CN1179208C - 用于探测流体中分析物的传感器阵列及其制造方法和应用 - Google Patents

用于探测流体中分析物的传感器阵列及其制造方法和应用 Download PDF

Info

Publication number
CN1179208C
CN1179208C CNB961939850A CN96193985A CN1179208C CN 1179208 C CN1179208 C CN 1179208C CN B961939850 A CNB961939850 A CN B961939850A CN 96193985 A CN96193985 A CN 96193985A CN 1179208 C CN1179208 C CN 1179208C
Authority
CN
China
Prior art keywords
sensor
resistance
conductive
sensor array
analyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB961939850A
Other languages
English (en)
Other versions
CN1184530A (zh
Inventor
Ns
N·S·刘易斯
M·S·弗罗因德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Institute of Technology CalTech
Original Assignee
California Institute of Technology CalTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23626320&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1179208(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by California Institute of Technology CalTech filed Critical California Institute of Technology CalTech
Publication of CN1184530A publication Critical patent/CN1184530A/zh
Application granted granted Critical
Publication of CN1179208C publication Critical patent/CN1179208C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/817Enzyme or microbe electrode

Abstract

探测流体中分析物的化学传感器,它包含第一和第二导电元件(如电引线),这两个导电元件连接于一个化学敏感电阻,该电阻将这两个导电元件分隔并提供它们之间的电通道。所述电阻含有多个交替的非导电区域(包含一种非导电有机聚合物)与导电区域(包含一种导电材料),所述电通道横穿这些区域。该电阻在与包含第一浓度的化学分析物的流体接触时在两个导电元件之间的电阻值,与在与包含不同的第二浓度的所述化学分析物的流体接触时的电阻值不同。这种传感器的阵列至少由两个具有不同化学敏感电阻的传感器组成,每个传感器提供不同的电阻差。不同传感器化学敏感性的不同,是通过定性或定量地改变导电区域和/或非导电区域的组成而提供的。利用这种阵列与一个电性连接于每一传感器的导电元件的电测量装置相结合,可构成用以探测流体中分析物的电子鼻。

Description

用于探测流体中分析物的传感器阵列及其制造方法和应用
技术领域
本发明的领域是用于探测流体中分析物的电传感器。
技术背景
人们很感兴趣于开发模拟哺乳类动物嗅觉系统作用的传感器(见Lundstrom等(1991),Nature 352:47-50;Shurmer和Gardner(1992),Sens Act.B8:1-11)。这系统被认为是利用许多种不同感受器可能有的全部本领来识别一种发生气味的物质(见Reed(1992),Neuron 8:205-209;Lancet和Ben-Airie(1993),Curr.Biol.3:668-674)。在这种结构下,识别的任务不是依赖高度特定的感受器,如象化学传感中传统的“锁与钥匙”分子识别方法那样,而是依赖于嗅觉球(olfactory bulb)和脑的分布图形处理(见Kauer(1991),TINS 14:79-85;De Vries和Baylor(1993),Cell 10(S):139-149)。以前曾探索过使用加热的金属氧化物薄膜电阻[见Gardner等(1991),Sens.Act.B 4:117-121;Gardner等(1991),Sens.Act.B6:71-75;Corcoran等(1993),Sens.Act.B15:32-37]、声波谐振器表面的聚合物吸着层[见Grate和Abraham(1991),Sens.Act.B3:85-111;Grate等(1993),Anal.Chem.65:1868-1881]、电化学探测器阵列[见Stetter等(1986),Anal.Chem.58:860-866;Stetter等(1990),Sens.Act.B1:43-47;Stetter等(1993),Anal.Chem.Acta 284:1-11]或导电聚合物[见Pearce等(1993),Analyst 118:371-377;Shurmer等(1991),Sens.Act.B4:29-33]来产生具有广泛响应的传感器阵列。金属氧化物薄膜电阻阵列(一般是以涂覆有各种催化剂的SnO2薄膜为基础的)会对一些汽体产生清楚、诊断性的响应[见Gardner等(1991),Sens.Act.B4:117-121;Gardner等(1991),Sens.Act.B6:71-75;Corcoran等(1993),Sens.Act.B15:32-37]。但是,由于对催化剂的功能缺乏理解,SnO2阵列不能随意对阵列内各元件的响应进行化学控制,也不能使阵列的响应特性重现。表面声波谐振器对阵列元件涂覆层的质量和声学阻抗变化都非常敏感,但其信号转换机理涉及相当复杂的电子学,需要在晶体中维持100MHz Rayleigh波的同时测量精确至1Hz的频率[见Grate和Abraham(1991),Sens.Act.B3:85-111;Grate等(1993),Anal.Chem.65:1868-1881]。也曾试图用导电聚合物元件制造传感器,这些元件是在名义上相同的聚合物薄膜和涂层上通过电化学方法生长的[见Pearce等(1993),Analyst 118:371-377;Shurmer等(1991),Sens.Act.B 4:29-33;Topart和Josowicz(1992),J.Phys.Chem.96:7824-7830;Charlesworth等(1993),J.Phys.Chem.97:5418-5423]。
本发明的目的是提供一种以各种“化学电阻(Chemiresistor)”元件为基础的,具有广泛响应的分析物探测传感器阵列。这些元件的制造方法简单,而且容易通过化学方法改变而响应于范围广泛的分析物。而且,这些传感器响应于所感兴趣的液体,产生快速、低功率的直流电信号,它们的信号可容易地与软件为基或硬件为基的神经网络结合起来鉴别分析物。
相关文件
Pearce等(1993)Analyst 118:371-377和Gardner等(1994)Sensors andActuators B 18-19:240-243说明了用于监测啤酒香味的,以聚吡咯为基础的传感器阵列。Shurmer(1990)的美国专利4,907,441说明了带有特别电路的普遍传感器器阵列。
发明概述
本发明提供了用于探测流体中分析物的方法、设备和专家系统。所述设备包括一种化学传感器,该化学传感器包括第一和第二导电元件(即电引线),它们与一个化学敏感的电阻电性相连,这电阻提供了两个导电元件之间的电通道。所述电阻包含许多交替的非导电区(包括非导电性的有机聚合物)和导电区(包括导电材料)。第一和第二导电元件之间的电通道与所述许多交替的非导电和导电区域成横向(即穿过这些区域)。使用时,当电阻与含有第一浓度的分析物的流体接触时,导电元件之间的电阻数值,将不同于与含有不同的第二浓度的分析物的流体接触时的数值。
通过任一给定非导电区域的电通道长度一般为100埃的数量级,跨越该区域的电阻为100毫欧姆的数量级。传感器与传感器之间化学敏感性的不同,可方便地通过定性地或定量地改变导电和/或非导电区域的组分来提供。例如,在一个实施例中,每个电阻中的导电材料保持不变(例如,相同的聚吡咯之类的导电材料),而非导电有机聚合物则随电阻而变(例如不同的塑料,如聚苯乙烯)。
这种传感器的阵列由至少两个传感器构成,它们具有不同的化学敏感电阻,提供不同的电阻差。用于探测流体中分析物的电子鼻,可由这种阵列与电学上连接于每一传感器的导电元件的电测量装置相结合而构成。这种电子鼻还可与许多其它附加部件相结合,包括监测每一传感器时间响应的装置、汇集和分析传感器数据以鉴别分析物的装置等。本发明也提供了制造和使用所揭示的传感器、阵列和电子鼻的方法。
另外,本发明还提供一种探测流体中分析物的系统,所述系统包括:
至少包括第一和第二化学敏感电阻的传感器阵列,每个化学敏感电阻包括非导电有机聚合物与导电材料的混合物,该导电材料的组分与所述非导电有机聚合物不同,每个电阻具有通过所述非导电有机聚合物与导电材料的混合物的电通道,在与含有第一浓度的某种化学分析物的第一流体接触时的第一电阻,和在与含有不同的第二浓度的所述化学分析物的第二流体接触时的不同的第二电阻,而第一化学敏感电阻的第一电阻与第二电阻之差,与在相同条件下第二化学敏感电阻的第一电阻与第二电阻之差不同;
电性连接于所述传感器阵列的电测量装置;
一个含有常驻算法的计算机;
所述电测量装置探测所述每个化学敏感电阻的第一和第二电阻,而所述计算机将所述电阻值汇编成传感器阵列响应曲线。
附图的简要说明
图1A是传感器设计的概图;
图1B是传感器工作概图;
图1C是系统工作概图。
图2是聚吡咯涂覆的铂电极的循环伏安图。电解质是乙腈中的0.1M[(C4H9)4N]+[ClO4]-,扫描速率是0.10伏/秒。
图3A是一个旋转涂覆的聚吡咯薄膜的光谱,该膜曾用甲醇洗涤以去除多余的吡咯和被还原的磷钼酸。
图3B显示在铟-锡-氧化物上旋转涂覆的聚吡咯薄膜的光谱,该光谱是以0.10伏/秒的扫描速度在相对于在0.10M的[(C4H9)4N]+[ClO4]-乙腈溶液中的SCE经历10次+0.70至-1.00伏电势循环后的光谱。光谱是在0.10M KCl-H2O中得到的。
图4A是传感器阵列的示意图,显示了一个改装用作传感元件的陶瓷电容器的放大图。显示了表3所示传感器阵列对丙酮(图4B)、苯(图4C)和乙醇(图4D)所产生的响应图形。
图5是由含有不同增塑剂的单个传感器所得到的自动改变比例的数据所作的主分量分析。每个小方图右上方的编号对应于表3所示的不同传感器元件。
图6A和6B是由所有传感器(表3)得到的数据所作的主分量分析。条件和符号与图5A-5D相同。图6A代表以最先三个主分量pc1、pc2和pc3表示的数据,图6B代表以pc1、pc2和pc4表示的数据。考虑第4个主分量可得到某些溶剂之间的更高的鉴别能力,如图6B中氯仿、四氢呋喃和异丙醇之间分离更大所示。
图7A是丙酮分压(O)与第一主分量的关系图,丙酮分压与第一主分量之间的线性最小平方拟合(-)(Pa=8.26·pc1+83.4,R2=0.989);由丙酮分压与最先三个主分量之间的多元线性最小平方拟合(+)所预示的丙酮分压(Pa=8.26·pc1-0.673·pc2+6.25·c3+83.4,R2=0.998。
图7B是甲醇-醇混合物中甲醇的摩尔分数xm(O)与第一主分量的关系;xm与第一主分量之间的线性最小平方拟合(-)(xm=0.112·pc1+0.524,R2=0.979);由xm与最先三个主分量之间的多元线性最小平方拟合(+)所预示的xm(xm=0.112·pc1-0.0300·pc2-0.0444·pc3+0.524,R2=0.987)。
图8是一个聚(N-乙烯基吡咯烷酮):炭黑(20%重量炭黑)传感器元件对甲醇、丙酮和苯的电阻响应。分析物在t=60秒时引入60秒。每一曲线用该传感器元件在每次接触前的电阻(约125Ω)规一化。
图9是一个以炭黑为基础的带有10个元件的传感器阵列的响应的最先三个主分量。炭黑复合物中所用的非导电组分别列出在表3中,电阻含20%重量炭黑。
发明的详细说明
本发明提供了传感器阵列,它是与电测量装置结合起来,用以测量流体中的分析物的。这些阵列包含许多组分不同的化学传感器。每个传感器至少包含第一和第二导电引线,它们在电学上连接于一个化学敏感的电阻,并被该电阻分隔开来。这两根引线可以由任何方便的导电材料制成,通常是金属,并可制成叉指式的,以尽量增大信号-噪音强度。
所述电阻包括许多交替的非导电区域和导电区域,这些区域与导电引线之间的电通道成横向。一般而言,这些电阻是将导电材料与非导电有机聚合物掺合而制成,使得连接于电阻的引线之间的电通道被各段非导电有机聚合物材料间隔所阻断。例如,由在非导电有机聚合物材料基质中的导电材料颗粒构成的胶体、悬浮体或分散体中,将颗粒隔开的基质区域就构成了这些间隔。非导电间隔的通道长度约在10-1000埃范围,通常为100埃的数量级,间隔之间的单个电阻约为10-1000毫欧姆,一般为100毫欧姆的数量级。一个给定间隔的通道长度和电阻并不是恒定的,而是随着该区域的非导电有机聚合物吸收、吸附或吸液了分析物而变。因此在一给定电阻内这些间隔的动态总电阻是分析物对非导电区域渗透情况的函数。在某些实施例中,导电材料也会以分析物渗透情况的形式影响动态总电阻(例如导电材料是聚吡咯之类的导电有机聚合物时)。
许多导电材料和非导电有机聚合物材料都可以使用。表1列出了可用于制造电阻的一些导电材料的例子。也可以使用表中所列材料的混合物。表2列出了非导电有机聚合物材料的例子;也可以使用表中所列聚合物的掺合物和共聚物。其组合、浓度、掺合的化学计量、渗滤阈等可按以下所述通过制造和筛选电阻(化学电阻)的原型而方便地由经验确定。
                                     表1
类别 例子
有机导体 导电聚合物(聚苯胺、聚噻吩、聚吡咯、多炔等);含碳材料(炭黑、石墨、焦炭、C60等);电荷转移复合物(四甲基对苯二胺-氯醌、碱金属四氰基(对)醌二甲烷复合物、四硫富瓦烯卤化物复合物等)等。
无机导体 金属和金属合金(Ag、Au、Cu、Pt、AuCu合金等);高掺杂半导体(Si、GaAs、InP、MoS2、TiO2等);导电性金属氧化物(In2O3、SnO2、NaxPt3O4等);超导体(YBa2Cu3O7、Tl2Ba2Ca2Cu3O10等)等。
混合的无机/有机导体 四氰基铂酸盐复合物;铱卤代羰基复合物;堆集的大环复合物等。
                                     表2
类别 例子
主链碳聚合物 聚二烯、聚链烯烃、聚丙烯酸类、聚甲基丙烯酸类、聚乙烯醚、聚二乙烯基硫醚、聚乙烯醇、聚乙烯基甲酮、聚卤乙烯、聚乙烯基腈、聚乙烯基酯、聚苯乙烯、聚亚芳基等。
主链无环杂原子聚合物 多氧化物、聚碳酸酯、聚酯、聚酐、聚氨酯、多磺酸盐、聚硅氧烷、多硫化物、聚硫酯、聚砜、聚氨磺酰、聚酰胺、聚脲、聚膦嗪(poly(phosphazenes))、聚硅烷、聚硅氮烷等。
主链杂环聚合物 聚呋喃四羧酸二酰亚胺、聚苯并噁唑、聚噁二唑、聚苯并噻嗪吩噻嗪、聚苯并噻唑、聚吡嗪并喹喔啉、poly(pyromellitimides)、聚喹喔啉、聚苯并咪唑、聚羟吲哚、聚氧代异二氢吲哚、聚二氧代异二氢吲哚、聚三嗪、聚哒嗪、聚哌嗪、聚吡啶、聚哌啶、聚三唑、聚吡唑、聚吡咯烷、聚碳硼酸、聚氧杂二环壬烷、聚氧芴、聚2-苯并[c]呋喃酮、聚乙缩醛、聚酐、聚糖等。
这些化学电阻可以用多种技术制造,例如(但不限于)溶液浇注、悬浮液浇注和机械混合。一般来说,溶液浇注方法较好,因为可提供均匀的结构而且便于处理。采用溶液浇注方法时,电阻元件可容易地通过旋转、喷射或浸渍涂覆来制造。但是,由于电阻的全部单元都必须是可溶的,溶液浇注法在其应用方面受到一定限制。悬浮液浇注仍可提供旋转、喷射或浸渍涂覆的可能,但预期比溶液浇注法产生更多的非均匀结构。采用机械混合法时,因为只涉及电阻组分的物理混合,因此不受溶解度的限制,但器件制造较难,因为这时不可能采用旋转、喷射和浸渍涂覆方法。以下对这些情况分别详细说明。
对于导电介质与非导电介质或它们的前体都可溶解于共同的溶剂的系统,化学电阻可用溶液浇注法制造。这里所示的吡咯被磷钼酸氧化就代表这样的系统。在这反应中,磷钼酸和吡咯溶解在四氢呋喃(THF)中,而溶剂蒸发时发生聚合。这可使THF可溶的非导电聚合物溶解成为反应混合物,从而可在溶剂蒸发时通过单一的步骤形成掺合物。在这种方法中,所选用的非导电聚合物当然只限于那些可溶于反应介质的材料。对于上面所述的聚吡咯的情况,初步反应是在THF中进行的,但这反应可推广至其它非水溶剂,如乙腈或乙醚。在这方案中也可用其它各种导电聚合物置换。下面列出了一些这类材料。某些导电聚合物,例如取代的聚环辛四烯,在其未掺杂的非导电状态可溶解于THF或乙腈之类的溶剂中。因此,未掺杂聚合物和增塑聚合物之间的掺合物可由溶液浇注形成。在这以后,可对掺合物进行掺杂过程(例如暴露于I2蒸汽中),以使取代的聚(环辛四烯)成为导电性的。同样,选用的非导电聚合物也只能限于那些可溶于未掺杂导电聚合物可溶解在其中的溶剂中的材料以及那些对掺杂反应稳定的材料。某些导电聚合物也可通过可溶的前体聚合物来合成。在这些情况下,可首先形成前体聚合物与非导电聚合物之间的掺合物,然后通过化学反应将前体聚合物转化为所需的导电聚合物。例如,聚对亚乙烯基苯(poly(p-phenylene vinylene))可以通过一种可溶解的锍前体合成。这种锍前体与非导电聚合物之间的掺合物可通过溶液浇注形成。在此之后,再将掺合物在真空下进行热处理,以将锍前体转化为所需的聚对亚乙烯基苯)。
在悬浮液浇注法中,电阻的一种或多种组分悬浮在一种常用的溶剂中,而其它的组分溶解于其中。悬浮液浇注是一种相当普遍的技术,可应用于广泛的物质,例如炭黑或胶体金属,它们可通过激烈的搅动或超声作用悬浮在溶剂中。在悬浮液浇注法的一种应用中,将非导电聚合物溶解在适当的溶剂(如THF、乙腈、水等)中。然后将胶体银悬浮在这溶液中,并将所得的混合物用来对电极进行浸渍涂覆。
机械混合适用于所有可能的导电体/非导电体组合。在这种技术中,将材料放在球磨机或其它混合装置中进行物理混合。例如,炭黑:非导电聚合物构成的复合物可容易地通过球磨制成。当非导电聚合物可以熔化或显著软化而不分解时,在提高的温度下进行机械混合可改进混合过程。另外,复合物的制备有时可通过相继的几个加热和混合步骤而得到改进。
各个元件一旦制成后,可通过改变其化学组成和形态使其优化而适用于某一特定的应用。电阻的化学性质决定了它们将对哪一些分析物响应以及它们区别不同分析物的能力。导电组分与绝缘组分的相对比例决定了响应的大小,因为元件的电阻在接近渗滤阈时对吸着的分子变得更敏感。薄膜形态对于决定响应特性也很重要。例如,薄的膜比厚的膜对分析物响应更快。因此,通过实验得到了绝缘组分与导电组分比例不同、用不同制造方法制得的化学上不同的各种传感器的整套资料,就可针对某一特定应用所预期的分析物,其浓度及所希望的响应时间,选用适当的传感器。当有了在特定条件下一个阵列性能的反馈信息后,就可用迭代方式进行进一步的优化。
电阻本身可构成连接引线或电阻的基片。例如,可通过各种技术加强电阻的结构刚性:如聚合物组分的化学或辐射交联(过氧化二枯基自由基交联,聚烯烃的UV辐射交联,橡胶的硫交联,尼龙的电子束交联等),在电阻中掺入聚合物或其它材料以提高其物理性质(如掺入高分子量、高过渡金属元素(Tm)聚合物),将电阻元件结合在粘土或聚合物网络等支承基质中(例如将电阻掺合物形成在聚甲基丙烯酸甲酯网络中或形成在蒙脱土薄片中)等。在另一实施例中,电阻淀积在固体基质上作为表面层,而基质提供了支承引线的装置。这基质一般是化学惰性的非导电基片,如玻璃或陶瓷。
特别适合于按比例放大生产的传感器阵列可用集成电路(IC)设计工艺制造。例如,化学电阻可容易地结合在一简单放大器的前端,这放大器连接于A/D变换器,由此将数据流有效地直接输入至神经网络软件或硬件分析部分。微电子制造技术可将化学电阻直接并合在微片上,这微片包含用以整理/处理模拟信号然后进行数据分析的电路。这样就可用喷墨技术在单独一个制造步骤中制造出数百万个性能渐增地变化的传感器元件。传感器阵列的各化学电阻元件中受控的组分梯度,可用类似于彩色喷墨打印机沉积和混合多种颜色的方法来产生。但是在这情况下,不是用多种颜色,而是使用多种不同的可以沉积的聚合物溶液。一个具有一百万个不同元件的传感器阵列,只需要尺寸为1cm×1cm芯片,使用特征水平为10μm的平板印刷术,这是在常规工业加工和沉积方法的能力范围内的。这种技术可生产出灵敏、小型、独立的化学传感器。
较好的传感器阵列的传感器之间在非导电有机聚合物区域的结构或成分上具有预定的变化。这变化可以是定量和/或定性的。例如,掺合物中非导电有机聚合物的浓度可随传感器而变。或者,在不同传感器中可以使用各种不同的有机聚合物。用于探测流体中分析物的电子鼻,可通过将成分不同的传感器所构成的阵列中的各传感器的引线在电性上连接于一个电测量装置而制得。该装置测量阵列中每个传感器电阻率的变化,最好是同时测量各传感器的变化,而且测量每个传感器随时间的变化。该装置常包括信号处理装置,并与一计算机和数据结构结合起来使用,以便将给定的响应曲线与结构-响应曲线数据库比较而进行定性和定量分析。这样的电子鼻一般包括至少10个,通常至少100个,常常是至少1000个不同的传感器,虽然利用这里所述的大规模沉积制造技术或其它本领域已知的技术,可容易地制得至少包含数量级为106个的传感器的阵列。
在运行时,每个电阻在与含有第一浓度的某种化学分析物的第一流体接触时,在该电阻的导电引线之间产生第一电阻值,而在它与含有不同的第二浓度的同一化学分析物的第二流体接触时,则在其导电引线之间产生第二电阻值。所述流体可以是液体或气体。第一和第二流体可代表两个不同环境中的样品,流体中某种分析物的浓度在两个时间点取样的变化,样品与反面对照物等。该传感器阵列必须包含对分析物浓度变化产生不同响应的各个传感器,亦即,一个传感器的第一电阻和第二电阻之差,与另一个传感器的第一电阻和第二电阻之差是不同的。
在一较佳实施例中,记录了每个传感器的时间响应(即电阻作为时间的函数)。每个传感器的时间响应可规一化为电阻的最大增加百分率和减少百分率,产生与接触分析物相联系的响应图形。通过对已知分析物的迭代作图,就产生了将分析物与响应曲线关联起来的结构-函数数据库。未知分析物就可通过响应图形比较和识别算法而表征或鉴别。因此,分析物探测系统包括传感器阵列、用以探测每个化学电阻的电阻值的电测量装置、计算机、传感器阵列响应曲线的数据结构、以及比较算法。在另一个实施例中,电测量装置是一个集成电路,包括以神经网络为基的硬件以及一个以多路复用方式连接于每个传感器的数-模转换器(DAC),或者多个各自连接于不同传感器的DAC。
用这里揭示的传感器、阵列和电子鼻可以分析许多种类的流体和分析物,只要所讨论的分析物能在阵列的大量传感器上产生不同的响应。分析物应用包括广泛的化学物类如有机物(如烷烃、烯烃、炔烃、二烯、脂环烃、芳烃、醇、醚、酮、醛、羰合物、负碳离子、多核芳香烃)和这些有机物的衍生物(如卤化物衍生物),生命分子(如糖,异戊二烯和类异戊二烯、脂肪酸和衍生物)等。因此所述传感器、阵列和电子鼻的工业应用包括环境毒物及去除、生物医学、材料质量控制、食物和农业产品监测等。
使用所公开的传感器、阵列和电子鼻来探测流体中某一分析物的存在的一般方法,是用化学传感器通过电阻感知该分析物在流体中的存在,所述传感器包括第一和第二导电引线,它们按上面所说电性连接于一个化学敏感的电阻并被该电阻所分隔,当电阻与包含第一浓度的分析物的第一流体接触时测得第一电阻值,而当电阻与包含不同的第二浓度的分析物的第二流体接触时测得不同的第二电阻值。
以下的例子是供说明而不是为了限制本发明的。
实施例
聚合物合成
用于电导率、电化学和光学测量的聚吡咯薄膜的制造方法是:将相等体积的N2吹扫过的吡咯溶液(1.50mmol在4.0ml的干燥四氢呋喃中)和磷钼酸(0.75mmol在4.0ml的四氢呋喃中)注入N2冲洗过的试管中。两种溶液混合后,黄色的磷钼酸溶液就变成深绿色。在几个小时内观察不到沉淀。这种溶液在混合以后一个小时内用于制备薄膜。
传感器制造
增塑的聚吡咯传感器是将两种溶液混合而制成,其中一种溶液在5.0ml四氢呋喃中含有0.29mmol吡咯,另一种溶液在5.0ml四氢呋喃中含有0.25mmol磷钼酸和30mg增塑剂。这两种溶液混合的结果使吡咯与增塑剂的重量比为2∶3。产生化学电阻阵列元件的一种廉价而迅速的方法,是将市售的22nF陶瓷电容器(Kemet Electronics Corporation)切开一横剖面。这些电容器的机械切片显示出一系列叉指式的金属线(25%Ag:75%Pt),它们彼此相隔15μm,可以很容易用导电聚合物涂覆。然后用上述的单体-增塑剂-氧化剂溶液对叉指式电极进行浸渍涂覆,来为聚合的有机薄膜提供坚固耐用的电接触。聚合完成后,薄膜是不可溶的,并被用溶剂(四氢呋喃或甲醇)漂洗,以去除剩余的磷钼酸和未反应的单体。然后将各传感器连接在一个市售的汇流条上,各“化学电阻”元件的电阻可容易地用一个多路复用的数字欧姆计监测。
仪器
光谱用连接于IBM XT的Hewlett Packard 8452A分光光度计测得。电化学实验用Princeton Applied Research Inc.173电势稳定器/175多用编程器进行。所有的电化学实验都是用一个Pt平辅助电极(flag auxiliary)和一个饱和甘汞参考电极(SCE)进行。旋转涂覆用Headway Research Inc.的光刻胶旋转涂覆器进行。薄膜厚度用Dektek 3030型表面轮廓测定仪测定。电导率用锇点尖的四点探头(AlessiInstruments Inc.,尖端间隔0.050”,尖端半径0.010”)测量。瞬变电阻用常规的万用表(Fluke Inc.,“Hydra Data Logger”万用表)测量。
主分量分析(Principle component Analysis)与多元线性最小平方拟合
传感器阵列暴露于产生气味的物质一次所得到数据组产生了一组描述符(即电阻)di。因此多次暴露就产生了一个数据矩阵D,其中每行(用j表示)由n个描述符组成,描述数据组的一个成员(member)(即单次暴露于气味)。由于基线电阻与电阻的相对变化随传感器而变,数据矩阵在进一步处理之前自动改变比例(autoscaled)[Hecht(1990)Mathematics in Chemistry:An Introduction to ModernMethods(Prentice Hall,Englewood Cliffs,NJ)]。在这种预处理技术中,与某一个描述符相联系的全部数据(即数据矩阵中的一列)集中在零的周围,单位标准偏差为:
           dij’=(dij- di)/σi           (1)
其中 di是描述符i的平均值,而σi是对应的标准偏差。
主分量分析(Hecht(1990))的目的是确定数据的线性组合,使得数据组的各成员之间在n个相互正交的维上得到最大的方差(定义为标准偏差的平方]。数据的线性组合结果使第一主分量(pc1)中的数据组的成员之间产生最大的方差(或分离),而在第二至第n个主分量(pc2-pcn)产生大小逐渐减小的方差。将自动改变比例的数据(通过线性组合)变换至主分量空间所需的系数,可将数据矩阵D乘以其转置矩阵DT(即使矩阵对角线化)而得到[Hecht(1990)]:
                  R=DT·D                     (2)
这运算产生了相关矩阵R,其各对角组元为1,非对角组元就是数据的相关系数。因此数据的总方差就由R的对角线组元之和给出。然后确定R的n个本征值和n个对应的本征矢量。每个本征矢量包含一组n个系数,可用以将数据通过线性组合变换为n个主分量之一。对应的本征值产生包含在该主分量中的那部分总方差。这运算产生一个主分量矩阵P,其维数与原来的数据矩阵相同。在这些条件下,矩阵P的每一行仍与一种特定的气味相联系,而每一列则与一特定的主分量相联系。
由于在主分量空间中的值是没有物理意义的,需要用分压和摩尔分数等物理参量来表示主分量分析的结果。这可通过主分量值与对应的所考虑参数之间的多元线性最小平方拟合来达到。多元线性最小平方拟合结果得到主分量的一种线性组合,它可得到与对应的参数值的最佳拟合。可在主分量矩阵P中附加每项都等于1的一列来达到拟合,而每一行j对应于包含在矢量V中的一个不同的参量值(例如分压)Vj。使主分量与考虑的参量之间达到最佳拟合的系数由以下矩阵运算得到:
         C=(PT·P)-1·PT·V               (3)
其中C是含有线性组合系数的矢量。
我们能制造化学上不同的传感元件的关键,是导电有机聚合物的可加工、空气中稳定的薄膜的制备。这是通过用在四氢呋喃中的磷钼酸(H3PMo12O40)对吡咯(PY)的受控氧化来制得的:
        PY→PY·++e-                    (4)
        2PY·+→PY2+2H+                (5)
             (6)
以前已对氧化还原驱动的或电化学诱发的吡咯聚合作过研究,但这过程一般产生不可溶而难处理的聚吡咯沉积物作为产物[Salmon等(1982),J.Polym.Sci.,Polym.Lett.20:187-193]。我们的方法是使用低浓度的H3PMo12O40氧化剂(Eo=+0.36V相对于SCE)[Pope(1983),Heterpoly and Isopoly Oxometalates(Springer-Verlag,New York)第4章]。由于PY/PY的电化学势(Eo=+1.30相对于SCE)比H3PMo12O40/H5PMo12O40的更大,在稀溶液(0.19M PY,0.09M H3PMo12O40)中PY+·的浓度比较低,因而聚合速度也比较低。但是已发现当单元数由1增加至2再增加至3时,吡咯低聚物的氧化势由+1.20V减小至+0.55再减小至+0.26V相对于SCE,而本体聚吡咯的氧化势为-0.10V相对于SCE[Diaz等(1981)J.Electroanal.Chem.121:355-361]。结果,可预料磷钼酸对吡咯三聚物的氧化在热力学上是有利的。这就可对单体-氧化剂溶液进行处理(即旋转涂覆、浸渍涂覆、引入增塑剂等),其后只需简单地将溶剂蒸发即可聚合生成薄膜。用这方法在载波片上形成的聚吡咯薄膜,在用甲醇清洗以去除多余的磷钼酸和/或单体后,对于厚度为40-100nm的薄膜,其直流电导率在15-30S-cm-1数量级。
本发明制得的聚吡咯薄膜显示了优良的电化学和光学性能。例如,图2显示了用化学方法聚合的的聚吡咯薄膜的循环伏安性能,是相对于SCE从-1.00V至+0.70V循环10次而得到的。在-0.40V的阴极波动对应于聚吡咯还原至其中性的非导电状态,而在-0.20V的阳极波动对应于聚吡咯再氧化至其导电状态[Kanazawa等(1981)Synth.Met.4:119-130]。没有附加的法拉第电流(薄膜中磷钼酸的氧化和还原会产生这种电流),可认为薄膜阴离子中不存在磷钼酸的Keggin结构[Bidan等(1988)J.Electroanal.Chem.251:297-306],并意味着MoO4 2-或其它阴离子在聚合薄膜中起着聚吡咯抗衡离子的作用。
图3A显示了一个处理后的聚吡咯薄膜的光谱,该薄膜是旋转涂覆在玻璃上然后用甲醇清洗过的。单一的吸收峰是被高度氧化的聚吡咯的特征[Kaufman等(1984)Phys.Rov.Lett.53:1005-1008],而在4.0eV的吸收带是导带与价带之间的带间跃迁的特征。在这能量范围内没有其它吸收带,证明存在双极子(bipolaron)状态(见图3A),如在被高度氧化的聚吡咯中所看到的那样(见上)。将薄膜在0.10M[(C4H9)4N]+[ClO4]-·乙腈中循环,然后记录它在0.10M KCl-H2O中的光谱,可观察到表征被氧化的聚吡咯中极化子状态的光学跃迁(见图3B)。据报导极化子状态产生三种光学跃迁(见上),在图3B中观察到为2.0、2.9和4.1eV。薄膜还原时(见图3B),可看到2.9eV吸收带强度的增加和蓝移,这是与包含在聚合物骨架中的吡咯单元相联系的π→π*跃迁所期待的[YaKushi等(1983)J.Chem.Phyo.79:4774-4779]。
如在实验部分中所述,在聚合物薄膜中可引入各种增塑剂(表3).
                表3  在阵列元件*中所用的增塑剂
                  传感器              增塑剂
                  1                   无
                  2                   无**
                  3                   聚苯乙烯
                  4                   聚苯乙烯
                  5                   聚苯乙烯
                  6                   聚(α-甲基苯乙烯)
                  7                   聚(苯乙烯-丙烯腈)
                  8                   聚(苯乙烯-马来酐)
                  9                   聚(苯乙烯-烯丙醇)
                  10                  聚乙烯基吡咯烷酮
                  11                  聚(乙烯基苯酚)
                  12                  poly(vinyl butral)
                  13                  聚乙酸乙烯酯
                  14                  聚碳酸酯
*含有重量比为2∶3的吡咯:增塑剂的传感器。
**薄膜未被清洗以除去多余的磷钼酸
这些掺入物可从化学上控制所得增塑的聚合物的粘合性和电导率。传感器阵列包含多达14种不同的元件,每种元件的聚合物薄膜有不同的化学成分,从而有不同的传感器响应。每个薄膜涂覆的传感器的电阻R在与各种产生气味的物质接触之前、接触过程中和接触后被自动记录下来。典型的试验包括传感器暴露于流动空气(3.0升/分)中的60秒静止时期,暴露于空气(3.0升/分)与用溶剂饱和的空气(0.5-3.5升/分)的混合物中60秒,然后再暴露于空气(3.0升/分)中240秒.
在本说明书中所述的对数据的最初处理时,只使用了每个传感器元件的电阻最大变化值与其初始电阻之比ΔRmax/Ri这一资料。大多数传感器与不同汽体接触时,其电阻呈现增大或减少,这是由暴露于不同类型的化学物质时聚合物的性质变化所期待的[Topart and Josowicz(1992)J.Phys.Chem.96:7824-7830;Charlesworth等(1993)J.Phys.Chem.97:5418-5423]。但是,在某些情况下,传感器响应于一种测试气味,其电阻首先减小然后再增加。由于每个传感器的电阻可相对于其初始值增大和/或减小,对每个传感器报导了两个ΔRmax/Ri的数值。某些传感器/气味组合的双向特性的来源还未详细研究过,但在大多数情况下是由于用以在本研究中产生试验气味的试剂级溶剂中存在水而引起的(水本身会引起薄膜电阻的快速降低)。对一个给定传感器阵列所观察到的对这些暴露于空气的含水测试溶剂的响应性能是可重现和可逆的,而环境中有许多其中的空气和水不容易去除的实际气味传感应用。
图4B-4D表明一个传感器阵列(见表3)的传感器振幅响应的例子。在这实验中,记录下分别暴露于空气中流动的丙酮、苯和乙醇蒸汽时的数据。显示了表3所述传感器阵列对(B)丙酮;(C)苯;和(D)乙醇所产生的响应图形。传感器响应定义为每个传感器暴露于溶剂蒸汽时其电阻的最大增大百分率和最大减小百分率除以初始电阻(分别对应于灰色和黑色的条块)。在许多情况下传感器显现可重现的电阻增大和减小。一次接触包括:(i)传感器暴露于流动空气(3.0升/分)的60秒静止时期;(ii)暴露于空气(3.0升/分)与用溶剂饱和的空气(0.5升/分)的混合物中60秒;和(iii)暴露于空气(3.0升/分)中240秒。可显然看到这些产生气味的物质各在传感器阵列产生不同的响应。在附加的实验中,在5天期间对14元件的传感器阵列(表3)评价了8种不同蒸汽(丙酮、苯、氯仿、乙醇、异丙醇、甲醇、四氢呋喃和乙酸乙酯)的作用,这些蒸汽是选择来复盖一定范围的化学和物理特性的。如以下所讨论的,可用这种传感设备将每种产生气味的物质清楚地和可重现地与其它气味剂鉴别开来。
主分量分析[Hecht(1990)Mathematics in Chemistry:An Introduction to ModernMethods(Prentice Hall,Englewood Cliffs,NJ)]是用来简化数据表示并使个别传感器与整个阵列的区分能力(distinguishing ability)定量化。在这方法中,将阵列中各元件的ΔRmax/Ri数据的线性组合组织成使得最大方差(定义为标准偏差的平方)包含在最少的相互正交的维数内。这样就可使图4B-4D所示数据组所包含的大部分信息表示在二维或三维中。由此而产生的相似的暴露数据在新维数空间中聚集或不发生聚集,就用作传感器阵列的区分能力以及可重现性的量度。
为了说明增塑性聚合物改变对单个传感器的传感器响应所引起的变化,对一个典型阵列(图5)中的14个传感器元件的每一个的分别的、弧立的响应进行主分量分析。数据是在5天期间内对丙酮(a),苯(b),氯仿(c),乙醇(e),异丙醇(i),甲醇(m),四氢呋喃(t)和乙酸乙酯(@)进行多次接触而得到的,测试汽体与阵列以不同次序接触。各图的号码对应于表3所示的传感器元件。沿各轴上的单位表示用以描述一种气味的特定数据组的主分量的大小。黑色区域表示对应于一种可与所有其它溶剂区分的溶剂的聚集;灰色区域则强调表示其信号与它周围溶剂重叠的溶剂的数据。暴露条件与图4相同。
由于每一单个传感器产生两个数据值,这些响应的主分量分析结果只得到两个正交的主分量pc1和pc2。作为单个传感器元件所显示的选择性的例子,图5中的第5号传感器(以聚苯乙烯增塑的)将丙酮与氯仿、异丙醇和四氢呋喃相混淆。它也将苯与乙酸乙酯相混淆,但可将乙醇和甲醇与其它溶剂清楚地区分开来。将增塑剂改为聚α-甲基苯乙烯(图5中的第6号传感器)对于各种响应彼此之间的空间分布以及相对于原点的位置没有多大影响。于是,如所预期的那样,增塑剂的较轻微的化学变化,对于8种试验的气味剂的相对方差的影响很小。与此相反,在增塑剂中增加一个氰基,即成为聚苯乙烯-丙烯腈的形式(图5中的第7号传感器),结果苯与氯仿对总方差的贡献较大,而乙醇的影响减小。将增塑剂中的取代基团改变为一种与氢结合的酸(聚苯乙烯-烯丙醇,图5中的第9号传感器)增大了丙酮对总方差的贡献,而对其它气味影响很小,只是将甲醇与乙醇相混淆。这些结果表明可通过改变增塑聚合物的化学组分来系统地改变传感器的性能。
图6A和6B显示对表3与图4和5中所示的全部14个传感器的主分量分析。当将溶剂投影在三维气味空间中(图6A或6B),所有8种溶剂都可用这里所述的特定阵列区分。探测出某一种个别的测试气味,是只以对阵列的所有元件观察~1%ΔRmax/Ri值为判据的,这可在对流动空气的温度或湿度不加控制的条件下很容易地在千分之几的水平做到。充分利用ΔRmax/Ri数据的瞬变分量并更完全地表征阵列中的噪声,将可进一步提高灵敏度。
我们也研究了这种传感器阵列对鉴别某些测试混合物中的各种组分是否合用。如果某一种气味剂的浓度改变后该阵列显示可预知的信号响应,并且如果各种单个气味的响应是可相加的(即如果保持叠加性),这任务当可大大简化。当19元件的传感器阵列与空气中不同的几个浓度的丙酮接触时,(CH3)2CO浓度可由第一个主分量半定量地预示。根据对最先三个主分量的良好的线性最小平方拟合,这是显然的(见图7A中对第一个主分量的线性最小平方拟合)。
同样的传感器阵列也能分辩各种待测甲醇-乙醇混合物中的各组分[Morris等(1942),Can.J.Res.B 20:207-211]。如图7B所示,在第一个主分量与在甲醇-乙醇混合物中液相中甲醇的摩尔分数xm之间存在线性关系,表明这种混合物/传感器阵列的组合保持叠加性。而且,虽然仅根据第一主分量就能相当准确地预知混合物中的各组分,利用通过最先的三个主分量进行的多元线性最小平方拟合,将可使精确度增高。在CH3OH/(CH3OH+C2H5OH)比例为0-1.0的这种蒸汽混合物的空气饱和溶液中,保持了这种关系。因此,以导电聚合物为基础的传感器阵列不仅能区分纯的测试汽体,而且可分析气味剂的浓度以及分析汽体的二元混合物。
总之,本发明的结果使分析物传感器设计领域向前推进了。一种较简单的阵列设计,只利用了多路复用的低功率直流电阻读出信号,就能容易地区分各种测试气味剂。这类以导电聚合物为基础的阵列易于制造和改装,并可能对某种蒸汽的响应图形提供化学控制。例如,增大增塑剂对导电聚合物的比例,就可能接近渗滤阈,在该点电导率对吸着分子的存在呈现极灵敏的响应。此外,制备更薄的薄膜,将可能得到较低的响应时间,而增加增塑聚合物和聚合物主链部分的数目,可能增大各传感器之间的差异。这种类型的以聚合物为基础的阵列在化学上是灵活的,易于制造、改装和分析,并使用了一条低功率dc电阻读出信号转换路径将化学数据变换为电信号。它为用于模仿哺乳类动物嗅觉的基本和实用研究的、响应广泛的传感器提供了新的途径。这样的系统可用来评价神经网络算法的普遍性,这网络是开发来理解哺乳类嗅觉系统如何鉴别各种气体的方向、浓度和身份的。
以炭黑为基础的传感器阵列的制备与测试
探测器制造
按以下方法制备单个传感器元件。将每种非导电聚合物(80mg,见表4)溶解在6ml THF中。
               表4
    传感器编号     非导电聚合物
    12345678910     聚4-乙烯基苯酚聚苯乙烯-烯丙醇聚α-甲基苯乙烯聚氯乙烯-乙酸乙烯酯聚乙酸乙烯酯聚N-乙烯基吡咯烷酮聚双酚A碳酸酯聚苯乙烯聚苯乙烯-马来酐聚砜
然后通过激烈搅拌使20mg炭黑(BP 2000,Cabot Corp.)悬浮在其中。再将叉指式电极(前面所述的切开的电容器)浸渍在这混合物中,让溶剂蒸发。制造了一系列具有不同非导电聚合物的这种传感器,并组合在汇流条中,可用一个多路复用的欧姆计容易地监测各化学电阻。
传感器阵列测试
为了评价以炭黑为基础的传感器的性能,将含有多达20个元件的阵列与一系列分析物接触。一次传感器接触包括(1)暴露于流动空气(6升/分)中60秒;(2)暴露于空气(6升/分)与被分析物饱和的空气(0.5升/分)的混合物中60秒;(3)将传感器阵列暴露于流动空气(6升/分)中的5分钟恢复期。在暴露过程中监测各元件的电阻,响应于某一分析物可观察到高达250%的电阻变化(取决于薄膜的厚度和化学组成)。在一个实验中,将由一系列非导电聚合物形成的炭黑复合物所构成的10元件传感器阵列在两天期间内暴露于丙酮、苯、氯仿、乙醇、己烷、甲醇和甲苯。在这期间进行了与这些分析物的58次接触。在全部情况下,响应于分析物的电阻变化都是正的,除丙酮外,也是可逆的(见图8)。然后按讨论以聚吡咯为基础的传感器时所用的相似方法对偏差最大值进行主分量分析。图9显示了对整个10元件阵列所作主分量分析的结果。除了甲苯与苯重叠以外,各分析物可彼此区分。
在本说明书中引用的所有出版物和专利申请都通过引用而结合在本发明中,就象具体指明每一出版物和专利申请都通过引用而结合在本发明中。虽然上面为了清楚通过一些说明和例子来描述本发明。本领域的技术人员会理解,可根据本发明的说明作出各种改变和变化而不背离后附权利要求的实质和范围。

Claims (11)

1.一种用于探测流体中分析物的传感器阵列,至少包括第一和第二化学敏感电阻,它们经电引线连接于一个电测量装置,每个所述的化学敏感电阻包括:
在与含有第一浓度的化学分析物的第一流体接触时的第一电阻,和
在与含有不同的第二浓度的所述化学分析物的第二流体接触时的第二电阻,其特征在于
所述第一化学敏感电阻的第一电阻与第二电阻之差,与在相同条件下所述第二化学敏感电阻的第一电阻与第二电阻之差不同,并且
每个所述的化学敏感电阻还包括:
非导电有机聚合物和在组分上与该非导电有机聚合物不同的导电材料组成的区域,其中每个电阻具有
通过所述非导电有机聚合物和所述导电材料组成的区域的电通道。
2.如权利要求1所述的传感器阵列,其特征还在于所述的第一化学敏感电阻的非导电有机聚合物与所述的第二化学敏感电阻的非导电有机聚合物不同。
3.如权利要求1或2所述的传感器阵列,其特征还在于所述导电材料是一种无机导体。
4.如权利要求1所述的传感器阵列,其特征还在于所述电测量装置连接到一个含有常驻算法的计算机上。
5.如权利要求1所述的传感器阵列,它包括10至1000个传感器。
6.一种制造用于探测流体中分析物的传感器阵列的方法,包括:
制造所述传感器,使之具有非导电有机材料和在组分上与该非导电有机材料不同的导电材料组成的区域,使所述传感器在非导电有机材料的结构和/或成分上具有预定的传感器之间的变化,从而形成传感器的差异。
7.如权利要求6所述的方法,其特征还在于传感器阵列包括10至1000个传感器。
8.如权利要求6或7所述的方法,其特征还在于非导电有机材料是一种有机聚合物,其中:
(a)聚合物是一种掺合物或共聚物;和/或
(b)改变聚合物从而改变传感器的渗滤阈;和/或
(c)聚合物包含增塑剂;和/或
(d)聚合物是交联的;和/或
(e)在至少两个传感器中的聚合物是不同的;和/或
(f)在至少两个传感器中的聚合物浓度是不同的。
9.如权利要求6所述的方法,其特征还在于传感器阵列是采用集成电路技术制造的。
10.权利要求1至5中任一项所述的传感器阵列或按权利要求6至9中任一项所述方法制得的传感器阵列在探测流体中存在分析物中的应用。
11.如权利要求10所述的应用,它在环境毒物及去除、生物医学、材料质量控制、食物监测和农业监测中的应用。
CNB961939850A 1995-03-27 1996-03-26 用于探测流体中分析物的传感器阵列及其制造方法和应用 Expired - Fee Related CN1179208C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/410,809 1995-03-27
US08/410,809 US5571401A (en) 1995-03-27 1995-03-27 Sensor arrays for detecting analytes in fluids

Publications (2)

Publication Number Publication Date
CN1184530A CN1184530A (zh) 1998-06-10
CN1179208C true CN1179208C (zh) 2004-12-08

Family

ID=23626320

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB961939850A Expired - Fee Related CN1179208C (zh) 1995-03-27 1996-03-26 用于探测流体中分析物的传感器阵列及其制造方法和应用

Country Status (16)

Country Link
US (7) US5571401A (zh)
EP (2) EP0820585B1 (zh)
JP (2) JP3963474B2 (zh)
KR (1) KR100389603B1 (zh)
CN (1) CN1179208C (zh)
AT (1) ATE188291T1 (zh)
AU (1) AU705825B2 (zh)
CA (1) CA2215332C (zh)
DE (1) DE69605906T2 (zh)
DK (1) DK0820585T3 (zh)
ES (1) ES2144737T3 (zh)
FI (1) FI973802A (zh)
GR (1) GR3033092T3 (zh)
PT (1) PT820585E (zh)
RU (1) RU2145081C1 (zh)
WO (1) WO1996030750A1 (zh)

Families Citing this family (377)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773162A (en) * 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
US5951846A (en) * 1995-03-27 1999-09-14 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US6170318B1 (en) * 1995-03-27 2001-01-09 California Institute Of Technology Methods of use for sensor based fluid detection devices
US5571401A (en) * 1995-03-27 1996-11-05 California Institute Of Technology Sensor arrays for detecting analytes in fluids
WO2000000808A2 (en) * 1998-06-09 2000-01-06 California Institute Of Technology Colloidal particles used in sensing arrays
US5788833A (en) 1995-03-27 1998-08-04 California Institute Of Technology Sensors for detecting analytes in fluids
US6537498B1 (en) 1995-03-27 2003-03-25 California Institute Of Technology Colloidal particles used in sensing arrays
GB9604525D0 (en) * 1996-03-02 1996-05-01 Univ Leeds Sensing device
US6709635B1 (en) * 1996-03-21 2004-03-23 California Institute Of Technology Gas sensor test chip
US7469237B2 (en) * 1996-05-02 2008-12-23 Cooper David L Method and apparatus for fractal computation
US6933331B2 (en) 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
US6202471B1 (en) 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
ATE319988T1 (de) 1996-10-09 2006-03-15 Symyx Technologies Inc Infrarot-spektroskopie und abbildung von bibliotheken
ES2121699B1 (es) * 1996-12-10 1999-06-16 Consejo Superior Investigacion Sistema portatil para determinar compuestos organicos volatiles en suelos.
US5832411A (en) * 1997-02-06 1998-11-03 Raytheon Company Automated network of sensor units for real-time monitoring of compounds in a fluid over a distributed area
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
EP0878711A1 (en) * 1997-05-15 1998-11-18 Interuniversitair Micro-Elektronica Centrum Vzw Chemically sensitive sensor comprising arylene alkenylene oligomers
US5880552A (en) * 1997-05-27 1999-03-09 The United States Of America As Represented By The Secretary Of The Navy Diamond or diamond like carbon coated chemical sensors and a method of making same
GB9713043D0 (en) * 1997-06-21 1997-08-27 Aromascan Plc Gas sensor
WO1999000663A1 (en) * 1997-06-30 1999-01-07 California Institute Of Technology Compositionally different polymer-based sensor elements and methods for preparing same
AU754648B2 (en) * 1997-08-08 2002-11-21 California Institute Of Technology Techniques and systems for analyte detection
US6495892B2 (en) * 1997-08-08 2002-12-17 California Institute Of Technology Techniques and systems for analyte detection
JP2000033712A (ja) * 1997-09-30 2000-02-02 Seiko Epson Corp マイクロセンサーデバイス作成方法及びそれを用いた液体機能評価方法
US20030180441A1 (en) * 1997-09-30 2003-09-25 Hitoshi Fukushima Manufacture of a microsensor device and a method for evaluating the function of a liquid by the use thereof
US6393895B1 (en) 1997-10-08 2002-05-28 Symyx Technologies, Inc. Method and apparatus for characterizing materials by using a mechanical resonator
US6494079B1 (en) * 2001-03-07 2002-12-17 Symyx Technologies, Inc. Method and apparatus for characterizing materials by using a mechanical resonator
DE19755516A1 (de) * 1997-12-13 1999-06-17 Conducta Endress & Hauser Messeinrichtung für die Flüssigkeits- und/oder Gasanalyse und/oder für die Messung von Feuchte in Flüssigkeiten und/oder Gasen
US6598459B1 (en) * 1998-01-09 2003-07-29 Chi Yung Fu Artificial olfactory system
AU2584599A (en) * 1998-02-06 1999-08-23 California Institute Of Technology Sensor arrays for resolution of enantiomers
FR2776074B1 (fr) * 1998-03-13 2000-04-21 Transtechnologies Equipement pour la caracterisation olfactive absolue d'une substance ou d'un produit odorant
US6085576A (en) * 1998-03-20 2000-07-11 Cyrano Sciences, Inc. Handheld sensing apparatus
US6196057B1 (en) * 1998-04-02 2001-03-06 Reliance Electric Technologies, Llc Integrated multi-element lubrication sensor and lubricant health assessment
EP1070244A4 (en) * 1998-04-09 2002-04-17 California Inst Of Techn ELECTRONIC TECHNIQUES USED FOR THE DETECTION OF ANALYTES
US6350369B1 (en) 1998-04-14 2002-02-26 California Institute Of Technology Method and system for determining analyte activity
US6844197B1 (en) * 1998-04-17 2005-01-18 California Institute Of Technology Method for validating that the detection ability of a sensor array mimics a human nose detection ability
US6571603B1 (en) * 1998-05-27 2003-06-03 California Institute Of Technology Method of resolving analytes in a fluid
US7955561B2 (en) * 1998-06-09 2011-06-07 The California Institute Of Technology Colloidal particles used in sensing array
AU4681199A (en) 1998-06-15 2000-01-05 Trustees Of The University Of Pennsylvania, The Diagnosing intrapulmonary infection and analyzing nasal sample
WO1999066304A1 (en) * 1998-06-19 1999-12-23 California Institute Of Technology Trace level detection of analytes using artificial olfactometry
US6752964B1 (en) * 1998-06-23 2004-06-22 California Institute Of Technology Polymer/plasticizer based sensors
WO1999067627A1 (en) * 1998-06-23 1999-12-29 California Institute Of Technology Polymer/plasticizer based sensors
US6908770B1 (en) 1998-07-16 2005-06-21 Board Of Regents, The University Of Texas System Fluid based analysis of multiple analytes by a sensor array
FR2783051B1 (fr) * 1998-09-08 2000-11-10 Commissariat Energie Atomique Film de detection d'une espece chimique, capteur chimique et procede de fabrication de ceux-ci
GB9820009D0 (en) * 1998-09-14 1998-11-04 Mini Agriculture & Fisheries Artificial olfactory sensing system
EP1117991A4 (en) 1998-10-02 2005-04-27 California Inst Of Techn ORGANIC CONDUCTIVE SENSORS, SENSOR MATRIX AND METHOD FOR THEIR USE
WO2000029829A1 (en) * 1998-11-16 2000-05-25 California Institute Of Technology Simultaneous determination of equilibrium and kinetic properties
JP3809734B2 (ja) * 1998-11-16 2006-08-16 株式会社島津製作所 ガス測定装置
US7113069B1 (en) 1999-11-30 2006-09-26 Smiths Detection Inc. Aligned particle based sensor elements
WO2000033062A1 (en) * 1998-12-01 2000-06-08 Cyrano Sciences, Inc. Aligned particle based sensor elements
US6438497B1 (en) 1998-12-11 2002-08-20 Symyx Technologies Method for conducting sensor array-based rapid materials characterization
US6477479B1 (en) 1998-12-11 2002-11-05 Symyx Technologies Sensor array for rapid materials characterization
AU3691700A (en) * 1998-12-11 2000-07-03 Symyx Technologies, Inc. Sensor array-based system and method for rapid materials characterization
WO2000037933A1 (en) * 1998-12-18 2000-06-29 Raytheon Company Stochastic array processing of sensor measurements to detect and quantify analytes
US6397661B1 (en) 1998-12-30 2002-06-04 University Of Kentucky Research Foundation Remote magneto-elastic analyte, viscosity and temperature sensing apparatus and associated methods of sensing
AU2514900A (en) * 1999-01-27 2000-08-18 United States Of America As Represented By The Secretary Of The Navy, The Fabrication of conductive/non-conductive nanocomposites by laser evaporation
US7799004B2 (en) * 2001-03-05 2010-09-21 Kci Licensing, Inc. Negative pressure wound treatment apparatus and infection identification system and method
US6375693B1 (en) 1999-05-07 2002-04-23 International Business Machines Corporation Chemical-mechanical planarization of barriers or liners for copper metallurgy
ATE319080T1 (de) 1999-05-10 2006-03-15 California Inst Of Techn Verwendung eines räumlich-zeitlichen reaktionsverhaltens in sensor-arrays zur detektion von analyten in fluiden
US7122152B2 (en) * 1999-05-10 2006-10-17 University Of Florida Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
US6631333B1 (en) 1999-05-10 2003-10-07 California Institute Of Technology Methods for remote characterization of an odor
US6194769B1 (en) * 1999-05-27 2001-02-27 Sandia Corporation Sensor devices comprising field-structured composites
US6359444B1 (en) 1999-05-28 2002-03-19 University Of Kentucky Research Foundation Remote resonant-circuit analyte sensing apparatus with sensing structure and associated method of sensing
US6783989B1 (en) 1999-06-11 2004-08-31 Physical Sciences, Inc. Toxic substance detection
WO2000078204A2 (en) * 1999-06-16 2000-12-28 California Institute Of Technology Methods for remote characterization of an odor
EP1650545B1 (en) 1999-06-17 2011-08-17 Smiths Detection Inc. Multiple sensing system, device and method
AU5330200A (en) * 1999-06-18 2001-01-09 Michigan State University Method and apparatus for the detection of volatile products in a sample
US6346423B1 (en) 1999-07-16 2002-02-12 Agilent Technologies, Inc. Methods and compositions for producing biopolymeric arrays
WO2001006253A2 (en) 1999-07-16 2001-01-25 Board Of Regents, The University Of Texas System Detection system based on an analyte reactive particle
US6408250B1 (en) * 1999-08-10 2002-06-18 Battelle Memorial Institute Methods for characterizing, classifying, and identifying unknowns in samples
US6890715B1 (en) * 1999-08-18 2005-05-10 The California Institute Of Technology Sensors of conducting and insulating composites
US6716638B1 (en) * 1999-09-13 2004-04-06 Cyrano Sciences Inc. Measuring conducting paths using infrared thermography
US6606566B1 (en) * 1999-11-01 2003-08-12 Steven A. Sunshine Computer code for portable sensing
US6978212B1 (en) 1999-11-01 2005-12-20 Smiths Detection Inc. System for portable sensing
MXPA02004618A (es) * 1999-11-08 2002-09-02 Univ Florida Metodo y aparato de deteccion de indicador para monitorear cumplimiento de farmaco.
CA2391451C (en) * 1999-11-15 2010-04-13 Cyrano Sciences, Inc. Referencing and rapid sampling in artificial olfactometry
US6703241B1 (en) * 1999-11-15 2004-03-09 Cyrano Sciences, Inc. Referencing and rapid sampling in artificial olfactometry
AU2743801A (en) 1999-12-30 2001-07-16 Cabot Corporation Sensors with improved properties
GB0000209D0 (en) * 2000-01-07 2000-03-01 Holmetrica Limited Holographic multiplexed image sensor
US7998412B2 (en) * 2000-01-07 2011-08-16 Smart Holograms Limited Ophthalmic device comprising a holographic sensor
AU2001234709A1 (en) 2000-01-31 2001-08-07 Board Of Regents, The University Of Texas System Method of preparing a sensor array
US6317540B1 (en) * 2000-02-02 2001-11-13 Pirelli Cables & Systems, Llc Energy cable with electrochemical chemical analyte sensor
US6493638B1 (en) * 2000-03-01 2002-12-10 Raytheon Company Sensor apparatus for measuring volatile organic compounds
US6379969B1 (en) 2000-03-02 2002-04-30 Agilent Technologies, Inc. Optical sensor for sensing multiple analytes
US6881585B1 (en) 2000-03-06 2005-04-19 General Electric Company Method and apparatus for rapid screening of volatiles
US6865509B1 (en) * 2000-03-10 2005-03-08 Smiths Detection - Pasadena, Inc. System for providing control to an industrial process using one or more multidimensional variables
US6895338B2 (en) * 2000-03-10 2005-05-17 Smiths Detection - Pasadena, Inc. Measuring and analyzing multi-dimensional sensory information for identification purposes
US20080050839A1 (en) * 2000-03-21 2008-02-28 Suslick Kenneth S Apparatus and method for detecting lung cancer using exhaled breath
CN1191475C (zh) 2000-03-31 2005-03-02 生命扫描有限公司 用于测量导电生物流体的被分析物浓度的医疗诊断装置
DE10017790A1 (de) * 2000-04-10 2001-10-11 Basf Ag Verfahren zur Herstellung von Biopolymer-Feldern mit Echtzeitkontrolle
US7527821B2 (en) * 2000-05-02 2009-05-05 Smiths Detection Inc. Sensor fabricating method
US6393898B1 (en) 2000-05-25 2002-05-28 Symyx Technologies, Inc. High throughput viscometer and method of using same
US6664067B1 (en) * 2000-05-26 2003-12-16 Symyx Technologies, Inc. Instrument for high throughput measurement of material physical properties and method of using same
US6568286B1 (en) 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US6837476B2 (en) * 2002-06-19 2005-01-04 Honeywell International Inc. Electrostatically actuated valve
US7420659B1 (en) 2000-06-02 2008-09-02 Honeywell Interantional Inc. Flow control system of a cartridge
CA2409402A1 (en) * 2000-06-14 2001-12-20 Board Of Regents, The University Of Texas System Apparatus and method for fluid injection
JP2004532968A (ja) * 2000-06-14 2004-10-28 ボード・オブ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム 細胞亜集団分析のためのシステムおよび方法
EP1350095B1 (en) * 2000-06-14 2015-12-09 The Board Of Regents, The University Of Texas System Method and apparatus for combined magnetophoretic and dielectrophoretic manipulation of analyte mixtures
US6411905B1 (en) 2000-07-18 2002-06-25 The Governors Of The University Of Alberta Method and apparatus for estimating odor concentration using an electronic nose
US7000330B2 (en) * 2002-08-21 2006-02-21 Honeywell International Inc. Method and apparatus for receiving a removable media member
US6773926B1 (en) * 2000-09-25 2004-08-10 California Institute Of Technology Nanoparticle-based sensors for detecting analytes in fluids
US7008524B2 (en) * 2000-10-03 2006-03-07 Hrl Laboratories, Llc Sensors with variable response behavior
US6730212B1 (en) 2000-10-03 2004-05-04 Hrl Laboratories, Llc Sensor for chemical and biological materials
CA2423235A1 (en) * 2000-10-16 2002-04-25 E.I. Du Pont De Nemours And Company Method and apparatus for analyzing mixtures of gases
US6849239B2 (en) * 2000-10-16 2005-02-01 E. I. Du Pont De Nemours And Company Method and apparatus for analyzing mixtures of gases
US6688162B2 (en) 2000-10-20 2004-02-10 University Of Kentucky Research Foundation Magnetoelastic sensor for characterizing properties of thin-film/coatings
US6796733B2 (en) 2000-10-31 2004-09-28 International Imaging Materials Inc. Thermal transfer ribbon with frosting ink layer
US6990904B2 (en) * 2000-10-31 2006-01-31 International Imaging Materials, Inc Thermal transfer assembly for ceramic imaging
US6854386B2 (en) * 2000-10-31 2005-02-15 International Imaging Materials Inc. Ceramic decal assembly
US20050054942A1 (en) * 2002-01-22 2005-03-10 Melker Richard J. System and method for therapeutic drug monitoring
US7104963B2 (en) * 2002-01-22 2006-09-12 University Of Florida Research Foundation, Inc. Method and apparatus for monitoring intravenous (IV) drug concentration using exhaled breath
US6981947B2 (en) * 2002-01-22 2006-01-03 University Of Florida Research Foundation, Inc. Method and apparatus for monitoring respiratory gases during anesthesia
IL140949A0 (en) * 2001-01-17 2002-02-10 Yeda Res & Dev Nitric oxide (no) detector
US20020160363A1 (en) * 2001-01-31 2002-10-31 Mcdevitt John T. Magnetic-based placement and retention of sensor elements in a sensor array
US6639402B2 (en) 2001-01-31 2003-10-28 University Of Kentucky Research Foundation Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)
KR101226790B1 (ko) * 2001-02-21 2013-01-28 엠프레사 브라질레이라 데 페스퀴사 아그로페쿠아리아-엠브라파 총괄적 선별성에 의한 혼합물 분석 센서 및 그를 이용한 센서 시스템
CN100458427C (zh) * 2001-02-28 2009-02-04 清华大学 生物芯片及检测生物样品的方法
EP2295971B1 (en) * 2001-03-09 2016-09-07 TrovaGene, Inc. Conjugate probes and optical detection of analytes
ES2173048B1 (es) * 2001-03-26 2003-12-16 Univ Barcelona Instrumento y metodo para el analisis, identificacion y cuantificacion de gases o liquidos.
FR2822952B1 (fr) * 2001-03-27 2006-09-22 Seres Detecteur d'une signature volatile et procedes associes
US6686201B2 (en) 2001-04-04 2004-02-03 General Electric Company Chemically-resistant sensor devices, and systems and methods for using same
US6567753B2 (en) 2001-04-04 2003-05-20 General Electric Company Devices and methods for simultaneous measurement of transmission of vapors through a plurality of sheet materials
US20020172620A1 (en) * 2001-04-04 2002-11-21 Potyrailo Radislav Alexandrovich Systems and methods for rapid evaluation of chemical resistance of materials
US6383815B1 (en) 2001-04-04 2002-05-07 General Electric Company Devices and methods for measurements of barrier properties of coating arrays
US7052854B2 (en) * 2001-05-23 2006-05-30 University Of Florida Research Foundation, Inc. Application of nanotechnology and sensor technologies for ex-vivo diagnostics
WO2002095398A1 (en) 2001-05-24 2002-11-28 University Of Florida Method and apparatus for detecting environmental smoke exposure
JP4016611B2 (ja) * 2001-05-25 2007-12-05 株式会社島津製作所 におい識別装置
WO2002099414A1 (en) 2001-06-06 2002-12-12 Symyx Technologies, Inc. Flow detectors having mechanical oscillators, and use thereof in flow characterization systems
US6494833B1 (en) 2001-06-19 2002-12-17 Welch Allyn, Inc. Conditioning apparatus for a chemical sensing instrument
US20030022150A1 (en) * 2001-07-24 2003-01-30 Sampson Jeffrey R. Methods for detecting a target molecule
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6860148B2 (en) 2001-08-24 2005-03-01 Symyx Technologies, Inc. High throughput fabric handle screening
US6690179B2 (en) 2001-08-24 2004-02-10 Symyx Technologies, Inc. High throughput mechanical property testing of materials libraries using capacitance
US6650102B2 (en) * 2001-08-24 2003-11-18 Symyx Technologies, Inc. High throughput mechanical property testing of materials libraries using a piezoelectric
US6772642B2 (en) 2001-08-24 2004-08-10 Damian A. Hajduk High throughput mechanical property and bulge testing of materials libraries
US6736017B2 (en) 2001-08-24 2004-05-18 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6837115B2 (en) * 2001-08-24 2005-01-04 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6769292B2 (en) 2001-08-24 2004-08-03 Symyx Technologies, Inc High throughput rheological testing of materials
US6857309B2 (en) 2001-08-24 2005-02-22 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US20030055587A1 (en) * 2001-09-17 2003-03-20 Symyx Technologies, Inc. Rapid throughput surface topographical analysis
US6807842B2 (en) 2001-09-18 2004-10-26 The Charles Stark Draper Laboratory, Inc. Molecular recognition sensor system
US6729856B2 (en) 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
US6902701B1 (en) * 2001-10-09 2005-06-07 Sandia Corporation Apparatus for sensing volatile organic chemicals in fluids
US6703819B2 (en) 2001-12-03 2004-03-09 Board Of Regents, The University Of Texas System Particle impedance sensor
US7487662B2 (en) 2001-12-13 2009-02-10 The University Of Wyoming Research Corporation Volatile organic compound sensor system
US20030119057A1 (en) * 2001-12-20 2003-06-26 Board Of Regents Forming and modifying dielectrically-engineered microparticles
US6866762B2 (en) * 2001-12-20 2005-03-15 Board Of Regents, University Of Texas System Dielectric gate and methods for fluid injection and control
US7955559B2 (en) 2005-11-15 2011-06-07 Nanomix, Inc. Nanoelectronic electrochemical test device
US20070167853A1 (en) 2002-01-22 2007-07-19 Melker Richard J System and method for monitoring health using exhaled breath
US7189360B1 (en) * 2002-01-24 2007-03-13 Sandia Corporation Circular chemiresistors for microchemical sensors
US7179421B1 (en) * 2002-01-24 2007-02-20 Sandia Corporation Multi-pin chemiresistors for microchemical sensors
US20030198573A1 (en) * 2002-01-25 2003-10-23 Illumina, Inc. Sensor arrays for detecting analytes in fluids
US7013709B2 (en) * 2002-01-31 2006-03-21 Symyx Technologies, Inc. High throughput preparation and analysis of plastically shaped material samples
CA2418399A1 (en) * 2002-02-11 2003-08-11 Bayer Healthcare, Llc Non-invasive system for the determination of analytes in body fluids
US20030154031A1 (en) * 2002-02-14 2003-08-14 General Electric Company Method and apparatus for the rapid evaluation of a plurality of materials or samples
JP3882720B2 (ja) 2002-02-19 2007-02-21 株式会社島津製作所 におい測定装置
JP2005519291A (ja) * 2002-03-04 2005-06-30 シラノ サイエンシズ インコーポレイテッド 人工的嗅覚検査による医学疾患または病気の検知、診断、およびモニタリング
US7312095B1 (en) * 2002-03-15 2007-12-25 Nanomix, Inc. Modification of selectivity for sensing for nanostructure sensing device arrays
AU2003225839A1 (en) * 2002-03-15 2003-09-29 Nanomix. Inc. Modification of selectivity for sensing for nanostructure device arrays
ITTO20020244A1 (it) * 2002-03-19 2003-09-19 Infm Istituto Naz Per La Fisi Materiali compositi per applicazioni sensoristiche e dispositivo sensore chimico che li comprende.
JP4824910B2 (ja) * 2002-04-05 2011-11-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ガスの混合物の分析装置
JP4856851B2 (ja) * 2002-04-05 2012-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ガス放出プロセスを制御する方法および装置
US20040254513A1 (en) 2002-04-10 2004-12-16 Sherwin Shang Conductive polymer materials and applications thereof including monitoring and providing effective therapy
US7052480B2 (en) 2002-04-10 2006-05-30 Baxter International Inc. Access disconnection systems and methods
US7022098B2 (en) 2002-04-10 2006-04-04 Baxter International Inc. Access disconnection systems and methods
US10155082B2 (en) 2002-04-10 2018-12-18 Baxter International Inc. Enhanced signal detection for access disconnection systems
US7200495B2 (en) * 2002-04-11 2007-04-03 The Charles Stark Draper Laboratory Method and apparatus for analyzing spatial and temporal processes of interaction
AU2003228711C1 (en) 2002-04-26 2010-01-07 Board Of Regents, The University Of Texas System Method and system for the detection of cardiac risk factors
US20030203500A1 (en) * 2002-04-26 2003-10-30 Symyx Technologies, Inc. High throughput testing of fluid samples using an electric field
US6830668B2 (en) * 2002-04-30 2004-12-14 Conductive Technologies, Inc. Small volume electrochemical sensor
AU2003249681A1 (en) * 2002-05-31 2003-12-19 Diversa Corporation Multiplexed systems for nucleic acid sequencing
KR100596972B1 (ko) * 2002-06-10 2006-07-05 경북대학교 산학협력단 지능형 식품부패 감지시스템과 이를 이용한 식품부패 감지시스템
US7171312B2 (en) * 2002-07-19 2007-01-30 Smiths Detection, Inc. Chemical and biological agent sensor array detectors
AU2003302720B9 (en) * 2002-07-19 2008-08-21 Smiths Detection-Pasadena, Inc. Non-specific sensor array detectors
US6994777B2 (en) * 2002-09-04 2006-02-07 Lynntech, Inc. Chemical sensors utilizing conducting polymer compositions
US8519726B2 (en) * 2002-09-09 2013-08-27 Yizhong Sun Sensor having integrated electrodes and method for detecting analytes in fluids
US7465425B1 (en) * 2002-09-09 2008-12-16 Yizhong Sun Sensor and method for detecting analytes in fluids
US20040123650A1 (en) * 2002-09-17 2004-07-01 Symyx Technologies, Inc. High throughput rheological testing of materials
WO2004027393A1 (en) * 2002-09-20 2004-04-01 The Charles Stark Draper Laboratory, Inc. Molecular recognition sensor system
US6862917B2 (en) * 2002-09-30 2005-03-08 Bae Systems Information And Electronic Systems Integration Inc. Apparatus for detecting chemical agents including olfactory interferometric lens and method of use
GB0222728D0 (en) * 2002-10-01 2002-11-06 Shell Int Research System for identifying lubricating oils
WO2004036207A2 (en) 2002-10-18 2004-04-29 Symyx Technologies, Inc. Environmental control system fluid sensing system and method comprising a sesnsor with a mechanical resonator
US7043969B2 (en) 2002-10-18 2006-05-16 Symyx Technologies, Inc. Machine fluid sensor and method
US7112443B2 (en) * 2002-10-18 2006-09-26 Symyx Technologies, Inc. High throughput permeability testing of materials libraries
US20040092004A1 (en) * 2002-11-07 2004-05-13 Hrl Laboratories, Llc Sensor for detection of enzyme and enzyme detection method for aerosolized bacteria in the enviromnment
US20050150778A1 (en) * 2002-11-18 2005-07-14 Lewis Nathan S. Use of basic polymers in carbon black composite vapor detectors to obtain enhanced sensitivity and classification performance for volatile fatty acids
SE524574C2 (sv) * 2002-12-09 2004-08-31 Otre Ab Metod för signalbehandling för voltammetri
US7708974B2 (en) 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
ES2212739B1 (es) * 2003-01-02 2005-04-01 Sociedad Española De Carburos Metalicos, S.A. Sistema analizador para la deteccion de gases reductores y oxidantes en un gas portador y sensor de gases basado en oxidos metalicos de tipo semiconductor.
WO2004075211A1 (en) * 2003-02-20 2004-09-02 The Regents Of The University Of California Method of forming conductors at low temperatures using metallic nanocrystals and product
US7721590B2 (en) * 2003-03-21 2010-05-25 MEAS France Resonator sensor assembly
US7210332B2 (en) 2003-03-21 2007-05-01 Symyx Technologies, Inc. Mechanical resonator
EP1606614A2 (en) * 2003-03-26 2005-12-21 E.I. Dupont De Nemours And Company Apparatus for analyzing mixtures of gases
US7645422B2 (en) * 2003-04-11 2010-01-12 Therm-O-Disc, Incorporated Vapor sensor and materials therefor
US7138090B2 (en) * 2003-04-11 2006-11-21 Therm-O-Disc, Incorporated Vapor sensor and materials therefor
US20050064452A1 (en) * 2003-04-25 2005-03-24 Schmid Matthew J. System and method for the detection of analytes
US20040223884A1 (en) * 2003-05-05 2004-11-11 Ing-Shin Chen Chemical sensor responsive to change in volume of material exposed to target particle
US9234867B2 (en) 2003-05-16 2016-01-12 Nanomix, Inc. Electrochemical nanosensors for biomolecule detection
US9317922B2 (en) * 2003-05-16 2016-04-19 Board Of Regents The University Of Texas System Image and part recognition technology
US7651850B2 (en) 2003-05-16 2010-01-26 Board Of Regents, The University Of Texas System Image and part recognition technology
US6917885B2 (en) * 2003-06-06 2005-07-12 Steris Inc. Method and apparatus for formulating and controlling chemical concentration in a gas mixture
EP1648298A4 (en) 2003-07-25 2010-01-13 Dexcom Inc OXYGEN-IMPROVED MEMBRANE SYSTEMS FOR IMPLANTABLE DEVICES
GB2405097A (en) * 2003-08-16 2005-02-23 Reckitt Benckiser Sensor equipped dispenser for air treatment media
US20050054116A1 (en) * 2003-09-05 2005-03-10 Potyrailo Radislav A. Method of manufacturing and evaluating sensor coatings and the sensors derived therefrom
KR100529233B1 (ko) * 2003-09-06 2006-02-24 한국전자통신연구원 센서 및 그 제조 방법
US7581434B1 (en) 2003-09-25 2009-09-01 Rockwell Automation Technologies, Inc. Intelligent fluid sensor for machinery diagnostics, prognostics, and control
US7547381B2 (en) * 2003-09-26 2009-06-16 Agency For Science, Technology And Research And National University Of Singapore Sensor array integrated electrochemical chip, method of forming same, and electrode coating
US7010956B2 (en) * 2003-11-05 2006-03-14 Michael S. Head Apparatus and method for detecting an analyte
US20050127206A1 (en) * 2003-12-10 2005-06-16 Xerox Corporation Device and system for dispensing fluids into the atmosphere
US20050129568A1 (en) * 2003-12-10 2005-06-16 Xerox Corporation Environmental system including a micromechanical dispensing device
US20050127207A1 (en) * 2003-12-10 2005-06-16 Xerox Corporation Micromechanical dispensing device and a dispensing system including the same
EP1695082A2 (en) 2003-12-11 2006-08-30 Board of Regents, The University of Texas System Method and system for the analysis of saliva using a sensor array
US7679563B2 (en) * 2004-01-14 2010-03-16 The Penn State Research Foundation Reconfigurable frequency selective surfaces for remote sensing of chemical and biological agents
BRPI0507376A (pt) 2004-02-06 2007-07-10 Bayer Healthcare Llc espécie oxidável como uma referência interna para biossensores e método de uso
US7247494B2 (en) * 2004-02-27 2007-07-24 Agilent Technologies, Inc. Scanner with array anti-degradation features
US8105849B2 (en) 2004-02-27 2012-01-31 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements
US8101431B2 (en) 2004-02-27 2012-01-24 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements and reagent delivery systems
US7402425B2 (en) * 2004-03-02 2008-07-22 The Charles Stark Draper Laboratory, Inc. Stress-based electrostatic monitoring of chemical reactions and binding
WO2014143291A2 (en) 2012-12-21 2014-09-18 Research Triangle Institute An encased polymer nanofiber-based electronic nose
US20080035764A1 (en) * 2004-04-20 2008-02-14 Xerox Corporation Environmental system including a micromechanical dispensing device
WO2006073440A2 (en) 2004-04-22 2006-07-13 Smiths Detection Inc. Autonomous monitoring method and system using sensors of different sensitivities
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US7314597B2 (en) * 2004-05-11 2008-01-01 Science Applications International Corporation Chemical agent detection
DE102004040774B3 (de) * 2004-08-23 2006-04-27 Siemens Ag Verfahren und Anordnung zur Online-Regelung eines Batch-Prozesses in einem Bioreaktor
WO2006041927A2 (en) * 2004-10-04 2006-04-20 Food Quality Sensor International, Inc. Food quality sensor and methods thereof
US8236246B2 (en) 2004-10-07 2012-08-07 E I Du Pont De Nemours And Company Gas sensitive apparatus
US20090055102A1 (en) * 2004-10-15 2009-02-26 Gabriel Laufer Remote sensor and in-situ sensor system for improved detection of chemicals in the atmosphere and related method thereof
KR100597788B1 (ko) * 2004-12-17 2006-07-06 삼성전자주식회사 프로그램 동작 속도를 개선하는 불휘발성 반도체 메모리장치의 페이지 버퍼와 이에 대한 구동방법
US20060134510A1 (en) * 2004-12-21 2006-06-22 Cleopatra Cabuz Air cell air flow control system and method
US7222639B2 (en) 2004-12-29 2007-05-29 Honeywell International Inc. Electrostatically actuated gas valve
TWI301542B (en) * 2005-01-05 2008-10-01 Ind Tech Res Inst Taste sensing mixture and a sensor using the same and a sensory system using the same
US7328882B2 (en) 2005-01-06 2008-02-12 Honeywell International Inc. Microfluidic modulating valve
US7445017B2 (en) 2005-01-28 2008-11-04 Honeywell International Inc. Mesovalve modulator
US20060188399A1 (en) * 2005-02-04 2006-08-24 Jadi, Inc. Analytical sensor system for field use
US20060210427A1 (en) * 2005-03-18 2006-09-21 Theil Jeremy A Integrated chemical sensing system
JP2008538139A (ja) * 2005-03-21 2008-10-09 ユニヴァースティ オブ ヴァージニア パテント ファウンデイション 単一及び複数の刺激物に対する非線形交差反応性センサーの反応をアンミックスする分析方法及び関連システム
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US20090104435A1 (en) * 2005-05-13 2009-04-23 State Of Oregon Acting By And Through The State Bo Method for Functionalizing Surfaces
US20090099044A1 (en) * 2005-05-20 2009-04-16 Hutchison James E Nanoparticles and Method to Control Nanoparticle Spacing
US7985869B2 (en) * 2005-05-20 2011-07-26 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Compositions of AU-11 nanoparticles and their optical properties
US20060266102A1 (en) * 2005-05-25 2006-11-30 Tolliver Charlie L System, apparatus and method for detecting unknown chemical compounds
AU2006309284B2 (en) 2005-05-31 2012-08-02 Board Of Regents, The University Of Texas System Methods and compositions related to determination and use of white blood cell counts
US7320338B2 (en) * 2005-06-03 2008-01-22 Honeywell International Inc. Microvalve package assembly
US7517201B2 (en) 2005-07-14 2009-04-14 Honeywell International Inc. Asymmetric dual diaphragm pump
AU2006272909B2 (en) 2005-07-20 2013-02-07 Bayer Healthcare Llc Gated amperometry
KR100842247B1 (ko) * 2005-08-08 2008-06-30 한국전자통신연구원 전자후각 센서어레이, 이를 포함하는 센서시스템, 그센서어레이 제조방법 및 그 센서시스템을 이용한 분석방법
WO2007026232A2 (en) * 2005-09-01 2007-03-08 Mcgill University Methods and apparatus for detecting liquid inside individual channels in a multi-channel plate
KR101477815B1 (ko) 2005-09-30 2015-01-02 바이엘 헬스케어 엘엘씨 게이트형 전압 전류 측정법
US20070148045A1 (en) * 2005-10-12 2007-06-28 California Institute Of Technology Optoelectronic system for particle detection
US7708947B2 (en) * 2005-11-01 2010-05-04 Therm-O-Disc, Incorporated Methods of minimizing temperature cross-sensitivity in vapor sensors and compositions therefor
US20070141683A1 (en) * 2005-11-15 2007-06-21 Warner Lisa R Selective electrode for benzene and benzenoid compounds
EP1790977A1 (en) * 2005-11-23 2007-05-30 SONY DEUTSCHLAND GmbH Nanoparticle/nanofiber based chemical sensor, arrays of such sensors, uses and method of fabrication thereof, and method of detecting an analyte
US7624755B2 (en) 2005-12-09 2009-12-01 Honeywell International Inc. Gas valve with overtravel
DE102005062005A1 (de) * 2005-12-22 2007-06-28 Innovative Sensor Technology Ist Ag Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße
WO2007089804A2 (en) * 2006-01-31 2007-08-09 University Of Virginia Patent Foundation Method and system for operating in-situ (sampling) chemical sensors
US7525444B2 (en) * 2006-02-17 2009-04-28 Perma-Pipe, Inc. Sensor for detecting hydrocarbons
US8323570B2 (en) * 2006-03-21 2012-12-04 Koninklijke Philips Electronics N.V. Microelectronic sensor device with sensor array
US7523762B2 (en) 2006-03-22 2009-04-28 Honeywell International Inc. Modulating gas valves and systems
WO2007121032A2 (en) 2006-03-23 2007-10-25 The Research Foundation Of State University Of New York Optical methods and systems for detecting a constituent in a gas containing oxygen in harsh environments
WO2007120381A2 (en) 2006-04-14 2007-10-25 Dexcom, Inc. Analyte sensor
US20100007444A1 (en) * 2006-04-20 2010-01-14 Anis Nurashikin Nordin GHz Surface Acoustic Resonators in RF-CMOS
US8143681B2 (en) * 2006-04-20 2012-03-27 The George Washington University Saw devices, processes for making them, and methods of use
US20080001116A1 (en) * 2006-06-12 2008-01-03 Fredrickson Glenn H Method for producing bi-continuous and high internal phase nanostructures
GB0613165D0 (en) * 2006-06-28 2006-08-09 Univ Warwick Real-time infrared measurement and imaging system
US8012420B2 (en) * 2006-07-18 2011-09-06 Therm-O-Disc, Incorporated Robust low resistance vapor sensor materials
US8007704B2 (en) * 2006-07-20 2011-08-30 Honeywell International Inc. Insert molded actuator components
US20080025876A1 (en) * 2006-07-26 2008-01-31 Ramamurthy Praveen C Vapor sensor materials having polymer-grafted conductive particles
US7914460B2 (en) 2006-08-15 2011-03-29 University Of Florida Research Foundation, Inc. Condensate glucose analyzer
US7543604B2 (en) * 2006-09-11 2009-06-09 Honeywell International Inc. Control valve
BRPI0717620A2 (pt) 2006-10-24 2013-10-22 Bayer Healthcare Llc Amperometria de decaimento transitório
US7644731B2 (en) 2006-11-30 2010-01-12 Honeywell International Inc. Gas valve with resilient seat
WO2008086200A2 (en) * 2007-01-04 2008-07-17 The Penn State Research Foundation Passive detection of analytes
JP4925835B2 (ja) 2007-01-12 2012-05-09 日東電工株式会社 物質検知センサ
US8828733B2 (en) * 2007-01-19 2014-09-09 Cantimer, Inc. Microsensor material and methods for analyte detection
EP2115442B1 (en) 2007-02-02 2018-07-25 Commonwealth Scientific and Industrial Research Organisation Method of measuring an organic analyte in an aqueous electrolyte using a chemiresistor
DE102007013522A1 (de) * 2007-03-21 2008-09-25 Robert Bosch Gmbh Sensorelement eines Gassensors
US20090124513A1 (en) * 2007-04-20 2009-05-14 Patricia Berg Multiplex Biosensor
US8018010B2 (en) * 2007-04-20 2011-09-13 The George Washington University Circular surface acoustic wave (SAW) devices, processes for making them, and methods of use
WO2008136769A1 (en) * 2007-05-03 2008-11-13 Nanyang Technological University Online contaminant detection and removal system
JP2010531975A (ja) * 2007-06-13 2010-09-30 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 金属ナノ粒子電極触媒増幅のための方法及び装置
US20090014340A1 (en) * 2007-06-15 2009-01-15 Williams John R Devices, systems, and methods for measuring glucose
US10011481B2 (en) * 2007-07-24 2018-07-03 Technion Research And Development Foundation Ltd. Chemically sensitive field effect transistors and uses thereof in electronic nose devices
WO2009026581A2 (en) * 2007-08-23 2009-02-26 Battelle Memorial Institute Molecular indicator and process of synthesizing
US8318107B2 (en) * 2007-09-05 2012-11-27 Biosense Technologies, Inc. Apparatus and method for specimen suitability testing
CN101135689B (zh) * 2007-09-21 2010-12-15 华中科技大学 一种电子鼻开发平台
US20090100897A1 (en) * 2007-10-05 2009-04-23 John Albert Elton Confidence tester for sensor array detectors
US9606078B2 (en) * 2007-11-11 2017-03-28 University Of North Florida Board Of Trustees Nanocrystalline indum tin oxide sensors and arrays
US8691390B2 (en) * 2007-11-20 2014-04-08 Therm-O-Disc, Incorporated Single-use flammable vapor sensor films
US8999244B2 (en) * 2007-11-20 2015-04-07 Technion Research And Development Foundation Ltd. Chemical sensors based on cubic nanoparticles capped with an organic coating
WO2009076302A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc Control markers for auto-detection of control solution and methods of use
US7917309B2 (en) * 2007-12-11 2011-03-29 International Business Machines Corporation System and method for detection and prevention of influx of airborne contaminants
CN101226166B (zh) * 2008-01-31 2013-08-14 浙江大学 用于现场检测的低功耗手持式电子鼻系统
IL189576A0 (en) * 2008-02-18 2008-12-29 Technion Res & Dev Foundation Chemically sensitive field effect transistors for explosive detection
IL190475A0 (en) * 2008-03-27 2009-02-11 Technion Res & Dev Foundation Chemical sensors based on cubic nanoparticles capped with organic coating for detecting explosives
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
DK2271938T3 (da) 2008-04-11 2014-05-12 Univ Texas Fremgangsmåde og apparat til nanopartikel-elektrogenereret kemiluminescens-amplifikation
US8054182B2 (en) * 2008-04-16 2011-11-08 The Johns Hopkins University Remotely directed vehicle inspection method and apparatus
EP2626692A3 (en) 2008-05-08 2014-10-01 Board of Regents of the University of Texas System Luminescent nanostructured materials for use in electrogenerated chemiluminescence
US8258450B1 (en) * 2008-06-26 2012-09-04 University Of South Florida Physical and chemical integrated flow imaging device
US8181531B2 (en) * 2008-06-27 2012-05-22 Edwin Carlen Accessible stress-based electrostatic monitoring of chemical reactions and binding
US8114043B2 (en) 2008-07-25 2012-02-14 Baxter International Inc. Electromagnetic induction access disconnect sensor
FR2934685B1 (fr) 2008-07-29 2010-09-03 Commissariat Energie Atomique Detection et/ou quantification electrique de composes organophosphores
US9011670B2 (en) * 2008-08-14 2015-04-21 The Charles Stark Draper Laboratory, Inc. Three-dimensional metal ion sensor arrays on printed circuit boards
KR101468593B1 (ko) * 2008-08-14 2014-12-04 삼성전자주식회사 기체 제거 유닛을 포함하는 파동 센서 장치 및 액체 시료 중의 표적 물질을 검출하는 방법
EP4227675A3 (en) 2008-09-19 2023-09-06 DexCom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
JP5315156B2 (ja) * 2008-09-19 2013-10-16 日東電工株式会社 センサ基板の製造方法
KR20100035380A (ko) * 2008-09-26 2010-04-05 삼성전자주식회사 박막형 센싱부재를 이용한 화학 센서
US20100082271A1 (en) * 2008-09-30 2010-04-01 Mccann James D Fluid level and concentration sensor
CN101382531B (zh) * 2008-10-08 2011-12-28 天津商业大学 利用电子鼻检测虾新鲜度的方法
WO2010044860A1 (en) * 2008-10-14 2010-04-22 Skf Usa Inc. Portable vibration monitoring device
DE102008054462A1 (de) * 2008-12-10 2010-06-17 BSH Bosch und Siemens Hausgeräte GmbH Wäschebehandlungsgerät mit Gassensor und Verfahren zur Behandlung von Wäsche
WO2010079491A1 (en) 2009-01-09 2010-07-15 Technion Research And Development Foundation Ltd. Volatile organic compounds as diagnostic markers in the breath for lung cancer
JP2010164344A (ja) * 2009-01-13 2010-07-29 Nitto Denko Corp 物質検知センサ
JP2009150904A (ja) * 2009-03-02 2009-07-09 E I Du Pont De Nemours & Co ガスの混合物の分析装置
US8256286B2 (en) * 2009-04-24 2012-09-04 Sober Steering Sensors, Llc System and method for detecting and measuring ethyl alcohol in the blood of a motorized vehicle driver transdermally and non-invasively in the presence of interferents
US9848760B2 (en) * 2009-06-29 2017-12-26 Gearbox, Llc Devices for continual monitoring and introduction of gastrointestinal microbes
US9237864B2 (en) * 2009-07-02 2016-01-19 Dexcom, Inc. Analyte sensors and methods of manufacturing same
US9024766B2 (en) * 2009-08-28 2015-05-05 The Invention Science Fund, Llc Beverage containers with detection capability
US8810417B2 (en) * 2009-08-28 2014-08-19 The Invention Science Fund I, Llc Beverage immersate with detection capability
FR2950436B1 (fr) 2009-09-18 2013-09-20 Commissariat Energie Atomique Appareil et procede de detection et/ou de quantification de composes d'interet presents sous forme gazeuse ou en solution dans un solvant
EP2336765A1 (en) 2009-12-08 2011-06-22 Nanocyl S.A. Fibre-based electrochemical sensor
US9678059B2 (en) 2010-05-23 2017-06-13 Technion Research & Development Foundation Ltd. Detection, staging and grading of benign and malignant tumors
FR2962549B1 (fr) 2010-07-08 2012-08-24 Commissariat Energie Atomique Dispositif de detection et/ou quantification electrique par empreinte moleculaire de composes organophosphores
CN101871898B (zh) * 2010-07-23 2012-05-09 华中科技大学 一种基于气味蒸发特征谱的嗅觉检测方法及其系统
US8920731B2 (en) 2010-09-20 2014-12-30 Kimberly-Clark Worldwide, Inc. Nonwoven-based chemi-capacitive or chemi-resistive gas sensor
US8960004B2 (en) 2010-09-29 2015-02-24 The George Washington University Synchronous one-pole surface acoustic wave resonator
WO2012151307A1 (en) * 2011-05-02 2012-11-08 Ibis Biosciences, Inc. Multiple- analyte assay device and system
JP5386552B2 (ja) * 2011-07-14 2014-01-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ガスの混合物の分析装置
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9076593B2 (en) 2011-12-29 2015-07-07 Lear Corporation Heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
EP2839270B1 (en) 2012-03-26 2019-11-06 Technion Research & Development Foundation Limited A platform unit for combined sensing of pressure, temperature and humidity
US9664667B2 (en) * 2012-04-30 2017-05-30 Trustees Of Tufts College Digital quantification of single molecules
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
WO2014068554A1 (en) * 2012-10-29 2014-05-08 Technion Research And Development Foundation Ltd. Sensor technology for diagnosing tuberculosis
EP2868970B1 (en) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Regulating device
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US10514351B2 (en) * 2014-08-18 2019-12-24 Mcmaster University Sensors and methods for detecting an oxidant
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
US20160176261A1 (en) * 2014-12-17 2016-06-23 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America Autonomous air conditioning system with clean air optimization and pollution detector
RU2703102C2 (ru) 2015-06-12 2019-10-15 Филип Моррис Продактс С.А. Измерение в образующих аэрозоль изделиях
US20160370337A1 (en) * 2015-06-16 2016-12-22 Lunatech, Llc Analysis System For Biological Compounds, And Method Of Operation
WO2017042851A1 (ja) 2015-09-10 2017-03-16 株式会社 東芝 分子検出装置、分子検出方法、および有機物プローブ
EP3371589A4 (en) 2015-11-03 2019-07-10 University of Utah Research Foundation NANOFIBRILLE INTERFACIAL COMPOSITE FOR SELECTIVE DETECTION OF ALKANE VAPOR
WO2017085796A1 (ja) 2015-11-17 2017-05-26 株式会社アロマビット 匂いセンサおよび匂い測定システム
US10386365B2 (en) 2015-12-07 2019-08-20 Nanohmics, Inc. Methods for detecting and quantifying analytes using ionic species diffusion
US10386351B2 (en) 2015-12-07 2019-08-20 Nanohmics, Inc. Methods for detecting and quantifying analytes using gas species diffusion
WO2017098748A1 (ja) * 2015-12-09 2017-06-15 株式会社ソニー・インタラクティブエンタテインメント 匂い提示装置
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
WO2017187663A1 (ja) * 2016-04-27 2017-11-02 シャープ株式会社 ガスセンサおよびガス検出装置
GB201608128D0 (en) 2016-05-07 2016-06-22 Smiths Medical Int Ltd Respiratory monitoring apparatus
ITUA20164230A1 (it) * 2016-06-09 2017-12-09 Univ Degli Studi Milano Sistema di rilevazione di patologie enteriche, in particolare in animali, e relativo metodo di rilevazione
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
US10329022B2 (en) 2016-10-31 2019-06-25 Honeywell International Inc. Adjustable sensor or sensor network to selectively enhance identification of select chemical species
MX2019006582A (es) 2016-12-12 2019-08-21 Philip Morris Products Sa Reconocimiento de productos en dispositivos generadores de aerosol.
JP6826195B2 (ja) * 2017-05-08 2021-02-03 長谷川香料株式会社 イメージを色で表現する方法および色表現図
CN115575276A (zh) * 2017-05-17 2023-01-06 株式会社而摩比特 气味图像的基础数据生成方法
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10976293B2 (en) 2017-12-30 2021-04-13 Mark Alan Lemkin Agricultural processing system and method
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
CA3119548A1 (en) 2018-11-20 2020-05-28 National Research Council Of Canada Sensor platform
US20220154243A1 (en) * 2019-04-02 2022-05-19 National Institute For Materials Science Measurement apparatus, measurement method, program, and biosensor
US20230140545A1 (en) * 2021-11-04 2023-05-04 Tdk Corporation Gas sensor, method of producing gas sensor and gas measuring apparatus

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045198A (en) * 1959-12-11 1962-07-17 James P Dolan Detection device
GB1041575A (en) * 1962-09-10 1966-09-07 Water Engineering Ltd An arrangement for detecting hydrocarbons
US3428892A (en) * 1965-09-20 1969-02-18 James E Meinhard Electronic olfactory detector having organic semiconductor barrier layer structure
US3927930A (en) * 1972-07-10 1975-12-23 Polaroid Corp Light polarization employing magnetically oriented ferrite suspensions
JPS546240B2 (zh) * 1973-12-18 1979-03-26
DE2407110C3 (de) * 1974-02-14 1981-04-23 Siemens AG, 1000 Berlin und 8000 München Sensor zum Nachweis einer in einem Gas oder einer Flüssigkeit einthaltenen Substanz
US4244918A (en) * 1975-12-23 1981-01-13 Nippon Soken, Inc. Gas component detection apparatus
US4142400A (en) * 1977-03-07 1979-03-06 Johnson Controls, Inc. Nitrogen dioxide sensing element and method of sensing the presence of nitrogen dioxide
CA1108234A (en) * 1978-08-02 1981-09-01 George A. Volgyesi Measurement of anaesthetic gas concentration
US4236307A (en) * 1978-11-02 1980-12-02 Johnson Controls Inc. Method of making a nitrogen dioxide sensing element
US4225410A (en) * 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
JPS5766347A (en) * 1980-10-09 1982-04-22 Hitachi Ltd Detector for mixture gas
US4542640A (en) * 1983-09-15 1985-09-24 Clifford Paul K Selective gas detection and measurement system
US4670405A (en) * 1984-03-02 1987-06-02 The United States Of America As Represented By The United States Department Of Energy Sensor array for toxic gas detection
US4631952A (en) * 1985-08-30 1986-12-30 Chevron Research Company Resistive hydrocarbon leak detector
US4674320A (en) * 1985-09-30 1987-06-23 The United States Of America As Represented By The United States Department Of Energy Chemoresistive gas sensor
US4644101A (en) * 1985-12-11 1987-02-17 At&T Bell Laboratories Pressure-responsive position sensor
US4779451A (en) * 1986-02-17 1988-10-25 Hitachi, Ltd. System for measuring foreign materials in liquid
US4770027A (en) * 1986-03-24 1988-09-13 Katuo Ehara Method of measuring concentrations of odors and a device therefor
US5137827A (en) * 1986-03-25 1992-08-11 Midwest Research Technologies, Inc. Diagnostic element for electrical detection of a binding reaction
US4759210A (en) * 1986-06-06 1988-07-26 Microsensor Systems, Inc. Apparatus for gas-monitoring and method of conducting same
US4795968A (en) * 1986-06-30 1989-01-03 Sri International Gas detection method and apparatus using chemisorption and/or physisorption
US4737112A (en) * 1986-09-05 1988-04-12 American Telephone And Telegraph Company, At&T Bell Laboratories Anisotropically conductive composite medium
US5023133A (en) * 1986-12-12 1991-06-11 The Lubrizol Corporation Acid sensor
GB8702390D0 (en) * 1987-02-03 1987-03-11 Warwick University Of Identifying/measuring odorants
US4911892A (en) * 1987-02-24 1990-03-27 American Intell-Sensors Corporation Apparatus for simultaneous detection of target gases
GB8708201D0 (en) * 1987-04-06 1987-05-13 Cogent Ltd Gas sensor
US4818348A (en) * 1987-05-26 1989-04-04 Transducer Research, Inc. Method and apparatus for identifying and quantifying simple and complex chemicals
US4847783A (en) * 1987-05-27 1989-07-11 Richard Grace Gas sensing instrument
JPS6415646A (en) * 1987-07-09 1989-01-19 Junkosha Co Ltd Volatile liquid detecting element and volatile liquid discriminating apparatus
US4812221A (en) * 1987-07-15 1989-03-14 Sri International Fast response time microsensors for gaseous and vaporous species
US4900405A (en) * 1987-07-15 1990-02-13 Sri International Surface type microelectronic gas and vapor sensor
US4923739A (en) * 1987-07-30 1990-05-08 American Telephone And Telegraph Company Composite electrical interconnection medium comprising a conductive network, and article, assembly, and method
US4855706A (en) * 1987-09-11 1989-08-08 Hauptly Paul D Organic liquid detector
JPH01131444A (ja) * 1987-11-17 1989-05-24 Katsuo Ebara ニオイ識別装置
EP0332934A3 (de) * 1988-03-14 1992-05-20 Siemens Aktiengesellschaft Anordnung zur Messung des Partialdruckes von Gasen oder Dämpfen
US5137991A (en) * 1988-05-13 1992-08-11 The Ohio State University Research Foundation Polyaniline compositions, processes for their preparation and uses thereof
US4893108A (en) * 1988-06-24 1990-01-09 The United States Of America As Represented By The Secretary Of The Air Force Halogen detection with solid state sensor
US4992244A (en) * 1988-09-27 1991-02-12 The United States Of America As Represented By The Secretary Of The Navy Films of dithiolene complexes in gas-detecting microsensors
US5312762A (en) * 1989-03-13 1994-05-17 Guiseppi Elie Anthony Method of measuring an analyte by measuring electrical resistance of a polymer film reacting with the analyte
US5104210A (en) * 1989-04-24 1992-04-14 Monsanto Company Light control films and method of making
US5256574A (en) * 1989-06-26 1993-10-26 Bell Communications Research, Inc. Method for selective detection of liquid phase hydrocarbons
US5045285A (en) * 1989-09-05 1991-09-03 United States Of America As Represented By The Secretary Of The Air Force Gaseous component identification with polymeric film sensor
US5089780A (en) * 1989-10-04 1992-02-18 Hughes Aircraft Company Oil quality monitor sensor and system
EP0750191B1 (de) * 1989-10-17 2003-09-24 paragon AG Gas-Sensor-Anordnung
GB8927567D0 (en) * 1989-12-06 1990-02-07 Gen Electric Co Plc Detection of chemicals
US5173166A (en) * 1990-04-16 1992-12-22 Minitech Co. Electrochemical gas sensor cells
US5079944A (en) * 1990-04-27 1992-01-14 Westinghouse Electric Corp. Hydrocarbon vapor sensor and system
US5310507A (en) * 1990-06-15 1994-05-10 Spectral Sciences, Inc. Method of making a conductive polymer selective species sensor
US5145645A (en) * 1990-06-15 1992-09-08 Spectral Sciences, Inc. Conductive polymer selective species sensor
US5120421A (en) * 1990-08-31 1992-06-09 The United States Of America As Represented By The United States Department Of Energy Electrochemical sensor/detector system and method
US5294369A (en) * 1990-12-05 1994-03-15 Akzo N.V. Ligand gold bonding
US5238729A (en) * 1991-04-05 1993-08-24 Minnesota Mining And Manufacturing Company Sensors based on nanosstructured composite films
US5177994A (en) * 1991-05-22 1993-01-12 Suntory Limited And Tokyo Institute Of Technology Odor sensing system
US5512882A (en) * 1991-08-07 1996-04-30 Transducer Research, Inc. Chemical sensing apparatus and methods
CN1027607C (zh) * 1991-09-09 1995-02-08 云南大学 高灵敏度半导体气敏元件
US5150603A (en) * 1991-12-13 1992-09-29 Westinghouse Electric Corp. Hydrocarbon vapor sensor and system
US5654497A (en) * 1992-03-03 1997-08-05 Lockheed Martin Energy Systems, Inc. Motor vehicle fuel analyzer
JP2704808B2 (ja) * 1992-04-07 1998-01-26 株式会社ユニシアジェックス 燃料の性状判別装置
US5469369A (en) * 1992-11-02 1995-11-21 The United States Of America As Represented By The Secretary Of The Navy Smart sensor system and method using a surface acoustic wave vapor sensor array and pattern recognition for selective trace organic vapor detection
US5337018A (en) * 1992-11-13 1994-08-09 Hughes Aircraft Company Electronic sensor for determining alcohol content of fuels
US5417100A (en) * 1993-03-10 1995-05-23 Hughes Aircraft Company Reversible sensor for detecting solvent vapors
WO1994028372A1 (en) * 1993-05-25 1994-12-08 Rosemount Inc. Organic chemical sensor
US5465608A (en) * 1993-06-30 1995-11-14 Orbital Sciences Corporation Saw vapor sensor apparatus and multicomponent signal processing
US5372785A (en) * 1993-09-01 1994-12-13 International Business Machines Corporation Solid-state multi-stage gas detector
FR2710153B1 (fr) * 1993-09-17 1995-12-01 Alpha Mos Sa Procédés et appareils de détection des substances odorantes et applications.
US5429975A (en) * 1993-10-25 1995-07-04 United Microelectronics Corporation Method of implanting during manufacture of ROM device
US5400641A (en) * 1993-11-03 1995-03-28 Advanced Optical Controls, Inc. Transformer oil gas extractor
US5605612A (en) * 1993-11-11 1997-02-25 Goldstar Electron Co., Ltd. Gas sensor and manufacturing method of the same
JP2647798B2 (ja) * 1993-12-27 1997-08-27 工業技術院長 化学/物理量の識別方法及び装置
IT1267672B1 (it) * 1994-01-17 1997-02-07 Hydor Srl Composto resistivo termosensibile, suo metodo di realizzazione ed uso
JP3299623B2 (ja) * 1994-03-23 2002-07-08 能美防災株式会社 臭い圧測定方法、臭い圧基準化方法、臭い検知装置、及び火災検知装置
GB9411515D0 (en) * 1994-06-09 1994-08-03 Aromascan Plc Detecting bacteria
DE4423289C1 (de) * 1994-07-02 1995-11-02 Karlsruhe Forschzent Gassensor für reduzierende oder oxidierende Gase
GB9417913D0 (en) * 1994-09-06 1994-10-26 Univ Leeds Odour sensor
US5788833A (en) * 1995-03-27 1998-08-04 California Institute Of Technology Sensors for detecting analytes in fluids
US5951846A (en) * 1995-03-27 1999-09-14 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US6170318B1 (en) * 1995-03-27 2001-01-09 California Institute Of Technology Methods of use for sensor based fluid detection devices
US5571401A (en) * 1995-03-27 1996-11-05 California Institute Of Technology Sensor arrays for detecting analytes in fluids
US6537498B1 (en) * 1995-03-27 2003-03-25 California Institute Of Technology Colloidal particles used in sensing arrays
US5698771A (en) * 1995-03-30 1997-12-16 The United States Of America As Represented By The United States National Aeronautics And Space Administration Varying potential silicon carbide gas sensor
US5674752A (en) * 1995-10-16 1997-10-07 The United States Of America As Represented By The Secretary Of The Navy Conductive polymer coated fabrics for chemical sensing
US5742223A (en) * 1995-12-07 1998-04-21 Raychem Corporation Laminar non-linear device with magnetically aligned particles
US5675070A (en) * 1996-02-09 1997-10-07 Ncr Corporation Olfatory sensor identification system and method
US5756879A (en) * 1996-07-25 1998-05-26 Hughes Electronics Volatile organic compound sensors
US6202471B1 (en) * 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
US5922537A (en) * 1996-11-08 1999-07-13 N.o slashed.AB Immunoassay, Inc. Nanoparticles biosensor
US5942674A (en) * 1997-08-04 1999-08-24 Ford Global Technologies, Inc. Method for detecting oxygen partial pressure using a phase-transformation sensor
US6002817A (en) * 1997-09-29 1999-12-14 The Regents Of The University Of Michigan Optical sensors for the detection of nitric oxide

Also Published As

Publication number Publication date
US6010616A (en) 2000-01-04
JPH11503231A (ja) 1999-03-23
JP3963474B2 (ja) 2007-08-22
JP2006010703A (ja) 2006-01-12
KR19990014748A (ko) 1999-02-25
EP0820585B1 (en) 1999-12-29
DE69605906T2 (de) 2000-07-13
MX9707351A (es) 1998-03-31
PT820585E (pt) 2000-06-30
DK0820585T3 (da) 2000-06-19
EP0820585A1 (en) 1998-01-28
KR100389603B1 (ko) 2003-10-08
AU705825B2 (en) 1999-06-03
US20040033165A1 (en) 2004-02-19
CA2215332A1 (en) 1996-10-03
US5571401A (en) 1996-11-05
US6017440A (en) 2000-01-25
AU5372896A (en) 1996-10-16
FI973802A0 (fi) 1997-09-26
DE69605906D1 (de) 2000-02-03
EP0950895A2 (en) 1999-10-20
CA2215332C (en) 2006-11-21
EP0950895A3 (en) 2002-01-02
GR3033092T3 (en) 2000-08-31
WO1996030750A1 (en) 1996-10-03
RU2145081C1 (ru) 2000-01-27
US20030159927A1 (en) 2003-08-28
CN1184530A (zh) 1998-06-10
US5959191A (en) 1999-09-28
FI973802A (fi) 1997-09-29
ES2144737T3 (es) 2000-06-16
US5698089A (en) 1997-12-16
ATE188291T1 (de) 2000-01-15

Similar Documents

Publication Publication Date Title
CN1179208C (zh) 用于探测流体中分析物的传感器阵列及其制造方法和应用
US6013229A (en) Sensor arrays for detecting analytes in fluids
Albert et al. Cross-reactive chemical sensor arrays
Slater et al. Multi-layer conducting polymer gas sensor arrays for olfactory sensing
DE69738217T2 (de) Sensoren zur feststellung von analyten in flüssigkeiten
DE69828803T2 (de) Techniken und systeme zum nachweis von analyten
JP4054384B2 (ja) 組成的に異なる重合体ベースのセンサ要素およびそれらを製作する方法
Borazjani et al. Betamethasone‐based chiral electrochemical sensor coupled to chemometric methods for determination of mandelic acid enantiomers
Iyogun et al. Chemically diverse sensor arrays based on electrochemically copolymerized pyrrole and styrene derivatives
Lewis et al. Sensor arrays for detecting microorganisms
Lewis et al. Sensor arrays for detecting analytes in fluids
EP1555527A1 (en) Array of chemically sensitive capacitors
Lewis et al. Sensors for detecting analytes in fluids
Boland et al. Electronic noses
Najimi Characterisation of Conducting Polymers as Gas Sensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1038075

Country of ref document: HK

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee