储器,用于存储适合于所说红外光谱和所说红光光谱的系数,所说红外光谱的波长范围适用于测量高饱和度病人的氧饱和度,所说红光光谱的平均波长在700-790nm之间;
一个处理器,其与所说的存储器和所说的输入连接器相连,用于采用所说的系数计算氧饱和度。
50、如权利要求49所述的脉冲血氧计,其特征在于所说的存储器还包括:
适合于平均波长小于700nm的红光光谱的系数。
51、一个脉冲血氧计,它包括:
一个输入连接器,用于从一个传感器中接收由从组织中散射出来的光得到的至少第一和第二信号,所说光至少包括红光和红外光谱;
一个存储器,用于存储适合于所说光谱的系数,每个光谱各自的在充血组织中的消光和散射系数的乘积都被最优化,这些乘积构成第一和第二值,对于小于80%的大部分氧饱和度范围所说第一和第二值之间的比值在0.5-2之间;和
一个处理器,其与所说存储器相连,用于采用所说系数计算氧饱和度。
52、一种用于测量胎儿血氧饱和度的脉冲血氧计,包括:
一个输入连接器,用于从所说传感器中接收由所探测的至少包括红光和红外光谱的光得到的至少第一和第二信号,所说光从组织中散射出来;
一个存储器,用于存储适合于所说光谱的系数,所说光谱被最优化以减小对于小于65%饱和度病人的血氧饱和度值测量对于人为扰动的敏感性;和
一个处理器,其与所说存储器相连,用于采用所说的系数计算氧饱和度。
CN95193200A 1994-04-01 1995-03-31 适用于低饱和度的脉冲血氧计传感器及血氧饱和度的测量方法 Expired - Fee Related CN1100514C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/221,911 US5421329A (en) 1994-04-01 1994-04-01 Pulse oximeter sensor optimized for low saturation
US08/221,911 1994-04-01

Publications (2)

Publication Number Publication Date
CN1148794A true CN1148794A (zh) 1997-04-30
CN1100514C CN1100514C (zh) 2003-02-05

Family

ID=22829941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95193200A Expired - Fee Related CN1100514C (zh) 1994-04-01 1995-03-31 适用于低饱和度的脉冲血氧计传感器及血氧饱和度的测量方法

Country Status (18)

Country Link
US (3) US5421329A (zh)
EP (2) EP0992214B1 (zh)
JP (1) JPH10500323A (zh)
KR (1) KR100376649B1 (zh)
CN (1) CN1100514C (zh)
AT (2) ATE286670T1 (zh)
AU (1) AU705934B2 (zh)
BR (1) BR9507265A (zh)
CA (1) CA2186225C (zh)
DE (2) DE69518235T2 (zh)
DK (2) DK0754007T3 (zh)
ES (2) ES2237028T3 (zh)
FI (1) FI963921A (zh)
GR (1) GR3034711T3 (zh)
NO (1) NO964143L (zh)
NZ (1) NZ283905A (zh)
PT (2) PT992214E (zh)
WO (1) WO1995026676A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298284C (zh) * 2002-02-14 2007-02-07 加藤俊德 生物体机能诊断装置
US7471970B2 (en) 2005-03-10 2008-12-30 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method for measuring blood oxygen content under low perfusion
US8029978B2 (en) 2005-02-25 2011-10-04 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Processing method for the long-term stabilization of biological red blood cell volume
US8050730B2 (en) 2005-12-23 2011-11-01 Shenzhen Mindray Bio-Medical Electrics Co., Ltd. Method and apparatus for eliminating interference in pulse oxygen measurement
CN103908262A (zh) * 2012-12-28 2014-07-09 财团法人工业技术研究院 生理信号测量装置及生理信号测量方法
CN105434041A (zh) * 2014-09-18 2016-03-30 韦伯斯特生物官能(以色列)有限公司 多量程光学传感
CN105636510A (zh) * 2014-07-18 2016-06-01 卫保数码有限公司 适于监测身体部位内的动脉血的装置和方法
CN106255450A (zh) * 2014-05-02 2016-12-21 莱斯比哈特公司 用于从胸骨骨骼确定生理参数的设备和系统
CN106999117A (zh) * 2014-12-04 2017-08-01 奥斯兰姆奥普托半导体有限责任公司 脉搏血氧测定装置和用于操作脉搏血氧测定装置的方法
CN108420440A (zh) * 2018-02-28 2018-08-21 北京维特兴科技有限公司 发光光源装置及胎儿血氧光信号采集装置
CN108420442A (zh) * 2018-04-13 2018-08-21 南方科技大学 一种可穿戴式血氧监测装置及系统、血氧监测方法
CN108471950A (zh) * 2015-12-30 2018-08-31 曜谛测氧股份有限公司 用于进行经腹胎儿血氧饱和度及/或经腹胎儿脉搏血氧饱和度监测的系统、装置及方法
CN112137609A (zh) * 2020-08-31 2020-12-29 北京津发科技股份有限公司 多生理指标采集装置

Families Citing this family (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6662033B2 (en) * 1994-04-01 2003-12-09 Nellcor Incorporated Pulse oximeter and sensor optimized for low saturation
US5421329A (en) * 1994-04-01 1995-06-06 Nellcor, Inc. Pulse oximeter sensor optimized for low saturation
DE19512478C2 (de) * 1994-08-10 2001-05-31 Bernreuter Peter Verfahren zur Bestimmung der arteriellen Sauerstoffsättigung
DE4442855B4 (de) * 1994-12-01 2004-04-01 Gerhard Dipl.-Ing. Rall Verwendung einer Pulsoxymetrie-Sensoreinrichtung
US5685301A (en) * 1995-06-16 1997-11-11 Ohmeda Inc. Apparatus for precise determination of operating characteristics of optical devices contained in a monitoring probe
US5853364A (en) * 1995-08-07 1998-12-29 Nellcor Puritan Bennett, Inc. Method and apparatus for estimating physiological parameters using model-based adaptive filtering
FI962448A (fi) * 1996-06-12 1997-12-13 Instrumentarium Oy Menetelmä, laite ja anturi fraktionaalisen happikyllästyksen määrittämistä varten
AT404513B (de) * 1996-07-12 1998-12-28 Avl Verbrennungskraft Messtech Verfahren und messanordnung zur optischen bestimmung der totalen hämoglobinkonzentration
ATE346539T1 (de) * 1996-07-19 2006-12-15 Daedalus I Llc Vorrichtung zur unblutigen bestimmung von blutwerten
US6018673A (en) * 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US5851179A (en) * 1996-10-10 1998-12-22 Nellcor Puritan Bennett Incorporated Pulse oximeter sensor with articulating head
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
CA2303803A1 (en) * 1997-06-17 1998-12-23 Respironics, Inc. Fetal oximetry system and sensor
AU1608099A (en) * 1997-11-26 1999-06-15 Somanetics Corporation Method and apparatus for monitoring fetal cerebral oxygenation during childbirth
US6694157B1 (en) 1998-02-10 2004-02-17 Daedalus I , L.L.C. Method and apparatus for determination of pH pCO2, hemoglobin, and hemoglobin oxygen saturation
WO1999047039A1 (en) * 1998-03-19 1999-09-23 Jukka Aihonen Infrared oximeter fitting to its positioning place
US6285896B1 (en) * 1998-07-13 2001-09-04 Masimo Corporation Fetal pulse oximetry sensor
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US7047054B2 (en) * 1999-03-12 2006-05-16 Cas Medical Systems, Inc. Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation monitoring
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
AU1814001A (en) * 1999-12-02 2001-06-12 Johns Hopkins University, The Method of measuring tissue hemoglobin saturation using gaussian decomposition
EP1251770A4 (en) * 2000-01-28 2005-05-25 Gen Hospital Corp FÖTALE PULSE OXIMETRY
US6453183B1 (en) * 2000-04-10 2002-09-17 Stephen D. Walker Cerebral oxygenation monitor
ES2392818T3 (es) 2000-04-17 2012-12-14 Nellcor Puritan Bennett Llc Sensor de pulsioxímetro con función a tramos
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US6456862B2 (en) 2000-05-02 2002-09-24 Cas Medical Systems, Inc. Method for non-invasive spectrophotometric blood oxygenation monitoring
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US6889153B2 (en) 2001-08-09 2005-05-03 Thomas Dietiker System and method for a self-calibrating non-invasive sensor
WO2002014793A2 (en) * 2000-08-11 2002-02-21 Elekon Industries, Inc. System and method for a self-calibrating non-invasive sensor
IL138884A (en) 2000-10-05 2006-07-05 Conmed Corp Pulse oximeter and a method of its operation
US6512938B2 (en) * 2000-12-12 2003-01-28 Nelson R. Claure System and method for closed loop controlled inspired oxygen concentration
IL145445A (en) * 2001-09-13 2006-12-31 Conmed Corp A method for signal processing and a device for improving signal for noise
US6748254B2 (en) 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US6711425B1 (en) 2002-05-28 2004-03-23 Ob Scientific, Inc. Pulse oximeter with calibration stabilization
JP4167860B2 (ja) * 2002-07-08 2008-10-22 株式会社日立製作所 生体光計測装置
US6997879B1 (en) 2002-07-09 2006-02-14 Pacesetter, Inc. Methods and devices for reduction of motion-induced noise in optical vascular plethysmography
US7738935B1 (en) 2002-07-09 2010-06-15 Pacesetter, Inc. Methods and devices for reduction of motion-induced noise in pulse oximetry
AU2003254135B2 (en) 2002-07-26 2006-11-16 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
US6850314B2 (en) * 2002-08-08 2005-02-01 Board Of Reagents University Of Houston Method for optical sensing
US6879850B2 (en) 2002-08-16 2005-04-12 Optical Sensors Incorporated Pulse oximeter with motion detection
US6763256B2 (en) 2002-08-16 2004-07-13 Optical Sensors, Inc. Pulse oximeter
US7190986B1 (en) 2002-10-18 2007-03-13 Nellcor Puritan Bennett Inc. Non-adhesive oximeter sensor for sensitive skin
US20040082842A1 (en) * 2002-10-28 2004-04-29 Lumba Vijay K. System for monitoring fetal status
US6948761B2 (en) * 2002-11-01 2005-09-27 The Colonel's International, Inc. Tonneau cover apparatus
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US7283242B2 (en) * 2003-04-11 2007-10-16 Thornton Robert L Optical spectroscopy apparatus and method for measurement of analyte concentrations or other such species in a specimen employing a semiconductor laser-pumped, small-cavity fiber laser
US7633621B2 (en) * 2003-04-11 2009-12-15 Thornton Robert L Method for measurement of analyte concentrations and semiconductor laser-pumped, small-cavity fiber lasers for such measurements and other applications
US20050059869A1 (en) * 2003-09-15 2005-03-17 John Scharf Physiological monitoring system and improved sensor device
EP1547515A1 (en) * 2003-12-22 2005-06-29 Barts and The London National Health Service Trust Optical fibre catheter pulse oximeter
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
US20060122520A1 (en) * 2004-12-07 2006-06-08 Dr. Matthew Banet Vital sign-monitoring system with multiple optical modules
US20070048096A1 (en) * 2004-12-07 2007-03-01 Hubbs Jonathan W Soil conditioner
EP1824379B1 (en) 2004-12-08 2017-04-12 The General Hospital Corporation System and method for normalized fluorescence or bioluminescence imaging
GB0426993D0 (en) 2004-12-09 2005-01-12 Council Cent Lab Res Councils Apparatus for depth-selective raman spectroscopy
US8190223B2 (en) 2005-03-01 2012-05-29 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
EP1885235B1 (en) 2005-05-12 2013-12-18 Cas Medical Systems, Inc. Improved method for spectrophotometric blood oxygenation monitoring
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US20070060808A1 (en) 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8092379B2 (en) 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7555327B2 (en) 2005-09-30 2009-06-30 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US7486979B2 (en) 2005-09-30 2009-02-03 Nellcor Puritan Bennett Llc Optically aligned pulse oximetry sensor and technique for using the same
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US7460248B2 (en) * 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
EP2043522A4 (en) * 2006-06-16 2010-01-06 Medtor Llc SYSTEM AND METHOD FOR NON-INVASIVE MEDICAL SENSOR
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8190224B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US8123695B2 (en) * 2006-09-27 2012-02-28 Nellcor Puritan Bennett Llc Method and apparatus for detection of venous pulsation
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8396524B2 (en) * 2006-09-27 2013-03-12 Covidien Lp Medical sensor and technique for using the same
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7476131B2 (en) 2006-09-29 2009-01-13 Nellcor Puritan Bennett Llc Device for reducing crosstalk
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
EP1946697A1 (en) * 2007-01-16 2008-07-23 CSEM Centre Suisse d'Electronique et de Microtechnique SA Recherche et Développement Device for monitoring arterial oxygen saturation
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8221326B2 (en) * 2007-03-09 2012-07-17 Nellcor Puritan Bennett Llc Detection of oximetry sensor sites based on waveform characteristics
US8109882B2 (en) 2007-03-09 2012-02-07 Nellcor Puritan Bennett Llc System and method for venous pulsation detection using near infrared wavelengths
US8229530B2 (en) * 2007-03-09 2012-07-24 Nellcor Puritan Bennett Llc System and method for detection of venous pulsation
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
JP5227525B2 (ja) * 2007-03-23 2013-07-03 株式会社日立製作所 生体光計測装置
WO2008118993A1 (en) 2007-03-27 2008-10-02 Masimo Laboratories, Inc. Multiple wavelength optical sensor
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US20090171176A1 (en) * 2007-12-28 2009-07-02 Nellcor Puritan Bennett Llc Snapshot Sensor
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
DE102008017403A1 (de) * 2008-04-05 2009-10-08 Bluepoint Medical Gmbh & Co. Kg Messvorrichtung
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US8577431B2 (en) 2008-07-03 2013-11-05 Cercacor Laboratories, Inc. Noise shielding for a noninvasive device
US8630691B2 (en) 2008-08-04 2014-01-14 Cercacor Laboratories, Inc. Multi-stream sensor front ends for noninvasive measurement of blood constituents
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8423112B2 (en) * 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US20100088957A1 (en) * 2008-10-09 2010-04-15 Hubbs Jonathan W Natural turf with binder
US20100216639A1 (en) * 2009-02-20 2010-08-26 Hubbs Jonathon W Gypsum soil conditioner
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8505821B2 (en) 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US9010634B2 (en) 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8391941B2 (en) 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
DE112010004682T5 (de) 2009-12-04 2013-03-28 Masimo Corporation Kalibrierung für mehrstufige physiologische Monitore
US20110237910A1 (en) * 2010-03-23 2011-09-29 Cas Medical Systems, Inc. Stabilized multi-wavelength laser system for non-invasive spectrophotometric monitoring
US7884933B1 (en) 2010-05-05 2011-02-08 Revolutionary Business Concepts, Inc. Apparatus and method for determining analyte concentrations
US10314650B2 (en) 2010-06-16 2019-06-11 Biosense Webster (Israel) Ltd. Spectral sensing of ablation
US11490957B2 (en) 2010-06-16 2022-11-08 Biosense Webster (Israel) Ltd. Spectral sensing of ablation
US20140171806A1 (en) * 2012-12-17 2014-06-19 Biosense Webster (Israel), Ltd. Optical lesion assessment
US8649838B2 (en) * 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
JP5710767B2 (ja) 2010-09-28 2015-04-30 マシモ コーポレイション オキシメータを含む意識深度モニタ
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
US20120253151A1 (en) * 2011-03-30 2012-10-04 Nellcor Puritan Bennett Llc Multiple Wavelength Pulse Oximetry With Sensor Redundancy
US9392970B2 (en) 2011-08-10 2016-07-19 Wristdocs Llc Biotelemetry system
US9649055B2 (en) 2012-03-30 2017-05-16 General Electric Company System and methods for physiological monitoring
US20130310669A1 (en) * 2012-05-20 2013-11-21 Jerusalem College Of Technology Pulmonary pulse oximetry method for the measurement of oxygen saturation in the mixed venous blood
CN103784150A (zh) * 2012-10-30 2014-05-14 东莞永胜医疗制品有限公司 一种血氧饱和度测量方法及测量仪
CN103381094B (zh) * 2013-05-17 2015-01-21 王义向 胎儿脉搏血氧饱和度监测系统及方法
US10448870B2 (en) 2013-05-20 2019-10-22 Wristdocs Llc Pulse oximeter sensor
JP6344725B2 (ja) * 2013-05-24 2018-06-20 国立大学法人浜松医科大学 触診用近赤外酸素濃度センサ
US9848808B2 (en) 2013-07-18 2017-12-26 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
GB2519335A (en) 2013-10-17 2015-04-22 Univ Loughborough Opto-physiological sensor and method of design
US10215698B2 (en) 2014-09-02 2019-02-26 Apple Inc. Multiple light paths architecture and obscuration methods for signal and perfusion index optimization
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
US10485463B2 (en) 2014-10-10 2019-11-26 Medtor Llc System and method for a non-invasive medical sensor
KR102415906B1 (ko) * 2015-04-14 2022-07-01 엘지이노텍 주식회사 인체 착용 장치 및 이의 동작 방법
DE102016109694A1 (de) 2016-05-25 2017-11-30 Osram Opto Semiconductors Gmbh Sensorvorrichtung
US11864909B2 (en) 2018-07-16 2024-01-09 Bbi Medical Innovations, Llc Perfusion and oxygenation measurement

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638640A (en) * 1967-11-01 1972-02-01 Robert F Shaw Oximeter and method for in vivo determination of oxygen saturation in blood using three or more different wavelengths
CA971768A (en) * 1972-02-01 1975-07-29 Robert F. Shaw Oximeter and method
US4114604A (en) * 1976-10-18 1978-09-19 Shaw Robert F Catheter oximeter apparatus and method
CA1089252A (en) * 1976-10-18 1980-11-11 John M. Sperinde Optical catheter not requiring individual calibration
CA1094341A (en) * 1976-10-18 1981-01-27 Robert F. Shaw Sterilizable, disposable optical scattering reference medium
US4281645A (en) * 1977-06-28 1981-08-04 Duke University, Inc. Method and apparatus for monitoring metabolism in body organs
US4770179A (en) 1982-09-02 1988-09-13 Nellcor Incorporated Calibrated optical oximeter probe
US4700708A (en) * 1982-09-02 1987-10-20 Nellcor Incorporated Calibrated optical oximeter probe
US4623248A (en) * 1983-02-16 1986-11-18 Abbott Laboratories Apparatus and method for determining oxygen saturation levels with increased accuracy
US4830014A (en) 1983-05-11 1989-05-16 Nellcor Incorporated Sensor having cutaneous conformance
US4938218A (en) * 1983-08-30 1990-07-03 Nellcor Incorporated Perinatal pulse oximetry sensor
US5109849A (en) * 1983-08-30 1992-05-05 Nellcor, Inc. Perinatal pulse oximetry sensor
US4714341A (en) * 1984-02-23 1987-12-22 Minolta Camera Kabushiki Kaisha Multi-wavelength oximeter having a means for disregarding a poor signal
US4859057A (en) * 1987-10-13 1989-08-22 Lawrence Medical Systems, Inc. Oximeter apparatus
US4975581A (en) * 1989-06-21 1990-12-04 University Of New Mexico Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids
EP0613652B1 (en) * 1990-02-15 1997-04-16 Hewlett-Packard GmbH Apparatus and method for non-invasive measurement of oxygen saturation
US5419321A (en) * 1990-05-17 1995-05-30 Johnson & Johnson Professional Products Limited Non-invasive medical sensor
WO1991018549A1 (en) * 1990-05-29 1991-12-12 Yue Samuel K Fetal probe apparatus
WO1992015955A1 (en) * 1991-03-07 1992-09-17 Vital Signals, Inc. Signal processing apparatus and method
US5247932A (en) * 1991-04-15 1993-09-28 Nellcor Incorporated Sensor for intrauterine use
WO1992021283A1 (en) * 1991-06-06 1992-12-10 Somanetics Corporation Optical cerebral oximeter
DE69227545T2 (de) * 1991-07-12 1999-04-29 Mark R Robinson Oximeter zur zuverlässigen klinischen Bestimmung der Blutsauerstoffsättigung in einem Fötus
US5413100A (en) * 1991-07-17 1995-05-09 Effets Biologiques Exercice Non-invasive method for the in vivo determination of the oxygen saturation rate of arterial blood, and device for carrying out the method
EP0527703B1 (de) * 1991-08-12 1995-06-28 AVL Medical Instruments AG Einrichtung zur Messung mindestens einer Gassättigung, insbesondere der Sauerstoffsättigung von Blut
US5385143A (en) * 1992-02-06 1995-01-31 Nihon Kohden Corporation Apparatus for measuring predetermined data of living tissue
US5355880A (en) * 1992-07-06 1994-10-18 Sandia Corporation Reliable noninvasive measurement of blood gases
US5497769A (en) * 1993-12-16 1996-03-12 I.S.S. (Usa) Inc. Photosensor with multiple light sources
US5421329A (en) * 1994-04-01 1995-06-06 Nellcor, Inc. Pulse oximeter sensor optimized for low saturation
DE19512478C2 (de) * 1994-08-10 2001-05-31 Bernreuter Peter Verfahren zur Bestimmung der arteriellen Sauerstoffsättigung
US5782756A (en) * 1996-09-19 1998-07-21 Nellcor Puritan Bennett Incorporated Method and apparatus for in vivo blood constituent analysis

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298284C (zh) * 2002-02-14 2007-02-07 加藤俊德 生物体机能诊断装置
US8029978B2 (en) 2005-02-25 2011-10-04 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Processing method for the long-term stabilization of biological red blood cell volume
US7471970B2 (en) 2005-03-10 2008-12-30 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method for measuring blood oxygen content under low perfusion
US8275434B2 (en) 2005-03-10 2012-09-25 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method for measuring blood oxygen content under low perfusion
US8050730B2 (en) 2005-12-23 2011-11-01 Shenzhen Mindray Bio-Medical Electrics Co., Ltd. Method and apparatus for eliminating interference in pulse oxygen measurement
CN103908262A (zh) * 2012-12-28 2014-07-09 财团法人工业技术研究院 生理信号测量装置及生理信号测量方法
CN103908262B (zh) * 2012-12-28 2016-04-27 财团法人工业技术研究院 生理信号测量装置及生理信号测量方法
CN106255450A (zh) * 2014-05-02 2016-12-21 莱斯比哈特公司 用于从胸骨骨骼确定生理参数的设备和系统
CN105636510A (zh) * 2014-07-18 2016-06-01 卫保数码有限公司 适于监测身体部位内的动脉血的装置和方法
US10806355B2 (en) 2014-07-18 2020-10-20 Well Being Digital Limited Device and method suitable for monitoring arterial blood in a body part
US11653846B2 (en) 2014-07-18 2023-05-23 Well Being Digital Limited Device and method suitable for monitoring arterial blood in a body part
CN105434041A (zh) * 2014-09-18 2016-03-30 韦伯斯特生物官能(以色列)有限公司 多量程光学传感
CN106999117A (zh) * 2014-12-04 2017-08-01 奥斯兰姆奥普托半导体有限责任公司 脉搏血氧测定装置和用于操作脉搏血氧测定装置的方法
CN108471950A (zh) * 2015-12-30 2018-08-31 曜谛测氧股份有限公司 用于进行经腹胎儿血氧饱和度及/或经腹胎儿脉搏血氧饱和度监测的系统、装置及方法
CN108420440A (zh) * 2018-02-28 2018-08-21 北京维特兴科技有限公司 发光光源装置及胎儿血氧光信号采集装置
CN108420442A (zh) * 2018-04-13 2018-08-21 南方科技大学 一种可穿戴式血氧监测装置及系统、血氧监测方法
CN112137609A (zh) * 2020-08-31 2020-12-29 北京津发科技股份有限公司 多生理指标采集装置

Also Published As

Publication number Publication date
BR9507265A (pt) 1997-10-07
CA2186225C (en) 2010-10-12
EP0754007B1 (en) 2000-08-02
ES2148509T3 (es) 2000-10-16
NO964143D0 (no) 1996-09-30
KR100376649B1 (ko) 2003-07-23
CA2186225A1 (en) 1995-10-12
ATE195063T1 (de) 2000-08-15
DE69518235T2 (de) 2001-03-01
DK0754007T3 (da) 2000-10-23
ES2237028T3 (es) 2005-07-16
EP0992214A3 (en) 2003-12-10
DE69533927D1 (de) 2005-02-17
KR970702009A (ko) 1997-05-13
US5421329A (en) 1995-06-06
PT992214E (pt) 2005-03-31
FI963921A (fi) 1996-11-28
JPH10500323A (ja) 1998-01-13
NZ283905A (en) 1997-11-24
PT754007E (pt) 2000-11-30
DE69518235D1 (de) 2000-09-07
CN1100514C (zh) 2003-02-05
ATE286670T1 (de) 2005-01-15
EP0992214B1 (en) 2005-01-12
DE69533927T2 (de) 2005-06-02
AU2236095A (en) 1995-10-23
US5782237A (en) 1998-07-21
NO964143L (no) 1996-11-29
DK0992214T3 (da) 2005-05-17
GR3034711T3 (en) 2001-01-31
US6272363B1 (en) 2001-08-07
FI963921A0 (fi) 1996-09-30
EP0992214A2 (en) 2000-04-12
WO1995026676A1 (en) 1995-10-12
AU705934B2 (en) 1999-06-03
EP0754007A1 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
CN1100514C (zh) 适用于低饱和度的脉冲血氧计传感器及血氧饱和度的测量方法
US7415298B2 (en) Pulse oximeter and sensor optimized for low saturation
US8694067B2 (en) Sensor, apparatus and method for non-invasively monitoring blood characteristics of a subject
US9380969B2 (en) Systems and methods for varying a sampling rate of a signal
US8219170B2 (en) System and method for practicing spectrophotometry using light emitting nanostructure devices
EP0477355A1 (en) PERINATAL PULSE OXYMETRY PROBE.
JP2007532188A (ja) 空間的に均等のマルチカラーソースを用いたフォトプレチスモグラフィ
US20210228161A1 (en) Tissue hemoglobin measuring instrument and tomographic reconstruction method for oxyhemoglobin/deoxyhemoglobin concentrations
CN219613843U (zh) 一种无创光电容积脉搏波信号采集装置
CN214157317U (zh) 一种脑组织血氧监测装置
Reddy et al. A novel method of measurement of oxygen saturation in arterial blood
Cysewska-Sobusiak et al. Examples of the application of light-tissue interaction to biomedical engineering
Cysewska-Sobusiak et al. Examples of transillumination techniques used in medical measurements and imaging
CN112426153A (zh) 一种脑组织血氧监测装置
JP2019130070A (ja) 生体情報測定装置
CYSEWSKA-SOBUSIAK et al. EXAMPLES OF MEDICAL IMAGING AND MEASUREMENTS BASED ON THE NONINVASIVE TISSUE TRANSILLUMINATION

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030205

Termination date: 20120331