CN1179875A - 吸收电磁波的复合材料 - Google Patents

吸收电磁波的复合材料 Download PDF

Info

Publication number
CN1179875A
CN1179875A CN96192872A CN96192872A CN1179875A CN 1179875 A CN1179875 A CN 1179875A CN 96192872 A CN96192872 A CN 96192872A CN 96192872 A CN96192872 A CN 96192872A CN 1179875 A CN1179875 A CN 1179875A
Authority
CN
China
Prior art keywords
composite material
powder
multilayer chip
composite
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96192872A
Other languages
English (en)
Other versions
CN1098772C (zh
Inventor
C·L·布鲁佐内
C·D·霍伊尔
R·L·米克洛斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Publication of CN1179875A publication Critical patent/CN1179875A/zh
Application granted granted Critical
Publication of CN1098772C publication Critical patent/CN1098772C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6491Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • B65D81/3446Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package specially adapted to be heated by microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3439Means for affecting the heating or cooking properties
    • B65D2581/344Geometry or shape factors influencing the microwave heating properties
    • B65D2581/3443Shape or size of microwave reactive particles in a coating or ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3463Means for applying microwave reactive material to the package
    • B65D2581/3464Microwave reactive material applied by ink printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3471Microwave reactive substances present in the packaging material
    • B65D2581/3477Iron or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3471Microwave reactive substances present in the packaging material
    • B65D2581/3479Other metallic compounds, e.g. silver, gold, copper, nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3486Dielectric characteristics of microwave reactive packaging
    • B65D2581/3494Microwave susceptor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/261In terms of molecular thickness or light wave length

Abstract

一种吸收电磁波的复合材料(10),包括粘结材料(14)及大量的分散于该粘结材料之中的多层片状粉末(12)。该多层片状粉末包括至少一种单组双层配合片状粉末,该双层配合片状粉末由一薄膜电介质层(18)和与其邻接的薄膜晶体铁磁性金属层组成(16)。该多层片状粉末最好以对于复合材料为约0.1—10%(体积)的含量范围存在。该复合材料可用于吸收其频率在5—6000MHz的电磁波,生成热。

Description

吸收电磁波的复合材料
发明领域
本发明涉及一种吸收电磁波(能量)的复合材料,更具体地,涉及一种用于发生热能的所述复合材料。
发明背景
用于吸收电磁波并将吸收的能量原位转换为热能的材料可用于如微波炉、管道接合、或电缆连接等目的。这种材料典型地,是由一种或一种以上的耗能材料与一种电介质材料复合而成的复合(物)材料。
在微波范围(约在2000MHz以上)内,将电磁波与电介质材料中的电偶极子耦合,由此,使偶极子发生谐振而产生热能。在许多应用中,由于这些应用需抑止电磁辐射,因此从安全的观点考虑,使用这些高频电磁波是不切实际的。
在低电磁波频率下,电偶极子的耦合并不是热能生成的有效手段。另一方面,热量可由磁感应及磁谐振的方法获得。在磁谐振加热的场合,以振荡磁场形式的射频(RF)能量在一含于能量吸收(性)复合材料中的磁性材料中可被耦合至垂直取向的磁自旋。铁氧体一直被用于这种吸收RF的复合材料中的磁性材料,尽管它有某些缺点。例如,比起金属合金来,铁氧体的最大磁导率受到限制。另外,很难形成具有细针状或薄片状粒子的铁氧体,以便使磁场能足够穿透这些粒子。而铁氧体粉粒由近乎圆形的颗粒组成,其结果,磁场易在铁氧体粒子中被消磁(去极化),由此,限制了该吸收性材料的整体导磁性能及其能-热转换的整体效率。
发明简述
为经济地、特别是,为使热能可远距离地、在人不可进入或其空间有限的场所产生,本发明者们发现一种可被应用于许多场合的复合(物)材料。该复合材料可以:1)与被该复合材料吸收的、频率在5至6000MHz的电磁波耦合,及2)将所吸收的能量有效地转变为热能。在这宽频率范围内选择合适的电磁波频率,可将复合材料使用于各种不同的场合中。例如,吸收了其频率在约为30-1000MHz的射频(RF)波能的复合材料可用于一些管件的连接。选用较低的频率,可以减小或减少用于电磁波生成和耦合装置的大小及/或成本。
本发明提供了一种吸收电磁波的复合材料,该复合材料包括一种粘结材料及大量的分散于该粘结材料之中的多层片状粉末。该多层片状粉末包括至少一种双层配合片状粉末,该双层配合片状粉末由一薄膜电介质层和与其邻接的薄膜晶体铁磁性金属层组成。该铁磁性金属最好包括NiFe合金。所述的多层片状粉末较好的是以对复合材料为约0.1-约10%(体积)的含量范围存在。本发明的复合材料可用于吸收在上述频率范围内的电磁波,并可在该材料中将所吸收电磁波的能有效地转换为热能。此处所述的“晶体”意指将构成薄膜铁磁性金属层晶粒的原子填充入具有可识别结构的有序排列中。此处所述“有效的”转换意指,施加至吸收电磁波的复合材料的功率大小为一可接受功率水平、或低于该可接受功率水平,该功率水平可使复合材料在所希望时间内达到一特定温度。例如,我们尚未得知,现时存在有任何能吸收射频(RF)波的复合材料,可如同本发明的复合材料一样,使用可移动设备,以所希望的小于1000MHz的频率范围,即可有效地使用于光纤通讯电缆中聚烯烃管件的远程连接或接合。此处所述的“频率”意指,含有波能的电磁场频率。
本发明进一步涉及一种将二个物件接合一起的方法。该方法包括下述步骤:提供一种吸收电磁波的复合材料,该复合材料包括一种粘结材料及大量的分散于该粘结材料之中的多层片状粉末;所述的多层片状粉末至少包括一种双层配合片状粉末,该双层配合片状粉末由一薄膜电介质层和与其邻接的薄膜晶体铁磁性金属层组成;将该二个待接合的物件互为邻接放置,并使其分别与该复合材料直接接触;提供频率在5-6000MHz范围、振荡磁场形式的电磁波能,该磁场贯穿复合材料足够的时间,由此,在复合材料中产生热量;再以熔融、融合或粘固的方法,将该二物件粘结一起。所述复合材料最好是以带状或模制部件的形式使用。
本发明进一步涉及一种将二个物件接合一起的方法。该方法包括下述步骤:提供一种带状的吸收电磁波的复合材料,所述带状复合材料包括一种高密度聚乙烯粘结材料及大量的分散于该粘结材料之中的多层片状粉末;所述的多层片状粉末包括20至60层的成组片状配合,所述各组片状配合由一层薄膜电介质层和另一与其邻接的薄膜晶体Ni80Fe20金属层组成;其中,所述片状粉末以对该复合材料为0.1-10%(体积)的含量范围存在;将该二个待接合的物件互为邻接放置,并使其分别与该复合材料直接接触;提供其功率级在25-250W、更好的是在50-150W的范围、其频率在30-1000MHz范围内的振荡磁场的电磁波;该磁场贯穿带状物,在180秒内将该带状物加热至255-275℃之间的温度;使带状物融合至该物件,并将该二物件连接在一起。所述复合材料最好是以带状或模制部件的形式使用。
本发明的复合材料可用于小截面积物件、且不便于加工操作的须接合区域的热接合,并易适用于具各种形状的区域的热接合。本发明的复合材料也可被用于那些希望产生热能,而无须敞开式加热部件,或不须使用不希望的过高频电源的应用场合;或者,本发明的复合材料可被用于那些因很难确定极低频频率范围(典型的是在1-10MHz)内的功率而无法适用该极低频感应加热的使用场合。在本发明的复合材料可充分吸收能量的宽频率范围之内,选用较低频,可以使用较少及成本较低的能源。复合材料的能-热高转换率意味着在所希望的时间内,需使用较低水平的波能来达到特定温度。
附图的简单说明
图1所示为本发明的吸收电磁波能的复合材料的截面示意图。
图2所示为本发明的吸收电磁波能的复合材料中的多层片状粉末的截面示意图。
图3所示为图1的复合材料的加热速率图表。
发明详述
图1显示了由大量的、分散于粘结材料14中的多层片状粉末12构成的吸收电磁波能量的复合材料10。通常,由于电磁波贯穿该多层片状粉末,在复合材料中产生热,粘结材料14因该热发生物理及/或化学的反应。在不同的具体应用中,可选择使用合适的粘结材料14。例如,在管件连接或修理的场合,粘结材料14可以是在70-350℃的温度范围内可熔融的热塑性聚合物。当达到一适合于该粘结材料的温度时,所选用的粘结材料即与该管件熔融接合。在本发明中,适用于接合聚乙烯管件的优选的粘结材料14为聚乙烯及其共聚物。在其它场合下,也可使用如热塑性聚合物、热塑性弹性体、及热激活或热加速的熟(固)化聚合物的大量聚合物或其聚合物复合材料。所述粘结材料也可以是聚合或非聚合的粘合剂。加热时,所述粘结材料可能有形状、体积、粘度、强度或其它性能方面的变化。
片状粉末12包括至少一种单组层配合片状粉末,该单组层配合片状粉末由一薄膜电介质层18和与其邻接的薄膜晶体铁磁性金属层16组成。图2显示了双组层配合片状粉末12。在片状粉末具有二或二组层配合以上的多组层配合片状粉末时,该多组层配合片状粉末形成了铁磁性金属层16和电介质层18交替层压的叠片堆积(物)。通常,如图2所示,电介质层18包括该叠片堆积的最外侧的二层。该片状粉末无规地分散于粘结材料中,尽管,在许多使用场合下,该片状粉末最好取向,这样,使其薄膜层的平面平行于该材料的平面。
在其薄膜层的平面上片状粉末具有最大主要尺寸,该尺寸的优选范围从约25至约6000μm。大量片状粉末中的片状粉末尺寸通常形成一种从其最大主要尺寸值直至基本上为零的分布。片状粉末的该尺寸分布可由变换将其分散于粘结材料中去的方法而改变。片状粉末的厚度,即,其垂直于薄膜层平面的尺寸,可根据具体的使用而合适选用。该片状粉末的厚度与其最大主要尺寸之比,通常为1∶6-1∶1000,从该值可看出,片状粉末在形状上较象一板状。该比例取值使取向于片状粉末平面的磁场可较容易地穿透铁磁性金属层,而其消磁最少。该比例值也使粘结材料中的片状粉末形成较高的表面积/体积之比,加速热能从片状粉末至粘结材料的有效传递。
各个片状粉末中的成组(对)的层配合数目较好的是至少为2,更好的是在2-100的范围。最优选的是含有10-75组的层配合数的片状粉末。为提供可将电磁能转变为热能的足够的铁磁性金属,在使用其成组的配合层数较少(使片状粉末更薄)的片状粉末时,可能需要在该复合材料中添加更大量的片状粉末。使用较薄的片状粉末也易增加粘结材料中片状粉末的表面积/体积之比,这样,有可能改善热能从片状粉末传递至其周围的粘结材料的热传递效率。由于本发明的片状粉末吸收波能籍由通过磁谐振的、而不是通过相干涉的热转换来实现,因此,与其它以往已知的吸收复合材料不同,本发明的片状粉末的成组层配合数可能少于所需用于提供吸收四分之一波长的层合片状粉末的层配合数。
铁磁性金属层包括其相对于自由空间的内在直流(DC)的磁导率至少为100的晶体铁磁性金属合金。非晶体合金可被用于本发明中,但并不是最理想的,因为它们的获得和加工成本太高。该合金最好包括至少含有80%(重量)Fe的NiFe。只要该合金保持磁性,该合金也可包括其它如Cr、Mo、Cu、及Co的磁性或非磁性金属元素。在同一片状粉末中的不同铁磁性金属层可以包括不同的合金。
可以选择合金以提供这样一种材料:当温度上升至临界水平时,该材料内的加热速率几近于零(即,热限制材料)。由此,可以防止材料的过加热。在临界温度以上的加热损耗是由于合金磁导率的下降。
为使作用于复合材料的电磁波能与金属层中的磁性原子有效的耦合,铁磁性金属层16须薄于其皮层的深度,同时,该铁磁性金属层16又须具有足够的厚度,这样,可在具体的使用中将合适的电磁波能量转换为热能。材料的皮层厚度定义为自材料皮层深入该材料内部的距离。在该深度上,施加的磁场强度值跌落至其自由空间值的37%。例如,在所述的铁磁性金属层16由Ni80Fe20组成、电磁波频率在5-6000MHz的场合,各个铁磁性金属层16的厚度在约10-500nm的范围内,较好的是在约75-250nm的范围内。皮层深度为外加电磁场频率的反函数。因此,使用处于上述频率范围底值的电磁波,使得较厚铁磁性金属层的使用成为可能。可优选该铁磁性金属层的厚度,以使片状粉末中的成组的层配合数达最小,这从经济上来说是所希望的。
电介质层18可以任何已知的相对非导电性电介质材料制成。在具体的应用中,在期望片状粉末所需达到的温度下,这些材料也保持稳定。这些材料包括:SiO、SiO2、MgF2、及其它高熔点材料。另外,该材料也可包括如聚酰亚胺等的聚合物材料。各层电介质层18的厚度在约5-约100nm的范围内,且最好是在将其制得尽可能薄的同时,又仍保持该电介质层对铁磁性金属层的适当的磁、电绝缘性。
可以使用如电子束发射、热蒸发、溅射或镀敷等已知的薄膜淀积技术。在基板上首先淀积一组交替层叠有铁磁性金属及所希望材料的电介质层而制得片状粉末。一个较好的方法是:在通常所设计的真空系统中使用电子束发射,再配合使用一如在第5,083,112号美国专利(cols.4-5)上所述的真空相容型网式驱动组合结构(vacuum compatible web drive assembly)。该基板,可以是,例如,聚酰亚胺、聚酯、或一种聚烯烃材料,且,优选的是为一挠曲性网状物形式。据信,淀积时,在网的侧面方向上向生长膜施加一补偿磁场,在某些应用中有利于铁磁性金属层的磁性定向。
当一具有所希望层数的层叠片状粉末堆积制成时,该片状粉末堆积可从基板上除去。一个有效去除方法包括:使其上的片状粉末堆积面向外地、使基板围绕一棒状物通过。该棒状物具有足够小的半径,以使所述的片状粉末堆积从基板上成片、层地剥离。当所述的片状粉末堆积在剥离时,该片状粉末堆积可碎裂成具有合适尺寸的片状粉末。或者,也可由在一如设置有合适尺寸的筛子的锤式粉碎机中研磨,使该片状粉末堆积被打碎成具有所希望的最大尺寸的片状粉末。在另一个制作片状粉末的方法中,交替叠层的片状粉末堆积可在一其材料相似于、或匹配于待使用粘结材料的基板上淀积,然后,将该整个片状粉末堆积(包括基板)打碎成片状粉末。为最终完成所述的吸收电磁波的复合材料,接着,再使用如混合等的适当方法,将片状粉末分散于粘结材料中。然后,用如挤出、压制或模制等的方法,将该混合物形成为如带、套筒、薄片、绳状、切片等的形状或特殊的成形部件。可具体地选择所需的上述复合材料的形状,以适合具体的应用。
分散于复合材料中的片状粉末的含量较好的是约0.1-10%(体积),更好的是约0.3-5%(体积)。为提供一适当量的、可以所希望的频率在复合材料中产生热量的铁磁性金属,必须存在有足够量的片状粉末。例如,如果使用了较薄的(即,成组的层配合数较少的)片状粉末,则,这些片状粉末的施用量需更大。复合材料的机械性能可能受这些片状粉末的使用量或片状粉末的厚度(即,成组的层配合数)的影响。如果,改变电磁波频率,则片状粉末的使用量也须随之作相应的调整。复合材料最好是未过量载有片状粉末,这样,这些片状粉末至少是部分的,互相之间叠层绝缘,以阻止复合材料中产生涡流电流,并可将片状粉末上的电磁能转换成热能。但,通常,并不要求完全的片状粉末绝缘。
为实现能-热的最高转换率,吸收电磁波的复合材料的相对磁导率的无功、或“有耗”部分,μ”,最好是在所希望的频率上有最大值。在一个平面型的复合材料,例如薄片的例子中,沿该复合材料的平面(相反于通过该复合材料的厚度方向)所测得的μ”,在5-6000MHz的范围内,通常测得为0.5-50的范围内。在波能吸收的频率范围内,μ”最好至少为0.1。在本发明中,μ”的测试使用了如下述文献所载的电介质条状线槽腔(strip line cavity):R.A.Waldron,“Theory of Strip-Line Cavity Measurements of Dielectric Constants andGyromagnetic-Resonance Linewidths”,IEEE Transactions on Microwave Theoryand Techniques,vol.12,1964,pp.123-131。该平面型复合材料的厚度一般在0.1-10mm的范围内。对于特别的应用来说,可以选用特殊的厚度。
本发明的复合材料必须具有足够的非导电性,这样,施加的电磁场的一部分被所述的铁磁性金属层吸收,转换为热能。至于导电性,该复合材料的电介质损耗角正切ε”/ε’,最好足够地小,以至用于该领域的复合材料的皮层厚度(如前所定义)对于施加的电磁场,大于、或等于复合材料本身的厚度。该复合材料的阻抗无须与自由空间(阻抗)相匹配,不过,可以是作为一种设计用于吸收传播电磁波的屏蔽材料所需的阻抗。
为使用本发明的吸收电磁波的复合材料,将一振荡磁场施加于复合材料。该复合材料吸收含于该磁场中的波能,吸收的能量接着转换为热能,由此升高复合材料的温度。当复合材料中达到一所需的温度(例如,达到该粘结材料的熔点温度,等等),并维持了一定的时间,则磁场被撤去。
如频率及功率大小等施加磁场的参数,可基于特殊应用的需要及基于所希望的加热速率而测得。复合材料的加热速率定义为:在该速率下,当电磁波在以上述方式被该材料吸收时,复合材料中的温度上升。对磁谐振加热来说,这个吸收的波能,Pabs,与磁场的频率、f,复合材料的相对磁导率,μ”,及该磁场的磁场强度,H等有关,其比例关系如下:
                        Pabs ∝ f·μ”·H2
已知,H正比于该磁场中的功率大小的平方根,且其值随着自电源至复合材料位置的距离的增加而减小。事实上,使用更多的电磁波,通常将加大加热速率,尽管极大的能源可能是不适合的,且其价格昂贵得无法忍受。
由于μ”是部分地由复合材料中的片状粉末的体积含量所决定,而且,μ”也依频率而变(在某些振荡频率下达到最值),但仍可选择配合上述三个参数,以使片状粉末的%(体积)含量的f-μ”乘积达最大。此时,理想的是,减少所需的片状粉末体积含量,以减少复合材料的成本。本发明所获得的片状粉末的%(体积)含量的μ”值较大,使得可以使用较低的频率及/或功率的磁场,而这些较低的磁场频率及/或功率较先前所认为适于磁谐振加热使用的频率及/或功率低。该磁场的频率可以选自5-6000MHz的范围,与特殊应用时的限定相符。对某些管件接合的使用场合来说,30-1000MHz范围的频率可能特别有用。
在平面型复合材料的场合,振荡磁场最好是定向的,这样,磁力线基本上完全通过复合材料的平面,(而不是通过复合材料的厚度方向)。该定向使与铁磁性金属在复合材料中的耦合效率达到最大,由此加大加热速率。
参照以下的实施例,将进一步说明本发明。其中,所有的计算值皆为近似值。在下述实施例中制得的交替层叠有铁磁性金属层和电介质层的片状粉末堆积由使用含有网式驱动组合结构的真空淀积系统作了淀积。该真空淀积系统包括用于网退卷、再卷绕及淀积的各分离小室。各个层通过一温度控制的辊筒淀积于网状基板上。铁磁性金属层由一电子束发射方法,使用通常可购的Ewdwards Temenscal电子束枪,加入具有81.4%(重量)的Ni和18.6%(重量)的Fe的公称(标准)组合比例的金属丝进行淀积。电介质层由热蒸发方法,使用商业上可购的、尺寸近于6mm的SiO碎屑进行淀积。将该网状基板通过各个淀积段以必要的次数,形成具有所需成组配合层数的片状粉末堆积,使其第一层及最后一层为电介质层。如本领域所熟知地,网状物通过的速度及淀积速率可调节,以获得具不同层厚的片状粉末堆积。磁导率的损耗(μ”),在这些实施例中表示为“相对磁导率”,由使用由介质条状线槽腔测定。该技术的详细说明记载于前述的R.A.Waldron著文上。用一功率为50W、频率为98MHz的振荡磁场,并测量复合材料随时间的温度上升,对一直径约为0.4英寸(12.7mm)的圆形复合材料测得其加热速率。温度的测量使用Luxtron Model 790Fluoroptic Thermometer(Luxtron Corp.,Santa Clara,CA),并作每秒变化记录。
实施例1
根据本发明,按如下所述的方法制得二个吸收电磁波的复合材料,以下,将该二复合材料称为试样1A及1B。该二试样的多层片状粉末首先在一约300℃的辊筒温度和约16.8m/分的网状材料的传输速度下,按如上所述的方法,在50.8μm厚的聚酰亚胺网状基板上淀积层配合数为50的片状粉末堆积。生成的片状粉末堆积包括交替叠层、厚度约为165nm的Ni81.4Fe18.6薄膜和厚度约为40nm的SiOx薄膜。该NiFe金属层在淀积过程中用一约为60奥斯特磁场强度的平面内磁场作磁定向。然后,如前所述,从基板上除去生成的片状粉末堆积,并用一锤式粉碎机,星形轮及1mm的筛网研磨形成片状粉末。该片状粉末具有约1000μm的最大尺寸或最大主要尺寸,及约350μm的中间尺寸。该中间尺寸可由将该片状粉末通过各种尺寸的筛子而得。
为生产试样1A和1B,将片状粉末用一双螺杆挤出机(购自APV ChemicalMachinery,Inc的Model MP-2030TC)分散于一高密度的聚乙烯粘结材料(购自Quantum Chemical Co.,Cincinnati OH的5560树脂)中,然后,形成为约为0.4mm厚的带状物。对试样1A来说,片状粉末以约为2.5%(体积)的含量分散于粘结材料中,对试样1B来说,片状粉末以约为5%(体积)的含量分散于粘结材料中。
制备二块不含有NiFe合金,而含有铁氧体的比较用复合材料,并设为试样C-1及C-2。对各个试样,用一双螺杆挤出机将该铁氧体分散于一购自Chevron Chemical Co.的9301高密度的聚乙烯粘结材料中,然后,形成为约为0.6mm厚的带状物。试样C-1含有约为5.85%(体积)的Steward # 72802的铁氧体(Steward Corp.,Chattanooga,TN),而试样C-2含有约为15.49%(体积)的Steward # 73502的铁氧体。
测得生成的复合材料的相对磁导率(μ”)和加热速率。下表显示了150MHz时的相对磁导率。由于用电介质条状线槽腔法难以测定极低的相对磁导率,所以试样C-1和C-2测得的值很相近似。
图3显示了对四个复合材料所作的,在60秒时间内的加热速率。表示为试样1A的温度为二次测量的平均值,而表示为试样1B及C-1的温度值为三次测量的平均值。表示为试样C-2的温度值在前37秒时间内为三次测量所得的平均值,而在其后的时间内为二次测量所得的平均值。
    试样     片状粉末/铁氧体含量(体积%)   150MHz时的相对磁导率(μ“)
    1A     2.5     0.82
    1B     5     1.47
    C-1     5.85     0.01
    C-2     15.49     0.03
含有铁氧体(C-1及C-2)的复合材料的相对磁导率明显地低于含有本发明的多层片状粉末(1A及1B)的复合材料的磁导率许多。既使是在所述的铁氧体以高于该多层片状粉末的体积含量的含量存在的情况下也是如此。从图3中也可明显看到,试样1A及1B以显著高于试样C-1及C-2的加热速率,加热至一高于试样C-1及C-2的温度。
实施例2
在一模拟的电缆封端试验中,评价从前述实施例所获得的试样1A。三根其外部包覆有高密度聚乙烯护套的电缆(二根光纤电缆,一根铜线电缆)用于评价购自Siecor Corp.,Hidkory,NC的60纤维支数电缆,216纤维支数电缆(购自American Telephone and Telegraph Corp.,Basking Ride,NJ的4GPX-BXD)和一购自American Telephone and Telegraph Corp.的50组铜空心电缆。另外,聚乙烯套管(购自Pyramid industries,Inc.,Erie,PA的Speed Duct SDR 13.5)也用于模拟封端。将5-8cm长的一段套管放置于上述三个之中的任一个电缆之上。然后,将2.5cm宽的试样1A的复合材料条带卷绕该电缆以足够的圈数,用以填充电缆与套管之间的空隙。然后,将套管在卷绕有复合材料的电缆上滑动,以形成一配合结构。131.5MHz的振荡磁场以100W的功率施加至该配合结构上达90秒。然后,冷却该结构,并切开,观察其截面的粘结质量。在所有的情况下,皆可形成优良的粘结(即,复合材料的所有外包覆卷绕物被互相粘合,其内层卷绕粘结电缆的护套上,而其外层卷绕粘结在套管的内侧)。

Claims (18)

1.一种吸收电磁波的复合材料(10),所述复合材料包括一种粘结材料(14);及
大量的分散于该粘结材料之中的多层片状粉末(12),该多层片状粉末包括至少一种双层配合片状粉末,该双层配合片状粉末由一薄膜电介质层(18)和与其邻接的薄膜晶体铁磁性金属层组成(16)。
2.如权利要求1所述的复合材料,其特征在于,所述多层片状粉末以对复合材料为约0.1-约10%(体积)的含量范围存在。
3.如权利要求1所述的复合材料,其特征在于,所述的多层片状粉末以对复合材料为约0.3-约5%(体积)的含量范围存在。
4.如权利要求2所述的复合材料,其特征在于,各铁磁性金属层包括最多含Fe为80%(重量)的NiFe合金。
5.如权利要求4所述的复合材料,其特征在于,所述的各NiFe合金层具有皮层厚度d和厚度t,且,d≥t。
6.如权利要求2所述的复合材料,其特征在于,所述的各铁磁性金属层包括含有约80%(重量)的Ni和约20%(重量)的Fe的NiFe合金。
7.如权利要求4所述的复合材料,其特征在于,所述多层片状粉末中的成组的层配合数在10-75的范围。
8.如权利要求2所述的复合材料,其特征在于,所述粘结材料选自热塑性聚合物、高密度聚乙烯、热塑性橡胶体、及热激活的熟化、热加速的熟化聚合物及其混合物。
9.如权利要求2所述的复合材料,其特征在于,所述粘结材料为粘结剂。
10.如权利要求2所述的复合材料,其特征在于,所述复合材料具有电介质损耗角正切ε”/ε’,皮层厚度d,及厚度t,其中,ε”/ε’充分地小,使dt。
11.如权利要求2所述的复合材料,其特征在于,所述复合材料吸收的波能具有频率fabs,所述复合材料具有一包括假设部分的μ”的磁导率,其中,μ”在fabs时≥0.1。
12.如权利要求2所述的复合材料,其特征在于,其中,所述的多层片状粉末互相之间充分地电磁绝缘,如此处于30-1000MHz频率范围的电磁波被复合材料吸收,产生热量。
13.一种将二个物件接合一起的方法,所述方法包括下述步骤:
提供一种吸收电磁波的复合材料(10),该复合材料包括
一种粘结材料(14);及
大量的分散于该粘结材料之中的多层片状粉末(12),所述的多层片状粉末至少包括一种双层配合片状粉末,该双层配合片状粉末由一薄膜电介质层(18)和与其邻接的薄膜晶体铁磁性金属层(16)组成;
将该二个待接合的物件互为邻接放置,并使其分别与该复合材料直接接触;并
提供其频率在5-6000MHz的范围、振荡磁场形式的电磁波,该磁场贯穿复合材料以足够的时间,在复合材料中产生热量,再由熔融、融合或粘固的方法,将该二物件粘结一起。
14.如权利要求13所述的方法,其特征在于,其中,所述二物件包括与该粘结材料相同的材料。
15.如权利要求13所述的方法,其特征在于,其中,所述复合材料为一带状物。
16如权利要求13所述的方法,其特征在于,其中,所述复合材料为一模制部件。
17.一种将二个物件接合一起的方法,所述方法包括下述步骤:
提供一种带状的电磁波吸收复合材料(10),所述带状复合材料包括:
一种包括高密度聚乙烯的粘结材料(14);及
大量的分散于该粘结材料之中的多层配片状粉末(12),所述的多层片状粉末包括层配合数为20至60的成组片状配合,所述各组片状配合由一层薄膜电介质层(18)和另一与其邻接的薄膜晶体Ni80Fe20金属层(16)组成,其中,所述片状粉末以对该复合材料为1-10%(体积)的含量范围存在;
将该二个待接合的物件互为邻接放置,并使其分别与该复合材料直接接触;
提供一其功率在25-250W的范围、其频率在30-1000MHz范围内的振荡磁场的电磁波;该磁场贯穿带状物,在180秒内将该带状物加热至255-275℃之间的温度,使带状物融合至该物件,并将该二物件连接在一起。
18.如权利要求17所述的方法,其特征在于,其中,所述二物件为聚乙烯管件。
CN96192872A 1995-03-29 1996-02-26 吸收电磁波的复合材料 Expired - Fee Related CN1098772C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41296695A 1995-03-29 1995-03-29
US08/412,966 1995-03-29

Publications (2)

Publication Number Publication Date
CN1179875A true CN1179875A (zh) 1998-04-22
CN1098772C CN1098772C (zh) 2003-01-15

Family

ID=23635232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96192872A Expired - Fee Related CN1098772C (zh) 1995-03-29 1996-02-26 吸收电磁波的复合材料

Country Status (17)

Country Link
US (1) US5925455A (zh)
EP (1) EP0818126B1 (zh)
JP (1) JPH11502973A (zh)
KR (1) KR19980703184A (zh)
CN (1) CN1098772C (zh)
AR (1) AR001400A1 (zh)
AT (1) ATE192013T1 (zh)
AU (1) AU4998296A (zh)
DE (1) DE69607837T2 (zh)
DK (1) DK0818126T3 (zh)
GR (1) GR3033607T3 (zh)
MX (1) MX9707239A (zh)
NO (1) NO974474L (zh)
PT (1) PT818126E (zh)
TW (1) TW321768B (zh)
WO (1) WO1996031091A1 (zh)
ZA (1) ZA961993B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314503C (zh) * 2002-09-29 2007-05-09 武汉大学 一种含碳包金属、碳包金属化合物电磁波吸收材料及应用
CN101176109B (zh) * 2005-05-13 2010-06-02 3M创新有限公司 用于金属或其它导电物体上的射频识别标签
CN101511485B (zh) * 2006-09-08 2012-03-21 纳诺格特股份有限公司 驻极体整理剂
CN103762429A (zh) * 2014-01-03 2014-04-30 南京大学 基于铁磁/介质纳米多层膜结构的柔性轻质电磁波吸波材料
CN110024503A (zh) * 2016-12-08 2019-07-16 杜邦帝人先进纸(日本)有限公司 电磁波抑制片材
CN110800157A (zh) * 2016-12-22 2020-02-14 罗杰斯公司 多层磁介电材料
TWI700983B (zh) * 2007-08-03 2020-08-01 日商大自達電線股份有限公司 印刷配線板用屏蔽薄膜及印刷配線板

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792989A (en) * 1996-11-12 1998-08-11 Minnesota Mining And Manufacturing Company Wrap type cable closure end seal
AU1986897A (en) * 1996-11-13 1998-06-03 Minnesota Mining And Manufacturing Company Grooved seam seal for cable splice closure
WO1998021797A1 (en) * 1996-11-15 1998-05-22 Minnesota Mining And Manufacturing Company Insert parts for sealed closure bonding
WO1998021798A1 (en) * 1996-11-15 1998-05-22 Minnesota Mining And Manufacturing Company Bonded sealed closure systems and methods
WO1998021796A1 (en) * 1996-11-15 1998-05-22 Minnesota Mining And Manufacturing Company Sealed closure with support core systems and methods
US6986942B1 (en) * 1996-11-16 2006-01-17 Nanomagnetics Limited Microwave absorbing structure
US6376619B1 (en) * 1998-04-13 2002-04-23 3M Innovative Properties Company High density, miniaturized arrays and methods of manufacturing same
DE19924138A1 (de) 1999-05-26 2000-11-30 Henkel Kgaa Lösbare Klebeverbindungen
US6395483B1 (en) 1999-09-02 2002-05-28 3M Innovative Properties Company Arrays with mask layers
US6541853B1 (en) * 1999-09-07 2003-04-01 Silicon Graphics, Inc. Electrically conductive path through a dielectric material
US6215644B1 (en) 1999-09-09 2001-04-10 Jds Uniphase Inc. High frequency tunable capacitors
DE19951599A1 (de) * 1999-10-27 2001-05-23 Henkel Kgaa Verfahren zur adhesiven Trennung von Klebeverbunden
EP1453360B1 (en) * 1999-11-03 2012-10-24 OMG, Inc. Induction heating system and method of adhesive bonding by induction heating
EP1226742B1 (en) 1999-11-03 2006-12-27 Nexicor, LLC Hand held induction tool
US6482638B1 (en) * 1999-12-09 2002-11-19 3M Innovative Properties Company Heat-relaxable substrates and arrays
US6496351B2 (en) 1999-12-15 2002-12-17 Jds Uniphase Inc. MEMS device members having portions that contact a substrate and associated methods of operating
US6229684B1 (en) 1999-12-15 2001-05-08 Jds Uniphase Inc. Variable capacitor and associated fabrication method
US6881538B1 (en) 2000-03-05 2005-04-19 3M Innovative Properties Company Array comprising diamond-like glass film
US6492133B1 (en) 2000-05-01 2002-12-10 3M Innovative Properties Company Reflective disc assay devices, systems and methods
US6720187B2 (en) * 2000-06-28 2004-04-13 3M Innovative Properties Company Multi-format sample processing devices
US6734401B2 (en) * 2000-06-28 2004-05-11 3M Innovative Properties Company Enhanced sample processing devices, systems and methods
AU7024801A (en) 2000-06-28 2002-01-08 3M Innovative Properties Co Enhanced sample processing devices, systems and methods
US6627159B1 (en) * 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
DE10037884A1 (de) 2000-08-03 2002-02-21 Henkel Kgaa Verfahren zur beschleunigten Klebstoffaushärtung
US8097471B2 (en) * 2000-11-10 2012-01-17 3M Innovative Properties Company Sample processing devices
US6593833B2 (en) 2001-04-04 2003-07-15 Mcnc Tunable microwave components utilizing ferroelectric and ferromagnetic composite dielectrics and methods for making same
US6783838B2 (en) 2001-04-30 2004-08-31 3M Innovative Properties Company Coated film laminate having an ionic surface
US20030118804A1 (en) * 2001-05-02 2003-06-26 3M Innovative Properties Company Sample processing device with resealable process chamber
US6610415B2 (en) * 2001-10-26 2003-08-26 Koslow Technologies Corporation Magnetic or magnetizable composite product and a method for making and using same
US7063978B2 (en) 2001-11-01 2006-06-20 3M Innovative Properties Company Coated film laminate having an electrically conductive surface
US6889468B2 (en) 2001-12-28 2005-05-10 3M Innovative Properties Company Modular systems and methods for using sample processing devices
US20040021597A1 (en) * 2002-05-07 2004-02-05 Dvorak George J. Optimization of electromagnetic absorption in laminated composite plates
DE10255893B4 (de) * 2002-11-28 2006-06-29 Institut für Physikalische Hochtechnologie e.V. Verfahren und Vorrichtung zur Erwärmung eines eine Vielzahl magnetischer Teilchen enthaltenden Materials
US7507376B2 (en) * 2002-12-19 2009-03-24 3M Innovative Properties Company Integrated sample processing devices
US20040119552A1 (en) * 2002-12-20 2004-06-24 Com Dev Ltd. Electromagnetic termination with a ferrite absorber
US20070141342A1 (en) * 2003-11-12 2007-06-21 Kuehnle Manfred R Physical color new concepts for color pigments
US8216559B2 (en) * 2004-04-23 2012-07-10 Jnc Corporation Deodorant fiber and fibrous article and product made thereof
US7932090B2 (en) * 2004-08-05 2011-04-26 3M Innovative Properties Company Sample processing device positioning apparatus and methods
US7763210B2 (en) 2005-07-05 2010-07-27 3M Innovative Properties Company Compliant microfluidic sample processing disks
US7323660B2 (en) * 2005-07-05 2008-01-29 3M Innovative Properties Company Modular sample processing apparatus kits and modules
US7754474B2 (en) 2005-07-05 2010-07-13 3M Innovative Properties Company Sample processing device compression systems and methods
WO2007066204A2 (en) * 2005-12-06 2007-06-14 Gillispie, William Apparatus and method for adapting a conductive object to accept a communication device
TW200844420A (en) * 2006-12-22 2008-11-16 3M Innovative Properties Co Enhanced sample processing devices, systems and methods
EP2117713B1 (en) 2006-12-22 2019-08-07 DiaSorin S.p.A. Thermal transfer methods for microfluidic systems
US20120249375A1 (en) * 2008-05-23 2012-10-04 Nokia Corporation Magnetically controlled polymer nanocomposite material and methods for applying and curing same, and nanomagnetic composite for RF applications
DE102009023150A1 (de) 2009-05-28 2010-12-02 Continental Automotive Gmbh Schutzstruktur für einen Funkschlüssel eines Fahrzeugs
USD638951S1 (en) 2009-11-13 2011-05-31 3M Innovative Properties Company Sample processing disk cover
USD667561S1 (en) 2009-11-13 2012-09-18 3M Innovative Properties Company Sample processing disk cover
USD638550S1 (en) 2009-11-13 2011-05-24 3M Innovative Properties Company Sample processing disk cover
US8834792B2 (en) 2009-11-13 2014-09-16 3M Innovative Properties Company Systems for processing sample processing devices
KR20120105485A (ko) 2009-12-02 2012-09-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Rf 고투자율을 갖는 다층 emi 차폐 박막
US20120001116A1 (en) * 2010-06-30 2012-01-05 Jds Uniphase Corporation Magnetic multilayer pigment flake and coating composition
US9508475B2 (en) 2010-06-30 2016-11-29 Viavi Solutions Inc. Magnetic multilayer pigment flake and coating composition
US20120175363A1 (en) * 2010-12-30 2012-07-12 Goji Limited Rf-based pyrolytic cleaning
CN102176815A (zh) * 2011-01-04 2011-09-07 北京理工大学 基于梯度压磁薄膜与介电陶瓷的吸波器件
FR2986157B1 (fr) * 2012-02-01 2015-04-03 Pascal Duthilleul Dispositif d'enveloppe multicouche d'attenuation des ondes electromagnetiques.
US9507390B2 (en) * 2012-02-03 2016-11-29 Amosense Co., Ltd. Magnetic field shielding sheet for digitizer, manufacturing method thereof, and portable terminal device using same
KR102027246B1 (ko) 2013-03-14 2019-10-01 삼성전자주식회사 디지타이저 및 그 제조 방법
KR101681409B1 (ko) * 2015-04-16 2016-12-12 삼성전기주식회사 코일 전자부품
KR101708040B1 (ko) * 2015-07-16 2017-02-17 주식회사 에프씨엔 자기 시트 및 그 제조방법
TWI767968B (zh) * 2016-12-22 2022-06-21 美商羅傑斯公司 多層之磁介電材料
WO2018140588A1 (en) * 2017-01-30 2018-08-02 Rogers Corporation Method of making a multi-layer magneto-dielectric material
CN111247608A (zh) * 2017-10-27 2020-06-05 3M创新有限公司 高频功率电感器材料
WO2020112034A2 (en) * 2018-11-27 2020-06-04 Scg Packaging Public Company Limited Susceptor film structure for packaging used with microwave ovens and packaging comprising the said susceptor film structure
DE102020112939A1 (de) * 2020-05-13 2021-11-18 Rittal Gmbh & Co. Kg Schaltschrank mit von hochfrequenz-absorbierender folie bedeckter seitenwand
WO2022084812A1 (en) * 2020-10-22 2022-04-28 3M Innovative Properties Company High frequency power inductor material including magnetic multilayer flakes
US20240040759A1 (en) * 2020-12-29 2024-02-01 3M Innovative Properties Company Electromagnetic absorbing composites

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2923934A (en) * 1945-03-05 1960-02-02 Method and means for minimizing reflec-
US2951246A (en) * 1946-01-30 1960-08-30 Halpern Otto Absorbent for electromagnetic waves
US2923689A (en) * 1953-08-31 1960-02-02 Alvin R Saltzman Electromagnetic wave energy absorbing material
US3152328A (en) * 1957-11-21 1964-10-06 Mcmillan Corp Of North Carolin Microwave radiation absorber comprising spaced parallel resistance discs
US3887920A (en) * 1961-03-16 1975-06-03 Us Navy Thin, lightweight electromagnetic wave absorber
DE1165182B (de) * 1961-06-28 1964-03-12 Du Pont Pigment auf der Basis von durchscheinenden glimmerartigen Schuppen und Verfahren zu dessen Herstellung
US3540047A (en) * 1968-07-15 1970-11-10 Conductron Corp Thin film magnetodielectric materials
US4006479A (en) * 1969-02-04 1977-02-01 The United States Of America As Represented By The Secretary Of The Air Force Method for dispersing metallic particles in a dielectric binder
AU472605B2 (en) * 1971-04-08 1973-10-04 Wm C Heller Jr Fabricating method and article formed thereby
JPS51163498U (zh) * 1976-06-09 1976-12-27
US4126727A (en) * 1976-06-16 1978-11-21 Congoleum Corporation Resinous polymer sheet materials having selective, decorative effects
US4067765A (en) * 1976-09-17 1978-01-10 William C. Heller, Jr. Susceptor based bonding technique for plastic material utilizing oleaginous substance at the bonding interface
US4434010A (en) * 1979-12-28 1984-02-28 Optical Coating Laboratory, Inc. Article and method for forming thin film flakes and coatings
US5084351A (en) * 1979-12-28 1992-01-28 Flex Products, Inc. Optically variable multilayer thin film interference stack on flexible insoluble web
US5059245A (en) * 1979-12-28 1991-10-22 Flex Products, Inc. Ink incorporating optically variable thin film flakes
US4608297A (en) * 1982-04-21 1986-08-26 Showa Denka Kabushiki Kaisha Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor
US5021293A (en) * 1986-02-21 1991-06-04 E. I. Du Pont De Nemours And Company Composite material containing microwave susceptor material
CA1274126A (en) * 1986-02-21 1990-09-18 Hua-Feng Huang Composite material containing microwave susceptor materials
EP0260870A3 (en) * 1986-09-12 1989-04-19 Minnesota Mining And Manufacturing Company Polymeric bonded metal magnet with corrosion resistant metal particles
US5325094A (en) * 1986-11-25 1994-06-28 Chomerics, Inc. Electromagnetic energy absorbing structure
US4833007A (en) * 1987-04-13 1989-05-23 E. I. Du Pont De Nemours And Company Microwave susceptor packaging material
FR2655997B1 (fr) * 1988-01-18 1992-04-30 Commissariat Energie Atomique Enduit absorbant, son procede de fabrication et revetement obtenu a l'aide de cet enduit.
US5085931A (en) * 1989-01-26 1992-02-04 Minnesota Mining And Manufacturing Company Microwave absorber employing acicular magnetic metallic filaments
US5245151A (en) * 1989-04-07 1993-09-14 Minnesota Mining And Manufacturing Company Method and article for microwave bonding of splice closure
US5189078A (en) * 1989-10-18 1993-02-23 Minnesota Mining And Manufacturing Company Microwave radiation absorbing adhesive
US5238975A (en) * 1989-10-18 1993-08-24 Minnesota Mining And Manufacturing Company Microwave radiation absorbing adhesive
DE69109940T2 (de) * 1990-01-19 1995-09-28 Koransha Kk Durch mikrowellenabsorption wärme erzeugendes material.
US5169713A (en) * 1990-02-22 1992-12-08 Commissariat A L'energie Atomique High frequency electromagnetic radiation absorbent coating comprising a binder and chips obtained from a laminate of alternating amorphous magnetic films and electrically insulating
US5083112A (en) * 1990-06-01 1992-01-21 Minnesota Mining And Manufacturing Company Multi-layer thin-film eas marker
US5278377A (en) * 1991-11-27 1994-01-11 Minnesota Mining And Manufacturing Company Electromagnetic radiation susceptor material employing ferromagnetic amorphous alloy particles
US5326640A (en) * 1992-09-16 1994-07-05 Isp Investments Inc. Microwave absorbing article
US5378879A (en) * 1993-04-20 1995-01-03 Raychem Corporation Induction heating of loaded materials

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314503C (zh) * 2002-09-29 2007-05-09 武汉大学 一种含碳包金属、碳包金属化合物电磁波吸收材料及应用
CN101176109B (zh) * 2005-05-13 2010-06-02 3M创新有限公司 用于金属或其它导电物体上的射频识别标签
CN101511485B (zh) * 2006-09-08 2012-03-21 纳诺格特股份有限公司 驻极体整理剂
TWI700983B (zh) * 2007-08-03 2020-08-01 日商大自達電線股份有限公司 印刷配線板用屏蔽薄膜及印刷配線板
TWI700984B (zh) * 2007-08-03 2020-08-01 日商大自達電線股份有限公司 印刷配線板用屏蔽薄膜及印刷配線板
CN103762429A (zh) * 2014-01-03 2014-04-30 南京大学 基于铁磁/介质纳米多层膜结构的柔性轻质电磁波吸波材料
CN110024503A (zh) * 2016-12-08 2019-07-16 杜邦帝人先进纸(日本)有限公司 电磁波抑制片材
CN110024503B (zh) * 2016-12-08 2021-04-20 杜邦帝人先进纸(日本)有限公司 电磁波抑制片材
CN110800157A (zh) * 2016-12-22 2020-02-14 罗杰斯公司 多层磁介电材料
CN110800157B (zh) * 2016-12-22 2022-03-01 罗杰斯公司 多层磁介电材料

Also Published As

Publication number Publication date
DK0818126T3 (da) 2000-09-11
DE69607837D1 (de) 2000-05-25
US5925455A (en) 1999-07-20
TW321768B (zh) 1997-12-01
NO974474L (no) 1997-11-28
PT818126E (pt) 2000-09-29
ZA961993B (en) 1997-09-12
CN1098772C (zh) 2003-01-15
AU4998296A (en) 1996-10-16
MX9707239A (es) 1997-11-29
ATE192013T1 (de) 2000-05-15
DE69607837T2 (de) 2000-11-30
EP0818126A1 (en) 1998-01-14
JPH11502973A (ja) 1999-03-09
EP0818126B1 (en) 2000-04-19
AR001400A1 (es) 1997-10-22
WO1996031091A1 (en) 1996-10-03
KR19980703184A (ko) 1998-10-15
NO974474D0 (no) 1997-09-26
GR3033607T3 (en) 2000-10-31

Similar Documents

Publication Publication Date Title
CN1098772C (zh) 吸收电磁波的复合材料
Yoshida et al. Permeability and electromagnetic-interference characteristics of Fe–Si–Al alloy flakes–polymer composite
KR100247444B1 (ko) 전자기 간섭 억제제용 복합 자석
Park et al. Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders
US5110651A (en) Dielectric or magnetic anisotropy layers, laminated composite material incorporating said layers and their production process
US5872534A (en) High frequency broadband absorption structures
JP2020143275A (ja) 電磁放射線を遮蔽するためのコンポジット材料、付加製造方法のための原材料及びそのコンポジット材料を含む製品並びにその製品を製造する方法
CN111742381B (zh) 聚四氟乙烯六方铁氧体复合材料
Verma et al. Microwave studies on strontium ferrite based absorbers
Jafarian et al. Insights on the design of a novel multicomponent microwave absorber based on SrFe10Al2O19 and Ni0. 5Zn0. 5Fe2O4/MWCNTs/polypyrrole
US4515850A (en) Composite ferrite textile
RU2370866C1 (ru) Радиопоглощающее покрытие
JPH08204379A (ja) 電波吸収体
Kim et al. A study on the behavior of laminated electromagnetic wave absorber
EP0866475B1 (en) Composite magnetic material and electromagnetic interference suppressing material
Li et al. Absorption of microwaves in La 1− x Sr x MnO 3 manganese powders over a wide bandwidth
Komari et al. Wide band electromagnetic wave absorber with thin magnetic layers
CN202949042U (zh) Fe/SiO2纳米多层膜电磁波吸波材料
US5726655A (en) Anisotropic microwave composite
JPH0974297A (ja) 電波吸収体
CN103173056A (zh) Fe/SiO2纳米多层膜电磁波吸波材料的制备方法
Ishii et al. Application of Co‐based amorphous ribbon to a noise filter and a shielded cable
Grimes EMI shielding characteristics of permalloy multilayer thin films
JP2784275B2 (ja) 電波吸収体
Frolova et al. Investigation of the Structure and Magnetic and Microwave Absorption Properties of Nanocomposite PVA/Graphite/CoFe1. 97Ce0. 03O4

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee