CN1163275A - 共轭二烯聚合物的氢化方法及其适用的催化剂组合物 - Google Patents

共轭二烯聚合物的氢化方法及其适用的催化剂组合物 Download PDF

Info

Publication number
CN1163275A
CN1163275A CN97109642.2A CN97109642A CN1163275A CN 1163275 A CN1163275 A CN 1163275A CN 97109642 A CN97109642 A CN 97109642A CN 1163275 A CN1163275 A CN 1163275A
Authority
CN
China
Prior art keywords
indenyl
phenyl
titanium
catalyst composition
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97109642.2A
Other languages
English (en)
Other versions
CN1130383C (zh
Inventor
E·J·M·德·博尔
B·赫森
A·A·宛·德·辉泽恩
W·德·乔
A·J·宛·德·林登
B·J·鲁伊什
L·斯库
H·J·A·德·斯迈特
F·H·宛·德·斯蒂恩
H·C·T·L·宛·斯特里恩
A·维勒纳
J·J·B·沃尔霍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1163275A publication Critical patent/CN1163275A/zh
Application granted granted Critical
Publication of CN1130383C publication Critical patent/CN1130383C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0205Oxygen-containing compounds comprising carbonyl groups or oxygen-containing derivatives, e.g. acetals, ketals, cyclic peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/121Metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/122Metal aryl or alkyl compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium

Abstract

本发明提供一种用于含有烯属不饱和键的聚合物氢化的催化剂组合物以及含有烯属不饱和键的聚合物的氢化方法,所述组合物至少包括:(a)I式的一种钛化合物:其中A1代表II式的任选取代的茚基:其中取代基的意义详见说明书;(b)一种碱金属氢化物。

Description

共轭二烯聚合物的氢化方法 及其适用的催化剂组合物
本发明涉及一种共轭二烯聚合物的氢化方法及其适用的催化剂组合物。
更具体地,本发明涉及一种共轭二烯聚合物的聚合物和共聚物的氢化方法,所用的氢化催化剂组合物包括至少一种钛化合物和一种碱金属化合物。
公知许多种用于含不饱和双键的化合物的氢化的催化剂,可分成两组:
(1)多相催化剂,一般由可任选地沉积在一种载体如碳、二氧化硅、氧化铝、碳酸钙等上的金属如Ni、Pd、Pt、Ru等组成;和
(2)均相催化剂如(a)由Ni、Co、Fe、Cr等的有机盐和还原剂如有机铝化合物的混合物组成的齐格勒催化剂,和(b)Ru、Rh、Ti、La等的单组分有机金属化合物。
工业中广泛使用多相催化剂,但与均相催化剂相比,它们的活性较低,因此,为用这些多相催化剂进行要求的氢化作用,需要大量的催化剂,且反应必须地相对高的压力和温度下进行。均相催化剂一般活性较高;少量的催化剂就足够了,且氢化反应可在较温和的压力和温度条件下进行。
共轭二烯如1,3-丁二烯和异戊二烯的聚合物及这些二烯与乙烯基芳香单体如苯乙烯的共聚物在工业中广泛用作弹性体。这些聚合物在其链中含有双键,使它们可硫化,但双键的存在导致耐老化和耐氧化性差。一些未硫化的共轭二烯和乙烯基芳烃的嵌段共聚物用作热塑弹性体、透明抗冲击树脂、或聚苯乙烯和聚烯烃树脂的改性剂或增容剂。然而,这些共聚物因链中存在双键,耐老化和耐受大气中氧和臭氧氧化的性能较低。因此,限制了这些聚合物在需要暴露于外界环境的应用中的使用。通过氢化这些聚合物以使双键全部或部分饱和,可显著地改善耐氧和臭氧氧化性和所谓的耐老化性。已提出了许多氢化含烯属双键聚合物的方法。一般涉及两类方法:使用上述多相载体催化剂的方法,和使用齐格勒型或铑和钛的有机金属化合物的均相催化剂的方法。
在使用多相载体催化剂的方法中,首先将要氢化的聚合物溶解于适合的溶剂中,然后在多相催化剂存在下与氢接触。由于聚合物溶液的粘度相对较高,聚合物链的空间位阻,和聚合物的高吸附性,聚合物一旦氢化,即趋于保留在催化剂表面,影响未氢化的聚合物接近活性中心,所以反应物与催化剂的接触很难。因此,要使双键完全氢化,需要大量的催化剂和苛刻的反应条件。这通常导致聚合物降解和胶凝。此外,在共轭二烯与乙烯基芳烃共聚物的氢化中,芳核也被氢化,难以实现对聚二烯单元的双键的选择性氢化。而且,催化剂与氢化聚合物溶液的物理分离极难,在某些情况下,因聚合物牢固地吸附在多相催化剂上,不可能完全除去。
在使用齐格勒型催化体系(如前所述)的方法中,反应基本上发生在均相介质中,因而共聚物的氢化可在温和的压力和温度条件下进行。此外,通过适当地选择氢化条件,可选择性地氢化聚(共轭二烯)段的双键而不氢化聚(乙烯基芳烃)段的芳环。
不过从反应产物上除去催化剂残余物是复杂且费用高的步骤,但是这种除去步骤是绝对必要的,因为这些残余物对氢化聚合物的稳定性有不利影响。
使用其它均相催化剂的其它方法,例如US3,898,208和JP01.289,805中所述使用铑化合物,有铑催化剂成本高的缺点。
已知其中组分之一为环戊二烯基钛的衍生物的氢化催化剂(US4,501,857),必需在有机锂化合物存在下,用于共轭二烯聚合物的烯属双键的氢化。
EP460,725描述了类似催化剂体系用于聚合物氢化的应用,所述聚合物已利用有机锂化合物合成并已通过加入氢而终止,在此情况下要产生活性催化剂必须存在在最后反应中形成的氢化锂。这两个文献中的实施例均使用化合物二氯化双(环戊二烯基)钛(Cp2TiCl2)。
在EP0549063A和0532099A中描述了对此构思的进一步改进,在所述终止的聚合物溶液中使用至少6∶1的碱金属氢化物/钛摩尔比,且在氢化过程中用苯甲酸烷基酯作为附加的促进剂。
上述文献中的实施例实际上仅使用化合物Cp2TiCl2,其在工业上应用的溶剂中表现出非常不足的溶解性。
在GB2,159,819A中指出:Cp2TiR2类(R=烷芳基)物质是能够选择性地氢化共轭二烯聚合物和共聚物的双键的催化剂,而不需要存在有机锂化合物。
EP0434469A2描述了使用异常复杂的催化体系,包括与铝或镁的有机金属化合物化合的双环戊二烯基钛化合物和在碱土金属烷氧化物存在下的碱金属以及醚、酮、亚砜等类的极性化合物。所述催化体系能够氢化共轭二烯聚合物和共聚物的双键。
EP0544304A描述了一种据说是对后一构思的进一步改进,所用的催化剂组合物包括:
(a)一种双(环戊二烯基)过渡金属化合物,特别是二氯化双(环戊二烯基)钛或二苄基双(环戊二烯基)钛,
(b)至少一种极性化合物,选自含羰基的化合物和含环氧基的化合物,特别是一元酸或二元酸的酯、内酯化合物、内酰胺化合物和环氧化合物,如缩水甘油甲醚、缩水甘油正丁醚、缩水甘油烯丙醚、甲基丙烯酸缩水甘油酯、丙烯酸缩水甘油酯;1,2-环氧丁烷、环氧己烷。和
(c)一种有机锂化合物,特别是正丁基锂、仲丁基锂、叔丁基锂、苯基锂、正己基锂、对甲苯基锂、甲苄基锂、1,4-二锂丁烷、亚烷基二锂和在其末端有锂的活性高分子,和此外优选
(d)一种还原性有机金属化合物,选自铝化合物、锌化合物和镁化合物,如三乙基铝、三异丁基铝、氯化二乙基铝、乙基铝、氯化二乙基铝、二氯化乙基铝、三异丙氧基铝和三叔丁氧基铝。已指出组分(a)和(b)之间的摩尔比小于1/0.5,更优选为1/2至1/3;和组分(a)和(c)之间的摩尔比为1/1至1/40,最优选1/3至1/30。
源于用钛化合物作为氢化催化剂成分这一构思的进一步改进描述在EP0545844A和0601953A中,其中所述环戊二烯基配位体已完全甲基化或已通过二甲基亚甲硅烷基连接在一起,和其中所述其它配位体R代表含1至20个碳原子的烷氧基、或卤原子或CH2PPh2、PPh2或CH2SiMe3或PhOR配位体。
然而,所述方法未提供任何优于前面讨论的现有技术的显著优点。
为获得更经济的氢化方法,目前工业上需要有可行的均相催化剂,其比现有已知的更有效,同时是稳定的,且在足够低的浓度下即有效,从而可避免从氢化的聚合物中除去催化剂残余物的高成本步骤。
因此,本发明的目的之一是由如上所定义的改进的氢化方法。本发明的另一目的是适用于所述方法中的催化剂组合物。
经过广泛的研究和实验,已惊人地发现上述目的的催化剂和方法。
因此,本发明涉及一种用于含有烯属不饱和键的聚合物氢化的催化剂组合物,至少包括:
(a)下式的钛化合物:
Figure A9710964200091
其中A1代表下式的任选取代的茚基:
其中取代基R1和R2可以相同或不同,可选自卤素、任选地可有一或多个相同或不同取代基的苯基、低级烷基、低级烷氧基、苯氧基、苯基烷氧基、苄基和含有一或多个杂原子的庞大取代基如三(低级烷基)甲硅烷基、~NPh2、~NHPh、~BPh2和~B(OPh)2,其中n可以是0至4的整数,优选0至2,更优选0至1,和m可以是0至3的整数,优选0至2,更优选0至1,其中A2有与A1相同的意义,或者代表任选取代的环戊二烯基,和其中L1和L2可以相同或不同,可选自氢、卤素(优选氯)、低级烷基、苯基、有7至10个碳原子的芳烷基、低级烷氧基、苯氧基、有7至10个碳原子的苯基烷氧基、羧基、羰基、B-双酮配位、~CH2P(苯基)2、-CH2Si(低级烷基)3或~P(苯基)2;和
(b)碱金属氢化物,直接加入或从碱金属封端的活性高分子和/或从另外加入的烷基碱金属在聚合物溶液中就地制备。
碱金属与钛的摩尔比优选至少2∶1。
碱金属氢化物优选使用氢化锂。用于形成至少一种共轭二烯的活性高分子的聚合引发剂和形成附加的碱金属氢化物的任选的附加量的碱金属化合物的优选为有机锂化合物。它们优选选自甲基锂、乙基锂、正丙基锂、正丁基锂、仲丁基锂、叔丁基锂、正己基锂、苯基锂、对甲苯基锂、甲苄基锂、1,4-二锂丁烷、亚烷基二锂或丁基锂和二乙烯苯的反应产物。
特别优选的是正丁基锂、仲丁基锂、叔丁基锂和苯基锂。最优选的是叔丁基锂、仲丁基锂或正丁基锂。催化剂组合物中氢化锂与钛的摩尔比优选至少为6,更优选在6至25的范围内。
钛化合物(a)的用量通常为千克(kg)要被氢化的共轭二烯聚合物5至100mg,优选20至60mg/kg共轭二烯聚合物。
组分(a)中优选的配位体L1和L2选自氯、溴、羰基、甲基、乙基、正丙基、异丙基、正丁基、叔丁基、仲丁基、三甲基甲硅烷氧基、苄基、苯基、己基、甲氧基、乙氧基、正丙氧基、异丙氧基、丁氧基、叔丁氧基、仲丁氧基、戊氧基、新戊氧基、苯氧基、苯基甲氧基、苯基乙氧基和CH2P(苯基)2基。
在所述钛催化剂组分中更优选的L1和L2均为氯、苄基、苯基、甲氧基、乙氧基、异丙氧基、叔丁氧基、正丁氧基、苯氧基或CH2P(苯基)2基,均最优选为氯。
如果存在,所述环戊二烯基环(A2)可任选地被一或多个相同或不同的基团取代,这些取代基可选自卤素或任选地可有一或多个相同或不同的取代基的苯基、低级烷基、低级烷氧基、苯氧基、苯基烷氧基、苄基和含有一或多个杂原子的庞大取代基如三(低级烷基)甲硅烷基、~NPh2、~NHPh、~BPh2和~B(OPh)2
当一或多个、优选一或两个所述符号R代表苯基时,其任选地被一或多个取代基取代,所述取代基选自低级烷基、卤素(优选氟或氯)和低级烷氧基。
其例子是对叔丁基苯基、五氟苯基、二氯苯基、3,5-二叔丁基-4-甲氧基苯基和三氟苯基。
本说明书中所用术语“低级烷基”和“低级烷氧基”意指含有1至4个碳原子的这些基团。
最优选的钛化合物是二氯双(1-茚基)合钛、二苯氧基·双(1-茚基)合钛、二甲氧基·双(1-茚基)合钛、二氯双(1-甲基茚基)合钛、二氯双(5,6-二甲氧基-茚基)合钛、二氯双(二甲氧基茚基)合钛、二氯双(三甲基甲硅烷基茚基)合钛、二氯(二甲氧基茚基)(环戊二烯基)合钛、二氯(二甲氧基茚基)(茚基)合钛、二甲氧基·(二甲氧基茚基)(茚基)合钛、二氯(甲氧基茚基)(茚基)合钛、二甲氧基·(甲氧基茚基)(茚基)合钛、二氯(1-茚基)(环戊二烯基)合钛、二甲氧基·(1-茚基)(环戊二烯基)合钛和二苯氧基·(1-茚基)(环戊二烯基)合钛。
可以看出,本发明的另一方面为含烯属不饱和键(C-C双键)的聚合物的氢化方法,所述方法是使聚合物溶液在至少所述催化剂组合物的组分(a)和(b)存在下与氢充分接触。
根据本发明氢化方法的一种更优选实施方案,除了上述催化剂组分(a)和(b)以外,还加有一种或多种促进剂(c)。
所述促进剂(c)可选自极性酮化合物、含有羟基的酮化合物、醛化合物、酯化合物、内酯化合物、内酰胺化合物、环氧化合物和还原性有机金属化合物。
上述促进剂中特别优选的是酮化合物、含有羟基的酮化合物、醛化合物、酯化合物和环氧化合物。
优选的酮化合物的具体实例包括丙酮、二乙基酮、二正丙基酮、二异丙基酮、二仲丁基酮、二叔丁基酮、甲基乙基酮、异丙基甲基酮、异丁基甲基酮、2-戊酮、3-己酮、3-癸酮、联乙酰(丁二酮)、苯乙酮、4′-甲氧基苯乙酮、4′-甲基苯乙酮、苯基乙基酮、二苯酮、4-甲氧基二苯酮、4,4′-二甲氧基二苯酮、苄基苯基酮、苯偶酰丙酮、苯甲酰丙酮、环戊酮、环己酮、4-甲基环己酮、1,2-环己二酮、环庚酮、和乙酰丙酮。
含有羟基的酮化合物定义为分子中既有羟基又有酮羰基的化合物。优选化合物的具体实例是羟基丙酮、3-羟基-2-丁酮、4-羟基-2-丁酮、3-羟基-3-甲基-2-丁酮、5-羟基-2-丁酮、双丙酮醇、4-(对-羟基苯基)-2-丁酮、2-羟基苯乙酮、2′-羟基苯乙酮、3′-羟基苯乙酮、4′-羟基苯乙酮、4′-羟基-3′-甲氧基苯乙酮、2-羟基苯基乙基酮、4′-羟基苯基乙基酮、2′,4′-二羟基苯乙酮、2′,5′-二羟基苯乙酮、2′,6′-二羟基苯乙酮、3′,5′二羟基苯乙酮、2′,3′,4′-三羟基苯乙酮、2-羟基二苯酮、4-羟基二苯酮、2-羟基-4-甲氧基二苯酮、2-羟基-4-正辛氧基二苯酮、2,2′-二羟基二苯酮、2,4-二羟基二苯酮、4,4′-二羟基二苯酮、2,2′-二羟基-4-甲氧基二苯酮、2,,4′-三羟基二苯酮和苯偶姻(二苯乙醇酮)。
作为醛化合物,可使用脂族或芳族醛化合物。在脂族醛化合物中脂基可以是饱和或不饱和的,并可以是直链或支链的。优选的醛化合物的例子是甲醛、乙醛、丙醛、正丁醛、异丁醛、正戊醛、异戊醛、新戊醛、正己醛、2-乙基已醛、正庚醛、正辛醛、正壬醛、正癸醛、正十一醛、十二醛、十三醛、十四醛、十五醛、十六醛、十七醛、十八醛、乙二醛、丁二醛、苯甲醛、邻甲苯甲醛、间甲苯甲醛、对甲苯甲醛、α-萘甲醛、β-萘甲醛和苯乙酰萘醛。
酯化合物的例子是由一元酸、二元酸或多元酸与醇形成的酯,一元酸如甲酸、乙酸、丙酸、丁酸、己酸、壬酸、月桂酸、棕榈酸、硬脂酸、异硬脂酸、环己基丙酸、环己基己酸、苯甲酸、苯基丁酸等;二元酸如乙二酸、马来酸、丙二酸、富马酸、琥珀酸、戊二酸、己二酸、庚二酸、辛二酸、癸二酸、衣康酸、邻苯二甲酸、间苯二甲酸、对苯二甲酸、壬二酸等;多元酸如1,2,3-丙三羧酸、1,3,5-正戊三羧酸等;醇如甲醇、乙醇、异丙醇、正丁醇、仲丁醇、叔丁醇、戊醇、己醇、辛醇、苯酚、甲酚、1,3-丁二醇、1,4-丁二醇、颇哪醇(piniacol)、季戊四醇等。
内酯化合物的具体例子是β-丙内酯、γ-丁内酯、ε-己内酯、△α,β-巴豆内酯、△β,γ-巴豆内酯、香豆素、2-苯并呋喃酮、α-吡喃酮、斯德酮(sydonone)和荧烷(fluoran)等。
内酰胺化合物的具体例子是β-丙内酰胺、2-吡咯烷酮、2-哌啶酮、ε-己内酰胺、正庚内酰胺、8-辛内酰胺、9-壬内酰胺、10-癸内酰胺、2-喹诺酮、1-异喹诺酮、羟吲哚、异靛蓝、靛红、海因和喹啉烷酮(quinolidinone)。
优选的环氧化合物的具体例子包括一氧化1,3-丁二烯、二氧化1,3-丁二烯、1,2-环氧丁烷、2,3-环氧丁烷、氧化环己烯、1,2-环氧基环十二烷、1,2-环氧癸烷、1,2-环氧二十烷、1,2-环氧庚烷、1,2-环氧十六烷、1,2-环氧十八烷、1,2-环氧辛烷、乙二醇二缩水甘油醚、1,2-环氧庚烷、1,2-环氧十四烷、环氧己烷、1,1-二甲基环氧乙烷、双环氧化1,7-辛二烯、2-苯基氧化丙烯、氧化丙烯、氧化反式-1,2-二苯乙烯、氧化苯乙烯、环氧化1,2-聚丁二烯、环氧化亚麻子油、缩水甘油甲醚、缩水甘油正丁醚、缩水甘油烯丙基醚、甲基丙烯酸缩水甘油酯和丙烯酸缩水甘油酯。
组分(a)与由极性酮化合物、羟基酮化合物、醛化合物、酯化合物、内酯化合物、内酰胺化合物或环氧化合物组成的组分(c)的摩尔比适合在10至1/2的范围内,更优选在5至1的范围内,最优选在2至1的范围内。
还原性有机金属化合物可选自铝化合物、锌化合物和镁化合物。铝化合物的具体例子是三甲基铝、三乙基铝、三异丁基铝、三苯基铝、氯化二乙基铝、二氯化乙基铝、倍半氯化甲基铝、倍半氯化乙基铝、氢化二乙基铝、氢化二异丁基铝、三(2-乙基己基)铝、三异丙醇铝、三叔丁醇铝、乙氧基二乙基铝。锌化合物的例子是二乙基锌、双(环戊二烯基)锌和二苯基锌;镁化合物的例子是二甲基镁、二乙基镁、溴化甲基镁、氯化甲基镁、溴化乙基镁、氯化乙基镁、溴化苯基镁、氯化苯基镁和氯化叔丁基镁。
除这些化合物之外,还可用含有两或多种还原金属的化合物如氢化铝锂作为组分(c)。
上述化合物中,考虑到它们的易得性和易加工性,优选三乙基铝、三异丁基铝、氯化二乙基铝、二氯化乙基铝、三异丙醇铝和三叔丁醇铝。组分(a)与(c)的摩尔比优选大于1/20,更优选1/1-1/18,最优选1/2-1/15。
按本发明的方法可得到有高氢化度的聚合物,其中出人意料地发现,与现有技术的均相Ti催化剂氢化方法相比,本发明催化剂体系表现出与高选择性相结合的显著高的活性,导致起始聚合物的氢化速率较高或每重量份聚合物能够使用较低浓度的催化剂。此外,此种催化剂可更精确地计量并表现出极好的再现性。
本发明方法明显的优点是,对不同类型的C-C双键的氢化似乎没有任何差别,所述双键即在1,2乙烯基侧基中、没有取代的C原子的主链中和有取代的C原子的主链中的那些双键。
本发明方法中所述催化剂体系可以极低的浓度使用,其在最终氢化产物中的浓度非常低。所述氢化方法可在1至50巴、优选1至35巴范围内的氢分压下进行。
可被本发明催化剂组合物氢化的烯属不饱和聚合物包括在聚合物主链或侧链中含有烯属碳-碳不饱和双键的所有聚合物。典型的例子是共轭二烯聚合物和共轭二烯与烯烃的无规、嵌段或接枝聚合物。
上述共轭二烯聚合物包括由共轭二烯制备的共轭二烯均聚物或由至少一种共轭二烯和至少一种可与所述共轭二烯共聚的烯烃制备的共聚物。
适用于制备这些共轭二烯聚合物的共轭二烯的典型例子是有4-12个碳原子的共轭二烯。具体实例是1,3-丁二烯、异戊二烯、2,3-二甲基-1,3-丁二烯、1,3-戊二烯、2-甲基-1,3-戊二烯、1,3-戊二烯、1,3-己二烯、4,5-二乙基-1,3-辛二烯、3-丁基-1,3-辛二烯和氯丁二烯。
鉴于在制造弹性体方面有优良的特性和工业优点,特别优选1,3-丁二烯和异戊二烯。弹性体如聚丁二烯、聚异戊二烯、丁二烯/异戊二烯共聚物是特别优选用于本发明的聚合物材料。对于聚合物的微观结构没有特别的限制。所有这些聚合物都是适用于使用本发明催化剂组合物氢化的材料。
由至少一种共轭二烯和至少一种可与所述共轭二烯共聚的烯烃制备的上述共聚物也是适用于使用本发明催化剂组合物氢化的聚合物材料。
上述共轭二烯单体可用于制备此类共聚物。可与这些共轭二烯共聚的任何烯烃都适用于制备此共聚物,特别优选乙烯基取代的芳烃。
共轭二烯与乙烯基取代的芳烃的共聚物对于生产工业上有用的、有价值的弹性体或热塑性弹性体特别重要。适用于制备此类共聚物的乙烯基取代的芳烃的具体实例是苯乙烯、α-甲基苯乙烯、对甲基苯乙烯、二乙烯苯、1,1-二苯基乙烯、N,N-二甲基-对氨乙基苯乙烯、N,N-二乙基-对氨乙基苯乙烯和乙烯基吡啶。其中特别优选苯乙烯和α-甲基苯乙烯。提供工业上有价值的氢化共聚物的具体共聚物是丁二烯/苯乙烯共聚物、异戊二烯/苯乙烯共聚物和丁二烯/α-甲基苯乙烯共聚物。
这些共聚物包括整个聚合物中单体无规分布的无规共聚物、组成渐变的嵌段共聚物、完全的嵌段共聚物和接枝共聚物,优选线性或星形、梳形的丁二烯-苯乙烯嵌段共聚物、异戊二烯-苯乙烯嵌段共聚物或丁二烯/异戊二烯-苯乙烯嵌段共聚物。
为制备工业上有用的热塑性弹性体,乙烯基取代的芳烃的量优选在15至45%(重)的范围内。
为获得有优良特性的氢化聚合物,所述共轭二烯单元中乙烯键的含量为总共轭二烯单元的10%或更多是理想的。
可用于使用本发明催化剂组合物的氢化方法中的聚合物还包括线性的、及支链或通过用偶联剂偶联生产的放射形或星形聚合物。
要根据本发明氢化的聚合物还包括有活性负离子聚合后用极性基团改性或用其它方法改性的端基的那些聚合物。羟基、羧基、酯基、异氰酸酯基、聚氨酯基、酰胺基、尿素基和硫代氨基甲酸乙酯基可用作所述极性基团。
除上述聚合物之外,由任何聚合方法制备的任何聚合物均可用于本发明,聚合方法例如阴离子聚合、阳离子聚合、配位聚合、自由基聚合、溶液聚合、乳液聚合等。
此外,用易位催化剂如钼和钨开环聚合制备的环烯聚合物也包括在有烯属不饱和键的聚合物之内。
在用本发明催化剂组合物的氢化反应中,所述烯属不饱和聚合物可在这样的条件下氢化:将它们溶解于烃溶剂中,或者所述烯属不饱和聚合物通过在烃溶剂中聚合制备并随后氢化。
用于所述氢化反应中的烃溶剂可以是脂族烃,例如戊烷、己烷、庚烷、辛烷等;脂环族烃,例如环戊烷、甲基环戊烷、环己烷等;或芳族溶剂如甲苯。这些烃溶剂可含有20%(重)或更少量的醚如二乙基醚、四氢呋喃、二丁基醚、二乙氧基丙烷和二噁烷。
进行本发明氢化反应时对聚合物的浓度没有限制。但通常,所述聚合物浓度在1至30%(重)的范围内,优选在3至20%(重)的范围内。所述氢化反应这样进行:在惰性气体气氛下如在氮或氩中、或在氢气氛下加入所述氢化催化剂组合物,然后在使聚合物溶液的温度保持在特定温度的情况下,搅拌或不搅拌下,加入氢气。
适用于所述氢化反应的温度在0至150℃的范围内。温度低于0℃不经济,因为在低于0℃的温度下,不仅催化剂活性降低,而且氢化速率减慢。另一方面,如果温度高于150℃,不仅聚合物趋于分解或凝胶,而且芳环同时被氢化,导致氢化的选择性差。优选地,温度在20至140℃的范围内,更优选在50至130℃的范围内。在使用本发明催化剂组合物的氢化反应中,反应可在相对较高的温度下进行,从而反应速率较高和产率较高。
所述氢化反应进行的时间在1分钟至5小时的范围内。催化剂组合物的用量越大和压力越高,则反应时间可越短。
本发明的另一方面是式I的钛催化剂组分(a)。这些催化剂组分(a)除未取代的二氯(1-茚基)(环戊二烯基)合钛和二氯双(1-茚基)合钛之外为新化合物。这些化合物可由原则上公知的方法制备,如有机金属化合物化学(J.Organometallic Chemistry),Issue4,p156-158(1965),有机金属化合物(Organometallics)1984(3),223,和美国化学杂志(J AmChem.Soc.)1990,112,2030。更特别地优选这样的式I的钛化合物,其中两个茚基被低级烷基或低级烷氧基或卤素取代,或其中一个取代的茚基和一个任选地取代的环戊二烯基被本文中前述的具体基团取代。
下面通过实施例说明本发明。
                         实施例1
               二氯双(1-甲基茚基)合钛的制备
将1.36g1-甲基茚基锂(10.1mmol)加入在-20℃下的0.91g TiCl4(4.8mmol)的50ml二氯甲烷溶液中。使混合物升温至室温,再搅拌一小时,离心分离,然后倾析出清液,在真空中蒸发。剩余物用戊烷/二乙基醚和戊烷洗涤,制得要求的产品,分离出80mg纯产品(0.2mmol),2%。
                         实施例2
               二氯双(1-(五氟苯基)茚基)合钛的制备
将1.34g1-(五氟苯基)茚基锂(4.7mmol)加入在-20℃下的0.42g TiCl4(2.2mmol)的40ml二氯甲烷溶液中。使混合物升温至室温,再搅拌一小时,离心分离,然后倾析出清液,在真空中蒸发。剩余物用己烷洗涤,制得要求的产品。离析出一种异构体,265mg(0.4mmol),17%。
                         实施例3
              二氯双(5,6-二甲氧基茚基)合钛的制备
将1.04g5,6-二甲氧基茚基锂(4.1mmol)加入在-20℃下的0.38g TiCl4(2.0mmol)的40ml二氯甲烷溶液中。使混合物升温至室温,再搅拌一小时,离心分离。然后倾析出清液,真空蒸发出溶剂。剩余物用二乙基醚(2×30ml)洗涤,剩余物再用40ml二氯甲烷萃取。蒸发出溶剂,制得要求的产品590mg(63%)。
                        实施例4
         二氯双(1-茚基)二甲基甲硅烷基合钛的制备
将η-丁基锂(6.1g,1.6M已烷溶液)加入在-70℃下搅拌的二甲基甲硅烷基-双茚(2g)的无水己烷(40ml)溶液中。使反应混合物升温至室温,搅拌20小时。分离出白色沉淀,用戊烷洗涤,然后在减压下干燥。将所得粉末缓慢地加入在一70℃下的TiCl4(1.5g)的二氯甲烷(60ml)溶液中。使反应混合物升温至室温,再搅拌一小时。离心分离除去所生成的固体。蒸发残余溶液直至除去挥发物。粗产品用戊烷洗涤3次,在减压下干燥。用己烷从二氯甲烷中诱导结晶,制得60mg(2%)外消旋+内消旋的二氯双(1-茚基)二甲基甲硅烷基合钛,为深棕色粉末。
                    实施例5
            二氯双(1-茚基)亚乙基合钛的制备
将0.96g TiCl4(5.07mmol)溶于40ml CH2Cl2中,冷却至-40℃,加入1.36g双(1-茚基)亚乙基双锂(5.07mmol)固体。在室温下搅拌2h之后,将反应混合物离心分离以除去LiCl。将CH2Cl2层蒸干,用己烷洗涤两次,得到二氯双(1-茚基)亚乙基合钛棕色结晶。
                       实施例6
              氢封端的SBS嵌段共聚物的制备
在不锈钢反应器中用仲丁基锂作为引发剂用阴离子聚合制备30L分子量为70,000的聚苯乙烯-聚丁二烯-聚苯乙烯(SBS)嵌段共聚物批料。所述聚合是在已加入140ppm二乙氧基丙烷的环己烷中、在18wt%固体含量下进行的。所述SBS聚合物的1,2-含量为40.4wt%。
所述聚合反应结束时,向反应器中喷射氢气2小时,以终止所述活性的SBS-Li聚合物,产生SBS和LiH。测量所述批料的LiH含量,为2.2mmol/L。
                         实施例7
            用二氯双(茚基)合钛氢化SBS嵌段共聚物
将如实施例6所述制备的SBS浆料190g装入一不锈钢反应器中。反应器的温度固定在70℃,并将反应器加压至10bar氢气以饱和所述浆料。同时制备二氯双茚基合钛(14mg,0.04mmol)的环己烷(10ml)悬浮液。将所述催化剂悬浮液加入反应器中,并将氢气的压力升至50bar。立即发生剧烈的放热反应(T=82℃)。使氢化进行3小时,期间从反应器中取出试样并用1H NMR分析以测定烯属双键的转化率。
测得转化率为15分钟后72wt%,60分钟后75wt%,180分钟后77wt%。
                     实施例8
       用二氯双(茚基)合钛氢化SBS嵌段共聚物
将如实施例6所述制备的SBS浆料800g装入一不锈钢反应器中。反应器的温度固定在50℃,并将反应器加压至10bar氢气以饱和所述浆料。同时制备二氯双茚基合钛(29mg,0.084mmol)的环己烷(10ml)悬浮液。将所述催化剂悬浮液加入反应器中,并将氢气的压力升至50bar。立即发生放热反应。使氢化进行3小时,期间从反应器中取出试样并用1H NMR分析以测定烯属双键的转化率。按相同的方法,用58mg(0.168mmol)和87mg(0.252mmol)二氯双茚基合钛再进行两次试验。结果示于表1中。
                        表1
           用不同量的二氯双茚基合钛氢化的结果
量    15分钟转化率  60分钟转化率  180分钟转化率(mmol)     (wt%)        (wt%)         (wt%)0.084       15            46             880.168       22            88             900.252       27            89             91
                        对比例
          用二氯双(环戊二烯基)合钛氢化SBS嵌段共聚物
将如实施例6所述制备的SBS浆料800g装入一不锈钢反应器中。反应器的温度固定在50℃,并将反应器加压至10bar氢气以饱和所述浆料。同时制备二氯双环戊二烯基合钛(21mg,0.084mmol)的环己烷(10ml)悬浮液。将所述催化剂悬浮液加入反应器中,并将氢气的压力升至50bar。使氢化进行3小时,期间从反应器中取出试样并用1H NMR分析以测定烯属双键的转化率。测得转化率为15分钟后22wt%,60分钟后51wt%,180分钟后60wt%,显著地低于用相同量的二氯双茚基合钛的结果。
                    实施例9-11
    用取代的二氯双(茚基)合钛化合物氢化SBS嵌段共聚物
按如实施例7中所述的方法,用0.04mmol实施例1-3中制备的催化剂再进行三次氢化实验。结果示于表2中。
                    表2
         用不同的茚基钛催化剂氢化的结果催化剂来自:15分钟转化率  60分钟转化率  180分钟转化率
           (wt%)        (wt%)         (wt%)实施例1        47            79             81实施例2         7            12             20实施例3        27            91             96
                   实施例12-14
在草酸二甲酯存在下用二氯双(茚基)合钛氢化SBS嵌段共聚物
将如实施例6所述制备的SBS浆料190g装入一不锈钢反应器中。向反应器中加入草酸二甲酯(4.7mg,0.04mmol)的环己烷(10ml)溶液。反应器的温度固定在70℃,并将反应器加压至10bar氢气以饱和所述浆料。同时制备二氯双茚基合钛(14mg,0.04mmol)的环己烷(10ml)悬浮液。将所述催化剂悬浮液加入反应器中,并将氢气的压力升至50bar。使氢化进行3小时,期间从反应器中取出试样并用1H NMR分析以测定烯属双键的转化率。结果示于表3中。
                       表3
        用草酸二甲酯改性的二氯双茚基合钛氢化的结果改性剂/Ti  15分钟转化率  60分钟转化率  180分钟转化率
           (wt%)        (wt%)         (wt%)
1∶1         20            55             830.5∶1        76            83             880.75∶1        77            80             87
                      实施例15-16
       用桥连的二氯双(茚基)合钛化合物氢化SBS嵌段共聚物
按如实施例7中所述的方法,用0.04mmol实施例4和5的催化剂再进行二次氢化实验。结果示于表4中。
                      表4
            用桥连的双茚基钛化合物氢化的结果催化剂来自:15分钟转化率  60分钟转化率  180分钟转化率
          (wt%)        (wt%)         (wt%)
实施例4     29            33             36
实施例5     32            47             48
从这些实施例及相关的实施例7-12中可以看出:在茚基之间引入桥连取代基,不能改善氢化方法。
                  实施例17
      用二氯(茚基)(环戊二烯基)合钛氢化SBS嵌段共聚物
将如实施例6所述制备的SBS浆料800g装入一不锈钢反应器中。反应器的温度固定在50℃,并将反应器加压至10bar氢气以饱和所述浆料。同时制备二氯(茚基)(环戊二烯基)合钛(0.109mmol)的环己烷(10ml)悬浮液。将所述催化剂悬浮液加入反应器中,并将氢气的压力升至50bar。立即发生放热反应。使氢化进行3小时,期间从反应器中取出试样并用1HNMR分析以测定烯属双键的转化率。按相同的方法,用0.109mmol的二氯(5-甲氧基茚基)(环戊二烯基)合钛和二氯(5,6-二甲氧基茚基)(环戊二烯基)合钛再进行两次试验。结果示于表5中。
                        表5
    用任选取代的二氯(茚基)(环戊二烯基)合钛催化剂氢化的结果
催化剂           15分钟转化率  60分钟转化率  180分钟转化率
                   (wt%)        (wt%)         (wt%)IndCpTiCl2           17            70             98MeOIndCpTiCl2         13            37             96(MeO)2IndCpTiCl2      13            37             99

Claims (19)

1.一种用于含有烯属不饱和键的聚合物氢化的催化剂组合物,至少包括:
(a)下式的钛化合物:其中A1代表下式的任选取代的茚基:
其中取代基R1和R2可以相同或不同,可选自卤素、任选地可有一或多个相同或不同取代基的苯基、低级烷基、低级烷氧基、苯氧基、苯基烷氧基、苄基和含有一或多个杂原子的庞大取代基如三(低级烷基)甲硅烷基、~NPh2、~NHPh、~BPh2和~B(OPh)2,其中n可以是0至4的整数,和m可以是0至3的整数,
其中A2有与A1相同的意义,或者代表任选取代的环戊二烯基,和其中L1和L2可以相同或不同,可选自氢、卤素、低级烷基、苯基、有7至10个碳原子的芳烷基、低级烷氧基、苯氧基、有7至10个碳原子的苯基烷氧基、羧基、羰基、B-双酮配位体、~CH2P(苯基)2、-CH2Si(低级烷基)3或~P(苯基)2;和
(b)碱金属氢化物,直接加入或从碱金属封端的活性聚合物和/或从另外加入的烷基碱金属在聚合物溶液中就地制备。
2.根据权利要求1的催化剂组合物,特征在于碱金属:钛的摩尔比为至少2∶1。
3.根据权利要求1或2的催化剂组合物,特征在于所述碱金属氢化物为氢化锂。
4.根据权利要求3的催化剂组合物,特征在于氢化锂与钛的摩尔比在6至25的范围内。
5.根据权利要求1-4之任一的催化剂组合物,特征在于组分(a)中配位体L1和L2选自氯、溴、羰基、甲基、乙基、正丙基、异丙基、正丁基、叔丁基、仲丁基、三甲基甲硅烷氧基、苄基、苯基、己基、甲氧基、乙氧基、正丙氧基、异丙氧基、丁氧基、叔丁氧基、仲丁氧基、戊氧基、新戊氧基、苯氧基、苯基甲氧基、苯基乙氧基和CH2P(苯基)2
6.根据权利要求5的催化剂组合物,特征在于L1和L2均为氯、苄基、苯基、甲氧基、乙氧基、异丙氧基、叔丁氧基、正丁氧基、苯氧基或CH2P(苯基)2
7.根据权利要求6的催化剂组合物,特征在于L1和L2均为氯。
8.根据权利要求1-7之任一的催化剂组合物,特征在于所述组分(a)选自二氯双(1-茚基)合钛、二苯氧基·双(1-茚基)合钛、二甲氧基·双(1-茚基)合钛、二氯双(1-甲基茚基)合钛、二氯双(5,6-二甲氧基-茚基)合钛、二氯双(二甲氧基茚基)合钛、二氯双(三甲基甲硅烷基茚基)合钛、二氯(二甲氧基茚基)(环戊二烯基)合钛、二氯(二甲氧基茚基)(茚基)合钛、二甲氧基·(二甲氧基茚基)(茚基)合钛、二氯(甲氧基茚基)(茚基)合钛、二甲氧基·(甲氧基茚基)(茚基)合钛、二氯(1-茚基)(环戊二烯基)合钛、二甲氧基·(1-茚基)(环戊二烯基)合钛和二苯氧基·(1-茚基)(环戊二烯基)合钛。
9.根据权利要求1-8之任一的催化剂组合物,特征在于除组分(a)和(b)之外,还包括一种或多种促进剂(c),选自极性酮化合物、含有羟基的酮化合物、醛化合物、酯化合物、内酯化合物、内酰胺化合物和环氧化合物。
10.根据权利要求9的催化剂组合物,特征在于包括一种促进剂,选自酮化合物、含有羟基的酮化合物、醛化合物、酯化合物和环氧化合物。
11.根据权利要求9或10的催化剂组合物,特征在于组分(a)与组分(c)的摩尔比在10至1/2的范围内。
12.根据权利要求11的催化剂组合物,特征在于所述摩尔比在2至1的范围内。
13.根据权利要求1-9之任一的催化剂组合物,特征在于除组分(a)和(b)之外,还包括一种或多种促进剂(c),代表还原性有机金属化合物,选自铝化合物、锌化合物和镁化合物。
14.根据权利要求13的催化剂组合物,特征在于组分(a)与组分(c)的摩尔比在1/1至1/18的范围内。
15.根据权利要求1的催化剂组合物,特征在于组分(a)与组分(c)的摩尔比在1/2至1/15的范围内。
16.含有烯属不饱和键的聚合物的氢化方法,包括至少在根据权利要求1-15之任一的催化剂组合物存在下,使聚合物溶液与氢充分接触。
17.下式的钛化合物:
Figure A9710964200041
其中A1代表下式的任选取代的茚基:
其中取代基R1和R2可以相同或不同,可选自卤素、任选地可有一或多个相同或不同取代基的苯基、低级烷基、低级烷氧基、苯氧基、苯基烷氧基、苄基和含有一或多个杂原子的庞大取代基如三(低级烷基)甲硅烷基、~NPh2、~NHPh、~BPh2和~B(OPh)2,其中n可以是0至4的整数,和m可以是0至3的整数,
或其中A2有与A1相同的意义,或者代表任选取代的环戊二烯基,和其中L1和L2可以相同或不同,可选自氢、卤素、低级烷基、苯基、有7至10个碳原子的芳烷基、低级烷氧基、苯氧基、有7至10个碳原子的苯基烷氧基、羧基、羰基、B-双酮配位体、~CH2P(苯基)2、-CH2Si(低级烷基)3或~P(苯基)2
18.根据权利要求17的钛化合物,特征在于组分(a)中配位体L1和L2选自氯、溴、羰基、甲基、乙基、正丙基、异丙基、正丁基、叔丁基、仲丁基、三甲基甲硅烷氧基、苄基、苯基、己基、甲氧基、乙氧基、正丙氧基、异丙氧基、丁氧基、叔丁氧基、仲丁氧基、戊氧基、新戊氧基、苯氧基、苯基甲氧基、苯基乙氧基和CH2P(苯基)2
19.根据权利要求18的钛化合物,特征在于L1和L2均为氯、苄基、苯基、甲氧基、乙氧基、异丙氧基、叔丁氧基、正丁氧基、苯氧基或CH2P(苯基)2
CN97109642A 1996-03-15 1997-03-12 共轭二烯聚合物的氢化方法及其适用的催化剂组合物 Expired - Fee Related CN1130383C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP96301780.1 1996-03-15
EP96301780 1996-03-15
EP96303882 1996-05-30
EP96303882.3 1996-05-30
US08/816,538 US5925717A (en) 1996-03-15 1997-03-13 Process for hydrogenation of conjugated diene polymers and catalyst compositions suitable for use therein
EP97200774A EP0795564B1 (en) 1996-03-15 1997-03-14 Process for hydrogenation of conjugated diene polymers and catalyst compositions suitable for use therein

Publications (2)

Publication Number Publication Date
CN1163275A true CN1163275A (zh) 1997-10-29
CN1130383C CN1130383C (zh) 2003-12-10

Family

ID=27237694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97109642A Expired - Fee Related CN1130383C (zh) 1996-03-15 1997-03-12 共轭二烯聚合物的氢化方法及其适用的催化剂组合物

Country Status (9)

Country Link
US (1) US5925717A (zh)
EP (1) EP0795564B1 (zh)
JP (1) JP4076243B2 (zh)
CN (1) CN1130383C (zh)
BR (1) BR9701276A (zh)
CA (1) CA2199915A1 (zh)
DE (1) DE69703855T2 (zh)
ES (1) ES2153632T3 (zh)
MX (1) MX9701870A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102802793A (zh) * 2009-06-22 2012-11-28 戴纳索尔埃拉斯托默罗斯有限公司 用于不饱和化合物氢化反应的催化剂
CN113368903A (zh) * 2021-07-09 2021-09-10 浙江众立合成材料科技股份有限公司 一种用于制备氢化聚合物的三组分复合催化剂

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100267080B1 (ko) * 1998-08-03 2000-10-02 박찬구 공액디엔 중합체의 수소화 방법
TW583027B (en) * 1998-10-30 2004-04-11 Shell Int Research A method for preparing a hydrogenation catalyst system
KR100348761B1 (ko) * 1999-11-26 2002-08-13 금호석유화학 주식회사 공액디엔을 포함하는 중합체의 선택적 수소화 방법
US6469223B2 (en) 2000-01-04 2002-10-22 Fina Technology, Inc. Selective hydrogenation of dienes
KR100356533B1 (ko) * 2000-02-09 2002-10-18 금호석유화학 주식회사 공액디엔 중합체의 선택적 수소화 방법
ES2240538T3 (es) * 2000-07-28 2005-10-16 Kraton Polymers Research B.V. Proceso para preparar polimeros de butadieno parcialmente hidrogenados.
SK8352003A3 (en) * 2000-12-01 2003-10-07 Kraton Polymers Res Bv Bituminous composition with reduced gelation tendency
KR100515452B1 (ko) * 2003-01-04 2005-09-20 금호석유화학 주식회사 고속분사 노즐 장착 반응기로부터 제조된 리튬하이드라이드를 사용하여 선택적으로 수소화된 공역디엔 중합체를 제조하는 방법
WO2005030821A1 (en) * 2003-09-24 2005-04-07 Kraton Polymers Research B.V. Conjugated diene polymers and copolymer blocks having high vinyl content prepared using mixed microstructure control agents and process for preparing same
JP2014511411A (ja) 2011-02-18 2014-05-15 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー ケーブル充填用硬化性ポリマー組成物
US8487061B2 (en) * 2011-05-17 2013-07-16 Exxonmobil Research And Engineering Company Star hydrocarbon polymer, process for making, and a polymer blend composition having same
US11667777B2 (en) 2019-10-04 2023-06-06 Chevron Phillips Chemical Company Lp Bimodal polyethylene copolymers
US11186665B2 (en) 2019-10-04 2021-11-30 Chevron Phillips Chemical Company Lp Catalyst composition and method for preparing polyethylene
CN113429499B (zh) * 2021-08-09 2022-05-31 中国科学院兰州化学物理研究所 一种腈橡胶的催化氢化方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE737574A (zh) * 1968-09-05 1970-02-02
US3766300A (en) * 1971-04-05 1973-10-16 Shell Oil Co Process for hydrogenation of polar copolymers and complexed copolymercompositions
US3898208A (en) * 1971-06-21 1975-08-05 Dow Chemical Co Hydrogenation of oil-insoluble diene polymers
GB2134909B (en) * 1983-01-20 1986-08-20 Asahi Chemical Ind Catalytic hydrogenation of conjugated diene polymer
JPS60220147A (ja) * 1984-04-18 1985-11-02 Asahi Chem Ind Co Ltd オレフイン水添触媒および該触媒を用いた重合体の水添方法
JP2609534B2 (ja) * 1988-05-17 1997-05-14 旭化成工業株式会社 オレフィン性不飽和ポリマーの水添方法
JP2969771B2 (ja) * 1989-12-22 1999-11-02 ジェイエスアール株式会社 オレフィン性不飽和重合体の水素添加方法および水素添加用触媒組成物
US5039755A (en) * 1990-05-29 1991-08-13 Shell Oil Company Selective hydrogenation of conjugated diolefin polymers
US5141997A (en) * 1990-08-15 1992-08-25 Shell Oil Company Selective hydrogenation of conjugated diolefin polymers
US5206307A (en) * 1991-09-09 1993-04-27 Shell Oil Company Process for selective hydrogenation of conjugated diolefin polymers
US5270274A (en) * 1991-11-28 1993-12-14 Japan Synthetic Rubber Co., Ltd. Catalyst composition for hydrogenating olefinically unsaturated polymers
ES2053363B1 (es) * 1991-12-05 1995-02-16 Repsol Quimica Sa Procedimiento de hidrogenacion de olefinas.
US5173537A (en) * 1991-12-20 1992-12-22 Shell Oil Company Selective hydrogenation of conjugated diolefin poylmers
WO1995025136A1 (en) * 1992-03-05 1995-09-21 Exxon Research And Engineering Co. Sulfonated unhydrogenated copolymers of styrene and butadiene
US5242986A (en) * 1992-08-10 1993-09-07 Shell Oil Company Selective partial hydrogenation of conjugated diolefin polymers
ES2050620B1 (es) * 1992-11-03 1994-12-16 Repsol Quimica Sa Procedimiento de hidrogenacion en disolucion de los dobles enlaces de polimeros de dienos conjugados y copolimero bloque hidrogenado producido.
FI97141C (fi) * 1994-03-14 1996-10-25 Neste Oy Menetelmä tyydyttämättömien polymeerien selektiiviseksi hydrogenoimiseksi
US5541272A (en) * 1994-06-03 1996-07-30 Phillips Petroleum Company High activity ethylene selective metallocenes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102802793A (zh) * 2009-06-22 2012-11-28 戴纳索尔埃拉斯托默罗斯有限公司 用于不饱和化合物氢化反应的催化剂
CN102802793B (zh) * 2009-06-22 2015-04-08 戴纳索尔埃拉斯托默罗斯有限公司 用于不饱和化合物氢化反应的催化剂
CN113368903A (zh) * 2021-07-09 2021-09-10 浙江众立合成材料科技股份有限公司 一种用于制备氢化聚合物的三组分复合催化剂

Also Published As

Publication number Publication date
US5925717A (en) 1999-07-20
BR9701276A (pt) 1998-11-10
DE69703855T2 (de) 2001-06-13
DE69703855D1 (de) 2001-02-15
JP4076243B2 (ja) 2008-04-16
CA2199915A1 (en) 1997-09-15
MX9701870A (es) 1998-04-30
JPH1017607A (ja) 1998-01-20
EP0795564B1 (en) 2001-01-10
EP0795564A1 (en) 1997-09-17
ES2153632T3 (es) 2001-03-01
CN1130383C (zh) 2003-12-10

Similar Documents

Publication Publication Date Title
CN1130383C (zh) 共轭二烯聚合物的氢化方法及其适用的催化剂组合物
EP0544304B1 (en) Catalyst composition for hydrogenating olefinically unsaturated polymers
US5814709A (en) Process for hydrogenation on conjugataed diene polymers and catalyst composition suitable for use therein
JPH03223305A (ja) オレフィン性不飽和重合体の水素添加方法および水素添加用触媒組成物
JPH05271326A (ja) オレフィン性不飽和重合体の水素化方法および水素添加触媒
JPH05271325A (ja) オレフィン性不飽和重合体の水素添加方法および水素添加触媒
JPH05222115A (ja) オレフィン性不飽和重合体の水素化方法および水素添加触媒
JP6240082B2 (ja) 水素添加用触媒組成物の製造方法
MXPA97001870A (en) Process for the hydrogenation of conjugated diameter polymers and catalyzing compositions adequate to be used in mi
CN1148259C (zh) 二烯(共)聚合物加氢的方法
EP0810231B1 (en) Process for hydrogenation of conjugated diene polymers and catalyst compositions suitable for use therein
CN1158311C (zh) 氢化共轭二烯聚合物的方法
JP6215214B2 (ja) 水素添加用触媒組成物及び当該水素添加用触媒組成物を用いた水素添加方法
RU2609020C2 (ru) Композиция катализатора для гидрирования и способ гидрирования с ее использованием
CA2766297C (en) Catalyst for the hydrogenation of unsaturated compounds
JPH0833846A (ja) オレフィン水添複合触媒及び水添共役ジエン系重合体の製造方法
JP3868015B2 (ja) 新規チタノセン化合物、オレフィン化合物の水素添加用触媒及び該触媒組成物を用いたオレフィン化合物の水素添加方法
JP4921849B2 (ja) 共役ジエン重合体の水素化方法
KR100525744B1 (ko) 공액디엔 중합체의 수소화방법 및 이의 용도에 적절한 촉매조성물
CN1156339C (zh) 用于烯烃或聚合物氢化的催化剂及氢化方法
CN100354319C (zh) 氢化催化剂组合物及氢化共轭二烯聚合物的方法
JP3328916B2 (ja) オレフィン性不飽和結合を含有する重合体の水素化方法および水素添加触媒
JPH05271327A (ja) オレフィン性不飽和重合体の水素添加方法および水素添加触媒
JPH06128319A (ja) オレフィン性不飽和重合体の水素化方法および水素添加触媒

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20031210