CN1158567C - 利用非线性萨格奈克放大器获得平坦增益的系统和方法 - Google Patents

利用非线性萨格奈克放大器获得平坦增益的系统和方法 Download PDF

Info

Publication number
CN1158567C
CN1158567C CNB008109729A CN00810972A CN1158567C CN 1158567 C CN1158567 C CN 1158567C CN B008109729 A CNB008109729 A CN B008109729A CN 00810972 A CN00810972 A CN 00810972A CN 1158567 C CN1158567 C CN 1158567C
Authority
CN
China
Prior art keywords
amplifier
power
wavelength
gain
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008109729A
Other languages
English (en)
Other versions
CN1365456A (zh
Inventor
B・A・瓦科奇
B·A·瓦科奇
F・迪戈内
M·J·F·迪戈内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leland Stanford Junior University
Original Assignee
Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leland Stanford Junior University filed Critical Leland Stanford Junior University
Publication of CN1365456A publication Critical patent/CN1365456A/zh
Application granted granted Critical
Publication of CN1158567C publication Critical patent/CN1158567C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • G02F1/3517All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using an interferometer
    • G02F1/3519All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using an interferometer of Sagnac type, i.e. nonlinear optical loop mirror [NOLM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/1302Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by all-optical means, e.g. gain-clamping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2933Signal power control considering the whole optical path
    • H04B10/2935Signal power control considering the whole optical path with a cascade of amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/06Gain non-linearity, distortion; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers

Abstract

一种在通信系统中应用的提供平坦增益的装置和方法,其中大量不同波长段上的光信号必须被放大,而同时需将信号的功率维持在一可以接受的范围之内。因为典型光放大器增益作为波长和输入功率函数而不同,不同波长段上的信号会以不同的幅度被放大。因此,在被多次放大的时候,某些信号将会遭到严重的衰减,以至于达到不能再被使用的程度。本发明的平坦增益的装置和方法能使得具有较高功率—增益乘积的信号响应于克尔效应相位移动而被大幅度衰减,这样在经过多级放大之后,全部信号的功率范围趋于一个较小的可接受的输出功率范围。该装置在保持全部信号功率在一个小范围的同时,对于一系列覆盖很宽光谱范围的多个波长信号进行多次放大。相对于信号功率的变化、信号数量的变化、以及在一定程度上放大器泵浦功率的变化,此信号功率范围稳定。另外,相对于装置元件参数在制造上的变化,该装置的设计稳定。该装置以及本发明优选实施为多个非线性Sagnac放大器,其具有非对称地位于干涉环路的掺铒光放大器。

Description

利用非线性萨格奈克放大器获得平坦增益的系统和方法
发明背景
发明领域
本发明涉及光纤通信系统,尤其是涉及到用于光纤通信系统中的放大器领域。
相关技术描述
为了满足对于带宽的不断增长的需求,光纤通信系统正朝着波分复用(WDM)的方向发展,其中,许多不同波长的信道被载波于相同的光纤上。大多数目前流行的光纤通信系统的都使用掺铒光放大器(EDFA)。当EDFA集成于WDM系统中时,放大器的平坦增益变得尤为关键。例如,一光纤通信线100包括链接成多个的衰减部分110(i)和多个增益部分120(i),其中i表示1,2,...n中的一自然数如图1A中所示。在图1A中,衰减部分110(1)、110(2)和110(n)由光纤的长度来表示,而增益部分120(1)、120(2)和120(n)由EDFA来表示。每个衰减部分110(i)和相应的增益部分120(i),如110(1)和120(1),在此被称作为“衰减-增益段。”
在一个WDM系统中,多路独立信道在分散波长区被输入。EDFA的增益是波长的函数,图1B为一个典型的未经滤波的增益变化。在经过第一个衰减-增益段110(1),120(1)的传播之后,由于EDFA增益不同的原因,大约1532纳米左右的信道比其它的信道具有更高的功率。通过多个衰减-增益段的传播使得这种信道功率的不一致扩大,并且最终会导致最后的衰减-增益段110(n),120(n)输出的有些信道功率下降到不可接受的水平。
为了说明上述过程,输入功率谱被描绘在图2A中,经过5个衰减-增益段(即,图1A中的n=5)之后的输出功率谱被描绘在图2B中。图2A和2B中两种功率谱的不同,说明由EDFA增益的变化所引起的最后所得信道功率的巨大差异。
许多以前的对这种问题的解决方案包括给EDFA添加一个滤波器以形成一增益滤波部分,它较之独立的EDFA增益更加平坦。尽管如此,制作一个具有适当形状的且不依赖于EDFA的参数(例如,信号和泵浦功率),并且随着时间和温度的变化都很稳定的滤波器是很有价值的。
发明内容
本发明涉及利用非线性萨格奈克(Sagnac)放大器来得到平坦增益。使用非线性萨格奈克放大器以得到平坦增益是一个新颖的解决方案。本发明不使用一种其衰减作为波长的函数而变化的滤波器,而是利用一种其衰减为功率的函数的滤波器。尤其是,依据本发明的滤波器基于一信道的功率而衰减该特定的信道I。依据本发明的滤波器并不提供传统意义上的宽带功率相关损耗。相反,依据本发明的滤波器提供一窄带(narrowband)功率相关衰减。换句话来说,该滤波器在λi处的衰减,λi为信道i的波长,是位于该波长(即,在λiδλ)附近处的功率函数,但并不是波长位于λiδλ窗口之外的分立波长λin处的功率函数。如图1A中所示,通过利用非线性的萨格奈克放大器(NSA)替换标准线性放大器,可以得到这种滤波器,下面将对此进行详细描述。
本发明的一个方面在于一种放大系统,其用来减少相应于多路输入光信号的多路输出光信号的功率差,该多路输入光信号具有多路各自相应的光波长和并具有多路各自相应的输入功率。该放大系统包括一干涉环路。一耦合器将多路输入光信号耦合至该环路上,以使输入光信号各自的第一部分沿着环路的第一方向传播,并使输入光信号各自的第二部分沿着环路的第二方向传播。在第一和第二部分在环路中经过传播之后,耦合器将该第一和第二部分相结合以产生多路输出光信号。相对于该环路中心,放大器位于一不对称的位置。该放大器有一个增益谱,它使得该放大器在多个光波长上具有多个各自的增益。当这些光部分通过该干涉环路时,该放大器相对于该环路中心的不对称位置会引起该输入光信号的该第一信号部分与该第二信号部分在功率上的差异。由于光的克尔(Kerr)效应,该第一和第二信号部分在功率上的差异会引起该光纤环路中该第一和第二信号部分之间相应的相位移动。该克尔效应相位移动响应各个不同输入功率与各个不同增益之间的差异而发生变化,从而引起具有更大增益一功率积的输入光信号的更大克尔效应衰减。优选地,该放大器包括一掺铒光放大器。某些优选实施例在环路中还包括一临近该放大器的波分复用耦合器。一泵浦源与该波分复用耦合器相连接以便通过该波分复用耦合器为放大器提供泵浦光。
本发明的另一方面在于一种用于减少相应于多个输入光信号的多个输出光信号输出功率差异的放大系统,该多个输入光信号具有多个相应的光波长并具有多个相应的输入功率。该放大系统包括一干涉环路,它具有由一个光学放大器隔开的第一和第二长度光导纤维。第一长度光导纤维比该第二长度光导纤维长很多。一耦合器将光信号耦合至干涉仪环路,使得光信号的第一和第二部分分别沿着该干涉环路的第一和第二方向反向传播。在光信号传播经过该干涉环路之后,耦合器将光信号的各自相应的第一和第二部分结合起来,以便产生多个光波长段上的多个各自相应的输出信号。该多个输出信号具有多个各自相应的输出功率。放大器具有使得该放大器在多个波长段上具有多个相应增益的增益特性。沿着该第一和第二方向传播的光信号的第一和第二部分,分别经历不同的克尔效应相位移动(Kerr-induced phaseshift),该相移由自相位调制(self-phase modulation)、共同传播交叉相位调制(copropagating cross-phase modulation)以及反向传播交叉调制(counterpropagating cross-modulation)所引起。放大器的位置,使得沿该第一方向传播的光线,在传播经过该放大器和光导纤维第二长度之前先穿过该光导纤维的第一长度。同样地,放大器的位置,使得沿该第二方向传播的光线,在传播经过光导纤维的第一长度之前先穿过该光导纤维的第二长度及该放大器。放大器的位置,还使得沿该第一方向传播的光线,比沿着该第二方向传播的光线经受更大的反向传播交叉相位调制。放大器的位置,还使得沿该第二方向传播的光线,比沿着该第一方向传播的光线经受更大的自相位调制和更大的共同传播交叉调制。多个光波长段上的多个光信号的克尔效应相位移动,分别响应于多个光波长段上的放大器增益,并且更进一步地分别响应于多个光信号的输入功率,这样由输入功率差和由多个光波长段上增益差所引起的输出功率差即被减少。
本发明的另一方面在于一种包括至少第一和第二放大部分串行链的光学放大系统。该第一放大部分被耦合以便用于接收多个输入光信号。每个输入光信号都有各自的光波长和各自的输入光功率。每个放大部分其中都包括各自相应的放大器。放大器具有各自的增益特性,这样施加于光信号上的增益随着波长而变化。该第一放大部分提供了第一部分的多个光输出信号。该第二放大部分被耦合以便用于接收第一部分的多个光输出信号并且提供第二部分多个光输出信号。该第二部分多个光输出信号中的每一个具有各自的光波长以及具有各自的输出光功率。运用放大部分以减少该第二部分的多个光输出信号的各自输出光功率差,该功率差由输入光功率差和由施加于光信号上的增益差所引起。每个放大部分都包括一干涉环路。放大部分的放大器不对称地位于环路中。耦合器将光线输入至干涉环路,以便使光线在其每个光波长上以第一和第二的反向传播部分进行传播。在该光线的第一和其反向传播部分传播经过该环路之后,耦合器还将每个波长上的该第一和第二反向传播部分结合起来。每个波长上的该第一和第二反向传播部分互相干涉以提供一每个波长的输出信号。每个波长上输出信号的功率,相应于每个波长的输入功率,相应于每个波长的放大器增益,并相应于每个波长的克尔效应相移。对于具有更大的增益—功率乘积的光波长来说该克尔效应相移更大,这样至少可以部分地减少由增益—功率乘积的不同所引起的输出功率差。优选地,每个放大器包括一个掺铒光放大器。同样优选地,放大器具有随光波长而变化的增益。多个波长段上的光信号具有变化的功率。运用这些放大部分使得位于串行链输出端的每个波长上的输出功率,收敛于某个可选择的输出功率范围之内的指定的相同输出功率。
本发明的再一方面在于一种放大多个输入光信号的方法。这些输入光信号具有在某一光波长范围之内的各自的光波长以及具有在某一输入光功率范围之内的各自的光功率。该方法产生相应的多个具有各自输出功率的输出光信号,这些不同的输出功率是在一选定的输出光功率范围之内。该方法包括将输入的光信号传播经过一第一非线性萨格奈克放大器以产生多个中间光信号。该多个中间光信号响应于多个输入光功率、放大器增益和克尔效应相移,以便具有多个各自的在一光功率中间范围之内的中间光功率。该光功率中间范围比较输入光功率的范围是一个较小的范围。该方法还包括将该中间光信号传播经过至少一第二非线性萨格奈克放大器,以便产生多个输出光信号。该多个输出光信号响应于多个中间光功率、放大器增益和克尔效应相移,以便得到在选定的输出光功率范围之内的多个输出光功率。该被选定的输出光功率范围比中间光功率范围要小,并且比输入光功率范围要小。
本发明的还一个方面在于一光学系统。该系统包括输入端,该输入端接收具有在一波长范围之内的波长的光输入信号。一输出端,它输出响应于输入光信号的光信号。至少一放置于输入端和输出端之间的第一放大器。该第一放大器具有第一增益谱。在所述波长范围之中第一增益谱随着波长而变化,以便使得由该第一放大器产生的具有在波长范围之内的第一波长的第一光信号具有第一光功率,并且使得由该第一放大器产生的具有在波长范围之内的第二波长的第二光信号具有第二光功率。该第一光功率和该第二光功率具有功率差。该系统还包括至少一第二放大器,其位于第一放大器和输出端之间。该第二放大器包括一非线性萨格奈克放大器。运用第二放大器,至少部分地补偿第一放大器在所述波长范围的增益差,以便减少该第一光信号和该第二光信号之间的功率差。
本发明的最后一个方面在于一种光学系统,该系统包括一输入端,该输入端接收具有在一波长范围之内的波长的光输入信号,并且该系统包括一输出端,该输出端输出响应于所述光输入信号的光输出信号。多个第一类型的放大器放置于输入端和输出端之间。第一组第一类型的放大器具有第一增益谱,该第一增益谱在整个波长范围之中变化使得具有在该波长范围之内第一波长的第一光信号被由第一种类型的放大器以第一增益方式放大,并且使得具有在波长范围之内的第二波长的第二光信号被由第一种类型的放大器以第二增益方式放大。该第二增益不同于第一增益。第二组多个非线性萨格奈克放大器,放置于光学系统的选定位置。运用非线性萨格奈克放大器,至少部分地补偿第一类型放大器的第一增益和第二增益之间的差异,以减少该第一光信号与该第二光信号之间的功率差。
附图的简要说明
下面结合附图,将详细描述本发明,其中:
图1A显示了包含多个复合衰减一增益段的线性放大器链,其中衰减段包括光纤部分,而增益段包括掺铒光放大器(EDFA);
图1B显示了一示范性的掺铒光放大器的作为波长函数的增益变化曲线;
图2A显示了一波分复用(WDM)系统的输入功率谱,该系统包含具有2个纳米的信道间隔的输入信号;
图2B显示了由图2A的被输入至5个增益—衰减段中的输入信号功率谱所得的输出功率谱,其中作为波长的函数的该增益变化曲线如图1B所示;
图3显示了一依据本发明的非线性萨格奈克放大器的具体实施例;
图3A显示了图3的光学放大器的优选实施例;
图4显示了依据本发明的一非线性萨格奈克放大器链;
图5A显示了依据本发明的一示例性非线性萨格奈克放大器的传递函数,其中增益是21.8dB,Pi(n)为信道i在增益—衰减段n的输出端的功率,而Pi(n+1)为信道i在增益—衰减段n+1的输出端的功率,并且其中该输出功率收敛于一稳定状态值;
图5B显示了针对图5A的传递函数的且作为n的函数而相应于各种初始值Pi(0)的增益—衰减段输出功率Pi(n)的收敛趋势;
图5C显示了一依据本发明的示例性的非线性萨格奈克放大器的传递函数,其中增益为24dB,随着不断增长的增益该传递函数的不断增长的非线性也被显示出,而且其中Pi(n)并不收敛于某一稳定状态值;
图5D显示了针对图5C的传递函数的且作为n的函数而相应于各种初始值Pi(0)增益—衰减段输出功率Pi(n)的非收敛趋势;
图6显示了作为放大器增益的函数的Pi(n)的渐近情况的曲线图,显示随着增益增加信道功率发生振荡,然后变得混乱无序;
图7A显示了相移键控(PSK)的一个实例;
图7B显示了针对一应用于一PSK系统上伪随机位方式的信道频谱最后所得分布图,其中用线性单位来表示其幅值的归一化;
图8显示了Pcr,作为比特率的函数、用毫瓦表示的临界功率。高于该临界值则受激布里渊(Brillouin)散射变得显著,其中该比特率是用对数级的方式以每秒兆比特的形式来表示的;
图9显示了作为增益的函数的GiPi (n)X/2的渐近值的曲线图;
图10显示了对于总的输入功率分别为1.4毫瓦(曲线a),0.56毫瓦(曲线b)和0.22毫瓦(曲线c)的、针对16个波分复用信道的增益谱;
图11A和11B显示了针对一非线性萨格奈克放大器链(图11A)和针对一标准放大器链(图11B)的图10的16个WDM信道功率的展开曲线;
图12A显示了经过20个段之后,一非线性萨格奈克放大器链的信道功率谱;
图12B显示了经过20个段之后一标准放大器链的信道功率谱;
图13显示了16信道WDM系统的功率演变曲线,其中有8个信道在第14个非线性萨格奈克放大器之后及第15个非线性萨格奈克放大器之前被下载;
图14A显示了一应用于非线性萨格奈克放大器环路中的EDFA的实施方案,其中,EDFA包括两个并联的用于放大两个光波段的放大器;
图14B显示了一应用于非线性萨格奈克放大器环路中的EDFA的实施方案,其中,EDFA包括两个串联的用于放大两个光波段的放大器;
图15显示了具有两个并联的非线性萨格奈克放大器的配置系统,提供在两个不同的光波段上的放大功能;和
图16显示了图4的实施例的另一个实施方案,其中,链中选定的非线性萨格奈克放大器被标准放大器替换。
优选实施方案的详细说明
图3显示了依据本发明的非线性萨格奈克放大器(NSA)300的实施例。NSA 300包括一萨格奈克干涉仪310,它按照下面的描述进行修改。
NSA 300包括一输入光导纤维312(或其它合适的波导材料),它连接至一光循环器314的第一端口(A),光循环器314具有第二端口(B)和第三端口(C)。光循环器以一种较为熟知的方式进行工作,它使得作为输入信号被输入至一个端口的光线沿着单方向(比如,图3中的顺时针方向)传播至下一个端口,在该端口处所有的光线基本上都从循环器中输出。尤其是,图3中,作为输入信号被输入至循环器314的端口A的光线从循环器314的端口B处输出;作为输入信号被输入至循环器314的端口B的光线从循环器314的端口C处输出。没有光线被提供作为循环器314的端口C的输入。在循环器314中,光线并不沿着逆时针方向传播。一典型示例的光循环器314为一偏光独立(polarization-independent)的光导纤维循环器,比如加利弗尼亚州圣约瑟的伊特克动力学公司(E-Tek Dynamics,Inc.)提供的PIFC23A211000型号的循环器。(尽管本发明的优选实施例包括光循环器314,但该循环器314可以被一标准的3-dB耦合器(未示出)来代替,以提供一并不昂贵的部件用于将信号输入至萨格奈克干涉仪310并且从萨格奈克干涉仪310中返回信号;尽管如此,最好像这种耦合器会感应出分裂式的衰减(splitting losses),而这种衰减在某些应用当中是可以接受的。)
循环器314的端口C与输出光纤320相连接,输出光纤320提供输出端口1;通过光纤段322循环器314的端口B在一常规的2×2光耦合器330的输入/输出一侧与第一端口332相连接。耦合器330在该耦合器330的输入/输出一侧具有第二端口334,耦合器330在该耦合器330的环路一侧具有第三端口336和第四端口338。该2×2光耦合器330的第二端口334与提供输出端口2的输出光纤340相连接。
耦合器330的第三端口336与光导纤维环路354的第一端352相连接。选择一定的光导纤维环路354的长度以提供三阶非线性效应,正如下面所要讨论的。光导纤维环路354具有第二端356,它与光放大器(AMP)360的第一端口362相连接,光放大器360具有第二端口364,通过一段光导纤维长度366第二端口364与2×2耦合器330的第四端口338相连接,光放大器360是一个双向放大器,它将进入第一端口362的光线进行放大并且提供该被放大的光线作为输出信号在第二端口364处输出。类似地,光放大器360将进入第二端口364的光线进行放大并且提供该被放大的光线作为输出信号在第一端口362处输出。
在特别优选的实施例中,图3的光放大器360包括一掺杂元素铒的光放大器(EDFA),图3A中所示为作为EDFA来实现的光放大器360的优选实施方案。如图3A中所示,光放大器360包括一定长度的光导纤维370,它具有第一端372和第二端374,光纤370掺杂有元素铒。在另一实施例中,光纤370可以掺杂进另一种稀土元素。
光纤370的第二端374与光放大器360的第二端口364相连接。光纤370的第一端372与波分复用(WDM)耦合器380相连接,WDM耦合器380具有第一端口381,第二端口382,第三端口383和第四端口384。该光导纤维370的第一端372与第一端口381相连接,第三端口383与第一端口381相对,并且该第三端口383与光放大器360的第一端口362相连接。
同样地,WDM耦合器380的第四端口384也与第一端口381相对,并且与泵浦源386相连接。在此描述的实施例中,泵浦源386优先地包括一工作在大约980纳米或者1480纳米的波长段上的光源,在特别优选的实施例中,泵浦源386包含一激光二极管或者其类似的元件。
WDM耦合器380的第二端口382位于WDM耦合器380的和第一端口381相同的一侧,该第二端口382能够最好无反射地端接至端子388上。
配置WDM耦合器380以便将输入至耦合器中的光线从第一端口381传播至第三端口383以及从第三端口383传播至第一端口381,输入的光线其波长在大约1500纳米到大约1650纳米的范围之内或者更高。该波长范围之内的很少量的光线被输入到第四端口384或第二端口382中。进一步地配置WDM耦合器380,它将输入到第四端口384中的泵浦源波长(大约980纳米或者大约1480纳米)段上的光线传播至第一端口381。因为WDM耦合器380的配置,如果有一些,几乎很少的泵浦源被输入至第二端口382,由于非反射端子388的原因,任何上述光线都不会被反射进入第二端口382中。
可以看出,通过该第一端口381,运用WDM耦合器380以便将从泵浦源386中输出的泵光线传播至掺杂铒元素的光纤370处,相比之下,基本上没有任何的信号波长段上的光线被输入至第二端口382或被输入至第四端口384中,因此,基本上所有信号波长段上的光线都保留在干涉环路中。
如图3中所示,2×2光耦合器330和连接第三端口336以及第四端口338的光纤元件形成了萨格奈克干涉仪310,其运作如下所述。
一将被放大的输入信号被施加至输入光纤312中,该输入信号包括具有多个波长λi(i=1,2,…,n)的光线。在本发明的通信系统的第一优先实施例中,信号用相位调制或者用频率进行调制,这样的系统的示例包括相移键控(PSK)和频移键控(FSK)。在本发明的通信系统的第二优先实施例中,信号是用幅值来进行调制的,尽管如此,在这样的实施例中,由于脉冲畸变和信道串扰,可能具有一定的局限性。
输入信号传播至循环器314的端口A,循环器314将该输入信号传播至端口B,然后通过光纤322该输入信号传播至2×2光耦合器330的第一输入/输出端口332中,2×2光耦合器330工作于常规模式将该输入的光线分成两个基本相等的部分,其中第一部分被传播至第三端口336,而第二部分被传播至第四端口338。
沿着顺时针(CW)方向通过环路354,输入信号的第一部分从2×2光耦合器330的第三端口336处传播至光放大器360的第一端口362中,该光线在光放大器360中被放大,然后经过光导纤维366的整个长度该被放大的第一部分从光放大器360的第二端364处传播至2×2光耦合器330的第四端口338中。
输入信号的第二部分从2×2光耦合器330的第四端口338处传播至光放大器360的第二端364中,并且在那里放大。然后该被放大的第二部分从光放大器360的第一端362处开始传播,并且沿着逆时针(CCW)方向通过环路354传播至2×2光耦合器330的第三端口336中。
进入2×2光耦合器330的第四端口338中的光线被放大的第一部分和进入2×2光耦合器330的第三端口336中的光线被放大的第二部分在耦合器中被相干涉地混合。根据这两个信号部分之间的相位关系,该被混合的信号从第一端口332中,或者从第二端口334中或者同时从2×2光耦合器330的两个端口中输出。从第二端口334中输出的光线通过输出光纤340传播至输出端口2。从第一端口332中输出的光线传播至循环器314的端口B,然后被传播至循环器314的端口C,后来通过光纤320传播至输出端口1。输出端口1的功率和输出端口2的功率因此便取决于顺时针方向传播与逆时针方向传播的信号之间的相位关系。
如上所述,光放大器360不对称地位于干涉仪310中,这样光放大器360在光程上相比于同2×2光耦合器330的第三端口336的距离,它更加接近于2×2光耦合器330的第四端口338。由于光放大器360的不对称位置,在传播(逆时针方向)通过环路354及经过第三端口336输出之前,通过2×2光耦合器330的第四端口338而进入干涉仪310的光线由光放大器360进行放大。相比较而言,在由光放大器360进行放大以及通过第四端口338输出之前,通过第三端口336而进入干涉仪310的光线传播(顺时针方向)通过环路354。因此,对于图3中所示的配置来说,在环路354内逆时针方向传播的光线在环路354中传播之前,即被光放大器360进行了放大;而在环路354内顺时针方向传播的光线,是在环路354中传播之后,才被光放大器360进行放大。下面还会更加详细地讨论,这两个反向传播的光信号何时获得光放大器360的增益,存在于其中的差异被利用以获得平坦的增益。
如下文所述,通过使用产生于萨格奈克环路354中的克尔效应相位移动得到理想的滤波器性能,以便根据每一个被施加至环路354中的光信号波长上的相应的功率来改变增益。
克尔效应相位移动,dθi,是波长为λi的信道i相应于光纤中的三阶非线性(third-order nonlinearity)效应而得到的结果,它的作用是将非线性相位移动传递至一光束上,由下式给出:
d θ i = n 2 k i A eff ( P self + 2 P other ) dl . - - - ( 1 )
在等式1中,Pself是信道i的功率,Pother是光纤中的其它的功率,d1是互相作用长度,以及Aeff是有效波型域(effective mode area)。(用于定义信道i中的功率的标准会在下面介绍)。参数n2是非线性系数,和参数ki是波长为λi的信号的的k矢量(即:ki=2π/λi)。请注意克尔效应交叉—相位调制(由于其它的信道引起的相位调制)是一个比自相位调制大两倍(即:由于自身的原因进行的相位调制)的因素。假设在一给定的信道之内的所有共同传播的光线在该信道上都产生自—相位调制,并且所有其它的光线(包括所有的共同传播信道以及所有的反向传播信道)产生交叉—相位调制。
为了计算克尔效应相位移动的结果,假定N个信道被传送至图3中所示NSA的端口312中。环路354的长度是L,放大器在λi处的增益为Gi,和Pi是端口3 12的λi处的输入信号功率。
应用等式1,由第ith个信道累加的沿顺时针方向传播所引起的该克尔效应相位移动可以被写成如:
θ i CW = n 2 k i 2 A eff ( P i + 2 Σ j = 1 , j ≠ i N P j + 2 Σ j = 1 N G j P j ) L eff . - - - ( 2 )
在等式2中,分母中的因子2是由耦合器330将每个输入信号的功率分解为两部分的结果。括号内的第一项是自—相位调制,括号内的第二项是由于其它的顺时针传播信道所引起的交叉—相位调制,括号内的第三项是由于所有逆时针方向传播的信道所引起的交叉—相位调制。请注意第三项具有因子Gj,它是因为在传播经过萨格奈克环路354之前每个CCW方向传播的信道已经得到放大器360的增益Gj。参数Leff是有效环路长度并且由Leff=(1/α)(1-e-αL)来定义,其中α为光纤衰减(为简单起见假定与波长无关)。
类似地,由第ith个信道累加的沿逆时针方向传播所引起的克尔效应相位移动可以被写成如:
θ i CCW = n 2 k i 2 A eff ( G i P i + 2 Σ j = 1 , j ≠ i N G j P j + 2 Σ j = 1 N P j ) L eff . - - - ( 3 )
在等式3中,增益Gi被应用于头两项,因为头两项表示逆时针方向传播的信号,它们在传播经过环路354之前得到到增益Gi,因此由等式2和等式3得出,信道i的克尔效应相位差由下面公式给出:
Δθ i Kerr = θ i CW - θ i CCW - - - ( 4 )
= n 2 k i 2 A eff ( G i - 1 ) P i L eff .
在等式中4中,非线性系数n2的数值取决于几个参数,尤其是光纤的材料和属性以及光纤中所含的掺杂剂的浓度。例如,对于一个近似纯二氧化硅的光纤核芯,n2的值为典型的在1.3-1.6μm的光谱范围之内的大约2.4×10-16cm2/W。在掺杂有很多锗的以二氧化硅为基质的光纤中,该值可以被提高好几倍。
特别地,当所有的相关信号具有相同的偏振状态时,等式4是可以应用的。尽管如此,如果所有的相关信号并不具有相同的偏振状态,等式4仍可以应用,但是必须使用的n2的值将取决于相互作用信号的相对偏振状态。如果本发明的光纤环路是由标准的低双折射光纤所制成,信道i中的信号的偏振状态将沿着光纤的长度而变化。该变化的第一理由在于光纤的双折射轴的取向是沿着光纤长度而变化的;第二理由在于一特定信道i的正交缓慢的和快速偏振的成份以略微不同的速度进行传播,因此经历略微不同的相位移动。另外,由于每个信道具有不同的波长而且可能因为输入的偏振状态的细微差别,因而每个信道的偏振状态将根据自身的分布而逐渐变化。所以,总的来说,在光纤的任意给定点处一给定信道i的偏振状态,所有其它的共同传播信道j的(j≠i)偏振状态,以及所有反向传播信道j的偏振状态都会不一样。因为由于克尔效应而变化的系数取决于该各种各样的信号的偏振状态,在较长的光纤环路中(其典型地要长于几十米),n2的值需要再修订。
取决于偏振状态的克尔效应系数变化是很复杂的(例如,参见C.B.克劳森(clausen)等人的“非线性放大环路镜像的偏振灵敏度”,光学期刊(Optics Letters),1996年10月,第19期,第21卷,pp.1535-1537)。在一足够长的光导纤维中(再一次,典型地为几十米或更长),当光纤的双折射轴将发生所有可能的空间取向的变化时,N个信号中的每一个的偏振状态也将会经历所有可能的情况。在这样的情形下,首先通过求出每个信号的相对相位的平均值,其次再求出光纤的双折射轴的空间取向的平均值,克尔效应的系数变化也会被计算出,正如克劳森等人所述,该参考资料如上所述。应用克劳森等人所描述的方法,参考本发明的特定的带有非平衡式反向传播信号功率的环路配置,将会显示出等式4仍然是适用的,假定n2被一更小的有效非线性系数n2,eff所代替。
已给定两个如前所述的n2的相关性,即信号偏振的相关性和光纤成分的相关性,在此用数值模拟的形式给予介绍,除非另外再特别指明,我们使用一个值为n2,eff=5.47×10-20cm2/W。尽管该值在所报道的有效非线性系数的范围之内,但是很重要的是应该意识到它是会变化的,有的时候实际上它是从一种光纤到另一种光纤而变化的。尽管如此,同样是很重要的应该意识到在这些模拟的应用中所使用的n2,eff的特定值,无论是对于本发明的原理或者是其实际应用都不是最关键的。本发明可以采用有效非线性较小的光纤或者是采用具有更大数量阶数的(更大阶数的)有效非线性光纤,只要对光纤的长度进行相应调节即可。本发明还可以采用光学播导和/或大容量的材料,这些材料具有较小的或者具有更大数量级的有效三阶非线性。
在等式4中,克尔效应相位差仅仅是信道i中的功率的函数,它恰恰是窄带运行所需要的。萨格奈克干涉仪的输出是干涉信号之间的相位差的函数。因此,萨格奈克放大器300的输出是该克尔效应相位差的函数,同样也是两个反向传播的光信号之间任意相位偏差的函数。正如下面所讨论的,通过该萨格奈克干涉仪310作用,克尔效应相位差将被转换成与波长相关的衰减。
NSA 300的传递函数,它将信道i的输入功率与在一特定的端口处输出的信道i的输出功率相关联,由下面等式给定:
P i out = e - αL G i P i 1 + cos ( Δθ i Kerr + φ bias ) 2 - - - ( 5 )
在等式5中,φbias是萨格奈克干涉仪310的偏置相位移动而不是克尔效应,其中当光线最初地被输入至端口312中时,对于输出端口1它自然地为0而对于输出端口2它为π。使用上面所计算出的(等式4)克尔效应相位差,该传递函数变为:
P i out = e - αL G i P i 1 + cos ( n 2 k i 2 A eff ( G i - 1 ) P i L eff + φ bias ) 2 . - - - ( 6 )
在等式6中,可以看出,Pi out与Pi非线性相关。尤其是,如果相位偏置φbias和/或长度Leff被适当地选定的话,当增益一功率乘积GiPi增大时,借助一越来越小的比率克尔效应相位差的结果将与增益功率的乘积相乘,这样增益—功率乘积的增大不会导致输出功率的相应比例的增大。另外,等式6中的输出功率Pi out依赖于信道i中的功率Pi,但是它并不依赖于功率Pj,功率Pj由任意其它的信道j≠i所具有。因此,这样的效应不会因为其它信道功率的变化而受到影响,该效应是指当增益—功率增大时不会引起相应比例的输出功率的增大的事实,换句话说,每个信道只是作用于它本身而独立于其它信道之外。所以,等式6显示了该非线性萨格奈克放大器300获得一窄带的功率相关的传递函数(增益)。
图4中,依据图3的多个非线性萨格奈克放大器(NSAs)300连接在一起以形成一放大器链400,该链获得了平坦增益。通过将一要被放大的输入信号输入至第一光纤部分410(1)然后被输入至第一NSA300(1)的输入光纤312(1)处图4的典型示例的NSA链400即被形成。通过一第二光纤部分410(2),该第一NSA 300(1)的输出端口1(光纤320(1))与第二NSA 300(2)的输入光纤312(2)相连接。通过一第三光纤部分410(3)第二NSA 300(2)的输出光纤320(2)与第三NSA 300(3)的输入光纤312(3)相连接,如此继续直到一预定数量的NSAS 300连接在一起。光纤部分410(i)表示光纤的长度比如,举例来说,长距离通信系统中放大器之间的光纤为几十公里(例如,70公里)长度。光纤部分同样可以表示衰减,比如分裂式衰减,或其类似情况,或者组件衰减和光纤衰减的混合形式。
图4中,如果NSAS 300(i)相互紧凑地排列在一起,则每个NSA300内的放大器都可以由一共用的泵浦源来泵浦,或者是,这些放大器可以用各自的泵浦源来泵浦。
在下列讨论中,Leff是图4的每个NSA 300(i)中的萨格奈克环路354的有效长度。为了以下讨论的目的,假定从一NSA 300(n)的输出端中输出的并被输入至下一个NSA 300(n+1)的输入端中的总的衰减(包括光纤衰减和循环器插入损耗)对于每一个NSA 300来说大约是相同,且具有一值X。例如,下面讨论中的X具有一值0.01(-20dB)。如图4所示,Pi (n)被定义为NSA链400中的衰减一增益部分n的输出端的信道i的功率。下列值同样也应用于以下讨论中:
n2,eff=5.47×10-20m2/W;Aeff=12μm2;α=-0.4dB/km;
λ=1.55μm;φbias=0;和Leff=10km。
请注意,为了以下的讨论,对于图4中的每个NSA(i)Leff和增益都被假定是相同的。必须理解为了顺利地操作本发明,这些值没有必要相同。
Pi (n)和Pi (n+1)(NSA链400的第(n+1)th级的输出端的功率)之间的传递函数由下面公式给出:
P i ( n + 1 ) = e - αL P i ( n ) G i X 2 [ 1 + cos ( n 2 k i 2 A eff ( G i - 1 ) L eff P i ( n ) X + φ bias ) ] . - - - - ( 7 )
在等式7中,单个NSA的传递函数是基于等式6上的,它还包括衰减X的结果。为了评判NSA链的性能,随着n增大的NSA的输出功率Pi (n)的展开曲线被绘制于图5A-5D中,如以下所讨论的。
通过连续地将该传递函数(等式7)应用到初始化功率Pi (0)上,就会求出Pi (n)的连续值,即:
P i ( 1 ) = TF ( P i ( 0 ) )
P i ( 2 ) = TF ( P i ( 1 ) ) = TF ( TF ( P i ( 0 ) ) ) . . . . . ( 8 )
P i ( n ) = TF ( n ) ( P i ( 0 ) ) .
在等式8中,TF(n)表示函数TF己被运算n次。通过用图解的方式来实施这种迭代过程,可以理性地理解Pi (n)是怎样被演算出来的。(例如,参见M.J.费根伯姆(Feigenbaum)的“非线性变换类的数量的普遍性”,统计物理期刊(Journal of Statistical Physics),1978年,第1期,第19卷,pp.25-52)。因此,图5A中绘出了两条曲线。第一条曲线(弯曲线)表示函数 P i ( n + 1 ) = TF ( P i ( n ) ) , 即等式7。第二条曲线(直线)表示函数 P i ( n + 1 ) = P i ( n ) , 即一条穿过原点的斜率一致的直线。先前描述的针对一增益的情形如图5A中所示,增益Gi为26dB。一初始化功率Pi (0)被选定(此种情况下为3毫瓦)。然后画出一条垂直线,它从 x = P i ( 0 ) y = P i ( 1 ) = TF ( P i ( 0 ) ) , TF(Pi (0))位于传递函数曲线上(点A)。为了求出Pi (2),之后画出一条水平线它从位于传递函数曲线上的点A至 P i ( n + 1 ) = P i ( n ) 的直线上(点B)。接着,从点B处画一条垂直线至传递函数曲线上(点C)。该值就是Pi (3)。可以重复这个过程以求出任意的Pi (n),如图SA中所示的点D,E,F,G和H。对于图5A中绘制的传递函数曲线,Pi (n)收敛于一大约为5毫瓦的(传递函数曲线和y=x的直线的相交点H处)渐近值。因此该Pi (n)的渐近值独立于较大范围的Pi (0)初始值,如图5B中所示,它绘出了针对5个不同的初始值Pi (0)的作为n的函数的Pi (n)的值。请注意,所有Pi (n)的值都收敛于相同的大约为5毫瓦的渐近值。
Pi (n)的收敛于单稳定状态值的情形并非是唯一可能的特性。当增益增大时,传递函数的非线性也在增加,并且在传递函数穿过该 P i ( n + 1 ) = P i ( n ) 直线处的那一点上,该传递函数的斜率的数值可以变得大于1。当传递函数的斜率的数值大于1时,其中斜率为1处即是两个函数的相交点,也就是说当传递函数的斜率大于+1或小于-1时,该渐近特性不再是单值性的,取而代之为振荡性的。这种情形如图5C中所示,其中所绘制的传递函数与图5A中所示的具有相同的参数,除了增益Gi不一样,它已经从26dB增加至28dB。图5C中的功率Pi (n)不再收敛,而是在一上限值(大约5毫瓦)和一下限值(大约3.5毫瓦)之间振荡。这种振荡的情形可以在图5D中看得更加清晰,它用图形显示了随着n的增加Pi (n)的渐变过程。请注意,对于图5C和5D的示例,Pi (n)显示出一周期性的特性,其中在图5D中具有一周期等于2。
随着逐渐增大的增益Gi,传递函数TF的非线性也在进一步地增加,图5D中所示的周期加倍至4,然后至8,然后至16等。随着增益的进一步增大,渐近特性也变得混乱无序。先前所述的如图6中所示,图中绘制出作为增益的函数的Pi (n)的渐近值(或者是值的集合)。当增益低于直段光纤410和环路光纤354的衰减时,功率Pi (n)如所预料的那样收敛于零。一旦增益大于该衰减,Pi (n)收敛于一非零值。当增益达到大约为27.6dB的值时,Pi (n)渐近特性变得有周期性。Pi (n)首先振荡于两个值之间,当增益增加时这两个值的差也逐渐变大。如图6中所示,当增益为大约28.46dB时,Pi (n)开始在4个值之间振荡;当增益为大约28.63dB时,Pi (n)开始在8个值之间振荡。对于一个非常小的增益范围,Pi (n)在16个值之间振荡,然后是32个值(未示出),然后是64个值(未示出)。对于稍稍高一点的增益,Pi (n)的渐近特性会变得混乱无序,如图6中的点画线和白色段的近似显示,这样便不能够确定任何的周期性特性。该不规则的白色段是由很窄范围的增益所引起的,其中该渐近特性恢复了周期性的特性。本发明是在小于混乱特性开始的增益的增益范围之内正常地工作的,没有必要再对图6中所示混乱特性作进一步的讨论。另外本发明优选地在小于周期性特性开始的增益的增益范围内正常地操作。
显而易见,由于自调节传输特性NSA链易于将某一信道的功率强行维持在一稳定状态值,该自调节传输是因为克尔效应相位移动所引起的,例如在EDFA中当两个分别具有波长λ1和λ2以及分别具有相应的25和27dB的增益的两个信道被施加于一线性的EDFA链的输入端时,如图1A中所示,λ2信道实际上覆盖了λ1信道,并且P1 (n)1信道的功率)收敛于0。对于NSA链400,图6A显示出P1 (n)收敛于大约5.0毫瓦而P2 (n)收敛于5.2毫瓦。这些值足够地接近以保证在到达接收器端时两个信道都具有足够的功率。NSA链400的自调节防止了单信道的控制支配地位,因而使得大量的信道在到达接收端时都具有足够的功率,以便被检测。从模拟实验中可以观察到当增益接近于周期性特性和混乱特性发生的区域时,功率的收敛于其固定状态的收敛趋势会减慢。如图5B和5D中所示,在低增益进仅仅经过几次迭代即可发生收敛。
上面的阐述已经描述了NSA链400的特征。下面的讨论将会说明NSA链400的模拟实验以寻找优化的配置。为了评估各种各样的配置首先将减少NSA链400的相对复杂的特性以形成一具有特征参数单个模型。尤其是,为了以下讨论的目的,该具有特征参数的模型被定义成一允许含有增益变量ΔG。该被允许的增益变化量参数描述了一个范围,在该范围内增益可以变化,但却仍然可以使Pi (n)收敛于一可以接受的渐近特性范围内。
为了定义该可以接受的特性,下列的限制条件被施加在Pi (n)上:
XG i P i ( n ) 2 < P max - - - ( 9 )
等式9中的限制条件对于逆时针方向传播的于萨格奈克环路光纤356中的从光放大器360中输出的功率的数量施加了一上限。等式9中的因子2是由耦合器330的百分之五十所产生的,耦合器330将光线分解为顺时针和逆时针两种光束。功率的上限是由位于环路光纤中的各种各样的不良非线性过程所造成的,比如说布里渊扩散或者四波混频(FWM)。该上限同样可经被EDFA的功率输出中的限制条件所设定。
为了选择Pmax假定布里渊扩散是这种限制的非线性过程。临界功率Pcr,其中当大于该临界功率Pcr时,布里渊扩散将变得十分地重要。由G.P.阿格拉威尔给定,“非线性光纤光学”,圣地亚哥学术出版社,1995。如:
P cr &cong; 21 A eff g B L eff . - - - ( 10 )
在约等式10中,参数gB是布里渊增益系数并且是每个信道的线宽的函数。
为了下面的分析,假定每个信道都采用相移键控(PSK),其中,分别地通过应用0或π相位移动,对于连续的激光波形(CW)进行0和1的编码,如图7A中所示,在图7A中,每一位都具有运行时间T。这种相位调制遍及信道的整个线宽。(例如,参见Y.奥琪(Aoki)等人的“光纤通信系统中受激布里渊扩散引起的单波型光导纤维的输入功率限制”,光波技术期刊(Journal of Lightwave Technology),1988年,第5期,第6卷,pp.710-719)。对于伪随机位方式,所得的比特率B=1/T的PSK信道的频率谱如图7B中所示。PSK信号的满宽度半峰值(FWHM)线宽大约等于B。
如图7B中所示的增大的线宽,它使得Pcr增大,如下式所示:
P cr &cong; 21 A eff g B L eff B + &Delta;&nu; B &Delta;&nu; B . - - - - ( 11 )
在约等式11中,ΔνB为固有的布里渊增益线宽,它在10和100兆赫兹之间,依赖于光纤的掺杂剂的浓度。该布里渊增益参数的的值gB,对于二氧化硅光纤来说4.6×10-11米/瓦特。对于这些参数和当Aeff=9.0μm2及Leff=10千米时针对布里渊扩散的并且作为信道的比特率的函数的临界功率Pcr的值被绘制在图8中。如图8中所示,对于一未调制的信道,Pcr正好在1毫瓦之下。尽管如此,对于一2.5千兆比特每秒的信道来说,Pcr大于10毫瓦。虽然已经计算出针对PSK情形的Pcr的值,必须懂得本发明对于其它类型的信号调制是可兼容的,如上所述。该PSK的示例仅仅被采用以提供一指定值的Pcr
如以下更详细的讨论,用于评估NSA链的各种配置的方法将对所得的允许的增益变化量ΔG进行比较。为求得ΔG,作为增益的函数的GiPi (n)X/2的渐近值被绘制在图9中。从曲线图中可以看出,能满足等式9的增益的范围被确定。在图9中,当其它的参数保持为常数时,非线性系数n2是变化的。请注意,较高的n2值使得GiPi (n)X/2渐近值较低,因而可以产生一较大的ΔG。如果Pmax被设定为10毫瓦,如图9中的水平线所示,值n2=5.47×10-20m2/W(一应用当前商业中流通的光纤就可以得到的值)产生1.65dB的ΔG。n2的值适当地降低2次即可以将ΔG减小至0.4dB。同样地,n2的值增加2次即可以将ΔG增加到3.6dB(如果本发明不在大于近似27.6dB的振荡区域内工作)。
作为增益的函数的GIPi (n)X/2的渐近值曲线,也可以作为其它参数比如L和φbias的函数而被生成以便进一步地分析和优化NSA链。
图10显示了对于总的输入功率分别为1.4毫瓦(曲线a),0.56毫瓦(曲线b)和0.22毫瓦(曲线b)的针对16个波分复用信道的增益谱。如果EDFA被放置于萨格奈克环路中,假定这样的情形,该总的输入功率均匀地分布于16个波长段上,总的输入功率可以从其两侧输入至EDFA中。NSA链的参数与上面所讨论的这些参数相同。
为了模拟NSA链的工作过程,N个输入信号中的每个信号所得到到的增益首先被计算出,该N个输入信号穿过该链的每个NSA中的每个独立的放大器。因为光放大器中的增益以一种普遍的较为复杂的方式依赖于经过增益饱和区的输入信号的功率并且因为该输入信号功率谱对每个放大器都不相同,因此该N个输入信号中每个信号所经历的链中每个放大器的增益必须被计算出以达到完全的精确。尽管使用现有的EDFA模拟程序能够计算出所有这些增益,但该计算要花费相当多时间。为了替代用这种方法来计算所有的增益采用了一种逼近算法,它被描述在D-M.班尼(Baney)等人所著的“带有简化设置的饱和信道状态下WDM EDFA增益特性”,IEEE光电子技术期刊(IEEEPhotonics Technology Letters),1996年,第12期,第8卷,pp.1615-1617。班尼等人所著的参考资料指出,通过采用一个已被适当地选定波长和功率的单个输入信号(被称作为饱和调节因子(saturatingtone))来替代N个输入至放大器的输入信号的方式,放大器的增益谱可以特别地,根据班尼等人的参考资料,在具有各自功率Pi的N个输入信号的条件下工作的放大器的增益谱非常接近于相同EDFA(即,在相同的条件下受到泵浦EDFA)的增益谱,其增益饱和特性是由具有波长λs和功率Ps的饱和调节因子所决定的,其中Ps由下式给定:
P s = 1 &lambda; s G s &Sigma; i = 1 10 P i G i &lambda; i - - - ( 12 )
在等式12中,Gi是波长为λi时的(饱和的)增益,Gs是波长为λs时的(饱和的)增益,并且Gi和Gs均为线性增益(这相对于用dB所表示的增益而言)。在此假定,当EDFA中不均匀扩散可以忽略不计时,饱和调节因子的波长λs可以在一很宽的波长范围之内选定而不影响该方法的精确性。对于这种方法,可以很清楚地看出EDFA的增益谱只需针对饱和调节因子功率的范围进行计算(而不必对任意的N个信号功率的组合进行计算)。
实际应用中,并不直接使用等式12因为最初并不知道饱和增益Gi和Gs。相反地,对于EDFA模拟程序,该放大器的非饱和增益Gi和Gs首先被计算出,假定波长为λs的单个饱和信号的功率 P s = &Sigma; i = 1 16 P i . 在第二步骤中,非饱和增益值被代入等式12中已便计算出Ps的近似值。然后该Ps的近似值被应用在EDFA模拟程序中,以计算出第二组(饱和的)增益Gi和Gs。该过程被重复直到这些增益收敛于一稳定值。实际上,增益的收敛值在第二步骤中即可得到。
在以下讨论中,具有可忽略的非均匀扩散特性的EDFA的普通状况被模拟出。该模拟模型能够选择(再一次,无精确度损失)一任意的饱和调节因子的波长λs,λs为1551纳米,为了在萨格奈克环路中模拟EDFA,其中每个波长为λi的信号都可以沿着两个方向传播,分别伴随着适当的功率该饱和信号可以被输入至EDFA的两个输入端口中。
图10中模拟的EDFA是一个7米段的掺杂铒元素的光纤,它由110毫瓦的,1480纳米的光(220毫瓦的总的泵浦源)来双向泵浦。该EDFA展现的增益谱如图10中所示,在1544纳米至1559纳米的范围内,其中有16个WDM信号分布于此(1纳米信道间隔),典型的增益变化量为1-2dB的数量级,它取决于输入信号的功率。
图11A和11B显示了所有16个作为NSA链(图11A)的和标准放大器链(图11B)的放大器个数的函数的信道功率的变化展开曲线。在标准的放大器链中,段(X)之间的衰减从20dB增加到24dB以此能说明非线性光纤的4个dB衰减,它在该模拟器中被设置为零。该EDFA与在NSA链中这样使用的放大器是一致的。如所示的NSA链将所有的功率都强行收敛于一渐近值,因此所有信道都保持一3.7毫瓦和5.2毫瓦之间的功率值。在经过头几个NSA之后便出现了收敛趋势。而在标准放大器链中具有最高增益信道很快便支配了其它的信道,因此通过比较图11A和图11B的NSA的稳定效果即显而易见。
图12A和12B分别显示了经过段20之后的NSA链和标准放大器链的信道功率谱。在NSA链中在段20之后(参看图12A)所有信道功率大致相等。相对照的对于段20之后的标准放大器链来说,在大约1557纳米的功率和大约1544纳米的功率之间存在一个巨大的差异(参看图12B),在NSA链输出端(参看图12A)所有16个输出信号都可以使用,(即它们都具备足够的功率以被用一很高的信噪比来检测)。相比地在标准放大器链(参看图12B)输出端在16个输出信号中仅仅大约6个可以使用。所有的其它的信号具有太小的功率以至于都不可使用并且不能够用一个足够高的信噪比来检测。这种比较显示出在经过大量的增益—衰减段之后本发明的系统在一很大的带宽上能产生具有近似相等的输出功率的输出信号。
上述讨论论证了特定模拟结果,它显示出NSA链400的获得的增益平坦,并且同时也提供一种用于评估NSA链400性能的方法,即通过使参数ΔG求出最大的可允许的增益变化量。
本领域技术人员可以理解,本发明获得了真正的(即,没有外部反馈)自动增益控制(AGC)。它能够获得自动增益控制在某种意义上来说通过内部的对于输入信号的功率的,泵源的功率以及信号的数目的不可预见地变化地修正和改进,它能够自动将增益—衰减段链的输出端的大量信号功率保持在一个很小的功率值范围内。相对照地,发展到今天的绝大多数光纤增益平坦设计并不具备真正地自动增益控制。相反地其它的系统都依赖于附加的外部反馈设计(它们增加了系统的复杂性和成本)以修正这些数量上的变化。
如上面所讨论的,与另一光束(交叉—相位调制)相关的克尔效应相位调制是相应的自相位调制的2倍,该特征使得NSA链400使增益平坦。自相位调制和交叉相位调制的条件在(B.克罗西格纳尼(Crosignani)的“光纤陀螺仪中的克尔效应和色散现象”,光波技术期刊(Journal of Lightwave Technology),1985年,第4期,第LT-3卷,pp.914-918)文章的光纤陀螺仪的上下文中有所论述,其中论证自相位调制和交叉相位调制与光纤中的色散(偏移)有关。以下将应用克罗西格纳尼文章中的数据来确定自相位调制和交叉相位调制的条件。
首先,特征带宽Δν’,被定义为:
&Delta; &nu; &prime; &equiv; 1 2 &pi; | A | L eff - - - ( 13 )
在等式13中Leff是光纤的有效长度,如前面所定义的,而A是光纤的组—速率偏移(即,1/A=d2β/dw2其中β为传播长量,而w是频率)。如果*ν12 *<<Δν1’,-ν1处的频率分量相对于另一ν2处的频率分量的克尔效应相位移动可以被认为是自相位调制。类似地,当*ν12 *>>Δν1’,则会发生交叉相位调制。对于特定的萨格奈克环路,等式13能够计算出Δν’的值。
上述结果对于非线性萨格奈克放大器的信道间隔和信道带宽(即,比特率)施加了一定的限制。每个信道之内的所有的光都需要与同一信道内的所有其它共同传播的光信号进行自相位调制。因此,每个信道的带宽,B,必须满足下列关系:
          B<<Δν′               (14)
在等式14中,B是随机PSK的比特率1/T,其中T为位的工作时间。因此,在每个信道的最大比特率和非线性萨格奈克放大器的参数之间存在一定的关系。
同样地,一个信道之内的所有光信号需要和其它信道中的所有光信号进行交叉相位调制。这就意味着信道间隔,Δνchannel信道,必须满足下列关系:
Δνchannel>>Δν′               (15)
因此,信道间隔具有一最小值,它是该环路参数的函数。
如上面所讨论的,因为环路的有效长度Leff被选择用来优化平坦增益的性能,通过修改环路光纤(参看等式13)的组速率发散,A,优选地将Δν’设置为一优化值。通过将Leff设定为5千米及将A-1设定为3.28×10-28sec2/米一典型的Δν’值即可以被计算出(适合于接近于零漂移波长的偏移光纤)。这两个值计算得出124GH2的Δν’值。这个值可以很容易地被参数A修改。
如上所述,显而易见依据本发明的非线性萨格奈克放大器产生一平坦的输出信号谱,尽管不同波长的输入光信号的功率存在着很大的差异。另外,不同于现有的平坦增益系统,随着增益—衰减单元的数目的增加,该输出信号的功率谱的平坦度普遍的得到改进。在一个很宽的带宽范围内输出信号谱的平坦性非常地好。例如,在具有将近1-2dB的范围之内的平坦度EDFA的非线性萨格奈克放大器链中,经过大量的增益—衰减段之后的在一非常宽的带宽范围内的平坦度比1.5dB更好。相对照地,典型的无源滤波器能够将单个的EDFA的增益整平至几十个dB之内,它不能够充分地保证在经过大量的这种类型的EDFA之后的平坦增益。比如,在经过24个包含被整平到0.3dB的EDFA的增益—衰减段之后,输出信号谱的平坦度为典型的1.5dB或者更糟。而NSA链达到该同样水平的信号谱平坦度只需带有被平坦到仅为1-2dB程度的放大器即可。依照上述所为,显而易见当链的尺寸增加,(即,链中的放大器的个数)非线性萨格奈克干涉仪具有更佳地效果。特别地它对包含大量的放大器链来说其优点更加突出,比如说对于越洋通信总线。
如上面所讨论的,在经过许多增益—衰减段之后非线性萨格奈克放大器链收敛于平坦增益。欲获得平坦增益(比如,一渐近增益值或者是渐近增益值的百分比(例如,百分之九十))的放大器的个数是系统的一大特征,它可以通过调节链中的非线性萨格奈克放大器的参数而被调整。控制收敛的速率的能力是非常重要的,因为在一些系统中,需要快速收敛(比如,在经过四个放大器之后,收敛至平坦增益),而在另外一些系统中,较慢的收敛速率是可以接受(比如,在经过20个放大器之后,收敛至平坦增益)。
不同于使用无源放大器整平的放大器EDFA,本发明的系统具有格外的优点,因为输出信号谱即使是在一个或更多的输入信号被丢弃时仍保持非常的平坦。当一个输入信号功率被下载时,所有的对应于被保留的(非下载)输入信号的输出信号将具有较高的功率。尽管如此,对于全部所有的变化或者是对于超过一小量的变化,本发明依然保持输出信号谱的平坦性。类似地,如果一个或者更多输入信号功率发生变化(即,增加或减少)该增益平坦性不发生变化或者变化非常小。为了证明这一点,图13显示了16信道WDM系统的功率展开曲线,其中在第14个NSA之后和第15个NSA之前有8个信道被下载。当前的8个保留信道经历不同的增益因此它们收敛于不同的渐近值。但是这些功率差异非常地小,并且所有8个保留信道在到达NSA的末端时具有5毫瓦到5.5毫瓦之间功率。
对于泵浦功率的变化输出信号谱的平坦度同样的稳定,该功率上泵浦一个或多个非线性萨格奈克放大器链中的EDFA。任意的或所有的泵浦源功率的变化都会引起光增益的变化,并由此而导致位于链的输出端的所有输出信号的功率上变化。尽管如此,由于非线性萨格奈克放大器链的收敛效应,输出信号谱的平坦性标称上将不会变化(假定泵浦源功率的变化在数量上是较为合理适度)。这种输出信号谱的增强性的平坦度并不由滤波器整平的EDFA所提供。
非线性萨格奈克放大器的平坦特性对于部件参数在制造上的变化比起大多数其它的增益平坦放大器来说,具有更大的容限。尤其是,当与依赖于无源滤波器的增益平坦EDFA相比较时,其中每个EDFA必须用一个特定的滤波器进行整平,该滤波器与EDFA特定增益曲线相符合(匹配)。当使用无源滤波器时,一给定滤波器将一特定的工作在一定条件下EDFA的增益进行整平,但是该滤波器将会工作的很糟糕,如果相同EDFA使用不同的泵浦源功率进行泵浦,或者工作于不同数目的信号下,或者是工作于不同信号功率之下,或者是在这些不同的因素的混合情况下工作。当该两相同的滤波器与两个标称上一致的用铒光纤制成的EDFA一起使用时,该滤波器还有可能操作得更差,其中铒光纤在设计上,铒元素的浓度,共同掺杂剂的浓度,及有效长度等方向各有一些细微的差别,或者是这些差异的混合情况。类似地,滤波器传递谱的变化(例如,外部温度的变化)也将会改变链增益的平坦性。与具有由无源滤波器进行平整的增益的常规放大器相比较,依据本发明所构成的带有一特定环路光纤和环路长度的非线性萨格奈克放大器能够将EDFA的增益进行整平使之具有大的特征范围,并且链的输出信号谱的平坦性对于非线性萨格奈克放大器的参数中的变化来说是很稳定的。
在此描述的图形显示了具有10千米的环路长度的NSA的特性。应该懂得环路长度的选择会影响系统的性能。比如,在长度和波型限定之间存在一协调关系。尤其是,波型的限定越严格,波长就需要越短。同样地,在环路长度和光纤的非线性之间也存在一协调的关系,尤其是,光纤的非线性越强,环路长度就需要越短。类似地,在环路长度和信号功率之间也存在一协调关系特别地,信号功率越强,环路长度就需要越短。环路长度基本上短于10千米,或者基本上长于10千米,能够设计出带有环路长度的NSAs以使其在标称上具有本发明中所描述的相同的特征,。
尽管上面所述的与掺铒光放大器有关,但在此描述的非线性萨格奈克放大器的一般原理并非严格地限定三价铒(Er3+)作为有效的掺杂剂。同样可以使用该非线性萨格奈克放大器来对任意的基于光纤,波导材料或大容量光学器件的光放大器的增益进行整平。光放大器可以使用任何活性离子或活性激光介质,并且可以在光谱范围内的任何部分上面进行操作。尤其是,非线性萨格奈克放大器可以与拉曼(Raman)放大器一起使用,拉曼放大器,例如,可用于由其它的光放大器未涉及到的放大器应用领域。应该注意,与本发明一起使用的拉曼放大器或其它类型放大器必须是双向的,这样它便可以放大萨格奈克环路中的反向传播信号。针对拉曼放大器的具体实施方案,拉曼放大器可以用共振方式进行工作或者是在两个不同的方向上它都可以被泵浦。
请再注意,结合每个环路中的单个放大器已经被描述过。本领域技术人员会懂得单个EDFA可能具有一限定性的放大范围。例如,一第一放大器AMP1可以对一波段波长上的信号进行放大,却可以吸收另一波段波长的信号。一第二放大器AMP2可以吸收该第一波段的信号,却可以放大该第二波段的信号。为了对该两个波段的信号都提供放大作用,通过使用两个WDM耦合器,该两个放大器AMP1和AMP2可以并联地放置在环路中以作为一复合型放大器。换句话说,图3的非线性萨格奈克放大器使用一个放大器360,该放大器360可以被制成如图14A中所示的以并联方式排列的两个放大器AMP1和AMP2的组合形式,其中,AMP1和AMP2为两个独立的放大器配置,比如像图3A的放大器。
类似地,如果第一放大器AMP1放大第一波段上的信号却通过第二波段上的信号,而第二放大器AMP2通过该第一波段上的信号却放大该第二波段上的信号,这两个放大器可以在环路中串联以对这两个波段上的信号都提供放大作用。这种复合型的放大器如图14B中所示。该独立放大器AMP1和AMP2都可以被配置成,比如,像图3A中的放大器。另外,该非线性萨格奈克放大器于是便构成了如图3中的非线性萨格奈克放大器,它包括一如图14B中的复合型放大器所制成的放大器360。
必须懂得串联式组合的放大器和并联式组合的放大器能够在多个波长波段上使用。
即使在一很宽的频谱范围之内都需要放大作用,但是对于不同部分频谱范围的可能只需提供一些相对独立的环路以便针对频谱范围的不同部分来优化这些环路的参数。这种配置如图15中的原理图所示,其中NSA1和NSA2表示两个非线性萨格奈克放大器,它们为频谱(例如,对于NSA1的1300纳米到1350纳米,对于NSA2的1500纳米到1650纳米范围)的不同部分(或许是相邻的部分)提供增益。该第一WDM耦合器的作用是将输入信号进行分组并且引导它们至适当的非线性萨格拉奈克放大器,即将波长在1300纳米和1350纳米之间的信号引导至(在本示例中)NSA1而将波长在1500纳米和1650纳米之间的信号引导至NSA2。该第二WDM耦合器将存在于NSA1和NSA2中的信号进行再混合以便传输到通信光纤上(图15中的衰减方框所示)。
图16所示为图4的实施方案的另一实施例。在图16的实施例中,一增益—衰减串1600包括非线性萨格奈克放大器(NSA)1610和标准光放大器(AMP)1620,它们由衰减段(LOSS)1630分开。特别地,在图16所示的实施例中,NSAs1610和AMPs1620是交替的排列的(即,每隔一个放大器)。因此图16中所示的链中的非线性萨格奈克放大器的百分数为50%(即,每个非线性萨格奈克放大器1610对应于每个非标准放大器1620)。链中的非线性萨格奈克放大器的百分比有可能更小(例如,链中的每第三个放大器可能是一非线性萨格奈克放大器1610)或者更大(例如,链中的每第三个放大器可以为一标准放大器1620),这种情形取决于标准放大器1620的各单个独立的(增益)平坦程度。例如,如果标准放大器1620的整平性不好,在对于每几个非线性萨格奈克放大器1610才有可能使用仅仅一个标准放大器1620;如果标准放大器1620具有非常好的整平性,则在串1600中常常只需放置仅仅一个非线性萨格奈克放大器1610(比如,每第三个放大器为一非线性萨格奈克放大器1610,而其余的放大器则为标准放大器1620)。这种混合型链1600具有很大的优点因为(1)即使在经过了大量的增益—衰减部分之后该链仍保持一很高的增益平坦度,和(2)它使得该放大器—衰减链在面对各种输入条件(即,信号的个数,信号功率,或泵浦源)的变化有意的或无意的)时仍非常稳定。这种混合型链1600是一种经济型链,因为通过将昂贵的非线性萨格奈克放大器(它具有光纤环路和光循环器)替换为相对便宜的标准放大器1620,所以即可以使成本得到大幅度的降低。
尽管在此所作的描述与具有增益的放大器的增益平坦性有关,该增益随着波长而变化,本发明同可以采用具有增益的单个独立的放大器,该增益与波长无关或者与波长具有几乎很小的相关性。如果单个独立放大器的增益谱非常平坦,本发明会工作的更好(即,在经过更少的放大器之后它能提供一更加平坦的增益)。
本发明同样可以采用单个独立的放大器,这种放大器具有一标称上很平坦的增益谱(例如,在80纳米的带宽上具有0.3dB范围内的衰减);这种情况可以由本领域现有的一系列技术来实现。在这种情形下,在经过大量的(比如,几十个)放大器之后本发明能够实现保持甚至提高增益平坦度的功能。相反地如果相同的单个独立放大器被串联在传统的线性放大器链中,如以上结合图1A所述,当增益—衰减部分的数目增加时,该放大器链会使得增益平坦性加剧地恶化。
另外,当本发明使用单个独立放大器时,其中每个放大器都具有一标称上很平坦的增益谱(例如,在80纳米的带宽上具有0.3dB范围的衰减),本发明可提供一标称上平坦的增益谱,  对于信号功率的变化,信号数目的变化,以及在某种程度上对于泵浦源的变化,该增益谱是非常稳定的。
尽管结合本发明的特定实施例已做出如上描述,必须懂得,对于该实施例的说明可以被视为针对本发明所作的一种演示和例证,而并非有意地加以限制。本领域技术人员可以进行各种修改和实际应用,却并不脱离如所附的权利要求书中所定义的本发明的真正精神和范围。

Claims (24)

1、一种用来减少响应于多路输入光信号的多路输出光信号功率差的放大系统,该多路输入光信号具有多路各自相应的光波长和并具有多路各自相应的输入功率,所述放大系统包括:
一干涉环路;
一耦合器,其耦合到所述干涉环路,用于将所述多路输入光信号耦合至所述环路上,以使输入光信号各自的第一部分沿着所述环路的第一方向传播,并使所述输入光信号各自的第二部分沿着所述环路的第二方向传播,在所述第一和第二部分在所述环路中经过传播之后,所述耦合器将该第一和第二部分相结合以产生多路输出光信号;
一放大器,相对于所述环路中心,该放大器在所述干涉环路之中位于一不对称的位置,该放大器有一种增益特性,该增益特性使该放大器在多个光波长上具有多个各自的增益,当这些光部分通过该干涉环路时,所述放大器相对于所述环路中心的不对称位置会引起该输入光信号的所述第一信号部分与所述第二信号部分在功率上的差异,所述第一和第二信号部分在功率上的差异会引起该光纤环路中所述第一和第二信号部分之间相应的克尔效应相位移动,该克尔效应相位移动响应于各个不同输入功率与各个不同增益之间的差异而发生变化,从而引起具有更大增益—功率积的输入光信号的更大克尔效应衰减。
2、如权利要求1所述的放大系统,其中所述放大器包括一掺铒光放大器。
3、如权利要求2所述的放大系统,其中还包括:
一临近该放大器的波分复用耦合器;和
一泵浦源,其与该波分复用耦合器相连接以便通过该波分复用耦合器为放大器提供泵浦光。
4、如权利要求1所述的放大系统,其中所述放大器至少包括一第一放大器,该第一放大器对一第一波段波长的信号提供放大作用,并且至少包括一第二放大器,该第二放大器对一第二波段波长的信号提供放大作用。
5、如权利要求4所述的放大系统,其中所述第一放大器和所述第二放大器包括掺铒光放大器。
6、如权利要求4所述的放大系统,其中所述第一放大器和所述第二放大器是并联的。
7、如权利要求4所述的放大系统,其中所述第一放大器和所述第二放大器是串联的。
8、如权利要求1所述的放大系统,其中:
所述干涉环路,所述耦合器和所述放大器构成一第一非线性萨格奈克放大器,所述第一萨格奈克放大器在一第一光谱范围内提供增益;以及
所述放大系统还包括一第二非线性萨格奈克放大器,所述第二非线性萨格奈克放大器包括一相应的干涉环路,一相应的耦合器和一相应的放大器,所述第二非线性萨格奈克放大器具有针对第二光谱范围的增益。
9、一种用于减少相应于多个输入光信号的多个输出光信号输出功率差异的放大系统,该多个输入光信号具有多个相应的光波长并具有多个相应的输入功率,该放大系统包括:
一干涉环路,其具有由一个光学放大器隔开的第一和第二长度光导纤维,该第一长度光导纤维比该第二长度光导纤维长很多;
一耦合器,其耦合到所述干涉环路,用于将光信号耦合至干涉仪环路,使得光信号的第一和第二部分分别沿着该干涉环路的第一和第二方向反向传播,在光信号传播经过该干涉环路之后,耦合器将光信号的各自相应的第一和第二部分结合起来,以便产生多个光波长段上的多个各自相应的输出信号,该多个输出信号具有多个各自相应的输出功率;以及
一放大器,其位于所述干涉环路之中所述第一和第二长度光导纤维之间,该放大器具有使得该放大器在多个波长段上具有多个相应增益的增益特性,沿着该第一和第二方向传播的光信号的第一和第二部分,分别经历不同的克尔效应相位移动,该相位移动由自相位调制、共同传播交叉相位调制以及反向传播交叉调制所引起,该放大器的位置:
使得沿该第一方向传播的光线,在传播经过该放大器和光导纤维第二长度之前先穿过该光导纤维的第一长度,
使得沿该第二方向传播的光线,在传播经过光导纤维的第一长度之前先穿过该光导纤维的第二长度及该放大器,
使得沿该第一方向传播的光线,比沿着该第二方向传播的光线经受更大的反向传播交叉相位调制,以及
使得沿该第二方向传播的光线,比沿着该第一方向传播的光线经受更大的自相位调制和更大的共同传播交叉调制,多个光波长段上的多个光信号的克尔效应相位移动,分别响应于多个光波长段上的放大器增益,并且更进一步地分别响应于多个光信号的输入功率,这样由输入功率差和由多个光波长段上增益差所引起的输出功率差即被减少。
10、如权利要求9所述的放大系统,其中所述放大器至少包括一第一放大器,其对一第一波段波长的信号提供放大作用,并且至少包括一第二放大器,其对一第二波段波长的信号提供放大作用。
11、如权利要求10所述的放大系统,其中所述第一放大器和所述第二放大器包括掺铒光放大器。
12、权利要求10所述的放大系统,其中所述第一放大器和所述第二放大器是并联的。
13、权利要求10所述的放大系统,其中所述第一放大器和所述第二放大器是串联的。
14、权利要求9所述的放大系统,其中:
所述干涉环路,所述耦合器和所述放大器构成一第一非线性萨格奈克放大器,所述第一萨格奈克放大器在一第一光谱范围内提供增益;以及
所述放大系统还包括一第二非线性萨格奈克放大器,所述第二非线性萨格奈克放大器包括一相应的干涉环路,一相应的耦合器和一相应的放大器,所述第二非线性萨格奈克放大器具有针对第二光谱范围的增益。
15、光纤放大系统,包括:
至少第一和第二放大部分,该第一放大部分被耦合以便用于接收多个输入光信号,每个输入光信号都有各自的光波长和各自的输入光功率,每个放大部分其中都包括各自相应的放大器,所述放大器具有各自的增益特性,这样施加于光信号上的增益随着波长而变化,该第一放大部分提供了第一部分的多个光输出信号,该第二放大部分被耦合以便用于接收第一部分的多个光输出信号并且提供第二部分多个光输出信号,该第二部分多个光输出信号中的每一个具有各自的光波长以及具有各自的输出光功率,运用所述放大部分以减少该第二部分的多个光输出信号的各自输出光功率差,该功率差由输入光功率差和由施加于光信号上的增益差所引起,每个放大部分都包括:
一干涉环路,其具有一第一端和一第二端,所述放大部分的放大器相对于所述第一端和一第二端不对称地位于环路中;以及
一耦合器,其耦合到所述干涉环路,用于将光线输入至干涉环路,以便使光线在其每个光波长上以第一和第二的反向传播部分进行传播,在该光线的第一和其反向传播部分传播经过该环路之后,耦合器还将每个波长上的该第一和第二反向传播部分结合起来,每个波长上的该第一和第二反向传播部分互相干涉以提供一每个波长的输出信号,每个波长上输出信号的功率,响应于每个波长的输入功率,响应于每个波长的放大器增益,并响应于每个波长的克尔效应相移,对于具有更大的增益—功率乘积的光波长来说该克尔效应相移更大,这样至少可以部分地减少由增益—功率乘积的不同所引起的输出功率差;
放大器具有随光波长而变化的增益,多个波长段上的光信号具有变化的功率,运用这些放大部分使得位于串行链输出端的每个波长上的输出功率,收敛于某个可选择的输出功率范围之内的指定的相同输出功率。
16、如权利要求15所述的放大系统,其中所述放大器中的每一个包括一掺铒光放大器。
17、如权利要求15所述的放大系统,其中所述放大器具有随着光波长而变化的增益,并且其中所述多个波长段上的所述输入光信号具有变化的功率,运用所述的放大部分使每个所述波长段上的输出功率收敛于一可选的输出功率范围之内的输出功率。
18、权利要求15所述的放大系统,其中所述放大器中的每一个至少包括一第一放大器,其对第一波段波长的信号提供作用,并且至少包括一第二放大器,其对一第二波段波长的信号提供放大作用。
19、权利要求18所述的放大系统,其中所述第一放大器和所述第二放大器包括掺铒光放大器。
20、权利要求18所述的放大系统,其中所述第一放大器和所述第二放大器是并联的。
21、权利要求18所述的放大系统,其中所述第一放大器和所述第二放大器是串联。
22、一种放大多个输入光信号的方法,所述输入光信号具有在某一光波长范围之内的各自的光波长以及具有在某一输入光功率范围之内的各自的光功率,该方法产生相应的多个具有各自输出功率的输出光信号,这些不同的输出功率是在一选定的输出光功率范围之内,该方法包括以下步骤:
将输入的光信号传播经过一第一非线性萨格奈克放大器以产生多个中间光信号,该多个中间光信号响应于多个输入光功率、放大器增益和克尔效应相移,以便具有多个各自的在一光功率中间范围之内的中间光功率,该光功率中间范围比较输入光功率的范围是一个较小的范围;以及
将该中间光信号传播经过至少一第二非线性萨格奈克放大器,以便产生多个输出光信号,该多个输出光信号响应于多个中间光功率、放大器增益和克尔效应相移,以便得到在选定的输出光功率范围之内的多个输出光功率,该被选定的输出光功率范围比中间光功率范围要小。
23、一种光纤系统,包括:
一输入端,该输入端接收具有在一波长范围之内的波长的光输入信号;
一输出端,输出响应于输入光信号的光信号;
至少一放置于输入端和输出端之间的第一放大器,该第一放大器具有第一增益谱,在所述波长范围之中第一增益谱随着波长而变化,以便使得由该第一放大器产生的具有在波长范围之内的第一波长的第一光信号具有第一光功率,并且使得由该第一放大器产生的具有在波长范围之内的第二波长的第二光信号具有第二光功率,该第一光功率和该第二光功率具有功率差;以及
至少一第二放大器,其位于第一放大器和输出端之间,该第二放大器包括一非线性萨格奈克放大器,运用第二放大器,至少部分地补偿第一放大器在所述波长范围的增益差,以便减少该第一光信号和该第二光信号之间的功率差。
24、一种光纤系统,包括:
一输入端,该输入端接收具有在一波长范围之内的波长的光输入信号;
一输出端,该输出端输出响应于所述光输入信号的光输出信号;
多个第一类型的放大器,其放置于输入端和输出端之间,第一类型的放大器具有第一增益谱,该第一增益谱在整个波长范围之中变化使得具有在该波长范围之内第一波长的第一光信号被由第一种类型的放大器以第一增益方式放大,并且使得具有在波长范围之内的第二波长的第二光信号被由第一种类型的放大器以第二增益方式放大,该第二增益不同于第一增益;以及
第二组多个非线性萨格奈克放大器,放置于光学系统的选定位置,运用非线性萨格奈克放大器,至少部分地补偿第一类型放大器的第一增益和第二增益之间的差异,以减少该第一光信号与该第二光信号之间的功率差。
CNB008109729A 1999-08-02 2000-07-12 利用非线性萨格奈克放大器获得平坦增益的系统和方法 Expired - Fee Related CN1158567C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14674499P 1999-08-02 1999-08-02
US60/146,744 1999-08-02
US09/537,639 2000-03-29
US09/537,639 US6377391B1 (en) 1999-08-02 2000-03-29 Gain flattening with nonlinear Sagnac amplifiers

Publications (2)

Publication Number Publication Date
CN1365456A CN1365456A (zh) 2002-08-21
CN1158567C true CN1158567C (zh) 2004-07-21

Family

ID=26844261

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008109729A Expired - Fee Related CN1158567C (zh) 1999-08-02 2000-07-12 利用非线性萨格奈克放大器获得平坦增益的系统和方法

Country Status (9)

Country Link
US (2) US6377391B1 (zh)
EP (1) EP1201011B1 (zh)
JP (1) JP4514382B2 (zh)
KR (1) KR100680682B1 (zh)
CN (1) CN1158567C (zh)
AU (1) AU1324301A (zh)
CA (1) CA2380060A1 (zh)
DE (1) DE60034341T2 (zh)
WO (1) WO2001009991A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340050B (zh) * 2008-08-14 2010-06-02 南京大学 脉冲幅度均匀化的有理谐波锁模光纤激光器

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377391B1 (en) * 1999-08-02 2002-04-23 The Board Of Trustees Of The Leland Stanford Junior University Gain flattening with nonlinear Sagnac amplifiers
WO2001078264A2 (en) * 2000-02-14 2001-10-18 Xtera Communications, Inc. Nonlinear optical loop mirror
US6490380B2 (en) * 2000-03-24 2002-12-03 Oprel Technologeis Inc. Optical amplifier with loop mirror filter noise reducer, and loop mirror filter per se
US6496615B2 (en) * 2000-05-22 2002-12-17 Sumitomo Electric Industries, Ltd. WDM transmission system
CA2373912A1 (en) * 2001-03-01 2002-09-01 Takeshi Hirasawa Optical transmission system
US6563629B2 (en) * 2001-05-18 2003-05-13 Redc Optical Networks Ltd. Method and apparatus for full C-band amplifier with high dynamic gain range
US6804057B1 (en) 2002-02-06 2004-10-12 Novera Optics, Inc. Various methods and apparatuses for a tunable chromatic dispersion compensator
US6788845B1 (en) 2002-05-31 2004-09-07 Novera Optics, Inc. Methods and apparatuses to provide a tunable chromatic dispersion compensator
US20040174528A1 (en) * 2003-01-24 2004-09-09 Ian Humphrey Schemes for computing performance parameters of fiber optic gyroscopes
US7746476B2 (en) * 2007-07-11 2010-06-29 Emcore Corporation Fiber optic gyroscope
CN101105422B (zh) * 2007-07-30 2010-04-21 浙江大学 劳埃特消偏器性能的精确评估方法
US7853156B2 (en) * 2007-10-19 2010-12-14 Ciena Corporation Systems and methods for the coherent non-differential detection of optical communication signals
US7853157B2 (en) * 2007-10-19 2010-12-14 Ciena Corporation Systems and methods for the polarization insensitive coherent detection and the polarization division multiplexed transmission of optical communication signals
US8068232B2 (en) * 2008-04-01 2011-11-29 The Board Of Trustees Of The Leland Stanford Junior University Unidirectional crow gyroscope
US9019482B2 (en) 2009-06-05 2015-04-28 The Board Of Trustees Of The Leland Stanford Junior University Optical device with fiber Bragg grating and narrowband optical source
US9518827B2 (en) * 2010-05-07 2016-12-13 Ralph A. Bergh Method and apparatus for multiplexing multiple Sagnac interferometers with single input for source light
US9025157B2 (en) 2010-09-08 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University System and method for measuring perturbations using a slow-light fiber Bragg grating sensor
US8797540B2 (en) 2010-09-08 2014-08-05 The Board Of Trustees Of The Leland Stanford Junior University Slow-light fiber Bragg grating sensor
CN103443701B (zh) * 2011-03-04 2017-04-12 古河电气工业株式会社 光参量放大器、光放大系统、波长变换器、光放大方法及光通信系统
US8773665B1 (en) 2011-04-01 2014-07-08 Emcore Corporation Compact fiber optic gyroscope
US8823946B1 (en) 2011-06-13 2014-09-02 Emcore Corporation Multi-axis fiber optic gyroscope with single light source
US8798405B2 (en) 2011-08-04 2014-08-05 Emcore Corporation Method of making a fiber optic gyroscope
US10563986B2 (en) 2016-09-22 2020-02-18 LGS Innovations LLC Cladding-pumped waveguide optical gyroscope
CN106949954B (zh) * 2017-03-15 2019-03-15 武汉理工大学 一种光纤振动信号检测装置与方法
CN111971939B (zh) * 2018-03-19 2023-04-28 瑞典爱立信有限公司 信令频谱平坦度配置的系统和方法
CN113542939B (zh) * 2021-07-12 2022-04-22 苏州大学 基于超低损耗光纤的多周期升级调度方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2265751B (en) * 1992-03-23 1995-12-20 Univ Southampton Optical amplifier with automatic self adjusting gain spectrum
JPH0611743A (ja) * 1992-06-29 1994-01-21 Nippon Telegr & Teleph Corp <Ntt> 光パルス増幅装置
US6374006B1 (en) * 1998-03-20 2002-04-16 Xtera Communications, Inc. Chirped period gratings for raman amplification in circulator loop cavities
US6377391B1 (en) * 1999-08-02 2002-04-23 The Board Of Trustees Of The Leland Stanford Junior University Gain flattening with nonlinear Sagnac amplifiers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340050B (zh) * 2008-08-14 2010-06-02 南京大学 脉冲幅度均匀化的有理谐波锁模光纤激光器

Also Published As

Publication number Publication date
WO2001009991A3 (en) 2001-08-16
JP4514382B2 (ja) 2010-07-28
US6466364B1 (en) 2002-10-15
CN1365456A (zh) 2002-08-21
DE60034341T2 (de) 2008-01-03
JP2003506733A (ja) 2003-02-18
EP1201011B1 (en) 2007-04-11
KR20020027515A (ko) 2002-04-13
EP1201011A2 (en) 2002-05-02
WO2001009991A2 (en) 2001-02-08
US6377391B1 (en) 2002-04-23
KR100680682B1 (ko) 2007-02-09
US20020145795A1 (en) 2002-10-10
DE60034341D1 (de) 2007-05-24
AU1324301A (en) 2001-02-19
CA2380060A1 (en) 2001-02-08

Similar Documents

Publication Publication Date Title
CN1158567C (zh) 利用非线性萨格奈克放大器获得平坦增益的系统和方法
Geraghty et al. Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers
US7072549B2 (en) Optical gate device, manufacturing method for the device, and system including the device
US7164526B2 (en) Parametric amplification using two pump waves
US6693740B2 (en) Dispersion managed discrete Raman amplifiers
Tanemura et al. Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing
Jazayerifar et al. Performance evaluation of DWDM communication systems with fiber optical parametric amplifiers
WO2003055017A1 (en) Raman amplification using a microstructured fiber
US7038842B2 (en) Reduced four-wave mixing and Raman amplification architecture
Jamshidifar et al. Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier
Kylemark et al. Semi-analytic saturation theory of fiber optical parametric amplifiers
EP1737087A2 (en) Optical amplifier comprising an optical fibre
US20020164135A1 (en) Optical pulse waveform conversion
Jiang et al. The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop
Fernandez-Vallejo et al. Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification
Mu et al. Raman/EDFA hybrid bidirectional amplifier for fiber-optic time and frequency synchronization
Parolari et al. Influence of pump parameters on two-pump optical parametric amplification
Cheng et al. Experimental investigation of dispersive wave generation and evolution in a tellurite microstructured optical fiber
Provino et al. Broadband and flat parametric gain with a single low-power pump in a multi-section fiber arrangement
US8406584B2 (en) Fiber optic device
Albaheli et al. Performance enhancement of L-shape hybrid fiber amplifier via combining of tunable optical filter and second-order stimulated Raman scattering
Al-Alimi et al. LU-band multiwavelength Brillouin-Raman fiber laser assisted by a broadband pump source
Shimizu et al. Wideband Optical Parametric Amplification of 8.375-THz WDM Signal Using Cascaded PPLN Waveguides With Reused Pump Light
Abdullahi Investigation of dual-pump fiber optical parametric amplifier using highly nonlinear dispersion shifted fiber
Donodin et al. E-band telecom-compatible 40 dB gain high-power bismuth-doped fiber amplifier with record power conversion efficiency

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee