CN1181055A - 新颖物质的组合合成 - Google Patents

新颖物质的组合合成 Download PDF

Info

Publication number
CN1181055A
CN1181055A CN95196543A CN95196543A CN1181055A CN 1181055 A CN1181055 A CN 1181055A CN 95196543 A CN95196543 A CN 95196543A CN 95196543 A CN95196543 A CN 95196543A CN 1181055 A CN1181055 A CN 1181055A
Authority
CN
China
Prior art keywords
substrate
component
region
materials
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95196543A
Other languages
English (en)
Other versions
CN1082936C (zh
Inventor
P·G·舒尔茨
X·向
I·戈德瓦瑟尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIMICOX TECHNOLOGY CORP
University of California
Original Assignee
SIMICOX TECHNOLOGY CORP
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23276841&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1181055(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SIMICOX TECHNOLOGY CORP, University of California filed Critical SIMICOX TECHNOLOGY CORP
Publication of CN1181055A publication Critical patent/CN1181055A/zh
Application granted granted Critical
Publication of CN1082936C publication Critical patent/CN1082936C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • C01G51/68Cobaltates containing alkaline earth metals, e.g. SrCoO3 containing rare earth, e.g. La0.3Sr0.7CoO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/14Libraries containing macromolecular compounds and not covered by groups C40B40/06 - C40B40/12
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/18Libraries containing only inorganic compounds or inorganic materials
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/08Integrated apparatus specially adapted for both creating and screening libraries
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B80/00Linkers or spacers specially adapted for combinatorial chemistry or libraries, e.g. traceless linkers or safety-catch linkers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/16Measuring susceptibility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
    • H01F1/407Diluted non-magnetic ions in a magnetic cation-sublattice, e.g. perovskites, La1-x(Ba,Sr)xMnO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/007Thin magnetic films, e.g. of one-domain structure ultrathin or granular films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1933Perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/34Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00378Piezo-electric or ink jet dispensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/0043Means for dispensing and evacuation of reagents using masks for direct application of reagents, e.g. through openings in a shutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/00432Photolithographic masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00441Maskless processes using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00443Thin film deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • B01J2219/00475Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/005Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00511Walls of reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00513Essentially linear supports
    • B01J2219/00515Essentially linear supports in the shape of strings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00513Essentially linear supports
    • B01J2219/0052Essentially linear supports in the shape of elongated tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00531Sheets essentially square
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00533Sheets essentially rectangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00536Sheets in the shape of disks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00592Split-and-pool, mix-and-divide processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00617Delimitation of the attachment areas by chemical means
    • B01J2219/00619Delimitation of the attachment areas by chemical means using hydrophilic or hydrophobic regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00628Ionic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/0063Other, e.g. van der Waals forces, hydrogen bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00635Introduction of reactive groups to the surface by reactive plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00639Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
    • B01J2219/00644Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium the porous medium being present in discrete locations, e.g. gel pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • B01J2219/00648Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00689Automatic using computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00691Automatic using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00711Light-directed synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00736Non-biologic macromolecules, e.g. polymeric compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • B01J2219/00747Catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • B01J2219/0075Metal based compounds
    • B01J2219/00752Alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • B01J2219/0075Metal based compounds
    • B01J2219/00754Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/08Methods of screening libraries by measuring catalytic activity
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B70/00Tags or labels specially adapted for combinatorial chemistry or libraries, e.g. fluorescent tags or bar codes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • Y10T428/2462Composite web or sheet with partial filling of valleys on outer surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31645Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31931Polyene monomer-containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2525Stabilizing or preserving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • Y10T436/255Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.] including use of a solid sorbent, semipermeable membrane, or liquid extraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25875Gaseous sample or with change of physical state

Abstract

通过组合合成制备巨磁致电阻氧化钴化合物。组合合成是利用其上有不同材料的阵列的基材完成的,该阵列是将各组分供应至基材的预定区域,然后使各组分同时反应,形成至少两种材料而制得的。可用这种方法制备的其他材料有共价网状固体、离子型固体和分子型固体。例子有无机、有机金属、金属间材料、陶瓷、有机聚合物和复合材料。一旦制备后,可以筛选具有有用性能,(如磁致电阻)的材料。于是,本发明提供了并行地合成和分析具有有用性能的新颖材料的方法。

Description

新颖物质的组合合成
本申请是1994年8月18日申请的08/327,513的部分继续申请,原案的内容在此作为参考。
政府利益的说明
本发明按照能源部授予的合同DE-AC03-76SF00098,由(美国)政府资助完成。政府对本发明具有一定的权利。
发明领域
本发明涉及用于在一个基材表面的确定位置上并行地沉积、合成和筛选不同材料的方法和设备。例如,运用本发明可制备共价网状固体、离子型固体和分子型固体。更具体地,运用本发明可制备无机材料、金属间材料、合金、陶瓷材料、有机材料、有机金属材料、非生物有机聚合物、复合材料(如无机复合物、有机复合物或其组合)等。一旦制备后,这些物质可并行地按其有用的性能,如电、热、机械、形态、光学、磁性、化学和其他的性能进行筛选。
发明背景
具有新颖的化学和物理性能的新物质的出现常会引起新的和有用技术的发展。目前,在发现和优化如超导体、沸石、磁性物质、燐光体、非线性光学材料、热电材料及高和低的介电材料方面已做了大量工作。然而,尽管广泛研究了扩展型固体的化学性质,但几乎没有基本的原则可用于确切预测能合成这样的固态化合物的组分、结构和反应途径。而且难以事前预测一特定三维结构将具有的物理性能。例如,1987年合成的超导体YBa2Cu3O7-8。在发现它具有K2NiF4结构(Bednorz,J.G.和K.A.Muller,在Z.Phy.B 64:189(1986))的La2-xSrxCuO4不久,观察到使用压力可提高其转化温度(Chu等人,Phys.Rev.Lett.58:405(1987))。于是Chu等人试图合成有相同化学计量(配比)的Y-Ba-Cu-O化合物,希望以较小的元素即钇代替镧能具有相同的效果。尽管在大于93K发现超导性,但未观察到与K2NiF4具有相同结构的相(Wu等人,Phys.Rev.Lett.58:908(1987))。甚至对相当简单的金属间化合物,如镍和锆的二元化合物(Ni5Zr、Ni7Zr2、Ni3Zr、Ni2Zr8、Ni10Zr7、Ni11Zr9、NiZr和NiZr2),仍不能了解为什么仅有这些化学计量(配比)出现。
很明显,具有新颖的化学和物理性质的新物质在我们目前理解水平下充其量是在偶然情况下制得的。因此,新物质的发现很大程度上取决于新化合物的合成和分析。元素周期表中有大约100种元素能用于构成由三、四、五、六或更多元素组成的组合物,可能存在的新化合物大部分仍未被发现。因此,需要更有效、更经济和更有规律的途径来合成新颖物质和筛选具有有用性能的新物质。
自然界产生具有新颖功能的分子的方法之一是产生大量的分子(集合),并从这些集合的分子中系统地筛选具有所需性能的分子。其中的一个例子是体液免疫体系,在几周时间里从约1012个抗体分子中找出一种专一地结合于外来病原的分子(Nisonoff等人,The Antibody Molecule(Academic Press,New York,1975))。最近,这种产生和筛选大量分子集合的方法已应用到寻找药物的过程中。发现新的药物就好象寻找一把能开不了解其结构的锁的钥匙。解决问题的一种方法是简单地制造和试验大量不同的钥匙,希望其中有合适的钥匙。
运用这一逻辑,已开发了一些合成和筛选大量的肽、低(聚)核苷酸和其他小分子的集合(高达1014个分子)的方法。例如,Geysen等人开发了并行地在几个棒或针上合成肽的方法(见J.Immun.Meth.102:259-274(1987),在此作为参考)。Geysen等人的方法涉及使聚合棒终端功能化,然后将终端浸在各种氨基酸溶液中。除了Geysen等人的方法外,最近还发明了在固体表面合成大量不同肽和其他聚合物的阵列的技术。Pirrung等人发现了采用如光引导的、可空间寻址的合成技术来产生肽和其他分子阵列的技术(见美国专利5,143,854和PCT公开WO90/15070,在此作为参考)。另外,Fodor等人还开发了用于进行光控、空间寻址合成技术中收集荧光强度数据、各种光敏保护基团、掩模技术和自动化的方法(见Fodor等的PCT公开WO 92/10092,其中的内容在此作为参考)。
运用这些方法,可形成有成千或上百万的不同单元的阵列(见在1991,12,6申请的美国专利805,727,其中的内容在此作为参考)。由于这些方法与半导体制造技术之间的关系,这些方法称为“特大规模的固定的聚合物合成”或“VLSIPS”技术。这样的技术在筛选各种配位体如肽和低(聚)核苷酸,以决定其与抗体之类的受体的相对束缚亲合力方面基本上获得成功。
目前,用于制备这样的集合体的固相合成技术涉及逐级即相继地将各结构单元偶合,以形成所需化合物。在Pirrung等人的方法中,通过使光可除去的基团结合到基材表面上,使选择的基材部分受光的作用来活化这些部分,再将带有光可除去基团的氨基酸单体结合在活化部分,重复上述活化和结合步骤,直到合成所需长度的多肽的方法,在基材上合成多肽阵列。这些涉及依次偶合各结构单元(如氨基酸)以形成所需化合物的固相合成技术,不能用于制备多种无机和有机化合物。
由上可知,需要能用于在基材上的确定部位合成和筛选材料(如无机材料)集合的方法和设备。
发明概述
本发明提供了用于制备和使用在其预定区域有不同材料阵列的基材的方法和设备。通过在基材的预定部分供应材料的组分,同时使组分反应形成至少两种材料的方法,制备在其上有不同物质阵列的基材。采用本发明的方法和设备制备的材料包括,如共价网状固体、离子型固体和分子型固体。更具体的说,制备的材料有无机材料、金属间材料、合金、陶瓷材料、有机材料、有机金属材料、非生物有机聚合物、复合材料(如无机复合物、有机复合物或及其组合)等。一旦制备后,可并行地按其有用的性能,如电、热、机械、形态、光学、磁性、化学和其他性能对这些物质进行筛选。因此,本发明提供了用于并行地合成和分析具有新的和有用性能的新颖材料的方法和设备。然后可以大规模地制备已发现的具备可用性能的物质。
在本发明的一个实施方案中,在基材的第一区域供应第一种材料的第一组分,在同一基材的第二区域供应第二种材料的第一组分。然后,在基材的第一区域供应第一种材料的第二组分和在基材的第二区域供应第二种材料的第二组分。对其他组分可任选地重复这一过程,以在基材的预定即已知区域形成各种组分的巨大阵列。之后,各组分可以同时反应形成至少两种材料。可以采用任何供应组分的技术,依次地或同时以任何化学计量包括梯度化学计量,在基材的预定区域供应组分。
本发明的另一个实施方案中,提供的方法可形成至少两种不同的材料阵列,以基本相同的浓度在第一和第二基材的反应部位供应基本相同的反应组分,然后使在第一基材的组分按设定的第一组反应条件,在第二基材的组分按第二组设定反应条件反应。运用这种方法,可同时研究各种反应参数对多种物质的效果,从而优化这些反应参数。可改变的反应参数包括,如反应物数量、反应物溶剂、反应温度、反应时间、进行反应时的压力、进行反应的气氛、反应停止的速度、反应物沉积的顺序等。
本发明的供应体系,可在每一反应区域供应少量的、精确计量的各种反应组分。可通过各种供应技术或其与掩模技术结合达到这点。例如,可采用薄膜沉积技术与物理掩模或光刻技术结合,在基材的选择区域供应各种反应物。可提供无定形膜、处延薄膜或点阵及超点阵结构的反应物。而且,采用这样的技术,反应物可以均匀分布或以梯度化学计量供应给每一点。还可任选以液滴或粉末形式从供料器将各种反应组分供应到反应区域。合适的供料器包括,如微量移液管、喷墨印刷技术所用的机构和电泳泵。
一旦在基材的预定区域供应了可用组分,各组分可以许多不同合成路线反应形成物质的阵列。可以通过溶胶-凝胶方法、热、红外或微波加热方法、煅烧、烧结或退火的方法、水热方法、熔流方法、由蒸发溶剂的结晶方法,采用溶液合成技术、光化学技术、聚合反应技术、模板控制合成技术、外延生长技术使组分反应。然后从阵列中筛选具有可用性能的物质。
本发明的另一个实施方案,提供了无机材料在一个基材各预定区域的阵列。这样的阵列可由多于10、102、103、104、105和106的不同无机化合物组成。在一些实施方案中,单位面积的区域密度大于0.04区域/厘米2,较好的大于0.1区域/厘米2,更好的大于1区域/厘米2,大于10区域/厘米2,最好大于100区域/厘米2。在大多数较好的实施方案中,单位面积的区域密度大于1,000区域/厘米2,较好的大于10,000区域/厘米2,更好的大于100,000区域/厘米2,最好大于10,000,000区域/厘米2
另一方面,本发明提供了具有有用性能的物质,其制备方法为,在一个基材上形成各种物质的阵列;从阵列中筛选出具有有用性能的物质;再制备更多数量具有该有用性能的物质。因此,本发明提供了并行地合成和分析具有新的和有用性能的新颖物质的方法和设备。
用前面的方法,发现了新的一族巨磁阻(GMR)氧化钴。采用薄膜沉积技术与掩模技术结合,可形成含不同组成和化学计量的Ln1-xMxCoOz物质的阵列,其中Ln为,如钇和镧,M为,如铅、钙、锶和钡,x约为0.1-0.9范围内的值,z约为2-4范围的值。一旦形成后,可在阵列中筛选具有可用性能的物质。更具体地,可在阵列中筛选具有巨磁阻(GMR)性能的物质。这样做后,在La1-x-(Ba、Sr、Ca)x-CoOz样品中发现了大的磁阻(MR),其中x约为0.1-0.9范围内的值,z约为2-4的值。一旦鉴别出具有有用性能的物质,就可制备更多的这样的物质。
这样做后,可以确定在GMR氧化钴的新家族中的化合物有下面的通式:Ay-(1x)My-xCoOz,其中A是选自镧、钇、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥的金属;M是选自钙、锶、钡、铅、铊和铋的金属;y是约为1-2范围的值;x是约为0.1-0.9范围内的值;z是约为2-4范围内的值。而且,已确定在GMR氧化钴新家族中的化合物一般具有分层的与钙钛矿有关的结构。
参考下面的具体部分和有关的附图可进一步理解本发明的特点和优点。
附图简述
图1为用掩模掩盖基材的第一部位的剖面图;
图2A-2I说明了使用二元掩模技术,在单片基材上产生反应物阵列;
图3A-3I说明了采用物理掩模技术,在单片基材上产生反应物阵列;
图4A-4M说明了采用物理掩模技术,在单片基材上产生反应物阵列;
图5为用于提供本发明的反应溶液的普通导滴分散混合器装置;
图6说明了一个有八个RF磁控管溅射枪和旋转盘的反应体系的例子;
图7说明了一个有八个RF磁控管溅射枪和掩模盒的反应体系的例子;
图8说明了有脉冲式激光器和掩模盒的反应体系的例子;
图9说明了采用脉冲式激光器和滑动开关掩模体系的反应体系的例子;
图10A-10D说明了在进行本发明的方法时可采用的各种掩模。图10A为X/Y开关掩模的例子;图10B说明了五种掩模图形,可用以沿基材对五种不同反应组分形成不同的列;图10C说明了如何使用X/Y开关掩模,横贯基材上形成一种组分的厚度梯度;图10D为当掩模横贯基材转移时,可使五种不同组分沉积在基材的每半个上的掩模。
图11说明了一个在其上有二元掩模和X/Y开关的平片的例子。
图12说明了由电阻加热,控制集合物温度的例子;
图13说明了一个用于检测材料阵列的超导性的扫描RF磁化率检测系统的例子;
图14为在MgO基材的16个预定区域上所提供反应组分的图;
图15为在1.25×1.25厘米的MgO基材上16种不同的化合物的阵列的照片;
图16A-16B说明了两种导电材料的电阻与温度的关系;
图17说明了用于产生材料集合的二元掩模;左下角和右上角的数字表明集合中每一组元的位置;MO表示没有第二种掩模;
图18为烧结前128组二元集合的照片;每个位置的颜色是从白色光源的反射光的自然颜色;
图19A-19B为电阻与温度的曲线:(A)BiCuSrCaO;(B)BiCuSrCaCuCaO和oBiCuCuSrCaCaO;
图20为用于产生YBCO-BSCCO集合的掩模。
图21A-21C为电阻与温度关系的曲线:(A)BiCuSrCaO;(B)YBaCaO;(C)YBa2Cu3Ox
图22为用于产生氧化钴(CoO)薄膜材料集合的掩模;
图23说明在集合L2和L3中薄膜样品的组成和化学计量图(LnxMyCoO3-δ,其中Ln=镧和钇,M=钡、锶、钙和铅)。在正文和图中,样品用指数(行号,列号)标示,每一小格中第一个数字指x,第二个数字指y。黑色、实心圆圈表明有明显MR效应的样品。
图24A和24B说明了在L2(19A)和L3(19B)中的代表性样品作为磁场函数的MR比;
图25A和25B说明了样品L3(13,2)在0T和10T下的电阻和MR比(H=10T)与温度的关系(20A)以及样品在不同磁场下的MR与温度的关系(20B)。实心线用于引起注意。
图26A、26B和26C分别说明钡、锶和钙掺杂的大块样品的X衍射图(按立方钙钛矿结构标识);X衍射图表明新的一类氧化钴材料的结构是略变形的立方钙钛矿结构;
图27说明在1T磁场下La0.58Sr0.41CoOδ大块样品的磁化强度与温度关系。实线用于引起注意。图22的插图说明了样品在不同温度下的MR比与磁场的关系。
本发明及其较好的实施方案的详细描述
目录
I.术语
II.综述
III.基材上反应部位的分隔
IV.提供反应组分的方法
A.采用薄膜沉积技术提供
B.用分配器提供
V.多目标的薄膜沉积体系
VI.相对于基材移动分配器
VII.使组分阵列反应的合成路线
VIII.筛选材料阵列的方法
IX.其它的实施方案
X.实施例
A.16种氧化铜薄膜材料阵列的合成
B.128种氧化铜薄膜材料阵列的合成
C.含BiSrCaCuO和YBaCuO超导材料的128种氧化铜薄膜材料阵列的合成
D.氧化钴薄膜材料阵列的合成
E.16种不同有机聚合物阵列的合成
F.不同沸石阵列的合成
G.采用喷雾沉积技术合成氧化铜化合物阵列
H.16种不同硅酸锌燐光体阵列的合成
I.采用溅射技术与光刻掩模技术结合,来合成氧化铜薄膜材料阵列。
XI.结论
I.术语
本文使用的术语具有下面的意思。
1.基材:具有刚性或半刚性表面的材料。在许多实施方案中,至少有一个基材表面基本为平的,尽管在一些实施方案中,要求将不同材料的合成区域实际上分隔开来,如微凹处、凹处、凸起部位、蚀刻槽等。在一些实施方案中,基材本身就有凹处、凸处和蚀刻槽等,形成了全部或部分合成区域。在其他的实施方案中,可在基材表面的微凹处或其他部位提供小珠或颗粒,或以这些小珠或颗粒本身作为基材。
2.预定区域:预定区域是基材上确定区域,该区域是、曾是或打算用于形成选定的材料,在此亦可称为“已知区域”、“反应区域”、“选定区域”或简称为“区域”。预定区域可以具有任何普通的形状,如线形、圆形、长方形、椭圆形、楔形等。另外,预定区域即反应部位可以是涂布了所需反应组分的小珠或颗粒。在这一实施方案中,可用标记来标明珠或颗粒,例如用蚀刻的二进制条形码来指出珠或颗粒的历史,即标明是哪些组分沉积在它上面。在一些实施方案中,预定区域即合成每一种材料的区域小于25厘米2,较好的小于10厘米2,还要好的小于5厘米2,更好的小于1厘米2,最好的小于1毫米2,最最好的小于0.5毫米2。在大部分较好的实施方案中,区域的面积约小于10,000微米2,较好的小于1,000微米2,更好的小于100微米2,最好小于10微米2
3.辐照:可选择使用的能源包括波长在10-14-104米的能源,包括如电子束照射、γ射线、X射线、紫外光、可见光、红外线、微波和无线电波。“照射”指在表面辐照。
4.组分:在此“组分”指能与其他化学物质作用生成特定材料的每一种化学物质,在此也可称为“反应物”或“反应组分”。也就是说组分或反应物是能与其他的分子作用产生新的分子即产物的分子;如在反应 中,HCl和NaOH就是组分或反应物。
5.材料:术语“材料”在此指固态化合物、扩展的固体、扩展的溶液、分子或原子簇、晶体等。
6.共价网状固体:由通过共价键以大的网状结合在一起的原子组成的固体。这样的共价网状固体包括但不限于金刚石、氮化硅、石墨、bunkmisterfullerene和不能以逐步法合成的有机聚合物。
7.离子型固体:可以看作是由相反电荷的电力吸引结合在一起的阳离子和阴离子构成的固体。这样的离子型固体包括但不限于CaF2、CdCl2、ZnCl2、NaCl2、AgF、AgCl、AgBr和尖晶石(如ZnAl2O4、MgAl2O4、FrCr2O4等)。
8.分子型固体:由原子或分子组成,通过分子间力结合在一起的固体。这样的固体包括但不限于扩展的固体、固体氖、有机化合物、合成的或有机金属(如四硫富瓦烯-四氰基醌二甲烷(TTF-TCNQ)),液体晶体(结晶硅氧烷)和蛋白质晶体。
9.无机材料:不含碳作为主要单元的材料。碳的氧化物和硫化物和金属碳化物可认为是无机材料。用本发明的方法合成的无机化合物的例子包括但不限于:
(a)金属间化合物(或中间体组成):金属间化合物组成了一类独特的金属材料,在低于临界温度下形成长程有序的晶体结构。当两种金属的原子以一定的比例结合形成不同于这两种金属的任何一种的结构的晶体时,就形成这类材料(如NiAl、CrBe2、CuZn等)。
(b)金属合金:具有金属性能的物质,由至少一种为金属的两种或多种化学元素组成的混合物。
(c)磁性合金:具有铁磁性的合金,如硅铁和铁-镍合金,其中可含有少量的其他元素(如铜、铝、铬、钼、钒等),还有铁-钴合金。
(d)陶瓷:一般陶瓷是金属氧化物、金属硼化物、金属碳化物、金属氮化物或及其混合物。陶瓷是无机的非金属、非分子型固体,包括非晶形和晶形材料。采用本发明的方法可形成和筛选具有特定性能的陶瓷材料。这类材料包括,如氧化铝、锆、碳化硅、氮化铝、氮化硅、YBa2Cu3O7-8的超导体、La2-xSrxCuO4的超导体、Bi2CaSr2Cu2O8+x的超导体、Ba1-xKxBiO3的超导体、ReBaCu超导体、铁氧体(BaFe12O19)、沸石A(Na12[(SiO2)12(ALO2)]27H2O)、软磁和永磁铁、高介电常数物质(BaTiO3)、压电材料(如钛酸锆酸铅(PZT)、NaNbO3和NaTaO3)、电光学材料(如铌酸锂(LiNbO3))、巨磁阻材料(GMR)等。“巨磁阻”材料在此指处于磁场中其电阻的变化大于不处于磁场中时电阻的5%的材料。也就是说,电阻变化百分数的绝对值大于5%,
Figure A9519654300162
10.有机材料:除了那些碳不起关键作用的化合物外(如碳酸盐),一般包括碳和氢,有或没有氧、氮或其他元素的化合物。由本发明的方法合成的有机材料的例子包括但不限于:(a)非生物有机聚合物:包含由许多重复单元组成的巨大分子的非金属物质。这样的材料可以是天然的也可以是合成的、交联的或非交联的、可以是均聚物、共聚物或较高级数聚合物(如三元聚合物等)。“非生物”表示,不包括α-氨基酸和核苷酸。“非生物的有机聚合物”特别不包括由各结构单元通过线性的、逐步偶合形的聚合物。由本发明的方法制备的聚合物的例子包括但不限于:聚氨基甲酸酯、聚酯、聚碳酸酯、聚乙烯亚胺、聚乙酸酯、聚苯乙烯、聚酰胺、聚苯胺、多炔、聚吡咯等。
11.有机金属材料:为R-M型化合物,其中碳原子直接与金属原子结合(如四乙基铅(Pb(C2H5)4)、苯基钠(C6H5Na)、二甲基锌(Zn(CH3)2)等。
12.复合材料:不同形态和组成的两种材料在宏观尺度的组合。复合材料的各组分保持其自身的特征,即尽管它们作用一致,但相互不完全溶解或融合。这样的复合材料可以是无机、有机材料或其组合。在这一定义中的材料有掺杂材料、分散金属催化剂和其他非均相固体。
II.综述
本发明提供了制备和使用在其预定区域上有材料阵列的基材的方法和设备。在此描述的本发明主要为无机材料阵列,但也可以方便地应用于其他材料的制备。根据本发明的方法制备的材料包括共价网状固体、离子型固体和分子型固体等。更具体地,本发明的方法制备的材料包括但不限于无机材料、金属间材料、金属合金、陶瓷材料、有机材料、有机金属材料、非生物有机聚合物、复合材料(如无机复合物、有机复合物或其组合)、或其他对本领域的技术人员根据本说明是显而易见的材料。
产生的有各种材料阵列的基材有广泛的用途。例如,可用这种基材筛选有可用性能的材料。因此,最好在单片基材上合成材料的阵列。通过在单片基材上合成材料阵列,可更容易地从阵列中筛选有用性能的材料。筛选的性能包括,如电、热、机械、形态、光学、磁性、化学性能等。更具体地,包括,如导电率、超导性、电阻、热导率、各向异性、硬度、结晶度、光学透明性、磁阻、磁导率、倍频、光电发射、矫顽力、介电强度、或其他对本领域的技术人员根据本说明是显而易见的有用性能。很重要的一点是通过合成和筛选各种材料组成的阵列能鉴别出具有新的物理性能的新的组合物。随后可以大规模地制备被发现具有可用性能的任何材料。对本领域的技术人员来说很明显的是,用本发明的方法鉴别出有用的材料,就可以采用各种不同的方法大规模地制备出具有基本相同结构和性能的这种材料。
一般,通过在基材的预定区域相继地提供材料的不同组分,并同时使各组分反应形成至少两种材料,来制备材料阵列。在一个实施方案中,在基材的选定的第一区域提供第一材料的第一组分,在同一基材的选定的第二区域提供第二材料的第一组分。之后,在基材的第一区域提供第一材料的第二组分和在基材的第二区域提供第二材料的第二组分。可以均一的或梯度模式提供每一组分,以在一个预定区域内产生单一的化学计量或多种的化学计量。而且,反应物可以非晶形膜、外延膜、或点阵或超点阵结构的形式提供。对其他组分可重复这一过程,以在基材的预定即已知部位形成巨大的组分阵列。之后,各组分同时反应形成至少两种材料。按下面所述,可采用任何不同的供料技术在基材的预定区域相继地或同时提供各种组分。
本发明的方法中,提供到基材的预定区域的组分可采用许多不同的合成路线进行反应。例如,组分可通过溶胶-凝胶法、热、红外或微波加热法、煅烧、烧结或退火法、水热法、熔流法、通过溶剂蒸发的结晶法,采用如溶液基合成技术、光化学技术、聚合反应技术、模板控制合成技术、外延生长技术进行反应。其他可用于所需组分同时反应的技术对本领域的技术人员是显而易见的。
由于反应是并行地进行,所以减少了反应步骤。而且,可以分别控制不同反应区域的反应条件。可以改变基材上不同反应区域的反应物数量、反应溶剂、反应温度、反应时间、反应停止的速度、反应物沉积的顺序等。因此,例如第一材料的第一组分与第二材料的第一组分可以相同或不同。如果第一材料的第一组分与第二材料的第一组分相同,可以相同或不同的量在基材的第一和第二区域提供这一组分。对第一材料的第二组分和第二材料的第二组分也如此。与第一和第二材料的第一组分的情况相同,第一材料的第二组分和第二材料的第二组分也可以相同或不同,如果相同,则可以相同或不同的量在基材的第一和第二区域提供这一组分。而且,在基材的预定区域内,可以均一或梯度方式提供组分。另外,如果以相同的浓度在基材的第一和第二区域提供相同的组分,则可使各个反应区域的反应条件(如反应温度、反应时间)互不相同。
在本发明的一个实施方案中,提供了形成至少两种不同材料的阵列的方法,其中以基本相同的浓度在第一和第二基材的的各反应区域提供基本相同的反应组分,之后在宽的组合物阵列中,使在第一组基材的组分按第一组反应条件,在第二组基材的组分按第二组反应条件反应。采用这种方法,可研究和优化各个反应参数的效果。可改变的反应参数包括,如反应物数量、反应溶剂、反应温度、反应时间、进行反应时的压力、进行反应时的气氛、反应停止的速度、反应物沉积的顺序等。其他可改变的反应参数对本领域的技术人员是显而易见的。
必须防止在各个反应区域的反应组分迁移到邻近的反应区域。最简单的方法是,在基材的反应区域之间留有足够的空间,使各种反应组分在反应区域之间不互扩散。而且,也可通过在各个反应区域之间提供合适的障碍来确保这点。一种方法是由机械装置或物理结构来限定基材上的反应区域。例如,用壁或其他物理障碍来防止在各自反应区域的反应组分迁移到邻近的反应区域。进行合成后可以除去这种壁或物理障碍。本领域的技术人员会了解有时在筛选材料阵列前除去壁或物理障碍较为有利。
另一种方法是,在各个反应区域的周围涂布疏水性材料。这样的材料可以防止水溶液(和其他某些极性溶液)迁移到基材的邻近区域。当然,当使用非水或非极性溶剂时,需要不同的表面涂料。而且通过选择合适的材料(如基材、疏水性涂料、反应物溶剂等),可以控制液滴与基材表面的接触角。由于要求反应区域的周围不被反应区域内的溶液润湿,所以需要大的接触角。
本发明的供料系统,可在每一反应区域提供少量的、精确计量的各种反应组分。可采用各种供料技术或其与各种掩模技术结合来完成。例如,采用表面沉积技术与物理掩模或光刻技术结合,可在基材的选择区域提供各种反应组分。更具体地,可采用溅射系统、喷射技术、激光消融技术、电子束或热蒸发、离子移植或掺杂技术、化学蒸汽沉积(CVD)和其他用于集成电路和外延生长材料的技术,在基材的选择区域沉积高度均匀的各种反应组分层。也可通过改变掩模、目标和/或基材的相对几何形状,在基材的每一预定区域或在所有预定区域内沉积梯度模式的反应组分。这样的表面沉积技术一般与掩模技术结合,以确保仅在所需的反应区域提供反应组分。
除了前面所述的,还可以液滴或粉末的形式由分配器将各种反应组分沉积在所需的反应区域。例如,普通的微量移液管可适用于从毛细管分配5毫微升或更小体积的液滴。当使用掩模时,这样的液滴适合于直径300微米或更小的反应区域。分配器也可以是普通的喷墨印刷机中所用的类型。这样的喷墨分配系统包括,如脉冲压力型分配系统、气泡喷射型分配系统和缝隙喷射型分配系统。这些喷墨分配系统能够提供体积小至5微微升的液滴。而且,可以手动或采用机器人技术自动控制这样的分配系统。
可用各种普通的系统使本发明的分配器对准合适的反应区域。广泛用于微电子器件制造和测试领域的这样的系统可以5,000液滴/秒的速度在各反应区域提供反应组分。这样的系统的平移精度(X-Y)比1微米好得多。可由本领域已知的方式,校正这样的分配器支架相对于基材的位置。例如,利用基材表面上一个或两个参考点,用“推测定位”法就可以确定基材上的每一反应区域。采用电容、电阻或光的传感器可精确地鉴别在任何这样的系统中的参考标记。也可使用采用了照相机的“观察”系统。
本发明的另一个实施方案,通过类似于在磁性和光储存介质领域使用的系统,使分配器对准所需的反应区域。例如,可由盘形基材上的径迹和扇区部位来鉴别想要沉积反应组分的反应区域。在旋转盘形基材的同时将分配器移动到合适的径迹上。当合适的反应区域位于分配器下面时,就滴加反应溶液。
在一些实施方案中,由基材上的微凹处进一步确定反应区域。当传感头或其他传感装置必须接触或沿基材表面滑动时,这点更为有利。微凹处也可作为将分配器引向所需反应区域的鉴别标志。
III.分隔基材上的反应区域
在较好的实施方案中,用本发明的方法在一个基材的表面制备各种材料的阵列。可使用各种基材。基材可以是有机、无机、生物、非生物或其组合,可以是颗粒、线、沉淀物、凝胶、片、管、球、容器、毛细管、垫片、薄片、膜、板、载片等。基材可以是任何形状,如盘、正方形、球、圆等。基材最好是平的,但也可以有各种表面结构。例如,基材上可含有能进行各种材料的合成的凸起和压陷。基材和其表面最好形成能在其上进行所述反应的硬质支撑体。基材可以是各种材料,如聚合物、塑料、派热克斯玻璃、石英、树脂、硅、二氧化硅或二氧化硅基材料、碳、金属、无机玻璃、无机晶体、膜等。其他的基材对本领域的技术人员是显而易见的。基材的表面可由与基材相同的材料组成,或由不同的材料组成即在基材上涂布不同的材料。而且,基材表面可含有吸附剂(如纤维素),在其上提供所需组分。最合适的基材和基材表面取决于合成的材料的类型,其选择对本领域的技术人员是显而易见的。
在一些实施方案中,基材上合成每一材料的预定区域的面积小于约25厘米2,较好的小于10厘米2,更好的小于1厘米2,还好的小于1毫米2,最好的小于0.5毫米2。在大部分较好的实施方案中,区域的面积小于10,000微米2,较好的小于1,000微米2,更好的小于100微米2,最好的小于10微米2
在较好的实施方案中,单片基材上有至少10种不同的材料,较好的至少有100种不同的材料合成于其上。在最好的实施方案中,一个基材上有多于103、104、105、106或更多的材料合成于其上。在一些实施方案中,重复提供过程以提供少至两种组分,尽管这种方法可方便地形成有3、4、5、6、7、8或更多组分的材料。单位面积上的区域密度应大于0.04区域/厘米2,较好的大于0.1区域/厘米2,更好的大于1区域/厘米2,还好的大于10区域/厘米2,最好的大于100区域/厘米2。在大部分较好的实施方案中,单位面积的区域密度为1,000区域/厘米2,较好的为10,000区域/厘米2,更好的为100,000区域/厘米2,最好的为10,000,000区域/厘米2
其他实施方案中,基材可以是各种小球或颗粒(以后称“小球”)。所用小球的数量取决于想要合成的材料的数量,可从2个到无数个小球。在这一实施方案中,每个小球均匀涂布了所需反应组分,然后进行反应。例如用分别装有特定反应组分溶液的许多容器可以很方便地做到这点。根据用于产生材料阵列的组分数量将小球平均划分为相应的组。每组小球投入一个容器,在每个小球表面形成溶液中一个组分的涂层。将小球集中到一组,加热小球,在每一个小球表面产生干的组分层。重复几次这一过程,直到在每一个小球表面产生不同反应组分的阵列。一旦所需组分沉积到小球上,就让小球反应形成材料的阵列。所有的小球可在相同或不同的反应条件下进行反应。可采用质谱法测定组分在各小球上沉积的情况。也可在每一个小球上带有能标明组分沉积情况和化学计量的标记。标记可以是,如蚀刻在小球表面的二元标记,以便能用分光镜技术看到标记。与其上有材料阵列的单片基材的情况相同,可从各小球或颗粒中筛选出具有可用性能的材料。
更具体地,如果使用许多小球作为基材,产生基于铋、铜、钙和锶的材料阵列,例如可使用分别含有Bi(NO3)3、Cu(NO3)3、Ca(NO3)3和Sr(NO3)3的四个容器。将一部分小球加到含有Bi(NO3)3溶液的容器中;一部分加到Cu(NO3)3溶液中;一部分加到含Ca(NO3)3溶液的容器中;最后一部分加到含Sr(NO3)3溶液的容器中。一旦小球涂布了容器中的反应组分后,从容器中取出小球、干燥、蚀刻、收集到一组,之后再划分小球并加入到含有上面的反应组分的容器中。对其他附加的反应组分可任选重复这一过程,直到在小球上形成巨大的组分阵列。可对这技术进行各种修改,以产生巨大的小球阵列,而小球上的组分构成巨大的阵列,这点对本领域的技术人员是显而易见的。例如,一些小球仅涂布两种组分,其他可涂布两种以上的组分。另外,一些小球可多次涂布同一组分,而其他小球仅涂布一次该组分。
如上面所述,基材最好是平的,但可以是各种形状。不管基材表面的形状如何,必要的是要防止各个反应区域的反应组分迁移到邻近的反应区域。最简单的方法是使基材上各个反应区域之间留有足够的空间,使各种组分在反应区域之间不会互扩散。而且,可通过在各个反应区域之间提供合适的障碍来确保这点。一种方法是由机械装置或物理结构来限定基材上的反应区域。例如,用壁或其他物理障碍来防止在各反应区域的反应组分迁移到邻近的反应区域。还可使用微凹处或其他凹处来防止在各个反应区域的反应组分迁移到邻近的反应区域。
如果本发明使用的基材含有微凹或其他凹处,微凹处必须很小,以便能紧密集积在基材上。微凹处的直径应小于1毫米,较好的小于0.5毫米,更好的小于10,000微米,还要好的小于100微米,最好的小于25微米。
可通过各种技术,包括激光、压制或蚀刻技术形成具有这些特点的微凹。例如,通过一般用于制备高密度光盘的有刻痕的“主盘”来压制基材,可提供合适的微凹的基材表面。另外,可采用使用光刻的各向同性或各向异性的蚀刻技术。在这一技术中,需采用掩模来限定基材的反应区域。通过掩模照射基材后,在选择区域除去光敏抗蚀剂,就确定了基材上反应区域的排列。采用标准等离子体或湿蚀刻技术在基材上刻出微凹处。如果基材是玻璃或硅材料,合适的湿蚀刻材料包括氟化氢或其他普通的用于半导体器件制造的湿蚀刻剂。也可以使用半导体器件制造中使用的合适的等离子体蚀刻剂。这样的等离子体蚀刻剂包括含卤素气体和惰性气体和混合物。尽管在有些条件下产生的深度可达到50微米,一般,等离子体蚀刻产生的微凹其深度小于10微米。
制备合适的微凹表面的另一种方法是使用光化学可蚀刻的玻璃或聚合物片。例如,可购自Corning玻璃公司的被称作“FOTOFORM”的光化学可蚀刻玻璃。通过掩模照射后,该玻璃会溶解在水溶液中。之后,简单地用合适的溶液清洗曝光后的玻璃,就可形成微凹表面。用这种材料,可制成深度与直径比为10∶1或更大的规整的微凹,深度可达到0.1英寸。在250微米厚的玻璃层上可制出直径为25微米的微凹。而且,带微凹的表面可含有吸附剂(如纤维素),在其上提供所需的组分。
即使采用了微凹表面,仍很重要的是要确保在反应区域参数外的基材不被润湿。最简单的方法是使基材上各个反应区域之间留有足够的空间,使各种组分在反应区域之间不会互扩散。另外,可采用其他技术,以控制影响润湿的物理相互作用,从而确保各个反应区域的溶液不润湿周围的表面和污染其他反应区域。液滴是否会润湿固体表面受三种张力的控制:液体-空气界面的表面张力,固体-液体界面的面际张力和固体-空气界面的表面张力。如果液体-空气和液体-固体的张力之和大于固体-空气张力,液滴就会形成一个珠(这一现象称作“形成透镜”)。另一方面,如果液体-空气和液体-固体的张力之和小于固体-空气张力,液滴就不会限定在固定位置,而在表面铺展。即使表面张力不会使液滴在表面铺展,但接触或润湿角(即液滴边缘与固体基材之间的角度)可能会足够小,使液滴覆盖相当大的面积(可能延伸到给定的反应区域外)。而且,小的润湿角度会形成由液珠铺展开来的薄的“前体膜”(约10-20埃)。大的润湿角度提供“更高”的液珠,液珠在基材上占据较小的表面积,并且不形成前体膜。具体地说,如果润湿角度大于90°,就不会形成前体膜。
控制化学组成并控制基材表面局部表面自由能的方法包括本领域所了解的各种技术。可采用化学蒸汽沉积技术和其他集成电路制造中使用的技术,在基材选择的区域沉积高度均匀的层。如果使用含水反应溶液,在反应区域内的表面可以是亲水性的,而反应区域周围的表面可以是疏水性的。因此,改变基材各个部位的表面化学,就能控制表面自由能即反应溶液液滴的接触角。以这种方式,可限定在基材表面的反应区域阵列。
而且,如前所述,通过在基材的反应区域之间留有足够的空间,使各种组分不会在反应区域之间互扩散,就能防止在各个反应区域的反应组分迁移到邻近的反应区域。
IV.提供反应组分的方法
本发明的供料系统中,可在每一个反应区域提供少量和精确计量的每一种反应组分。可采用各种供料技术或与各种物理掩模或光刻技术结合来完成。适用于本发明的方法的供料技术一般被分为使用薄膜沉积技术的方法和使用分配器的方法。
A.采用薄膜沉积技术的供料方法
薄膜沉积技术与物理掩模或光刻技术结合可用于在基材的预定区域沉积各种反应物的薄膜。这样的薄膜沉积技术一般分成下面四类:蒸发法,辉光放电法,气相化学法和液相化学技术。这些类中包括,如溅射技术、喷射技术、激光消融技术、电子束或热蒸发技术、离子移植或掺杂技术、化学蒸汽沉积技术和其他在集成电路制造中使用的技术。所有这些技术都可用于在基材的选择的区域沉积高度均匀的各种反应物层即薄膜。而且,通过调整掩模、供料源和/或基材的相对形状,采用这样的薄膜沉积技术可在基材的每个反应区域或所有的反应区域,形成均匀的梯度。可用于本发明的方法中的各种薄膜沉积技术的综述可见于《薄膜沉积方法和技术手册》,Noyes Publication(1988),在此引用作为参考。
采用蒸发法与物理掩模技术结合,可在基材上沉积各种反应物的薄膜。在热蒸发和真空蒸发法中,一般依次有下面的步骤:(1)使目标物沸腾或升华产生蒸汽;(2)将蒸汽从源转移到基材;(3)蒸汽在基材表面凝结为固体膜。蒸发法中使用的蒸发剂即目标物有特定范围的化学反应活性和蒸汽压,因此可使用很宽范围的各种蒸发源来蒸发目标物。这样的源包括电阻加热的丝、电子束;由传导、辐射或rf-感应加热的坩埚;电弧、爆炸线和激光。本发明较好的实施方案中,以激光、丝、电子束或离子束作为源的蒸发法进行薄膜沉积。在更好的实施的方案中,由激光作为源进行蒸发薄膜沉积。在这样的激光消融技术中,将能引起蒸发具有足够功率的准分子激光器或YAG激光器的光通过观察窗口引导到保持在真空下的靶材料。靶材料蒸发,将蒸汽从源移到基材,蒸汽在基材表面凝结为固体的薄膜。采用上面的蒸发法,通过不同的物理掩模,进行后续的沉积可在基材上形成供并行合成的反应物阵旬。
分子束外延(MBE)是用于生长外延膜的蒸发法。这种方法中,从分开的诺森隙透源小池(在有冷却护罩的炉子中的深的坩埚)缓慢蒸发出薄膜的原子或分子组成,至保持在适合于化学反应、外延和过量反应物再蒸发的温度下的基材上,从而在单晶基材上形成膜。诺森隙透源小池可产生指向加热的基材(一般是硅或砷化镓)的直径相当小的原子或分子束。在源池和基材之间插入快速开关。通过控制这些开关,可长出超点阵物,超点阵物具有精确控制的均匀性、晶格匹配、组成、掺杂剂浓度、厚度和直至原子层水平的界面。
除了蒸发法外,采用辉光放电法与物理掩模技术结合,也可以在基材上沉积各种反应物薄膜。最基本和最著名的这种方法是溅射法即由轰击离子将动量传递给表面原子,从电极表面放出表面原子。溅射或溅射沉积是这些方法的领域的技术人员使用的术语,包括许多方法,这些方法均可用于本发明的方法中。这样的方法之一是RF/DC辉光放电等离子溅射法。这一方法中,通过加在阳极和阴极之间的高RF或DC电压,产生激励离子的等离子体。等离子体的激励离子轰击靶,放出原子沉积在基材上。离子束溅射是溅射方法的另一个例子,它可用于在基材上沉积各种反应物薄膜。离子束溅射与前面的方法相似,不同之处是由离子源而不是等离子体提供离子。对本领域的技术人员显而易见的是,其他溅射技术(如二极管溅射、反应溅射等)和其他辉光放电法都可用于本发明的方法,用以在基材上沉积薄膜。通过不同物理掩模,采用溅射或其他辉光放电技术进行后续依次的沉积可在基材上形成供并行合成的反应物阵列。
除了蒸发法和溅射技术外,可采用化学蒸汽沉积(CVD)技术与物理掩模技术结合,在基材上沉积各种反应物的薄膜。CVD通过用热、等离子体、紫外线或其他能源、或能源的结合,分解气态化学品,形成稳定的固体。基于通过电磁辐射(通常为短波紫外线)来活化气体或蒸汽中的反应物的光加强CVD,和基于通过等离子体活化气体或蒸汽中反应物的等离子体辅助CVD是两种特别有用的化学蒸汽沉积技术。通过不同物理掩模,采用CVD技术进行后续的沉积,可在基材上形成供并行合成的反应物阵列。
除了蒸发技术、溅射技术和CVD外,可采用许多不同的机械技术与物理掩模技术结合,在基材上沉积各种反应物的薄膜。这样的机械技术包括,如喷涂、旋涂(spinning)、蘸涂、漏滴、淋涂、辊涂、压力幕涂、刷涂等。其中,喷涂和旋涂特别有用。可用于沉积薄膜的喷涂机包括超声波喷嘴喷涂机、空气雾化喷嘴喷涂机和雾化喷嘴喷涂机。超声波喷涂机中,盘形陶瓷压电换能器将电能转化为机械能。该换能器接受来自电源的高频信号形式的电输入,电源作用是振荡器/放大器的组合。空气雾化喷涂机中,喷嘴将空气和液流混合,以产生完全雾化的喷涂液。雾化喷涂机中,喷嘴运用加压液体的能量来雾化液体,从而产生喷涂液。通过不同物理掩模,采用机械技术,进行后续的沉积可在基材上形成用于并行合成的反应物阵列。
除了上面的技术外,可采用半导体工业熟知的光刻技术。这些技术的综述可见于,如Sze,VLSI Technology,McGraw-Hill(1983)和Mead等人的Introduction toVLSI Systems,Addison-Wesley(1980),在此引用作为参考。可采用本领域的技术人员了解的许多不同的光刻技术。例如,在一个实施方案中,将光敏抗蚀剂沉积在基材表面;选择性地使光敏抗蚀剂曝光即光解;除去光解的或曝光的光敏抗蚀剂;将反应物沉积在基材露出的区域;再除去留下的未光解的光敏抗蚀剂。另外,当使用负性光敏抗蚀剂时,将光敏抗蚀剂沉积在基材表面;使光敏抗蚀剂选择地曝光即光解;除去未光解的光敏抗蚀剂;将反应物沉积在基材上露出的区域;再除去留下的光敏抗蚀剂。在另一个实施方案中,采用如旋转(spin-on)或旋转涂布(spin-coating)技术在基材上沉积反应物;在反应物的上层沉积光敏抗蚀剂;使光敏抗蚀剂选择性曝光即光解;从曝光的区域除去光敏抗蚀剂;蚀刻露出的区域,以从那些区域除去反应物;除去留下的未光解的光敏抗蚀剂。与上面的实施方案相同,可用负性光敏抗蚀剂取代正的光敏抗蚀剂。可重复这样的光刻技术,以在基材上形成用于并行合成的反应物阵列。
本领域的技术人员应能很容易地理解,以上的沉积技术仅是为了说明而不是限制反应物以薄膜形式在基材上沉积的方法。也可以使用本领域的技术人员了解和采用的其他沉积技术。
图1和图2说明了可与前面提到的薄膜沉积技术相结合的物理掩模技术。更具体地说,图1说明了本发明的一个实施方案,其中给出了基材2的剖面图。掩模8可以是任何材料,包括如聚合物、塑料、树脂、硅、金属、无机玻璃等。其他合适的掩模材料对本领域的技术人员是显而易见的。如图1所示,掩模靠近、成象在基材表面或直接与基材表面接触。掩模上的“敞开”部分对应于基材上将提供反应物的区域。掩模上的敞开部分可为各种不同的大小和形状。一般,敞开部分是圆形、长方形、正方形。然而,也可以是长条形从基材一端到另一端提供长条形的组分。这种“长条形”排列在有些情况下有利于材料的筛选和检测,如发现和优化热电材料的情况。下面说明在一定时间曝光二分之一掩模的普通的二元掩模技术。但除普通二元掩模技术外的其他掩模技术也可用于本发明的方法,这点对本领域的技术人员来说是显而易见的。
如图2A所示,基材2有区域22、24、26、28、30、32、34、36、38、40、42、44、46、48、50和52。如图2B所示,掩盖住区域38、40、42、44、46、48、50和52,采用喷涂或溅射技术以薄膜形式向喷出的区域提供组分A,产生的结构如图2C所示。之后,如图2D所示,改变掩模的位置,掩盖住区域26、28、34、、36、42、44、50和52,再以薄膜形式向露出的区域提供组分B,产生的结构如图2E所示。
也可以不重新放置第一掩模,而采用第二掩模,实际上,常需要多级掩模来产生所需的反应物阵列。如果采用多级掩盖步骤,需采用普通的对准技术进行掩模的对准,用对准记号(未给出)将后继的掩模精确地盖在以前步骤形成的图形上,或采用更复杂的技术。而且,希望在露出的区域之间提供分隔,以计算对准的公差并确保反应部位间的分隔,以防止交叉污染。另外,本领域的技术人员应理解在所需反应区域用于提供各种反应物的供料技术可以按反应物不同而不同,但最常用的是对各种反应物采用相同的沉积技术。
在基材上提供了组分B后,可采用不同于提供组分A和B的掩模,如图2F所示,掩盖区域30、32、34、36、46、48、50和52。以薄膜形式向露出的区域提供组分C,产生的结构如图2G所示。之后,如图2H所示,掩盖区域24、28、32、36、40、44、48和52,再以薄膜形式向露出的区域提供组分D,产生的结构如图2I所示。一旦在基材的合适的预定区域提供了所需的组分,可采用不同的合成路线使组分同时反应形成至少包括两种材料的阵列。
如上面所提到的,在本发明中可采用除普通二元掩模技术外的掩模技术和前面提到的薄膜沉积技术。例如,图3说明了可用于产生材料阵列的掩模技术,每种材料包含三种不同组分,是由四种不同组分的基本组形成的。在非二元技术中,对每种组分使用不同的掩模。如图3A所示,基材2有区域54、56、58和60。如图3B所示,掩盖区域56,例如采用喷涂或溅涂技术以薄膜形式向露出的区域提供组分A,产生的结构如图3C所示。之后如图3D所示,使用第二掩模来掩盖区域54,再以薄膜形式向露出的区域提供组分B,产生的结构如图3E所示。然后,如图3F所示,用第三掩模来掩盖区域58,再以薄膜形式向露出的区域提供组分C,产生的结构如图3G。最后,如图3H所示,用第四掩模来掩盖区域60,并以薄膜形式向露出的区域提供组分D,产生分结构如图3I所示。一旦在基材的合适的预定区域提供了所需的组分,可采用不同的合成路线使组分同时反应形成包含四种不同材料的阵列。
图4说明了用于产生材料阵列的另一种掩模技术,每种材料包含三种不同组分,是由六种不同组分的基本组形成的。如图4A所示,基材2有区域62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98和100。如图4B所示,掩盖区域64、68、72、76、80、84、88、92、96和100,采用喷涂或溅涂技术以薄膜形式向露出的区域提供组分A,产生的结构如图4C所示。之后,如图4D所示,使用第二掩模来掩盖区域62、66、72、74、80、82、88、90、96和98,再在以薄膜形式向露出的区域提供组分B,产生的结构如图4E所示。然后,然后如图4F所示,用第三掩模来掩盖区域64、66、70、74、78、82、86、92、96、和100,再以薄膜形式向露出的区域提供组分C,产生的结构如图4G所示。然后如图4H所示,以第四掩模来掩盖区域64、66、70、76、78、84、88、90、94和98,再以薄膜形式向露出的区域提供组分D,产生的结构如图4I所示。然后如图4J所示,以第五掩模来掩盖区域62、68、70、74、80、84、86、90、94和100,再以薄膜形式向露出的区域提供组分E,产生的结构如图4K所示。最后,如图4L所示,以第六掩模来掩盖区域62、68、72、76、78、82、86、92、94和98,再以薄膜形式向露出的区域提供组分F,产生的结构如图4M所示。一旦在基材的合适的预定区域提供了所需的组分,可采用不同的合成路线使组分同时反应形成包含二十种不同材料的阵列。
在使前述的组分反应前,可以化学计量的梯度在基材的预定区域提供附加的反应组分,这点对本领域的技术人员来说是显而易见的。例如,一旦在基材的合适的预定区域提供了六种组分,可横跨整个基材或部分基材上以梯度的形式提供第七种组分。例如,可通过合适掩模从左到右沉积约100埃-1000埃厚度的梯度层的第七种组分。之后,可采用不同的合成路线使组分同时反应形成不同材料的阵列。
另外,对本领域的技术人员来说很明显的是,可采用其它的掩模技术来产生材料的阵列,每种材料包含三种或更多的组分,是由四种或更多种材料的基本组形成的。实际上,本发明提供了一种可用以产生组合的掩模图形的普遍方法,这些图形可用于进行涉及不同组的反应组分的实验,而各组中的成员的相互关系使它们之间最好不发生相互作用。在这种方法中,使用一个向量来代表每一个组分子群。例如,由一个向量Am=[A1,A2,A3,....Am]=[La,Y,Ce,....Lu]代表如镧系元素的组分子群,其中m为1-p,p是子群中的元的总数。应注意,组分可以任何顺序排列。而且,如果子群中的一个特别组分以不同的化学计量量存在,则向量代表了每一个不同的化学计量量(如A1.2相应于不同于A1.1的化学计量量)。
一旦由一个向量代表组分的每一个子群时,可形成向量的并矢。例如,如果有两个组分的子群,如子群A和子群B,代表组分子群A的向量可写成Am=[A1,A2,A3,....Am],代表组分子群B的向量可写成Bn=[B1,B2,B3,....Bn]。这种两个向量的并矢可写成AmBn。这一并矢等于由下式说明的二级张量。 A 1 B 1 A 1 B 1 . . . A 1 B n A 2 B 1 A 2 B 2 . . . A 2 B n A m B 1 A m B 2 . . . A m B n
向量Am和Bn的并矢产生子群A中组分与子群B中组分之间的所有组合。如果以向量的形式写出上面的并矢即AmBn=[A1B1,A1B2,....A1Bn,A2B1,A2B2,....A2Bn,AmB1,AmB2,....AmBn],并且,在这一向量与代表子群C的向量Ck=[C1,C2,....Ck]之间可形成另一个并矢,形成下面的含有子群A、子群B和子群C之间的每一个三重组合的矩阵。
因此,由给出的子群Am,Bn,Ck,Dj,....,采用下面的方式可产生阵列格式的由每一组的一个组分构成的所有组合。
A.阵列中,每一个子群可沿阵列的行或列沉积。因此,必须选择相应于行的子群和相应于列的子群。子群的选择不会改变阵列中点的数量,但会影响阵列的形状。例如,在不改变阵列中点的总数的条件下,可得到4×4的阵列和1×16的阵列。一般,图形的选择取决于集合所能取的结构。
B.该方法的其余部分是按上面说明的对子群A、B和C所做的那样,在行集和列集内形成并矢。应当注意,在形成下一个并矢之前,每个阵列形成的并矢应先转换为矢量形式。阵列内会有一点,在该处行集和列集中都只有一个向量。这两个向量可分别称为行向量和列向量。当行向量与列向量之间构成并矢时,所得的阵列就是组合的集合的最终格式。
C.在任一矢量或阵列内各组分的次序对结果并无影响,但会改变产生相同结果所需的掩模图形。如果在上述应用子群A、B和C的例子中,最终的组合阵列的排列如前,那么只需要沿行或列的条形掩模就可产生组合的集合。
在非数学的术语中,选择子群要求子群中的所有元素横贯集合的行或列,并列沉积。例如,对四个元素的组,可沿行或列将阵列四等分,每一种组分沉积在一个四分之一中。如果行或列例如已经三等分,每个三分之一将再四等分,所有的四个组分将平均沉积在较大的每个三分之一的等分区中。
对本领域的技术人员来说很明显的是以上的方法可用于,对给出的一组预定的组分,产生供任何试验用的组合掩模图形。
B.用分配器供料
除了上述的供料技术外,可采用分配器在一个基材上以液滴或粉末的形式产生各种反应组分的组合。如上所述,可采用市售的微量移液管装置,从毛细管分配5毫微升或更小体积的液滴。当采用非润湿掩模时,这样的液滴适合于直径为300微米或更小的反应区域。在一些实施方案中,如下面所述的,在沉积反应溶液前,微量移液管精确地定位于反应区域的上方。
在另一个较好的上述方案中,本发明采用了一套溶液沉积装置,它类似于普通的在喷墨印刷工业中使用的装置。这样的喷墨分配器包括脉冲压力型、气泡喷射型和缝隙喷射型。在脉冲压力型喷墨分配器中,根据压电器件所施加的压力变化,从喷嘴喷射出印刷墨水。在气泡喷射型喷墨分配器中,由嵌在喷嘴中的电阻装置产生的热来产生气泡,利用气泡的膨胀的力喷射印刷墨水。在缝隙喷射型喷墨分配器中,在缝隙状的小孔中装入印刷墨水,在小孔内,有记录电极对准象素,在记录电极与置于记录纸后面的反电极之间加上DC电压脉冲。在这一系统内,在记录电极顶端周围的印刷墨水是带电荷的,墨水靠静电力喷射到记录纸上,在纸上记录一点。
通过简单地用含反应物的溶液或含反应物的粉末代替墨水,对这样的喷墨印刷机做很小的改动就可应用。例如,在此作为参考的Wong等人的欧洲专利260965,描述了使用脉冲压力型喷墨打印机将抗体施加于固体基质。在这一方法中,迫使含有抗体的溶液通过一个小孔喷嘴,喷嘴是振动的,其振动方式会将溶液分散成不连续的液滴。随后让液滴通过电场使其带电,并偏转至基质材料上。
为说明的目的,普通的脉冲压力式的墨水滴印刷机包括在压力下装墨水的储存器。墨水储存器装有一个连接到喷嘴的管子。用机电换能器使喷嘴以合适的高频振动。喷嘴的实际结构有许多种,包括由外部换能器振动的拉伸玻璃管、由外部换能器(如压电晶体)振动的金属管、或由磁致伸缩方式振动的磁致伸缩金属管。墨水以液流方式从喷嘴喷出,液流很快分成不连续的液滴。靠近喷嘴处可有一个电极使液滴带电。
图5所示为可用于本发明的脉冲压力型墨水分配器的示意图(如在美国专利3,281,860和4,121,222中所述,在此作为参考)。这一装置包括含有在压力下的溶液的容器210。管212一端连接到储存器210,另一端连接到金属喷嘴242。喷嘴置于压电晶体240的孔中。金属管与压电晶体的端部相吻合。将管和压电晶体焊接在一起,形成永久的防水连接。晶体和管的吻合端用一个垫片244覆盖,244称作为小孔垫片。这种垫片上有一个穿透的开口246,溶液在压力下由此射出。在金属管242外部和压电晶体外部之间连接着振荡源218。结构采用气密密封以保护组分不受电化学和大气侵蚀。
压电晶体基本上在振荡源的频率下振动,使管和喷嘴振动以使溶液流分成液滴246。在喷嘴与充电的圆柱体之间连接了与振荡源同步的信号源224。因此,每个基本上质量相同的液滴接受了电荷,其大小取决于源224和充电圆柱体226上所加信号的大小。
通过带电圆柱体后的带电液滴通过在230和232两个板之间建立的电场,该两板连接到电场电势源234。由于电场和每个液滴的电荷作用,根据液滴所带的电荷,液滴会偏离两板之间的中心线。因此,当液滴落到可以是移动的书写介质236上时,就在书写介质上产生代表信号中的信息的沉积图形。
尽管已详细地描述了脉冲压力型喷墨印刷机,对本领域的技术人员很清楚的是只要做很小的修改,就可以采用气泡喷射型和缝隙喷射型喷墨印刷机,在基材的预定区域提供反应组分。而且,尽管在较好的实施方案中,上面的讨论指的是一个喷嘴,但可以使用有多个喷嘴的喷墨印刷机,在基材的一个预定区域或多个预定区域提供多种反应组分。另外,在喷墨印刷机领域的改进也可用于本发明的方法中。
在另外的实施方案中,用电泳泵将反应溶液从储存器提供到基材。在这样的装置中,由很细的毛细管将反应物储存器与分配器的喷嘴连接起来。在毛细管的两端,设有电极以提供电势差。如本领域所了解的,化学物质在电泳介质的电势梯度中的运动速度受到各种物理性质的控制,包括电荷密度、以及迁移的化学物质的大小和形状、以及迁移介质本身的物理和化学性质。在合适的电势梯度、毛细管尺寸和迁移介质的流变学的条件下,在毛细管内将建立流体动力学流动。因此,可由泵将含所需反应物的大量流体从储存器送到基材。通过适当调节电泳泵喷嘴相对于基材的位置,可将反应溶液精确地提供到基材的预定反应区域。
采用上面所述的分配系统,可相继地或同时将各反应物提供到基材的预定区域。在目前较好的实施方案中,在基材的一个预定区域或多个预定区域同时提供反应物。例如,用有两个喷嘴的喷墨分配器可同时在基材的一个预定区域提供两种不同的反应物。也可用同样的分散混合器,在基材的两个不同预定区域同时提供一种反应物。在这种情况下,可以提供相同的反应物或提供两种不同的反应物。如果在基材两个预定区域提供相同的反应物,可以相同或不同的量提供。同样,例如采用有八个喷嘴的喷墨分配器,可在基材的一个预定区域同时提供八种不同的反应物,或者在基材的八个不同预定区域同时提供八种反应物(相同或不同)。
VI.多靶薄膜沉积体系
进行前述的薄膜沉积技术的反应体系,可有许多种,而在很大程度上取决于所采用的薄膜沉积技术。本发明提供了许多可用于进行本发明的方法的多靶薄膜沉积体系。在此所揭示的这一体系的许多实施方案和变动对本领域的技术人员来说是显而易见的。
A.有回转盘的溅射系统
图6说明了用于本发明的方法的有八个RF磁控管溅射枪的系统的例子。这一系统包括八个RF磁控管溅射枪110,每一个中含有所需的一种反应组分。八个RF磁控管溅射枪置于盘112上方约2-5英寸处,盘112上有八个掩盖的图形114和八个薄膜厚度监测器116。在这一体系中,八个RF磁控管溅射枪和盘是固定的。基材118连接在基材控制器120上,120可以作直线和旋转运动,使基材与特定的所需掩模吻合,当溅射开始时,使基材与掩模接触。依次让各组分通过各自的掩模沉积,在基材上产生八种组分的各种组合。整个系统是在真空下使用的。
也可能让其上含有八个掩模的盘112作旋转运动,提供使八个反应组分中的任一组分与任意一个掩模114匹配所需的灵活性。这种灵活性,有利于将盘112的容量增加到多于八个掩模114,使一种反应组分可通过多个掩模沉积。当需要在集合的不同点获得反应组分的不同的薄膜厚度时,这种方法特别有用。另外,这系统可从极坐标系统转化成X-Y坐标系统,其中溅射枪、掩模和基材成直角配置,
B.有掩模盒的溅射系统
图7说明了组合溅射系统的另一种设计。这系统包括八个RF磁控管溅射枪110,每一个含有所需的一种反应组分,从反应腔的边上插入组成一圈。基材接到可直线和旋转运动的轴130上。在沉积期间,基材可以平移和旋转,使其对着八个RF磁控管溅射枪110的任何一个。基材放入基材固定器132,132除了固定基材外,还可将第二掩模134牢固地压在基材118上(原始掩模是确定了基材上的反应点的大小和密度的格子,在整个试验过程都是固定的)。沉积了一种反应组分后,使用控制器除下第二掩模,将其置于盒子140中,取下下一步需要的第二掩模,将其放在基材固定器132上面。基材固定器上的固定结构将确保将掩模对准在25微米内。(对本领域的技术人员,很明显的是有多种固定结构可以优于25微米的精度使基材与掩模对准)。图7所示的图形中,控制器138可以在垂直方向上下运动,盒子140可以在水平方向作直线运动。用这样的格式,控制器138可用于移出在盒子140中的任何第二掩模。这种设计可较好地适合于使用两种掩模,更好的可使用八种掩模,还要好的可使用20种掩模,最好的可使用多于20种掩模。采用这种系统,可通过各个掩模沉积所有反应组分,形成分层的薄膜前体的组合的集合。
C.有掩模盒的脉冲激光沉积系统
与上面描述的系统有关的一个系统是有盒子的交换结构的脉冲激光沉积系统。图8说明了这一设计。在回转轮上放入反应组分,回转轮至少可装入四种反应组分,更好的至少可装入八种反应组分。另外一种方法是,在多边形体142的不同面上各放置一种反应组分(见图8)。例如,如果多边形体是十面体,在其上可放十种反应组分。不论那一种设计,其目的是能迅速将反应组分移至激光束144前方放置特定的时间周期,并立刻调换反应组分。在回转轮的实施方案中,快速旋转反应组分使其与激光束144相交。在多面体实施方案中,通过将所需的多面体的面旋转至面对固定的激光束144的位置,来交换反应组分。
与溅射薄膜沉积技术相比,脉冲激光薄膜沉积技术在交换反应组分方面提供了更大的灵活性和速度,但在大于1厘米2的面积上其均匀性有所降低。然而,目前有几种采用激光的技术能在100厘米2的表面上达到均匀性。第一种最普通的这种技术是在沉积反应组分期间使基材作行星运动。这种行星运动可确保反应组分射出的材料卷流均匀地铺展在整个基材上。在沉积期间移动基材的代价是速度降低,因为,需要许多个1厘米2的沉积点来有效地均匀覆盖如直径为5厘米的一个圆。
沉积期间,在大面积上获得均匀性的另一种方法是使用了扫描激光束的技术。图8说明了这种设计,程序可控镜146使激光在整个消融靶即反应组分的直径上扫描。使扫描激光束的速度作为位置的函数而变动,在靠近基材外缘处可在较长时间内产生消融卷流,从而产生均匀的膜。这种技术还有一个优点,可始终产生不随时间变化的卷流。
在图8所示系统中,基材安装在可旋转和垂直移动的轴130上。而且,除了采用扫描的激光束外,每个消融靶即反应组分旋转以使靶的全部表面暴露在激光束下。这改进了在大于1英寸2面积上的沉积的均匀性。如图7说明的系统那样,基材放在样品固定器132中,第二掩模134放在基材固定器132内的基材的上面。通过使用固定结构正确对准第二掩模134和基材。固定结构的精度最好优于25微米。在沉积步骤之间,不破坏真空的条件下,用在反应室内的盒子中的其余第二掩模来交换掩模。交换掩模的一般过程已于上面说明。
D.有滑动与开关掩模系统的脉冲激光沉积系统
当建立仅含三元、四元和五元材料的包括1,000种材料以上的集合时,涉及不同掩模步骤的数目很容易达到30。而且,每一个集合很可能需要使用一些原始的掩模图形。因此,有一个能在基材的前方形成几百种不同掩模图形,而每一个图形只需要在几秒钟内就可形成的系统将是非常有利的。图9说明了这样的一个系统。
在这一设计中,反应组分和激光的配置如图9所示。在基材固定器132中的基材接到轴130上。轴130可在X、Y和Z的方向平移并能旋转。基材放在有孔的固定板150下,孔应大于1厘米2,更好的大于6厘米2,最好的大于50厘米2。在孔板150的上方是在其上有多个掩模的平片152。片152接到控制器或轴130,可将任一掩模平移至孔板150上面。一般,在孔板150与片152之间几乎没有间隔。
片152上的一个掩模按九个正方形的最普通的形式组成,每一个正方形与孔板150上的孔的大小基本相同。只有中间的正方形是空的。这种掩模如图10所示。当掩模接到能在X和Y方向平移的平片上时,这种掩模能有效地成为一种X/Y开关掩模。因此,可以形成不同大小的正方形、长方形、‘L’和在X或Y的方向的条形。假定基材也能在X和Y方向平移,在这种结构就形成了两个开关的结构。本领域的技术人员很容易地就能理解,可以有其他的排列(如‘L’形掩模代替正方形掩模),也可以形成作用与在此描述相同的两个开关的系统。
采用X/Y开关掩模和基材的组合,可以形成成百个不同掩模图形,在几秒钟内就能形成一个。例如,图10B中所示的5个掩模图形可以沿基材形成五个分别的列,用于五种不同反应组分。用X/Y开关掩模完成同样设计的方法为,首先将掩模滑动到右面,用孔板的右边形成一个有基材的五分之一大小的开口(如图10B中的第一掩模),然后,每次沉积后向左移动基材。因此,在不需要交换掩模下,以沉积步骤的相同次数即5次,形成同样的图形。而且,当需要某一组分的厚度横跨集合作梯度变化时,可如图10C所示,使X/Y开关以恒定的速度从右到左平移。
前面的X/Y开关系统可与更普通的二元掩模技术组合使用。例如,图10D的掩模平移扫过基材时,可在基材的每一半沉积五种不同的组分。然而,用X/Y开关系统需要两倍的步骤。所以,常常有利的是在位于孔板150正上方的平片152上,除了X/Y开关外还加上二元掩模。图11说明了这样的片结构的一个例子。
除了用于与普通的二元掩模技术结合,X/Y开关系统也可用于与其他掩模技术结合。特别是,可与前面描述的用于进行涉及使用不同组的反应组分的试验的形成掩模的方法一起使用,希望其中每组的元之间不会相互作用。下面为如何进行的一个例子。
在这一实施例中,有三组反应组分即组8、组5和组3,每组分别含有8个、5个和3个组元。而且组8的每一个组元有5个设定值,组5的每个组元有3个设定值,组3的每个组元有1个设定值。因此,阵列中反应点的数量为1800或(8×5)×(5×3)×(3×1)。为制备有1800个反应点的阵列,可使用一个宽度上有40行,长度上有45列的基材。组8有8个组元,每个组元有5个设定值,可沿行沉积,而有5个组元,每个组元有3个设定值的组5和有3个组元,每个组元有1个设定值的组3可沿列沉积。采用图9所描述的激光系统,假设沉积时间对1个“1×1”的面积,约为5埃/秒,每层的沉积厚度为2埃,所需的掩模步骤数为34,总的沉积时间为23分钟。总的沉积时间并未考虑交换34个掩模所需的转换时间。采用上面描述的X/Y开关系统,需要90步,1小时的总沉积时间。然而,采用两种掩模与X/Y开关系统结合,掩模的步骤减少到50,沉积时间减少到33分钟。
上面是可用于进行本发明的方法的许多不同的多靶、薄膜沉积系统的一个例子。这样的系统提供了用于形成分层薄膜材料的组合的集合的一般方法和设计。本领域的技术人员应能理解,可以在次要方面对任何不同的薄膜沉积技术进行修改和优化。
VII.相对于基材移动分配器
要用分配器在基材的精确确定的区域沉积反应物液滴,需要一个供料装置和基材所共有的参考系。换句话,装置的参考坐标必须精确地变换到基材的参考坐标上。理想的情况下,仅需要基材上的两个点就能完全变换反应区域的阵列。分配器装置定出这些参考点的位置,并调整其内参考坐标以提供所需的变换。之后,分配器可在特定的方向移动特定的距离,将位置改变到已知的区域上方。当然,分配器必须能够提供精确的重复运动。而且,在形成参考记号后,阵列的各个区域不能相对于参考记号移动。不幸的是,制造和使用过程中常会遇到的压制或其他机械操作会扭曲基材,而改变参考记号与反应区域之间的对应性。
考虑到这种可能,最好采用含有“整体”和“局部”的参考记号的基材。在较好的实施方案中,一般在基材上仅有两个处于方便位置的整体参考记号来确定最初的参考系。当这些点确定后,分散混合器装置就有了基材和其上的反应区域的大致的图。为有助于确定反应区域的确切位置,将基材进一步划分成局部参考系。因此,最初“行程”调整中,将分配器置于一个局部参考系中。在局部区域内,分配器装置寻找局部参考记号,以进一步确定局部参考系。由这些,分配器可精确地移动到需沉积反应物的反应区域。以这种方式,就可最大程度地减少扭曲或其他变形的影响。由预期到的基材变形量来确定局部参考记号的数量。如果基材很刚硬,几乎没有变形发生,只需要很少的局部参考记号。如果预期到会有显著变形,就需要更多的局部参考记号。
从一个参考点开始,微量移液管或其他分配器以正确的方向和距离从一个反应区域平移到另一个反应区域(这就是“推算法定位”的导航技术)。因此,分配器可以从一个区域移动到一个区域,分配正确计量的反应物。为能最初确定参考点和将分配器对准它,可采用视觉系统或仅由仪表操作的系统。在视觉系统中,分配器的喷嘴上固定连接一个摄像机。当摄像机确定了参考点,分配器就在离开这点固定的距离和方向的位置,从而建立了参考系。仅由仪表操作的系统由如电容、电阻或其他光学技术来确定参考点。一个光学技术的例子,使激光束透过基材或从基材反射。当光束遇到参考记号,由传感器检测到光密度的变化。类似可应用电容和电阻技术。当遇到参考记号时,传感器记下电容或电阻的变化。
本发明中,可根据使用的区域大小改变各个区域之间的间隔。例如,如果使用1毫米2的区域,各个区域之间的间隔最好是1毫米或更小。如果使用10微米2的区域,各个区域之间的间隔最好是10微米或更小。而且,单元之间的角度最好一致,在0.1°内。当然,用于确定单元的排列的光刻法或其他方法可精确地确定角度和空间。然而,在后续工艺中(如压制工艺)会改变角度。因此,在一些实施方案中,有必要在整个阵列中使用“局部”参考点。
能够以所需的精度移动的平移机构最好配备在半导体设备制造和检测中使用的位置反馈结构(即编码器)。这样的机构最好是没有明显后冲和滞后的闭环系统。在一个较好的实施方案中,平移机构应具有高分辨力即每个编码器计数大于五个马达信号(motor ticks)。而且,这样的机电结构最好对区域直径上的移动距离有高的重复性(最好为±1-5微米)。
为能在基材上精确沉积反应物溶液,分配器的喷嘴必须放置在表面上方离开正确距离的位置。在滴加液滴时,分散混合器的端部应位于距基材表面0.1-6厘米的上方。获得这样的精确度所需的控制度可用上面描述的重复性高分辨率平移机构实现。在一个实施方案中,通过以小增量向基材移动分配器,直到其端部触到基材,来确定高出在基材的高度。在这点,使分配器移动离开表面固定数目的增量,即对应于一定的距离。从此滴加液滴到单元。最好分配器移动的增量数可根据所使用的区域大小来改变。
在另一个实施方案中,分配器的喷嘴包了一层外壳,外壳刚性地从分配器端部伸出一段固定的距离。最好这段距离相应于在基材的选择区域提供液滴所落下的距离。因此,当外壳接触到基材表面时,停止分配器的移动并滴加液滴。在这个实施方案中,接触后就不必从基材后缩分散混合器。在这一实施方案和前面的实施方案中,可由各种技术如通过检测分配器端部(或外壳)与下面的基材之间的电容或电阻来测定接触表面的点。在与表面接触时可观察到电容或电阻的迅速变化。
以上只针对平移运动来描述分配器的供料系统。但也可使用其他系统。在一个实施方案中,通过类似于磁和光储存介质领域所使用的系统,使分配器对准所需的区域。例如,由在盘形基材上的径迹和扇区位置来鉴别沉积反应物的区域。在旋转盘基材时,将分配器移动到合适的径迹上。当合适的单元位于分配器下面时(由径迹上的合适的扇区确定),就滴加反应物液滴。
可通过本领域的技术人员了解的各种技术来控制液滴的大小。例如,在一个实施方案中,可采用普通的微量移液管装置,从毛细管分散5毫微升或更小的液滴。当采用非润湿掩模时,这样的液滴适合于直径为300微米或更小的区域。
尽管在上面的实施方案使用了液滴的系统,每种试验物质的微小等分部分还可以粉末或小颗粒形式提供到反应区域。例如由所需的化合物或组分和一种或多种惰性粘结材料形成颗粒。这样的粘结剂组成和这样的“颗粒”的制备方法对本领域的技术人员来说是显而易见的。这样的“微粒”应可与各种试验物质配伍,具有长期稳定,并易于从储存器中取出和分散。
VI.使组分阵列反应的合成路线
一旦在基材的预定区域提供了组分的阵列,可采用各种不同反应路线使各组分同时反应。例如,通过溶胶-凝胶方法,热、红外或微波加热法,煅烧、烧结或退火法,水热法,助熔法,通过溶剂蒸发的结晶法,采用溶液基合成技术、光化学合成技术、聚合反应技术、模板控制合成技术、外延生长技术使组分反应。其他可用的合成技术对本领域的技术人员是显而易见的。而且,最合适的合成路线取决于合成的材料的类型,在任何情况下的选择对本领域的技术人员都是明显的。另外,对本领域的技术人员来说很明显的一点是,如果需要,反应组分在反应前,可采用如超声波技术、机械技术等进行混合。可在给定的基材预定区域直接应用这样的技术或同时在所有预定区域应用这技术(如,以能使组分有效地混合的方式机械地移动基材)。
传统的固相合成路线涉及固体反应物的烧结。例如,用于合成超导体的标准方法是,一起研磨几种金属氧化物粉末,压制该混合物,之后,在800-1000℃焙烧。粉末混合物中的元素烧结,即发生化学反应形成新的化合物,并熔合成固体,而没有经过液相或气相。气相元素如氧,可在烧结期间加入或在随后的步骤中加入,反应过程中可改变系统的压力。不幸的是,采用传统的烧结技术,由于原子或离子在固相反应物、中间反应物和产物中的扩散很慢,限制了反应速度。而且,常常需要高温来加速扩散和在热力学上促使稳定相的形成。
与这样的传统路线不同,本发明的新的固相合成路线可在较低温度下合成化合物。发现,通过大大缩短反应物扩散的距离和增加表面积与体积的比,可在较低温度下提高反应速度。通过以非常薄的薄膜形式沉积反应物,或以溶液形式在基材上提供反应物的基于溶液的合成技术,可达到这点。而且,当在约200-600℃下进行合成反应时,可使用熔融盐来溶解反应组分。这种技术一般指助熔法。类似,在水热法中,使用含有溶解的无机盐的水或其他极性溶剂来溶解反应组分。一般在加压和100-400℃的温度范围进行水热法。而且,采用本发明的各种合成路线,可在惰性气氛、氧或其他气体下,对反应组分阵列加压或减压。另外,本发明的合成路线中,基材的各个区域可经受不同的热处理,如激光热分解,其中向基材的预定区域提供预定持续时间和强度的能量脉冲。
实际上,在本发明的另一个实施方案中,通过使用薄膜电阻元件分别加热预定区域,使基材上的各预定区域处于不同的反应温度。在这一实施方案中,采用任何前面描述的薄膜沉积技术,在一个清洁的基材上沉积如钨的电阻元件。例如,沿预定区域的行或列以带状形式沉积电阻元件。每条带连接到接在电源的导线上。通过改变在给定带上的输入功率来调节预定区域的温度。一般任何熔点高于反应进行的温度的导体材料都可作为电阻元件。合适的材料包括但不限于,金属、合金和陶瓷。这样的材料的例子包括但不限于,铟掺杂的氧化锡(ITO)、钨、钼、钽、铂、铜-镍合金、铂和铑合金、铝-镍合金等。
在一些情况下,需要用保护涂料涂布电阻元件,以防止电阻元件和组分阵列的互扩散。使用前面描述的薄膜沉积技术,以薄膜材料的形式涂布保护涂料。由能有效导热,并在进行反应的温度下为惰性的材料制成保护涂料。合适材料的例子包括但不限于,氧化镁、钛酸锶、钛酸钡、三氧化二铝和其他电导性良好和惰性的半导体和陶瓷材料。
一旦沉积了电阻元件,采用薄膜沉积技术与掩模技术结合,以产生组分阵列。图12说明了这种方法的一个例子。在这一实施例中,在沉积薄膜电阻带以后再产生化合物的集合。如图12所示,一个电阻元件占据了基材上预定区域的整个一列。对本领域的技术人员来说很明显的是电阻元件可以沉积成任何图形,而且,设计的沉积方法可使电阻元件覆盖基材上不同的预定区域。
而且,采用本发明的合成路线,可在各个供料步骤之间处理组分阵列。例如,在基材的第一区域提供组分A之后,在升高的温度下暴露在氧中。随后在基材的第一区域提供组分B,然后组分A和B在一组反应条件下反应。可在各个提供步骤之间进行其他处理加工步骤,这点对本领域的技术人员是显而易见的。
因此,使用本发明的方法,可以制备下面的材料:共价网状固体、离子型固体和分子型固体。更具体地说,采用本发明的方法可以制备,如无机材料、金属间材料、金属合金、陶瓷材料、有机材料、有机金属材料、非生物有机聚合物、复合材料(如无机复合物、有机合物或其组合)等。例如,使用基于溶液的供料技术在基材的预定区域提供反应组分,可以制备陶瓷。一旦在基材上提供了所需反应组分,加热基材至溶剂的沸点,以蒸发除去溶剂。还可在加热的基材提供反应组分,除去溶剂。然后氧化基材以从阵列中除去不需要的组分(如碳、氮等)。在约800-875℃的温度下快速加热基材2分钟。之后,迅速停止反应,扫描阵列找出具有如荧光性、超导性、介质强度等特定性能的材料。采用类似的方法可以制备磁性材料,不同之处为,在磁性材料的情况下,需在磁场存在下,在基材上提供组分并使其同时反应。
而且,采用本发明的方法可以制备沸石即水合硅酸铝和水合硅酸钠、硅酸钙的阵列。要制备这样材料的阵列,应以浆液的形式在基材的预定区域提供反应组分。例如,采用较低温度的水热法(如60℃-约70℃),沸石就能从溶液中结晶。另外,通常以溶液的形式,在基材的预定区域提供所需的单体,可以制备有机聚合物。一旦提供了所需的单体,可在基材的每个区域加入引发剂。使聚合反应进行直到消耗了所有的引发剂,或直到以某种方式停止反应。反应完成后,可通过在真空下蒸发除去溶剂。
本领域的技术人员应能理解以上所述的合成路线仅用于说明而不是限制在一个基材上使反应物同时反应形成至少两种材料的方式。也可以采用本领域的技术人员了解和使用的其他合成路线和改进方法。
VIII.筛选材料阵列的方法
一旦制备后,可从阵列中并行地筛选具有可用性能的材料。同时对整个阵列或其中的一部分(如预定区域中的一行)并行地筛选具有有用性能的材料。最好用扫描检测系统来筛选材料阵列,其中单位面积上区域密度大于0.04区域/厘米2,较好的大于0.1区域/厘米2,更好的大于1区域/厘米2,还要好的大于10区域/厘米2,最好的大于100区域/厘米2。在最好的实施方案中,最好用扫描检测系统来筛选材料阵列,其单位面积上的区域密度应大于1,000区域/厘米2,较好的大于10,000区域/厘米2,更好的大于100,000区域/厘米2,最好的大于10,000,000区域/厘米2
因此,在较好的实施方案中,材料阵列是合成在单片基材上。通过在单片基材上合成材料阵列,可更容易地从阵列中筛选出具有有用性能的材料。筛选的性能包括,如电性能、热性能、机械性能、形态、光学性能、磁性、化学性能等。更具体地说,可筛选的有用性能列于表I。发现的任何具有有用性能的材料随后可以大规模生产。
用本领域的技术人员所了解和采用的普通方法和设备可以筛选表I列出的性能。用于筛选表I列出的有用性能的扫描系统包括但不限于:扫描喇曼光谱;扫描NMR光谱;扫描探针波谱包括如表面电势计、隧道电流、原子力、音频显微镜、切应力显微镜、超速光激发、静电力显微镜、隧道诱导光发射显微镜、磁力显微镜、微波诱导表面谐波产生显微镜、非线性交流电隧道显微镜、近场扫描光学显微镜、非弹性电子隧道能谱计等;不同波长的光学显微镜;扫描椭圆光度法(用于测定介电常数和多层薄膜的厚度);扫描涡流显微镜;电子(衍射)显微镜等。
更具体地说,要筛选电导率和/或超导性,可使用下面的设备:扫描RF磁化率探针、扫描RF/微波裂环谐振器检测器、或扫描超导量子干涉装置(SQUID)检测系统。要筛选硬度,可使用毫微压头(金刚石端)。要筛选磁致电阻,可使用扫描RF/微波裂环谐振器检测器或SQUID检测系统。要筛选结晶度,可使用红外或喇曼光谱仪。要筛选磁化强度和矫顽力,可使用扫描RF磁化率探针、扫描RF/微波裂环谐振器检测器、SQUID检测系统或霍尔探测器。要筛选荧光性,可使用光检测器或电荷耦合器件摄像器。还可以使用本领域的技术人员了解的其他扫描系统。
表I.  筛选的性能的例子
电性能: 超导性临界电流临界磁场电导率电阻薄膜的电阻率介电常数介质强度介质损耗偏压下的稳定性极化电容率压电性电迁移
热性能: 膨胀系数热导率温度变化挥发度与蒸汽压
机械性能: 应力各向异性粘结性硬度密度延性弹性空隙率
形态学: 晶体或非晶体微结构表面形态晶粒取向
光学性能: 折射率吸收率双折射光谱特性色散调频发射
磁性能: 饱和磁通密度磁致电阻磁致伸缩矫顽力磁导率
化学性能: 组成配位酸-碱性催化剂杂质与基材的反应性抗腐蚀与抗侵蚀性
本发明的阵列可依次进行筛选,或用扫描系统并行地进行筛选。例如,可采用如磁粉法(magnetic decoration)(比特图)和电子全息照相筛选材料阵列的超导性。也可用如霍尔探测器、磁力显微镜、SQUID显微镜、AC磁化率显微镜、微波吸收显微镜和涡流显微镜等,扫描材料阵列的超导性。
在目前较好的实施方案中,采用扫描探测系统。在一个实施方案中,其上有材料阵列的基材是固定的,而探测器可作X-Y运动。在这一实施方案中,基材放在密封室内,紧接检测器,检测器(如RF共振器、SQUID检测器等)连接到一个低热导率的硬棒上,硬棒与其扫描范围可达1英寸和空间分辨率为2微米的室温下的X-Y定位台耦合。用连接到计算机控制的定位器上的步进电动机(或伺服电动机)控制检测器的位置。由在室周围的液态氦储存器的氦交换气降低检测器和基材的温度。这一扫描系统可以在600K°-4.2K°(当浸在液态氦中时)的温度范围内操作。
另一个实施方案中,固定检测器,上有材料阵列的基材可作R-θ运动。在这一实施方案中,基材放在一个由齿轮导轨驱动的旋转台上(如正齿轮),齿轮导轨与一个千分尺和步进电动机偶合。旋转台放在一个由另一个千分尺和步进电动机驱动的低温滑动台上。该系统能以1微米空间分辨率扫描半径为1英寸的区域。使用计算机控制扫描和探测。与另一个实施方案相同,可用在室周围的液态氦储存器的氦交换气来降低检测器和基材的温度。这一扫描系统可以在600K°-4.2K°(等浸在液态氦中时)的温度范围内操作。
采用前面两个实施方案的任一个,可以采用如扫描RF磁化率检测系统检测巨大的材料阵列的超导性(见如图13)。采用光刻技术,可以制造微螺旋形线圈(约1×1毫米2),来探测靠近线圈的样品的电导率。由相敏检测电路接受信号。之后由计算机分析数据来得到给定样品的性能与化学计量量之间的关系。如果需要,分析结果可反馈到供料体系,使体系在下一个合成循环中“移向”最有希望的化学计量。
而且,可以用并联LC谐振电路的超导微型电路装置扫描超导性材料阵列。并联LC电路简单地就是一个电感器与一个电容器并联。这两个电路元件的电性能赋予电路谐振频率,在谐振频率处,将输入电压的最大值传送到输出。一般由其Q值量度的峰的锐度是由电路中所使用的材料决定,而谐振频率则决定于电容和电感。已知由超导材料如铌制造的电路能给出非常高的Q值,即Q值在10,000或更高数量级。这与普通的Q值在几百数量级的非超导电容器和电感器不同。铌电路的锐峰可以得到高灵敏度检测。
在这一系统中,实际的检测是由感应线圈完成。电感器的电感是通过其线圈的磁场几何形状的函数。在附近存在超导样品的情况下,材料磁场的排斥使通过电感器的磁场畸变(即迈斯纳效应)。这也就改变电感,使谐振频率偏移。通过跟踪谐振,就可以容易地决定何时材料为超导性。在这种扫描装置中,总电路约为5×2.5毫米,其有效面积约相当于此的四分之一。线圈为每边约1.5毫米的螺旋线圈,电容器为有SiO2电介质(即绝缘体)层的两板式铌电容器。SQUID磁强计已获得10微米的空间分辨率,但其灵敏度受到在Josephson结中存在的噪音的限制。然而,在本发明的扫描装置中。Josephson结中的噪音不妨碍仪器,因此,可获得对1微米或更小样品的灵敏度。在这一实施方案中,灵敏度是比空间分辨率更严格的标准。
本领域的技术人员能容易地理解的是上述的检测体系仅用于说明而不是限制用于从材料阵列筛选具有有用性能的材料的方法。同样可以采用本领域的技术人员了解和使用的其他检测体系。
IX.其它实施方案
在本发明的另一个实施方案中,通过在第一和第二基材的预定区域以基本相同的浓度提供基本相同的反应组分,之后在宽的组分阵列中,使在第一基材上的组分按第一组反应条件,在第二基材上的组分按第二组反应条件反应,可以制备至少两种不同的材料阵列。如果第一基材在其第一区域有组分A和B,另外在其第二区域有组分X和Y,第二基材是制备成在其预定区域有基本相同的组分。也就是说,第二基材在其所含组分方面与第一基材基本相同。因此,在这一实施例中,第二基材在其第一区域也含有组分A和B,另外在其第二区域也含有组分X和Y。
一旦在基材的合适的预定区域提供了组分,在第一基材上的组分按第一组反应条件,第二基材上的组分按第二组的反应条件反应。本领域的技术人员应能理解可在第一基材上的组分按第一组反应条件反应的同时,使第二基材上的组分按第二组反应条件反应,或者在第二基材按第二组反应条件反应之前或之后,第一基材上的组分按第一组反应条件反应。
在这一实施方按中,可以研究和优化各种反应参数的效果。可以改变的反应参数包括,如反应物数量、反应物溶剂、反应温度、反应时间、进行反应时的压力、进行反应时的气氛、停止反应的速度等。可以改变的其他反应参数对本领域的技术人员是显而易见的。另外的方法是第一组反应条件与第二组反应条件相同,但在这一实施方案中,在第一和第二基材上的组分反应后的处理步骤,第一基材不同于第二基材。例如,第一基材可在升高的温度下,暴露在氧气中处理,而第二基材可以不经处理。
这一实施方案的另一方面,在其第一区域有组分A,第二区域有组分X的第一基材在特定反应条件下处理(如在升高的温度下在氧气中处理),而在其第一区域也有组分A,第二区域也有组分X的第二基材则不在这样的反应条件下处理。之后,在第一和第二基材的第一区域提供组分B,在它们的第二区域提供组分Y。一旦在第一和第二基材的第一和第二区域提供了所需的组分,可以在基本相同的反应条件下同时使组分反应。这个实施方案可以确定中间处理步骤对特定材料阵列的效果。如前面提到的,可以改变各种不同的反应参数中的任何一个。
本发明的还有一个实施方案中,提供了制备其化学组成和组分的化学计量量各异的材料阵列的方法。这种方法中,可以化学计量梯度在特定的预定区域提供反应组分。而且,可以在特定的预定区域以特定化学计量量提供多种反应组分。例如,第一材料的第一组分和第二材料的第一组分可分别沉积在第一和第二反应区域。之后,第一材料的第二组分和第二材料的第二组分可以化学计量的梯度从顶端到底部(或从左到右)分别沉积在第一和第二反应区域。一旦组分提供到基材,各组分可以同时反应以形成化学组成和组分的化学计量量各不相同的材料。
在本发明的还有一个实施方案中,提供了具有有用性能的材料。这种材料的制备方法包括这些步骤:(a)在单片基材上形成不同材料的一种阵列;(b)从阵列中筛选出具有有用性能的材料;和(c)制造更多具有有用性能的这种材料。这样的材料包括,如金属间材料、金属合金、陶瓷材料、有机金属材料、有机聚合物、复合材料(如无机复合物、有机复合物或其组合)等。另外,有用的性能包括,如电性能、热性能、机械性能、形态、光性能、磁性能、化学性能等。
采用前面的方法,发现了新的一族具有巨磁致电阻(GMR)的氧化钴。采用薄膜沉积技术与掩模技术结合形成了含有不同LnxMyCoOδ组成和不同化学计量量的材料阵列,其中Ln例如是钇和镧,M例如是铅、钙、锶和钡(见下面的实施例D,用于制备氧化钴薄膜材料的规约)。一旦形成,就从材料阵列中筛选具有有用性能的材料。更具体地,是从材料阵列中筛选出具有巨磁致电阻(GMR)性能的特别材料。这样做时,发现了具有大磁致电阻(MR)的材料。一旦鉴别出具有有用性能的材料,可以制备更多数量的这种材料以供进一步分析。
GMR氧化钴新家族中的化合物具有下面的通式:Ay-(1-x)My-xCoOz,其中的A是选自镧(La)、钇(Y)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yp)和镥(Lu)的一种金属;M是选自钙(Ca)、锶(Sr)、钡(Ba)、铅(Pb)、铊(Tl)和铋(Bi)的一种金属;y是约1-2范围内的值,x是约0.1-0.9范围内的值;z是约2-4范围内的值。在GMR氧化钴新家族中的化合物一般具有与钙钛矿有关的层状结构,即略变形的立方系钙钛矿结构。
目前较好的实施方案中,GMR氧化钴新家族中的化合物具有下面的通式:A1-xMxCoOz,其中的A是选自镧(La)、钇(Y)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yp)和镥(Lu)的一种金属;M是选自钙(Ca)、锶(Sr)、钡(Ba)、铅(Pb)和镉(Cd)的一种金属;x是约0.1-0.9范围内的值;z是约2-4范围内的值。在这一通式范围内,有一些实施方案较好,即其中的x是0.2-约0.7范围内的材料,更好的其中x是0.3-约0.5范围内的材料。
在一个较好的实施方案中,GMR氧化钴新家族中的化合物具有下面的通式:La1-xMxCoOz,其中M是选自钡、钙和锶的金属;x是约0.1-0.9范围内的值;z是约2-4范围内的值。在这一通式范围内,有一些实施方案较好,即其中的x是0.2-约0.7范围内材料,更好的x是0.3-约0.5范围内的材料。如上所述,GMR氧化钴新家族中的化合物一般具有与钙钛矿有关的层状结构。
本发明的另一个实施方案中,采用前面描述的制备材料阵列的方法可以制造如薄膜电容器或薄膜场致发光组件的微型器件的集合。例如,由绝缘材料或电介质材料隔开的两种电极材料组成的薄膜电容器。形成薄膜电容器阵列,可首先通过在基材的每一个预定区域沉积一种电极材料,用前面描述的方法可以在电极表面上产生电介质材料的阵列。再在这层的上面沉积另一个电极层,由此产生薄膜电容器的阵列,每个电容器含有不同的电介质材料。通过测定基材上每个预定区域的电容量,可以试验和优化用于薄膜电容器的各种电介质材料的性能。本领域的技术人员应能容易地理解,这种方法完全可以应用到其他薄膜器件中,如薄膜场致发光显示器件。另外,对本领域的技术人员很明显的是在一个薄膜器件中各层的任何一层可以是相同或不同的化学计量量的不同材料的阵列,或是不同化学计量量的相同材料的阵列。而且,可以改变各层的顺序(如薄膜电容器的电极材料可以沉积在其余层的上面或下面)。因此,采用本发明的方法,可以优化薄膜器件中的每一层。
本领域的技术人员应理解前面对各种供料技术、合成路线、筛选方法等的讨论完全适用于本发明上面的实施方案。
X.实施例
以下面的实施例说明本发明的效果。
A.16种氧化铜薄膜材料阵列的合成
本实施例说明了氧化铜薄膜材料阵列的合成和筛选。在1.25厘米×1.25厘米的有(100)抛光表面的氧化镁基材上提供反应物。其上含有16个预定区域的基材放在真空下的反应室内。采用溅射系统和二元掩模技术结合,以薄膜的形式在基材上提供反应物。二元掩模由不锈钢制成。采用RF磁控管枪溅射系统在基材的预定区域提供反应组分。使用的RF磁控管溅射枪(由US,Inc.,Campbell,CA制造)其直径约1.3英寸。RF输入功率(由有匹配网的Plasmtherm-2000提供)为50-200瓦时,沉积速度范围对五种不同组分约为0.3-2埃/秒。在基材上面约3-4英寸处放置RF磁控管喷嘴,沉积薄膜的均匀性在直径为1-2英寸的区域约为5%。由计量阀和通过手动阀式管的差动排气来控制溅射气流(氩或氩和氧)。已知要获得高的沉积速度,最好的气压范围约为5-15毫乇。用残余气体分析仪(FerranScientific,San Diego,CA的微磁极传感器)在没有差动排气下、来检测室内每种气体组分的分压,直接可达15毫乇。
用于产生氧化铜材料阵列的反应组分如下:CuO、Bi2O3、CaO、PbO和SrCO3。CuO作为基本组元力图发现新的氧化铜材料,因此在基材的16个预定区域上,每个区域都提供这种组分。在基材的预定区域提供所需的组分前,用2501/秒涡轮泵,在10-15分钟内,将反应室的基础空气压降低到约10-5-10-6乇,如果需要,还可以采用延长排气时间和将反应室加热到约100-150℃,将其进一步降低到10-8乇。由于使用了仅有一个RF磁控管枪的溅射系统,在每次更换组分时会破坏真空,而需要重新建立。用晶体微天平(Sycon Instruments,Syracuse的STM-100)检测薄膜沉积厚度。由于晶体微天平不是精确地位于基材的同一位置,有必要用表面光度仪校正厚度检测器对每个组分的读数。
以下面的顺序在MgO基材上提供反应组分:Bi2O3、PbO、CuO、CaO和SrCO3。化学计量量定为,使每种组分以相同的摩尔量存在,即沉积膜中为1Bi∶1Pb∶1Cu∶1Sr∶1Ca。对有五层的位置,薄膜的总厚度约为0.5微米。表2列出了各个薄膜的厚度和沉积每一种组分的溅射速度。
表2  用于产生氧化铜阵列的组分的沉积厚度和溅射速度
    组分   沉积厚度(埃)   溅射速度(埃/秒)
    Bi2O3     1200     2
    PbO     970     1.6
    CuO     540     1
    SrCO3     1650     3
    CaO     720     3
一旦在如图14所示的基材的16个预定区域提供了所需的组分,将基材置于一个炉内,随后使各组分反应。图15是在1.25厘米×1.25厘米的氧化镁基材上16种不同化合物的阵列的照片。每点的颜色是从一定角度的白色光源反射的光的天然色。采用下面的加热和冷却程序,使组分同时反应:50-725℃2小时,725-820℃1小时,820-840℃0.5小时,840-750℃0.5小时。一旦基材冷却到约750℃,关闭能源。在常压下进行加热和冷却程序。未观察到明显的蒸发和熔化。
一旦反应后,筛选16个预定反应区域的电阻。筛选后,找到了两个含有导电材料的预定区域。在这两个区域,以在线4探头结构放置触点,测定的接触电阻小于百欧姆(Ω)数量级。之后在液态氦低温恒温器中,将样品冷却到4.2°K,以测定作为温度函数的电阻率。使用工厂校正的CernoxTM电阻温度传感器(LakeShore)来测定温度。图16A和16B说明了两种导体材料的电阻与温度的关系。BiPbCuSrCa材料从室温到约100°K具有金属的导电率(电阻随温度下降),而BiCuSrCa材料具有比较平坦而随温度略上升的电阻。两种样品的超导临界温度(Tc)约为100°K。在电阻率测定中未观察到两种超导相的证据。
B.128种氧化铜薄膜材料的阵列的合成
本实施例说明了由Bi、Ca、Cu、Pb和Sr的不同组合、化学计量量和沉积顺序组成的128元的集合的合成和筛选。使用RF磁控管溅射枪溅射靶材料通过物理掩模,产生集合。以氩作为溅射气体,在10-5-10-6乇下进行溅射,溅射速度为0.1-1埃/秒。由晶体微平检测薄膜沉积厚度,并由表面光度仪校正。在直径2英寸的区域,沉积薄膜的均匀度变化约5%。有(100)抛光表面的氧化镁单晶体用作基材,CuO、Bi2O3、CaO、PbO和SrCO3用作溅射靶。采用二元掩模方法,通过用一系列第二掩模(图17)层压原来的含有128个孔(1×2毫米)的初级物理掩模,产生集合。(见Fodor,S.P.A.,等人,Science 251,767(1991))。以逐级的模式,通过合适的二元掩模溅射前体。可同时合成六种相同的128元的集合,并在不同反应条件下处理。在二元合成中,由掩模步骤数目(m)可形成2m种化合物。阵列含有通过从整个沉积/掩模顺序中减少一步或多步形成的所有组合。可采用其他的掩模方法产生其他的集合,如源于一组10个前驱体的所有四元化合物组成的集合。
如上所述,形成了128元集合来考查化学计量量和沉积顺序对BiSrCaCuO薄膜的性能的影响。产生的集合如下:1,Bi,M0;2,Bi,M1;3,Cu,M0;4,Cu,M2;5,Cu,M3;6,Sr,M0;7,Sr,M5;8,Ca,M6;9,Cu,M4;10,Ca,M7,其中,第一个数据标明沉积步骤,第二个数据标明元素,第三个数据标明掩模(见图18)。除了在步骤3和5中Cu∶Bi的比为0.5∶1,每层相对于Bi的摩尔化学计量为1∶1(Bi的沉积层厚度为300埃)。集合物随后在840℃空气中烧结。加热和冷却程序为:50-725℃2小时,725-820℃1小时,820-840℃0.5小时,840-750℃0.5小时。整个加热过程在空气中进行。未观察到明显的蒸发和熔化。用四点探头测定每一位置的电阻。
如在图19A所示的BiCuSrCaO薄膜的低电阻率薄膜显示了金属性,临界温度Tc为80°K和90°K。与在16元集合中找到的BiCuCaSrO薄膜的性能不同。在128元集合中还发现了其他具有相同化学计量量和不同沉积顺序的薄膜,但具有不同的电阻率与温度的关系曲线,如BiCuSrCaCuCaO和BiCuCuSrCaCaO(图19B)。由这些结果可设想,通过控制沉积的顺序有可能获得不同的相。有过量Ca和Cu的薄膜,如BiSrCaCuO比为2,2,4,4和2,2,4,5,显示了一个110°K相,与形成2Sr2Ca2Cu3O10是符合的。
C.含有BiSrCaCuO和YBaCuO超导材料的128种氧化铜薄膜材料阵列的合成。
本实施例说明了由Ba、Y、Bi、Ca、Sr和Cu的不同组合、化学计量量和沉积顺序组成的128元的集合的合成和筛选。使用RF磁控管溅射枪溅射靶材料通过物理掩模,产生集合。以氩作为溅射气体,在10-5-10-6乇下进行溅射,溅射速度为0.1-1埃/秒。由晶体微天平(Sycon Instruments,Syracuse,NY的STM-100)检测薄膜沉积厚度,并再由表面光度仪校正。在直径1-2英寸的区域,沉积薄膜的均匀度变化约5%。有(100)抛光表面的氧化镁单晶体用作基材,BaCO3、Y2O3、Bi2O3、CaO、SrCO3和CuO用作溅射靶。如下所述采用非二元掩模方法产生集合。
形成128元集合来考查化学计量量和沉积顺序对BiSrCaCuO和YBaCuO薄膜材料的性能的影响。集合按以下方法产生:1,Bi,M1;2,Cu,M2;3,La,M3;4,Y3,M4;5,Ba,M5;6,Sr,M6;7,Ca,M7,其中,第一个数据标明沉积步骤,第二个数据标明元素,第三个数据标明掩模(见图20)。各个薄膜的厚度如下:Bi2O3,1000埃;CuO,716埃;La2O3,956埃;Y2O3,432埃;BaCO3,1702埃;SrCO3,1524埃;CaO,635埃。进行低温扩散(约200-300℃),在常压下,集合在840℃烧结。采用的加热和冷却程序如下:200-300℃12小时,300-700℃1小时,700-750℃2小时,750-840℃0.4小时,840-840℃1小时,840-560℃1小时,560-250℃6小时。在250℃6小时后,关闭能源。整个加热过程在空气中进行。未观察到明显的蒸发和熔化。
反应后,筛选128个预定区域的每个的电阻。用4点接触探头测定每个位置的电阻。如在图21所示的BiCuSrCaO薄膜和YBaCuO薄膜的低电阻薄膜显示了金属性,临界温度Tc分别为80°K和60°K。(见图21)。
D.氧化钴薄膜材料阵列的合成
本实施例说明了氧化钴(CoO)薄膜材料阵列的合成和筛选。在2.5厘米×2.5厘米的有(100)抛光表面的LaAlO3基材上提供反应物。其上含有128个预定区域的基材放在真空下的反应室内。采用溅射系统和非二元掩模技术结合,以薄膜的形式在基材上提供反应物。所使用的掩模由不锈钢制成。采用RF磁控管枪溅射系统在基材的预定区域提供反应组分。使用的RF磁控管溅射枪(由US,Inc.,Campbell,CA制造的Mini-mak)其直径约1.3英寸。RF输入功率为50-约200瓦时(由有匹配网络的Plasmtherm-2000提供),沉积速度范围约为0.3-约2埃/秒,沉积各种反应组分。在基材上面约3-4英寸处放置RF磁控管喷嘴,沉积薄膜的均匀性在直径为1-2英寸的区域约为5%。由计量阀和通过手动门阀的差动排气来控制溅射气流(氩或氩和氧)。已知要获得高的沉积速度,最好的气压范围约为5-15毫乇。用残余气体分析仪(Ferran Scientific,San Diego,CA的微磁极传感器)在没有差动排气下,来检测室内每种气体组分的分压,直接可达15毫托。
用于产生氧化钴材料阵列的反应组分如下:Y2O3、La2O3、Co、BaCO3、SrCO3、CaO、PbO、Co、Co、La2O3、La2O3、Y2O3和Y2O3。集合按如下方法产生:1,Y,M1;2,La,M2;3,Co,M3;4,Ba,M4;5,Sr,M5;6,Ca,M6;7,Pb,M7;8,Co,M8;9,Co,M9;10,La,M10;11,La,M11;12,Y,M12;13,Y,M13,其中第一数字标明沉积步骤,第二数字标明元素,第三数字标明使用的掩模(见图22)。Co作为基本元素力图发现新的氧化钴材料,因此在基材的128个预定区域上,每个区域提供这种组分。在基材的预定区域都提供所需的组分前,用2501/秒的涡轮泵,在10-15分钟内,将反应室的空气压降低到约10-5-10-6乇,如果需要,还可以采用延长排气时间和将反应室加热到约100-150℃,将其进一步降低到10-8乇。由于使用了仅有一个RF磁控管枪的溅射系统,在每次更换组分时会破坏真空,而需要重新建立。用晶体微天平(Sycon Instruments,Syracuse的STM-100)检测薄膜沉积厚度。
以下面的顺序在MgO基材上提供反应组分:Y2O3、La2O3、Co、BaCO3、SrCO3、CaO、PbO、Co、Co、La2O3、La2O3、Y2O3和Y2O3。对有五层的位置,薄膜的总厚度约为0.4微米。表3列出了各个薄膜的厚度。
表3  用于产生氧化钴阵列的组分的沉积厚度和溅射速度
    组分     沉积厚度(埃)
    Y2O3     245
    La2O3     350
    Co     145
    BaCO3     600
    SrCO3     538
    CaO     245
    PbO     316
    Co     128
    Co     55
    La2O3     245
    La2O3     245
    Y2O3     122
    Y2O3     245
一旦在基材的128个预定区域提供了所需的组分,将基材置于一个炉内,随后组分反应。采用下面的加热和冷却程序,使在集合2(L2)中的组分同时反应:200-300℃12小时,300-650℃1小时,650-850℃3小时,850-900℃3小时,900-400℃2小时。一旦基材冷却到约400℃,关闭能源。在常压下进行加热和冷却程序。未观察到明显的蒸发和熔化。
以下面的加热和冷却程序使在集合3(L3)中的组分同时反应:室温(RT)-200℃1小时,200-350℃15小时,350-RT(系统关闭使基材冷却到RT),RT-650℃2小时,650-740℃13小时,740-850℃1小时,850-900℃3小时,900-650℃0.5小时,650-250℃2小时。一旦基材冷却到约400℃,关闭能源。在常压下进行加热和冷却程序。未观察到明显的蒸发和熔化。
一旦反应后,筛选在L2和L3集合中128个预定反应区域的巨磁致电阻(GMR)材料。以计算机控制的多道转换系统,采用4探头接触方法测定每个样品的作为磁场(垂直于探头电流)和温度的函数的电阻。用具有超导性12忒斯拉(T)磁体的液态氦低温系统(由Janis Research Co.,Inc.,Willmington,MA制造),实现各种温度和进行场的测定。图23为集合的图形和每个样品的化学计量。图23中黑色、实心圆显示有显著GMR(>5%)效应的样品。
由图23,很明显找到了基于氧化钴的GMR材料的新家族。在GMR氧化钴新家族中的化合物有下面的通式:Ay-(1-x)My-xCoOz,其中的A是选自镧(La)、钇(Y)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yp)和镥(Lu)的一种金属;M是选自钙(Ca)、锶(Sr)、钡(Ba)、铅(Pb)、铊(Tl)和铋(Bi)的一种金属;y是约1-2范围内的值,x是约0.1-0.9范围内的值;z是约2-4范围内的值。在这一GMR氧化钴新家族中的化合物一般具有层状与钙钛矿有关的结构。
在目前较好的实施方案中,GMR氧化钴新家族中的化合物具有下面的通式:A1-xMxCoOz,其中的A是选自镧(La)、钇(Y)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yp)和镥(Lu)的一种金属,M是选自钙(Ca)、锶(Sr)、钡(Ba)、铅(Pb)和镉(Cd)的金属;x是约0.1-0.9范围内的值,更好为0.2-0.7,最好为0.3-0.5;z是约2-4范围内的值。
而且,从图23,一些这样的氧化钴化合物具有通式La1-xMxCoOz,其中M是选自钙、锶和钡的元素;x是约0.1-0.9范围内的值;z是约2-4范围内的值。对这些特别的氧化钴化合物,已知其较好的摩尔比即x约为0.2-0.7,更好的约为0.3-0.5。图24A和24B给出了在固定温度下(60°K),代表性样品的作为磁场函数的归一化的磁致电阻。图25A和25B给出了在不同磁场下,代表样品L3(13,2)的电阻和归一化MR随温度的变化。与氧化锰(Mn)磁致电阻(MR)材料不同(Jin,S.,等人,Appl.Phys.Lett.66:382(1995)),发现MR效应随碱土金属离子的大小的增加而增加。(见图24A和24B)。
样品L2的MR效应大于L3。设想是由于略不同的热处理导致氧化的差别。在这一集合中测得的最大MR比为72%,是在T=7K和H=10T的样品L2(15,2)获得。这一值与按相似方式以锰(Mn)为基本元素的集合产生的薄膜所测定的值相近。与含锰材料相似,组成、化学计量、基材和合成条件的优化会导致MR比的增加。然而,对应的Y(Ba,Sr,Ca)Co化合物的MR效应小得多(<5%)。
合成了化学计量量为La0.67(Ba,Sr,Ca)0.33CoOz,(其中z是约2-4范围内的值)的三个大块样品,进一步研究结构。X衍射图(图26A-C)表明晶体结构基本上是晶格常数为a的立方钙钛矿,对钡、锶和钙化合物a分别等于3.846埃,3.836埃和3.810埃。强度峰的小分裂源于相对于完美立方钙钛矿结构的菱形畸变(见Askham,F.,等,J.Amer.Chem.Soc.72:3799(1950))。
另外,合成了化学计量量为La0.58Sr0.41CoOz,(其中z是约2-4范围内的值)的一个大块样品,并用SQUID磁强计(QuantumDesiqn)测定其磁化强度。测定了作为磁场函数的样品的MR和在1T磁场中作为温度函数的样品的磁化强度,并示于图27。在200°K开始铁磁转变并在低于50°K饱和。这种大块样品的MR比(60%)明显高于相应的薄膜样品L2(30%)。这一样品的X射线分析确定其为a=3.28埃的立方钙钛矿结构。
E.16种不同有机聚合物阵列的合成
本实施例说明了通过苯乙烯与丙烯腈聚合反应形成16种不同有机聚合物的阵列的可能。本实施例使用了其上有16个预定区域的3×3厘米派热克斯玻璃基材。每个预定区域为3×3×5毫米,因此每个预定区域的体积约为45微升。要确保在给定区域的反应物不迁移到邻近区域,使用的反应体积为35微升。
使用2M苯乙烯单体的甲苯溶液和2M丙烯腈的甲苯溶液。使用的引发聚合反应的引发剂是过氧化苯甲酰。使用70mM的过氧化苯甲酰的甲苯溶液。每个反应中引发剂以10mM的浓度存在。用有三个喷嘴的喷墨分配器在基材的每个预定区域提供苯乙烯、丙烯腈和过氧化苯甲酰溶液。第一喷嘴连接到含有2M苯乙烯的甲苯溶液的储存器,第二喷嘴连接到含有2M丙烯腈的甲苯溶液的储存器,第三喷嘴连接到含有70mM的过氧化苯甲酰的甲苯溶液的储存器。在每个预定区域提供了单体后才提供引发剂。
为了产生苯乙烯和丙烯腈的16种不同聚合物的阵列,按表4所列出的量在基材的16个预定区域提供反应物。一旦在基材的16个预定区域提供了单体,再加上5微升70mM的引发剂溶液。在约60℃和常压下进行聚合反应。反应进行到终止剂用完。完成聚合反应后,真空(100乇)蒸发除去有机溶剂。用毫微压头(尖头)筛选产生的聚合物的硬度。
表4用于产生16种不同聚合物阵列的各种反应组分
反应区域   2M苯乙烯溶液量(微升)   2M丙烯腈溶液量(微升)
    1     30     0
    2     28.5     1.5
    3     27     3
    4     25.5     4.5
    5     24     6
    6     22.5     7.5
    7     21     9
    8     19.5     10.5
    9     18     12
    10     16.5     13.5
    11     15     15
    12     13.5     16.5
    13     12     18
    14     10.5     19.5
    15     9     21
    16     7.5     22.5
F.沸石阵列的合成
本实施例说明了合成不同沸石的阵列的可能方法。在有16个预定区域的9×9厘米的Teflor基材上提供反应物。基材放置在温度约为100℃的密封容器中。基材上每个预定区域是1×1×2厘米的凹处。用自动的移液滴管在基材上提供反应物。用于产生沸石阵列的五种化合物是:Na2OAl2O35H2O,KOH,Na2O2SiO25H2O,NaOH和H2O。在水中溶解前四种组分,使其浓度分别为2.22M,2.22M,8.88M和11.1M。在基材的预定区域提供这些组分,重要的是最后才加上Na2O2SiO25H2O溶液。按表5所列出的量在基材的预定区域提供这五种反应组分。
一旦在基材的合适的预定区域提供了前面的反应组分,使它们反应,用喇曼光散射系统扫描阵列的微结构。可在基材上提供组分后的2-3小时开始阵列的扫描,持续5-10天。在这一实施例中,最初在反应区域1形成沸石A,然而,沸石A随时间转化成沸石P。在反应区域3形成沸石X。在反应区域6形成方钠石。在反应区域12形成沸石L。另外,在其余的反应区域形成其他的沸石。
表5.用于产生沸石阵列的各种反应组分
    反应区域     2.2MNa2OAl2O3H2O溶液量(微升)   8.88MKOH溶液量(微升)     2.2MNa2O2SiO25H2O溶液量(微升)     11.1MNaOH溶液量(微升)     H2O量(微升)
    1     100     0     100     80     480
    2     100     0     100     80     1280
    3     100     0     200     40     420
    4     100     0     200     40     1220
    5     100     0     100     320     240
    6     100     0     100     320     1040
    7     100     0     200     280     180
    8     100     0     200     280     980
    9     100     200     100     80     280
    10     100     200     100     80     1080
    11     100     200     200     40     220
    12     100     200     200     40     1020
    13     100     200     100     320     40
    14     100     200     100     320     840
    15     100     200     200     280     0
    16     100     200     200     280     800
G.采用喷射沉积技术合成氧化铜化合物阵列的合成
本实施例说明了采用喷射沉积技术合成氧化铜化合物阵列。在其上有16个预定区域的1.25×1.25厘米的氧化镁基材上提供反应物。采用喷雾器与物理掩模技术结合,以薄膜的形式提供反应物。本实施例所使用的喷雾器为Sinitek 8700-120Ms超声波喷雾器。在0.26GPM的水流速度和120KHz的频率,喷雾器能产生2英寸的锥形喷射图形,液滴直径为18微米。
本实施例中产生无机材料阵列的四种化合物是:Bi(NO3)3,Cu(NO3)3,Ca(NO3)3和Si(NO3)3。这些组分溶解在水中,其浓度分别为0.8M,2M,2M和2M。Bi(NO3)3溶液的pH值约为0.9。在向基材的预定区域提供反应物时,很重要的是要控制喷雾器的流速和基材的温度,使反应物液滴与基材表面接触后立刻干燥。采用的流速保持在约0.26GPM,基材温度维持在约210℃。另外,很重要的是要控制喷雾时间,使每种反应物的量即摩尔数基本相同。喷雾时间控制在使在基材表面沉积的每层薄膜厚度约为1-4微米。
采用二元掩模技术,按Ca(NO3)3,Bi(NO3)3,Cu(NO3)3和Si(NO3)3的顺序采用下面的步骤在基材上提供Ca(NO3)3,Bi(NO3)3,Cu(NO3)3和Si(NO3)3的水溶液。如说明指出的,氧化镁基材上有16个预定区域,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15和16。在第一掩模步骤,掩盖区域9,10,11,12,13,14,15和16,以薄膜形式在露出的区域提供Ca(NO3)3的水溶液。第二掩模步骤中,重新定位掩模,掩盖住区域3,4,7,8,11,12,15和16,以薄膜形式在露出的区域提供Bi(NO3)3的水溶液。第三掩模步骤,掩盖区域5,6,7,8,13,14,15和16,以薄膜形式在露出的区域提供Cu(NO3)3的水溶液。最后,在第4掩模步骤掩盖区域2,4,6,8,10,12,14和16,以薄膜形式在露出的区域提供Si(NO3)3的水溶液。
一旦在基材的合适的预定区域提供了所需的组分,就使其上有反应物阵列的基材在300℃氧化,以从阵列中除去氮。之后,在880℃急骤加热基材2分钟,在一个铜块上迅速急冷。然后,筛选材料阵列上的超导性材料。
H.16种不同硅酸锌燐光体阵列的合成
本实施例说明可能合成16种不同硅酸锌燐光体阵列的方法。使用其上有16个预定区域的1×1毫米的派热克斯玻璃基材。每个预定区域为100×100×500微米,因此每个预定区域的体积约为5,000微微升。为确保在给定区域中的反应物不迁移到邻近区域,使用的反应体积为3,000微微升。
采用有三个喷嘴的喷墨分配器在基材的每个区域同时提供反应物。第一喷嘴连接到含有1M氧化锌水溶液的储存器。为能产生16种不同燐光体的一种排列,按表6所列出的反应物数量在基材的16个预定区域供料。在氮气氛中,1400℃下进行合成反应2小时。一旦形成,通过用特定激励波长辐照样品,用Perkin-ElmerLS50荧光光谱测定仪记录发射光谱,来从每个区域筛选场致发光材料或燐光体。
表5.  用于产生硅酸锌燐光体阵列的各种反应组分
  反应区域     SiO2   MnCO3(微微升)     ZnO
    1     1500     1425     75
    2     1500     1350     150
    3     1500     1275     225
    4     1500     1200     300
    5     1500     1125     375
    6     1500     1050     450
    7     1500     975     525
    8     1500     900     600
    9     2000     950     50
    10     2000     900     100
    11     2000     850     150
    12     2000     800     200
    13     2000     750     250
    14     2000     700     300
    15     2000     650     350
    16     2000     600     400
I.采用溅射技术与光刻掩模技术结合合成氧化铜薄膜材料的阵列
本实施例说明了氧化铜材料阵列的合成和筛选。在其上有256个预定区域的1.25×1.25厘米的氧化镁基材上提供反应物。氧化镁基材的一面是粗糙面,另一面是经很好抛光的(用1微米的金刚石膏抛光)。需要极清洁和光滑的表面来很好地粘结溅射金属氧化物层。采用溅射系统与光刻技术结合即以光敏抗蚀剂图形作为物理掩模,以薄膜的形式在基材上提供反应物。光敏抗蚀剂的图形决定了沉积材料的部位和除去的部位。
用一个清洁的、很好抛光的基材,第一步旋涂光敏抗蚀剂。以Shipley 1400-31作为光敏抗蚀剂,因为其具有好的耐热性,即其在约100℃处理后仍能保持可溶性。沉积两层光敏抗蚀剂,其总厚度为3微米。由一个滴加瓶在基材上涂布光敏抗蚀剂,基材以600rpm速度旋转30秒。一旦沉积了第一层光敏抗蚀剂,在90℃软焙烧15分钟。之后冷却基材,沉积第二层光敏抗蚀剂,然后在90℃软焙烧5分钟。冷却基材后将基材浸在氯苯中10分钟。氯苯能使抗蚀剂的表面改性,除去低分子量树脂。用氯苯处理后,光敏抗蚀剂的表面在显影剂中的溶解度低于下层区域。与光在光致抗蚀剂-基材的界面的背散射和以光敏抗蚀剂显影速度的微分差别相关联,在光致抗蚀剂形成突出部分。这形成了不连续的光敏抗蚀剂层,防止薄金属层包住光敏抗蚀剂。
一旦沉积了光敏抗蚀剂,基材就可进行曝光。根据第一层的所需位置选择一个掩模。在Canon Fine Projection Mask Aligner(FPA-141F)上使光敏抗蚀剂曝光。一个256元集合的第一层含有128个位置,每个位置为100×100微米,每位置之间的距离为50微米。曝光后,光敏抗蚀剂在microposit显影剂中显影45秒,然后在水中清洗1分钟。
现在基材准备沉积第一层。在基材上溅射300埃的BiO3。一般溅射温度会超过光敏抗蚀剂的极限。然而,发现以低功率的溅射枪(150瓦),靶基材的距离为10厘米,基材的加热不会出现问题,甚至沉积时间持续8小时也是这样。在基材温度超过100℃的情况下,最好使用冷却块。
可将基材置于丙酮的超声波浴中,进行剥离过程。金属粘结在经前面的曝光和显影后除去了光敏抗蚀剂的部位,而形成图形后抗蚀剂保留的部位金属被除去。丙酮很容易溶解光敏抗蚀剂,因此,金属剥离。以同样的方式在基材上沉积后继的组分层,但必须将下一层与第一层对齐,改变金属沉积的位置。在这一实施例中,下一层是CuO,接下来是SrCO3和CaO。
一旦在基材的256个预定区域提供了所需的组分后,将基材置于一个炉子中,随后组分反应。反应后,用四点接触探头筛选每个预定区域的电阻。
XI.结论
本发明提供了大大改进了的用于在单片基材上并行地沉积、合成和筛选材料的阵列的方法和设备。应理解上面的描述仅用于说明但不构成限制。本发明的许多实施方案和改动对本领域的技术人员都是显而易见的。仅仅作为例子,可采用各种处理次数、反应温度、其他反应条件和一些处理步骤的不同顺序。因此本发明的范围不是由上面的说明决定,而应根据所附的权利要求来决定。

Claims (105)

1.一种巨磁致电阻(GMR)氧化钴化合物,所述的GMR氧化钴化合物具有下面的通式:
                              Ay(1-x)My-xCoOz
其特征在于:
A是选自镧(La)、钇(Y)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yp)和镥(Lu)的一种金属;
M是选自钙(Ca)、锶(Sr)、钡(Ba)、铅(Pb)和镉(Cd)的一种金属;
y是约1-2范围内的值;
x是约0.1-0.9范围内的值;
z是约2-4范围内的值。
2.如权利要求1所述的GMR氧化钴化合物,其特征还在于x是约0.2-0.7范围内的值。
3.如权利要求1所述的GMR氧化钴化合物,其特征还在于x是约0.3-0.5范围内的值。
4.如权利要求1所述的GMR氧化钴化合物,其特征还在于所述的化合物具有层状的、与钙钛矿有关的结构。
5.一种巨磁致电阻(GMR)氧化钴化合物,所述的GMR氧化钴化合物具有下面的通式:
                          A1-xMxCoOz
其特征在于:
A是选自镧(La)、钇(Y)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yp)和镥(Lu)的一种金属;
M是选自钙(Ca)、锶(Sr)、钡(Ba)、铅(Pb)、和镉(Cd)的一种金属;
x是约0.1-0.9范围内的值;
z是约2-4范围内的值。
6.如权利要求5所述的GMR氧化钴化合物,其特征还在于x是约0.2-0.7范围内的值。
7.如权利要求5所述的GMR氧化钴化合物,其特征还在于x是约0.3-0.5范围内的值。
8.如权利要求5所述的GMR氧化钴化合物,其特征还在于所述的化合物具有层状的、与钙钛矿有关的结构。
9.如权利要求5所述的GMR氧化钴化合物,其特征还在于所述的化合物具有下面的通式:
                           La1-xMxCoOz
其中M是选自钡、钙和锶的金属;
x是约0.1-0.9范围内的值;
z是约2-4范围内的值。
10.如权利要求9所述的GMR氧化钴化合物,其特征还在于M是钡。
11.如权利要求9所述的GMR氧化钴化合物,其特征还在于M是钙。
12.如权利要求9所述的GMR氧化钴化合物,其特征还在于M是锶。
13.一种制备材料阵列的方法,其特征在于它包括:
(a)在基材的第一和第二区域提供第一材料的第一组分和第二材料的第一组分;
(b)在所述基材的所述第一和第二区域提供所述第一材料的第二组分和所述第二材料的第二组分;
(c)使所述组分同时反应形成至少两种材料。
14.如权利要求13所述的方法,其特征还在于所述的材料是共价网状固体。
15.如权利要求13所述的方法,其特征还在于所述的材料是离子型固体。
16.如权利要求13所述的方法,其特征还在于所述的材料是分子型固体。
17.如权利要求13所述的方法,其特征还在于所述的材料是无机材料。
18.如权利要求17所述的方法,其特征还在于所述的无机材料是金属间材料。
19.如权利要求17所述的方法,其特征还在于所述的无机材料是金属合金。
20.如权利要求17所述的方法,其特征还在于所述的无机材料是陶瓷材料。
21.如权利要求13所述的方法,其特征还在于所述的材料是有机金属材料。
22.如权利要求13所述的方法,其特征还在于所述的材料是复合材料。
23.如权利要求13所述的方法,其特征还在于所述的材料是非生物有机聚合物。
24.如权利要求13所述的方法,其特征还在于所述的第一材料的第一组分和所述的第一材料的第二组分是同时提供到所述的第一区域。
25.如权利要求13所述的方法,其特征还在于所述的第一材料的第一组分和所述的第二材料的第一组分是同时分别提供到所述的第一和第二区域。
26.如权利要求13所述的方法,其特征还在于所述的第一材料的第一组分和所述的第二材料的第一组分是相同的,但以不同的量提供。
27.如权利要求13所述的方法,其特征还在于所述的第一材料的第二组分和所述的第二材料的第二组分是相同的,但以不同的量提供。
28.如权利要求13所述的方法,其特征还在于以梯度化学计量量在所述的第一区域提供所述的第一材料的第一组分。
29.如权利要求13所述的方法,其特征还在于所述的第一材料的第一组分和所述的第二材料的第一组分是相同的,但以化学计量的梯度在所述的基材上所述的第一和第二区域提供。
30.如权利要求13所述的方法,其特征还在于由一个移液管在所述基材的所述第一和第二区域提供所述的材料。
31.如权利要求13所述的方法,其特征还在于由喷墨分配器在所述基材的所述第一和第二区域提供所述的组分。
32.如权利要求31所述的方法,其特征还在于所述的喷墨分配器是选自脉冲压力喷墨分配器、气泡喷射喷墨分配器和缝隙喷射喷墨分配器。
33.如权利要求13所述的方法,其特征还在于所述的提供所述化合物的每一步骤包括下面的步骤:
(i)鉴别在所述基材的参考点;
(ii)将所述组分的分配器从所述的参考点移动固定的距离和方向,使所述分配器大致位于所述基材的第一区域的上方;
(iii)在所述的第一区域提供所述的组分;
(iv)在剩余的每个区域对剩余的每个组分重复步骤(ii)和(iii)。
34.如权利要求13所述的方法,其特征还在于在所述基材的第一区域提供所述第一材料的第一组分的步骤包括:
(i)在邻近所述基材处放置一个掩模,所述掩模只允许所述第一材料的第一组分提供到所述基材的第一区域,而不会提供到所述基材的第二区域;
(ii)在所述基材的第一区域提供所述第一材料的第一组分;
(iii)除去所述的掩模。
35.如权利要求13所述的方法,其特征还在于在所述基材的第一区域提供所述的第一材料的第一组分的步骤包括:
(i)在邻近所述基材处放置一个掩模,所述掩模只允许所述第一材料的第一组分提供到所述基材的第一区域,而不会提供到所述基材的第二区域;
(ii)在所述基材的第一区域沉积所述第一材料的第一组分的薄膜;
(iii)除去所述的掩模。
36.如权利要求13所述的方法,其特征还在于在所述基材的第一区域提供所述的第一材料的第一组分的步骤包括:
(i)在邻近所述基材处放置一个掩模,所述掩模只允许所述第一材料的第一组分提供到所述基材的第一区域,而不会提供到所述基材的第二区域;
(ii)喷射所述第一材料的第一组分到所述基材的第一区域;
(iii)除去所述的掩模。
37.如权利要求13所述的方法,其特征还在于在所述基材的第一区域提供所述的第一材料的第一组分的步骤包括:
(i)在所述基材上沉积光敏抗蚀剂;
(ii)使在所述基材上的所述光敏抗蚀剂选择性曝光;
(iii)从所述基材选择除去所述的光敏抗蚀剂,以露出所述的第一区域;
(iv)在所述基材的第一区域提供所述第一材料的第一组分;
(v)从所述基材除去剩余的光敏抗蚀剂。
38.如权利要求13所述的方法,其特征还在于在所述基材的第一区域提供所述的第一材料的第一组分的步骤包括:
(i)在所述基材的第一和第二区域提供所述第一材料的第一组分;
(ii)在所述基材上沉积光敏抗蚀剂;
(iii)使在所述基材上的光敏抗蚀剂选择性曝光
(iv)从所述基材的第二区域选择除去所述的光敏抗蚀剂,以露出所述第一材料的第一组分;
(v)蚀刻掉露出的所述第一材料的第一组分;
(v)从所述基材除去剩余的光敏抗蚀剂。
39.如权利要求13所述的方法,其特征还在于所述的每种材料是在小于25厘米2的面积上合成。
40.如权利要求13所述的方法,其特征还在于所述的每种材料是在小于10厘米2的面积上合成。
41.如权利要求13所述的方法,其特征还在于所述的每种材料是在小于5厘米2的面积上合成。
42.如权利要求13所述的方法,其特征还在于所述的每种材料是在小于1厘米2的面积上合成。
43.如权利要求13所述的方法,其特征还在于所述的每种材料是在小于1毫米2的面积上合成。
44.如权利要求13所述的方法,其特征还在于所述的每种材料是在小于10,000微米2的面积上合成。
45.如权利要求13所述的方法,其特征还在于所述的每种材料是在小于1,000微米2的面积上合成。
46.如权利要求13所述的方法,其特征还在于所述的每种材料是在小于100微米2的面积上合成。
47.如权利要求13所述的方法,其特征还在于所述的每种材料是在小于1微米2的面积上合成。
48.如权利要求13所述的方法,其特征还在于在所述基材上至少合成10种不同的材料。
49.如权利要求13所述的方法,其特征还在于在所述基材上至少合成100种不同的材料。
50.如权利要求13所述的方法,其特征还在于在所述基材上至少合成104种不同的材料。
51.如权利要求13所述的方法,其特征还在于在所述基材上至少合成106种不同的材料。
52.如权利要求13所述的方法,其特征还在于至少合成100种不同的材料,每种不同材料包含在1毫米2或更小的面积上。
53.如权利要求13所述的方法,其特征在于还包括从所述阵列中筛选具有有用性能的材料的步骤。
54.如权利要求53所述的方法,其特征还在于所述有用性能是电性能。
55.如权利要求53所述的方法,其特征还在于所述有用性能是热性能。
56.如权利要求53所述的方法,其特征还在于所述有用性能是机械性能。
57.如权利要求53所述的方法,其特征还在于所述有用性能是形态学性能。
58.如权利要求53所述的方法,其特征还在于所述有用性能是光学性能。
59.如权利要求53所述的方法,其特征还在于所述有用性能是磁性能。
60.如权利要求53所述的方法,其特征还在于所述有用性能是化学性能。
61.如权利要求53所述的方法,其特征还在于所述材料阵列是并行地进行筛选的。
62.如权利要求53所述的方法,其特征还在于所述材料阵列是依次地进行筛选的。
63.在一种基材的已知位置上的超过10种不同无机材料的阵列。
64.如权利要求63所述的阵列,其特征还在于它是在一种基材的已知位置上的超过100种不同无机材料的阵列。
65.如权利要求63所述的阵列,其特征还在于它是在一种基材的已知位置上的超过103种不同无机材料的阵列。
66.如权利要求63所述的阵列,其特征还在于它是在一种基材的已知位置上的超过106种不同无机材料的阵列。
67.如权利要求63所述的阵列,其特征还在于所述无机材料是金属间材料。
68.如权利要求63所述的阵列,其特征还在于所述无机材料是金属合金。
69.如权利要求63所述的阵列,其特征还在于所述无机材料陶瓷材料。
70.如权利要求63所述的阵列,其特征还在于所述无机材料是无机-有机复合材料。
71.一种制造至少两种不同的材料阵列的方法,其特征在于它包括:
(a)在第一基材的第一区域提供第一材料的第一组分和在第二基材的第一区域提供所述的第一材料的第一组分;
(b)在所述第一基材的第二区域提供第二材料的第一组分和在所述第二基材的第二区域提供所述第二材料的第一组分;
(c)在所述第一基材的第一区域提供所述第一材料的第二组分和在所述第二基材的第一区域提供所述第一材料的第二组分;
(d)在所述第一基材的第二区域提供所述第二材料的第二组分和在所述第二基材的第二区域提供所述第二材料的第二组分;
(e)使在所述第一基材上的所述组分按第一组条件反应,在所述第二基材上的所述组分按第二组定条件反应,形成至少两种不同的至少包含两种材料的阵列。
72.如权利要求71所述的方法,其特征还在于所述的材料是共价网状固体。
73.如权利要求71所述的方法,其特征还在于所述的材料是离子型固体。
74.如权利要求71所述的方法,其特征还在于所述的材料是分子型固体。
75.如权利要求71所述的方法,其特征还在于所述的材料是无机材料。
76.如权利要求75所述的方法,其特征还在于所述的无机材料是金属间材料。
77.如权利要求75所述的方法,其特征还在于所述的无机材料是金属合金。
78.如权利要求75所述的方法,其特征还在于所述的无机材料是陶瓷材料。
79.如权利要求71所述的方法,其特征还在于所述的材料是有机金属材料。
80.如权利要求71所述的方法,其特征还在于所述的材料是复合材料。
81.如权利要求71所述的方法,其特征还在于所述的材料是非生物有机聚合物。
82.如权利要求71所述的方法,其特征还在于所述的第一组反应条件不同于第二组反应条件,不同点是反应进行时的温度。
83.如权利要求71所述的方法,其特征还在于所述的第一组反应条件不同于第二组反应条件,不同点是反应进行时的压力。
84.如权利要求71所述的方法,其特征还在于所述的第一组反应条件不同于第二组反应条件,不同点是反应进行时的反应时间。
85.如权利要求71所述的方法,其特征还在于所述的第一组反应条件不同于第二组反应条件,不同点是反应进行时的气氛。
86.如权利要求71所述的方法,其特征还在于所述的第一材料的第一组分和所述的第二材料的第一组分相同,但以不同量提供。
87.一种由包括下面步骤的方法制备的具有有用性能的材料,其特征在于步骤为:
(a)在单片基材上形成不同材料的阵列;
(b)从所述阵列中筛选具有所述有用性能的材料;
(c)制备更多量的具有所述有用性能的所述材料。
88.如权利要求87所述的材料,其特征在于步骤(a)还包括以下步骤:
(i)在基材的第一和第二区域提供第一材料的第一组分和第二材料的第一组分;
(ii)在所述基材的第一和第二区域提供所述第一材料的第二组分和所述第二材料的第二组分;
(iii)使所述组分同时反应形成至少包含两种不同材料的阵列。
89.如权利要求88所述的方法,其特征还在于所述的第一材料的第一组分和所述的第二材料的第一组分相同,但以不同量提供。
90.如权利要求87所述的材料,其特征还在于所述材料是共价网状固体。
91.如权利要求87所述的材料,其特征还在于所述材料是离子型固体。
92.如权利要求87所述的材料,其特征还在于所述材料是分子型固体。
93.如权利要求87所述的材料,其特征还在于所述材料是无机材料。
94.如权利要求93所述的材料,其特征还在于所述无机材料是金属间材料。
95.如权利要求93所述的材料,其特征还在于所述无机材料是金属合金。
96.如权利要求93所述的材料,其特征还在于所述无机材料是陶瓷材料。
97.如权利要求87所述的材料,其特征还在于所述材料是有机金属材料。
98.如权利要求87所述的材料,其特征还在于所述材料是复合材料。
99.如权利要求87所述的材料,其特征还在于所述材料是非生物有机聚合物。
100.如权利要求87所述的材料,其特征还在于所述材料是高温超导体。
101.如权利要求87所述的材料,其特征还在于所述材料是磁致电阻材料。
102.如权利要求87所述的材料,其特征还在于所述材料是沸石。
103.如权利要求87所述的材料,其特征还在于所述材料是燐光体。
104.如权利要求87所述的材料,其特征还在于所述材料是导电聚合物。
105.如权利要求87所述的材料,其特征还在于所述材料是铁电材料。
CN95196543A 1994-10-18 1995-10-18 制备材料阵列的方法和材料阵列 Expired - Lifetime CN1082936C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/327,513 US5985356A (en) 1994-10-18 1994-10-18 Combinatorial synthesis of novel materials
US08/327,513 1994-10-18

Publications (2)

Publication Number Publication Date
CN1181055A true CN1181055A (zh) 1998-05-06
CN1082936C CN1082936C (zh) 2002-04-17

Family

ID=23276841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95196543A Expired - Lifetime CN1082936C (zh) 1994-10-18 1995-10-18 制备材料阵列的方法和材料阵列

Country Status (12)

Country Link
US (14) US5985356A (zh)
EP (9) EP1442788B1 (zh)
JP (4) JP3893152B2 (zh)
KR (1) KR100407357B1 (zh)
CN (1) CN1082936C (zh)
AT (6) ATE347442T1 (zh)
AU (1) AU3957795A (zh)
CA (1) CA2202286A1 (zh)
DE (8) DE04019143T1 (zh)
MX (1) MX9702876A (zh)
NO (3) NO971777L (zh)
WO (1) WO1996011878A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002649A (zh) * 2010-09-16 2011-04-06 无锡南理工科技发展有限公司 高强韧镁基块体金属玻璃复合材料及其制备方法
CN102640254A (zh) * 2009-10-15 2012-08-15 阿科玛股份有限公司 通过UV-辅助的化学气相沉积在聚合物基底上沉积掺杂的ZnO薄膜
CN110498615A (zh) * 2019-09-27 2019-11-26 大连交通大学 一种使用溶胶-凝胶旋涂法制备致密CuO薄膜的方法

Families Citing this family (567)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605798A (en) 1993-01-07 1997-02-25 Sequenom, Inc. DNA diagnostic based on mass spectrometry
US5985356A (en) 1994-10-18 1999-11-16 The Regents Of The University Of California Combinatorial synthesis of novel materials
US7166470B2 (en) * 1994-10-18 2007-01-23 Symyx Technologies, Inc. Formation of combinatorial arrays of materials using solution-based methodologies
US7767627B1 (en) * 1994-10-18 2010-08-03 Symyx Solutions, Inc. Combinatorial synthesis of inorganic or composite materials
US6030917A (en) 1996-07-23 2000-02-29 Symyx Technologies, Inc. Combinatorial synthesis and analysis of organometallic compounds and catalysts
US6419881B1 (en) * 1994-10-18 2002-07-16 Symyx Technologies, Inc. Combinatorial arrays of organometallic compounds and catalysts
US6440745B1 (en) * 1994-10-18 2002-08-27 Symyx Technologies Combinatorial synthesis and screening of organometallic compounds and catalysts
US6045671A (en) * 1994-10-18 2000-04-04 Symyx Technologies, Inc. Systems and methods for the combinatorial synthesis of novel materials
US5959098A (en) 1996-04-17 1999-09-28 Affymetrix, Inc. Substrate preparation process
WO1996036436A1 (en) * 1995-04-25 1996-11-21 Irori Remotely programmable matrices with memories and uses thereof
US20030203390A1 (en) * 1995-10-26 2003-10-30 Kaye Paul H. Coded particles for process sequence tracking in combinatorial compound library preparation
US6660233B1 (en) * 1996-01-16 2003-12-09 Beckman Coulter, Inc. Analytical biochemistry system with robotically carried bioarray
US6063633A (en) 1996-02-28 2000-05-16 The University Of Houston Catalyst testing process and apparatus
AU2069597A (en) 1996-03-04 1997-09-22 Genetrace Systems, Inc. Methods of screening nucleic acids using mass spectrometry
US6706875B1 (en) * 1996-04-17 2004-03-16 Affyemtrix, Inc. Substrate preparation process
US20050009081A1 (en) * 1996-07-23 2005-01-13 Symyx Technologies, Inc. Optical systems and methods for rapid screening of libraries of different materials
US6441901B2 (en) 1996-07-23 2002-08-27 Symyx Technologies, Inc. Optical systems and methods for rapid screening of libraries of different materials
ATE206714T1 (de) * 1996-07-23 2001-10-15 Symyx Technologies Inc Kombinatorisches verfahren zur identifizierung von organometallischen polymerisationskatalysatoren
US6582921B2 (en) * 1996-07-29 2003-06-24 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses thereof
US5965363A (en) 1996-09-19 1999-10-12 Genetrace Systems Inc. Methods of preparing nucleic acids for mass spectrometric analysis
AU4662097A (en) * 1996-10-01 1998-04-24 Symyx Technologies, Inc. Potential masking systems and methods for combinitorial library synthesis
US6720186B1 (en) 1998-04-03 2004-04-13 Symyx Technologies, Inc. Method of research for creating and testing novel catalysts, reactions and polymers
EP0934515B1 (en) * 1996-10-09 2006-03-08 Symyx Technologies, Inc. Infrared spectroscopy and imaging of libraries
US6536944B1 (en) 1996-10-09 2003-03-25 Symyx Technologies, Inc. Parallel screen for rapid thermal characterization of materials
US6738529B1 (en) * 1996-10-09 2004-05-18 Symyx Technologies, Inc. Analysis of chemical data from images
US7285422B1 (en) 1997-01-23 2007-10-23 Sequenom, Inc. Systems and methods for preparing and analyzing low volume analyte array elements
US6024925A (en) * 1997-01-23 2000-02-15 Sequenom, Inc. Systems and methods for preparing low volume analyte array elements
CA2268740C (en) 1996-11-06 2010-07-20 Sequenom, Inc. High density immobilization of nucleic acids
US20060003163A1 (en) * 1996-11-16 2006-01-05 Nanomagnetics Limited Magnetic fluid
US6713173B2 (en) * 1996-11-16 2004-03-30 Nanomagnetics Limited Magnetizable device
WO1998026095A1 (en) 1996-12-10 1998-06-18 Genetrace Systems Inc. Releasable nonvolatile mass-label molecules
NO304355B1 (no) 1997-02-20 1998-12-07 Sinvent As Multi-autoklav for metodisk, automatisert syntese av zeolitter og andre forbindelser
AU6704398A (en) * 1997-03-19 1998-10-12 Biosepra Inc. Multifunctional ceramic particles as solid supports for solid phase and com binatorial solid phase synthesis
AU7801698A (en) * 1997-06-09 1998-12-30 Symyx Technologies, Inc. Delivery and scavenging agents for combinatorial synthesis
NZ516848A (en) * 1997-06-20 2004-03-26 Ciphergen Biosystems Inc Retentate chromatography apparatus with applications in biology and medicine
WO1999000663A1 (en) * 1997-06-30 1999-01-07 California Institute Of Technology Compositionally different polymer-based sensor elements and methods for preparing same
US6151123A (en) * 1997-07-14 2000-11-21 Symyx Technologies, Inc. Systems and methods for employing optical probes to characterize material properties
US7112449B1 (en) * 2000-04-05 2006-09-26 Nanogram Corporation Combinatorial chemical synthesis
WO1999005318A1 (en) * 1997-07-22 1999-02-04 Symyx Technologies Encoding of organometallic libraries
US6576906B1 (en) * 1999-10-08 2003-06-10 Symyx Technologies, Inc. Method and apparatus for screening combinatorial libraries for semiconducting properties
JP2001515735A (ja) * 1997-09-11 2001-09-25 ジェノベイションズ, インコーポレイテッド 高密度アレイを作製する方法
US20030170913A1 (en) * 1997-09-30 2003-09-11 Hitoshi Fukushima Manufacture of a microsensor device and a method for evaluating the function of a liquid by the use thereof
US20030180441A1 (en) * 1997-09-30 2003-09-25 Hitoshi Fukushima Manufacture of a microsensor device and a method for evaluating the function of a liquid by the use thereof
US20030104481A1 (en) * 1997-09-30 2003-06-05 Symyx Technologies Potential masking systems and methods for combinatorial library synthesis
US6818110B1 (en) 1997-09-30 2004-11-16 Symyx Technologies, Inc. Combinatorial electrochemical deposition and testing system
US6393895B1 (en) 1997-10-08 2002-05-28 Symyx Technologies, Inc. Method and apparatus for characterizing materials by using a mechanical resonator
US6494079B1 (en) * 2001-03-07 2002-12-17 Symyx Technologies, Inc. Method and apparatus for characterizing materials by using a mechanical resonator
US6426226B1 (en) * 1997-10-10 2002-07-30 Laboratory Catalyst Systems Llc Method and apparatus for screening catalyst libraries
EP1040348B1 (de) 1997-12-23 2005-11-16 HTE Aktiengesellschaft The High Throughput Experimentation Company Verfahren zur kombinatorischen materialentwicklung durch den einsatz von wärmedifferenzbildern
JPH11189874A (ja) * 1997-12-25 1999-07-13 Tdk Corp 薄膜形成方法および装置
US6893877B2 (en) 1998-01-12 2005-05-17 Massachusetts Institute Of Technology Methods for screening substances in a microwell array
EP1054726B1 (en) 1998-02-11 2003-07-30 University of Houston, Office of Technology Transfer Apparatus for chemical and biochemical reactions using photo-generated reagents
US6087181A (en) * 1998-03-16 2000-07-11 Symyx Technologies Sampling and detection of trace gas species by optical spectroscopy
DE69939622D1 (de) * 1998-03-19 2008-11-06 Prec System Science Co Ltd Apparat zur integration von magnetteilchen - verarbeitung und steuerungsverfahren
US6866786B2 (en) * 1998-04-03 2005-03-15 Symyx Technologies, Inc. Rapid characterization of polymers
US6294388B1 (en) * 1998-04-03 2001-09-25 Symyx Technologies, Inc. Indirect calibration of polymer characterization systems
DE19822077A1 (de) * 1998-05-16 1999-11-18 Studiengesellschaft Kohle Mbh Kombinatorisches Verfahren zur Herstellung und Charakterisierung von kristallinen und amorphen Materialbibliotheken im Mikrogramm-Maßstab
US6149882A (en) * 1998-06-09 2000-11-21 Symyx Technologies, Inc. Parallel fixed bed reactor and fluid contacting apparatus
EP2045334A1 (en) 1998-06-24 2009-04-08 Illumina, Inc. Decoding of array sensors with microspheres
US6063436A (en) * 1998-07-10 2000-05-16 Litton Systems, Inc. Use of multiple masks to control uniformity in coating deposition
US6306658B1 (en) 1998-08-13 2001-10-23 Symyx Technologies Parallel reactor with internal sensing
US6455316B1 (en) 1998-08-13 2002-09-24 Symyx Technologies, Inc. Parallel reactor with internal sensing and method of using same
US6528026B2 (en) 1998-08-13 2003-03-04 Symyx Technologies, Inc. Multi-temperature modular reactor and method of using same
US6890492B1 (en) 1998-08-13 2005-05-10 Symyx Technologies, Inc. Parallel reactor with internal sensing and method of using same
US6913934B2 (en) * 1998-08-13 2005-07-05 Symyx Technologies, Inc. Apparatus and methods for parallel processing of multiple reaction mixtures
US6759014B2 (en) * 2001-01-26 2004-07-06 Symyx Technologies, Inc. Apparatus and methods for parallel processing of multiple reaction mixtures
US6548026B1 (en) 1998-08-13 2003-04-15 Symyx Technologies, Inc. Parallel reactor with internal sensing and method of using same
US6410332B1 (en) 1998-09-08 2002-06-25 Symyx Technologies, Inc. Sampling and analysis of reactions by trapping reaction components on a sorbent
WO2000015884A1 (fr) * 1998-09-11 2000-03-23 Japan Science And Technology Corporation Dispositif combinatoire d'épitaxie de couche moléculaire
EP1113991B1 (en) * 1998-09-18 2004-06-09 Symyx Technologies, Inc. Formation of combinatorial arrays of materials using solution-based methodologies
US6521793B1 (en) 1998-10-08 2003-02-18 Symyx Technologies, Inc. Catalyst ligands, catalytic metal complexes and processes using same
US7199809B1 (en) 1998-10-19 2007-04-03 Symyx Technologies, Inc. Graphic design of combinatorial material libraries
US6535284B1 (en) 1998-10-19 2003-03-18 Symyx Technologies, Inc. Rheo-optical indexer and method of screening and characterizing arrays of materials
ATE213851T1 (de) * 1998-10-19 2002-03-15 Symyx Technologies Inc Entwurf von kombinatorischen materialbibliotheken
JP3093184B2 (ja) * 1998-10-29 2000-10-03 アプライド マテリアルズ インコーポレイテッド 成膜方法及び装置
US6485692B1 (en) 1998-12-04 2002-11-26 Symyx Technologies, Inc. Continuous feed parallel reactor
CA2317743A1 (en) * 1998-12-11 2000-06-22 Paul Mansky Sensor array-based system and method for rapid materials characterization
US6477479B1 (en) 1998-12-11 2002-11-05 Symyx Technologies Sensor array for rapid materials characterization
US6438497B1 (en) 1998-12-11 2002-08-20 Symyx Technologies Method for conducting sensor array-based rapid materials characterization
AU2368900A (en) 1998-12-18 2000-07-03 Symyx Technologies, Inc. Apparatus and method for characterizing libraries of different materials using x-ray scattering
US6683446B1 (en) * 1998-12-22 2004-01-27 John Pope Electrode array for development and testing of materials
JP3959459B2 (ja) 1998-12-25 2007-08-15 独立行政法人産業技術総合研究所 触媒性能評価装置
US6827979B2 (en) * 1999-01-07 2004-12-07 Northwestern University Methods utilizing scanning probe microscope tips and products therefor or produced thereby
US6635311B1 (en) * 1999-01-07 2003-10-21 Northwestern University Methods utilizing scanning probe microscope tips and products therefor or products thereby
US20020122873A1 (en) * 2000-01-05 2002-09-05 Mirkin Chad A. Nanolithography methods and products therefor and produced thereby
US6116737A (en) * 1999-01-13 2000-09-12 Lasersight Technologies, Inc. Ablation profile calibration plate
US7491677B2 (en) * 1999-01-15 2009-02-17 Basf Catalysts Llc Combinatorial synthesis
US6830663B2 (en) * 1999-01-26 2004-12-14 Symyx Technologies, Inc. Method for creating radial profiles on a substrate
US6846460B1 (en) 1999-01-29 2005-01-25 Illumina, Inc. Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses
EP1161986A3 (en) * 1999-02-17 2003-06-04 Oxxel Oxide Electronics Technology, Inc. Apparatus for combinatorial molecular beam epitaxy
JP2002537202A (ja) * 1999-02-17 2002-11-05 オクセル オキサイド エレクトロニクス テクノロジー, インコーポレイテッド 組み合わせ分子線エピタキシー(combe)装置を使用するライブラリの調製方法
US20020042140A1 (en) * 1999-03-03 2002-04-11 Alfred Hagemeyer Methods for analysis of heterogeneous catalysts in a multi-variable screening reactor
US6749814B1 (en) 1999-03-03 2004-06-15 Symyx Technologies, Inc. Chemical processing microsystems comprising parallel flow microreactors and methods for using same
US7150994B2 (en) * 1999-03-03 2006-12-19 Symyx Technologies, Inc. Parallel flow process optimization reactor
AU756982B2 (en) 1999-03-19 2003-01-30 Life Technologies Corporation Multi-through hole testing plate for high throughput screening
SE513891C2 (sv) * 1999-03-22 2000-11-20 Ericsson Telefon Ab L M Ett magnetoresistivt element och ett förfarande för att producera en kristallstruktur
US6518218B1 (en) * 1999-03-31 2003-02-11 General Electric Company Catalyst system for producing carbon fibrils
US6689613B1 (en) 1999-03-31 2004-02-10 General Electric Company Method for preparing and screening catalysts
US6855258B2 (en) * 1999-04-02 2005-02-15 Symyx Technologies, Inc. Methods for characterization of polymers using multi-dimensional liquid chromatography with parallel second-dimension sampling
US20020164812A1 (en) * 1999-04-06 2002-11-07 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US7250305B2 (en) 2001-07-30 2007-07-31 Uab Research Foundation Use of dye to distinguish salt and protein crystals under microcrystallization conditions
US7244396B2 (en) 1999-04-06 2007-07-17 Uab Research Foundation Method for preparation of microarrays for screening of crystal growth conditions
US7247490B2 (en) 1999-04-06 2007-07-24 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US7214540B2 (en) 1999-04-06 2007-05-08 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US6511849B1 (en) * 1999-04-23 2003-01-28 The Sir Mortimer B. Davis - Jewish General Hospital Microarrays of biological materials
US6507945B1 (en) * 1999-05-05 2003-01-14 Symyx Technologies, Inc. Synthesizing combinatorial libraries of materials
DE60000583T3 (de) * 1999-05-19 2009-04-30 Eppendorf Array Technologies Verfahren zur identifizierung und/oder quantifizierung einer zielverbindung
US20030096321A1 (en) * 1999-05-19 2003-05-22 Jose Remacle Method for the identification and/or the quantification of a target compound obtained from a biological sample upon chips
US6573369B2 (en) 1999-05-21 2003-06-03 Bioforce Nanosciences, Inc. Method and apparatus for solid state molecular analysis
US20030186311A1 (en) * 1999-05-21 2003-10-02 Bioforce Nanosciences, Inc. Parallel analysis of molecular interactions
US20020042081A1 (en) * 2000-10-10 2002-04-11 Eric Henderson Evaluating binding affinities by force stratification and force panning
US20030073250A1 (en) * 1999-05-21 2003-04-17 Eric Henderson Method and apparatus for solid state molecular analysis
US6468410B1 (en) 1999-06-14 2002-10-22 Eveready Battery Company, Inc. Method for synthesis and characterization of electrode materials
US6630006B2 (en) * 1999-06-18 2003-10-07 The Regents Of The University Of California Method for screening microcrystallizations for crystal formation
TW512543B (en) * 1999-06-28 2002-12-01 Semiconductor Energy Lab Method of manufacturing an electro-optical device
NO312921B1 (no) 1999-07-05 2002-07-15 Sinvent As Multitest-sammenstilling for evaluering, detektering og overvåkning av prosesser ved forhöyet trykk
US6572828B1 (en) 1999-07-16 2003-06-03 General Electric Company Method and apparatus for high-throughput chemical screening
US6770482B1 (en) * 1999-07-16 2004-08-03 General Electric Method and apparatus for rapid screening of multiphase reactions
US6307004B1 (en) 1999-09-20 2001-10-23 General Electric Company Method for parallel melt-polymerization
US7045049B1 (en) * 1999-10-01 2006-05-16 Nanoplex Technologies, Inc. Method of manufacture of colloidal rod particles as nanobar codes
US7225082B1 (en) 1999-10-01 2007-05-29 Oxonica, Inc. Colloidal rod particles as nanobar codes
WO2001025510A1 (en) * 1999-10-01 2001-04-12 Surromed, Inc. Method of manufacture of colloidal rod particles as nanobar codes
US20040178076A1 (en) * 1999-10-01 2004-09-16 Stonas Walter J. Method of manufacture of colloidal rod particles as nanobarcodes
US20050032226A1 (en) * 1999-10-01 2005-02-10 Natan Michael J. Encoded nanoparticles in paper manufacture
US20040209376A1 (en) * 1999-10-01 2004-10-21 Surromed, Inc. Assemblies of differentiable segmented particles
US6919009B2 (en) * 1999-10-01 2005-07-19 Nanoplex Technologies, Inc. Method of manufacture of colloidal rod particles as nanobarcodes
TW468283B (en) 1999-10-12 2001-12-11 Semiconductor Energy Lab EL display device and a method of manufacturing the same
TW471011B (en) 1999-10-13 2002-01-01 Semiconductor Energy Lab Thin film forming apparatus
US7094607B1 (en) 1999-10-29 2006-08-22 Avery Dennison Corporation Apparatus for high-throughput production of coat material arrays, and analytical methods using such arrays
US20030134033A1 (en) * 1999-10-29 2003-07-17 Avery Dennison Corporation Combinatorial screening/testing apparatus and method
US7448258B2 (en) * 1999-10-29 2008-11-11 Avery Dennison Corporation High throughput screening for moisture barrier characteristics of materials
AU1447101A (en) * 1999-10-29 2001-05-14 Jay R. Akhave An improved combinatorial testing method and apparatus for coat material formulations and methods
AU1476601A (en) 1999-11-09 2001-06-06 Sri International Array for the high-throughput synthesis, screening and characterization of combinatorial libraries, and methods for making the array
US7033840B1 (en) 1999-11-09 2006-04-25 Sri International Reaction calorimeter and differential scanning calorimeter for the high-throughput synthesis, screening and characterization of combinatorial libraries
DE19955789A1 (de) * 1999-11-19 2001-05-23 Basf Ag Verfahren zur kombinatorischen Herstellung einer Bibliothek von Materialien
DE19959973A1 (de) * 1999-12-13 2001-06-21 Basf Ag Verfahren zur kombinatorischen Herstellung und Testung von Heterogenkatalysatoren
DE19959974A1 (de) 1999-12-13 2001-06-21 Basf Ag Verfahren zur Herstellung von Materialbibliotheken durch elektrochemische Abscheidung
US6627445B1 (en) 1999-12-15 2003-09-30 Uop Llc Process for simultaneously evaluating a plurality of catalysts
US6576196B1 (en) 1999-12-15 2003-06-10 Uop Llc Multiple parallel catalytic reactor assembly
US6776963B1 (en) 1999-12-15 2004-08-17 Uop Llc Multiple parallel catalytic reactor assembly
US6342185B1 (en) 1999-12-15 2002-01-29 Uop Llc Combinatorial catalytic reactor
US6770245B2 (en) 1999-12-15 2004-08-03 Uop Llc Multiple parallel processing assembly
US6368865B1 (en) 1999-12-15 2002-04-09 Uop Llc Combinatorial process for performing catalytic chemical reactions
US7108970B2 (en) * 2000-01-07 2006-09-19 Transform Pharmaceuticals, Inc. Rapid identification of conditions, compounds, or compositions that inhibit, prevent, induce, modify, or reverse transitions of physical state
US20050118637A9 (en) * 2000-01-07 2005-06-02 Levinson Douglas A. Method and system for planning, performing, and assessing high-throughput screening of multicomponent chemical compositions and solid forms of compounds
US20050089923A9 (en) * 2000-01-07 2005-04-28 Levinson Douglas A. Method and system for planning, performing, and assessing high-throughput screening of multicomponent chemical compositions and solid forms of compounds
IL150524A0 (en) * 2000-01-07 2003-02-12 Transform Pharmaceuticals Inc High-throughput formation, identification, and analysis of diverse solid-forms
US20050095696A9 (en) * 2000-01-07 2005-05-05 Lemmo Anthony V. Apparatus and method for high-throughput preparation and characterization of compositions
US20070020662A1 (en) * 2000-01-07 2007-01-25 Transform Pharmaceuticals, Inc. Computerized control of high-throughput experimental processing and digital analysis of comparative samples for a compound of interest
US20040252299A9 (en) * 2000-01-07 2004-12-16 Lemmo Anthony V. Apparatus and method for high-throughput preparation and spectroscopic classification and characterization of compositions
US20070021929A1 (en) * 2000-01-07 2007-01-25 Transform Pharmaceuticals, Inc. Computing methods for control of high-throughput experimental processing, digital analysis, and re-arraying comparative samples in computer-designed arrays
PT1255690E (pt) * 2000-01-31 2004-12-31 Diagnoswiss Sa Metodo de fabrico de microestruturas com varias propriedades de superficie em corpos de multiplas camadas por gravacao com plasma
TW495808B (en) * 2000-02-04 2002-07-21 Semiconductor Energy Lab Thin film formation apparatus and method of manufacturing self-light-emitting device using thin film formation apparatus
US20020013224A1 (en) * 2000-02-08 2002-01-31 Diamond Gary M. Catalysts, metal complexes, compositions and arrays containing erbium
US6693033B2 (en) 2000-02-10 2004-02-17 Motorola, Inc. Method of removing an amorphous oxide from a monocrystalline surface
US20020151040A1 (en) 2000-02-18 2002-10-17 Matthew O' Keefe Apparatus and methods for parallel processing of microvolume liquid reactions
US6627571B1 (en) 2000-03-01 2003-09-30 Symyx Technologies, Inc. Method and system for the situ synthesis of a combinatorial library of supported catalyst materials
ATE287291T1 (de) 2000-03-07 2005-02-15 Symyx Technologies Inc Prozessoptimierungsreaktor mit parallelem durchfluss
US6897015B2 (en) * 2000-03-07 2005-05-24 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of pathogens and biological materials
US6491759B1 (en) 2000-03-14 2002-12-10 Neocera, Inc. Combinatorial synthesis system
DE10012847A1 (de) 2000-03-16 2001-09-27 Hte Gmbh Verfahren und Vorrichtung zur kombinatorischen Herstellung und Testung von Materialbibliotheken durch Anwendung mindestens zweier Analysemethoden
DE10012962B4 (de) * 2000-03-16 2005-08-04 Peter Prof. Dr. Bäuerle Verfahren zur Parallelsynthese von mindestens zwei Cumarinderivaten sowie substituierte Cumarinderivate und Arylboronsäurepropandiolester
US7216113B1 (en) * 2000-03-24 2007-05-08 Symyx Technologies, Inc. Remote Execution of Materials Library Designs
GB0008563D0 (en) * 2000-04-07 2000-05-24 Cambridge Discovery Chemistry Investigating different physical and/or chemical forms of materials
US6497799B1 (en) * 2000-04-14 2002-12-24 Seagate Technology Llc Method and apparatus for sputter deposition of multilayer films
US6983233B1 (en) 2000-04-19 2006-01-03 Symyx Technologies, Inc. Combinatorial parameter space experiment design
US6911129B1 (en) 2000-05-08 2005-06-28 Intematix Corporation Combinatorial synthesis of material chips
CA2344946A1 (en) 2000-05-10 2001-11-10 Symyx Technologies, Inc. Polymer libraries on a substrate, method of forming polymer libraries on a substrate and characterization methods with same
TWI220927B (en) * 2000-05-12 2004-09-11 Rong-Seng Chang Method for producing a micro-carrier
US6562411B2 (en) 2000-05-24 2003-05-13 Agfa-Gevaert Combinatorial coating for developing novel materials
US6393898B1 (en) 2000-05-25 2002-05-28 Symyx Technologies, Inc. High throughput viscometer and method of using same
US6664067B1 (en) * 2000-05-26 2003-12-16 Symyx Technologies, Inc. Instrument for high throughput measurement of material physical properties and method of using same
US20050048614A1 (en) * 2000-06-13 2005-03-03 Children's Medical Center Corporation Biosynthetic oncolytic molecules and uses therefor
EP1373561B1 (en) 2000-06-13 2009-02-18 The Trustees of Boston University Use of mass-matched nucleotides in the analysis of oligonucleotide mixtures and in highly multiplexed nucleic acid sequencing
US7078164B1 (en) 2000-06-19 2006-07-18 Symyx Technologies, Inc. High throughput screen for identifying polymerization catalysts from potential catalysts
DE10031587A1 (de) * 2000-06-29 2002-01-10 Basf Ag Dosierung von Suspensionen im Mikromaßstab zur Herstellung von Materialproben in der kombinatorischen Materialforschung sowie deren Prüfung
WO2002003437A1 (en) * 2000-06-30 2002-01-10 Motorola, Inc., A Corporation Of The State Of Delaware Hybrid semiconductor structure and device
US20020019011A1 (en) * 2000-07-07 2002-02-14 Stockwell Brent R. Methods for identifying combinations of entities as therapeutics
US6755364B2 (en) * 2000-07-07 2004-06-29 Symyx Technologies, Inc. Methods and apparatus for mechanical treatment of materials such as catalysts
DE10034893A1 (de) * 2000-07-18 2002-01-31 Basf Ag Arrays von n wässrigen Polymerdispersionen und m Formulierungen wässriger Polymerdispersionen
US6555946B1 (en) 2000-07-24 2003-04-29 Motorola, Inc. Acoustic wave device and process for forming the same
WO2002007876A1 (en) * 2000-07-24 2002-01-31 Chevron U.S.A. Inc. Methods for optimizing the synthesis of hydrocarbons from synthesis gas
EP1315562A2 (en) * 2000-07-24 2003-06-04 Chevron U.S.A. Inc. Use of combinatorial chemistry to optimize multi-step synthesis
US6558624B1 (en) 2000-07-25 2003-05-06 General Electric Company Method and analytical system for rapid screening of combinatorial libraries
US6599693B1 (en) * 2000-07-31 2003-07-29 Agilent Technologies Inc. Array fabrication
US6544477B1 (en) * 2000-08-01 2003-04-08 Regents Of The University Of Minnesota Apparatus for generating a temperature gradient
US6701774B2 (en) * 2000-08-02 2004-03-09 Symyx Technologies, Inc. Parallel gas chromatograph with microdetector array
US6484567B1 (en) 2000-08-03 2002-11-26 Symyx Technologies, Inc. Rheometer for rapidly measuring small quantity samples
ATE402760T1 (de) * 2000-08-15 2008-08-15 Bioforce Nanosciences Inc Vorrichtung zur bildung von nanomolekularen netzwerken
AU2001291769A1 (en) * 2000-08-17 2002-02-25 Basf Aktiengesellschaft Procedure and device to develop nanodispersants
US6864091B1 (en) 2000-08-31 2005-03-08 Symyx Technologies, Inc. Sampling probe
DE10131581B4 (de) * 2000-09-12 2008-04-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erzeugung und Überprüfung von Verbundanordnungen
EP1245278A3 (en) * 2000-09-15 2003-12-10 Agfa-Gevaert A web material having microwells for combinatorial applications
US6420178B1 (en) * 2000-09-20 2002-07-16 General Electric Company High throughput screening method, array assembly and system
US6544795B1 (en) 2000-09-20 2003-04-08 General Electric Company Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins
US6868715B1 (en) 2000-09-20 2005-03-22 General Electric Company Method and apparatus for rapid determination of polymer molecular weight
US6780648B1 (en) 2000-09-20 2004-08-24 General Electric Company Method and system for selectively distributing luminescence material precursors
US6612686B2 (en) 2000-09-25 2003-09-02 Picoliter Inc. Focused acoustic energy in the preparation and screening of combinatorial libraries
US6808934B2 (en) 2000-09-25 2004-10-26 Picoliter Inc. High-throughput biomolecular crystallization and biomolecular crystal screening
US20020037359A1 (en) 2000-09-25 2002-03-28 Mutz Mitchell W. Focused acoustic energy in the preparation of peptide arrays
US7900505B2 (en) * 2000-09-25 2011-03-08 Labcyte Inc. Acoustic assessment of fluids in a plurality of reservoirs
AU2002224336B2 (en) 2000-09-25 2007-01-04 Picoliter Inc. Acoustic ejection of fluids from a plurality of reservoirs
US6746104B2 (en) 2000-09-25 2004-06-08 Picoliter Inc. Method for generating molecular arrays on porous surfaces
US6666541B2 (en) * 2000-09-25 2003-12-23 Picoliter Inc. Acoustic ejection of fluids from a plurality of reservoirs
US20020061258A1 (en) * 2000-09-25 2002-05-23 Mutz Mitchell W. Focused acoustic energy in the preparation and screening of combinatorial libraries
US6496250B1 (en) 2000-09-29 2002-12-17 General Electric Company Combinatorial method foe development of optical ceramics
AU2001296460A1 (en) * 2000-10-02 2002-04-15 Surromed, Inc. Method of manufacture of colloidal rod particles as nanobarcodes
US6638838B1 (en) 2000-10-02 2003-10-28 Motorola, Inc. Semiconductor structure including a partially annealed layer and method of forming the same
US20040209303A1 (en) 2000-10-03 2004-10-21 Martin Mark T. Methods and compositions for directed microwave chemistry
AU2002211317A1 (en) * 2000-10-03 2002-04-15 Mirari Biosciences, Inc. Methods and compositions for directed microwave chemistry
US7348182B2 (en) * 2000-10-03 2008-03-25 Mirari Biosciences, Inc. Directed microwave chemistry
WO2002030465A2 (en) 2000-10-12 2002-04-18 University Of Rochester Compositions that inhibit proliferation of cancer cells
US6541264B1 (en) 2000-10-19 2003-04-01 General Electric Company Aromatic polycarbonate characterization
AU2001271500A1 (en) * 2000-10-19 2002-04-29 General Electric Company Methods for nondestructive evaluation of defects in a transparent coating
AU2002239740A1 (en) * 2000-10-20 2002-06-11 Chad A. Mirkin Nanolithography methods and products therefor and produced thereby
US6482264B1 (en) * 2000-10-26 2002-11-19 General Electric Company Systems and methods for fabrication of coating libraries
KR100649342B1 (ko) 2000-10-30 2006-11-27 시쿼넘, 인코포레이티드 기판 상으로 서브마이크로리터 볼륨들을 전달하기 위한 방법 및 장치
US6567751B1 (en) 2000-11-03 2003-05-20 General Electric Company Methods and computer system for combinatorial analysis of lighting phosphors
US6900321B2 (en) 2000-11-07 2005-05-31 Symyx Technologies, Inc. Substituted pyridyl amine complexes, and catalysts
JP2002163005A (ja) * 2000-11-29 2002-06-07 Nikon Corp 制御系の設計方法、制御系、制御系の調整方法及び露光方法
DE10059890A1 (de) * 2000-12-01 2002-06-20 Hte Ag Verfahren zur Herstellung einer Vielzahl von Bausteinen einer Materialbibliothek
US6749776B2 (en) * 2000-12-04 2004-06-15 General Electric Company Method for rapid screening of emission-mix using a combinatorial chemistry approach
EP1350214A4 (en) 2000-12-15 2009-06-10 Symyx Technologies Inc METHODS AND DEVICES FOR PREPARING HIGHLY DIMENSIONED COMBINATION LIBRARIES
US6658429B2 (en) 2001-01-05 2003-12-02 Symyx Technologies, Inc. Laboratory database system and methods for combinatorial materials research
US7085773B2 (en) 2001-01-05 2006-08-01 Symyx Technologies, Inc. Laboratory database system and methods for combinatorial materials research
US6918309B2 (en) * 2001-01-17 2005-07-19 Irm Llc Sample deposition method and system
US6406916B1 (en) 2001-01-22 2002-06-18 General Electric Company Method and apparatus for rapid quantitation of a dihydric phenol
US7250950B2 (en) * 2001-01-29 2007-07-31 Symyx Technologies, Inc. Systems, methods and computer program products for determining parameters for chemical synthesis
USH2193H1 (en) * 2001-01-30 2007-07-03 The United States Of America As Represented By The Secretary Of The Air Force Method of growing homoepitaxial silicon carbide
US6607918B2 (en) * 2001-02-01 2003-08-19 General Electric Company Fluorescent labeling method and substrate
KR100528778B1 (ko) * 2001-02-23 2005-11-15 인터내셔널 비지네스 머신즈 코포레이션 거대 자기저항 및 스핀-분극된 터널을 나타내는 화합물,그의 제조 방법 및 그의 용도
US20020160527A1 (en) 2001-02-26 2002-10-31 3M Innovative Properties Company Combinatorial library comprising pouches as packages for library members and method therefor
US6673646B2 (en) 2001-02-28 2004-01-06 Motorola, Inc. Growth of compound semiconductor structures on patterned oxide films and process for fabricating same
US7118917B2 (en) 2001-03-07 2006-10-10 Symyx Technologies, Inc. Parallel flow reactor having improved thermal control
US20020142304A1 (en) * 2001-03-09 2002-10-03 Anderson Daniel G. Uses and methods of making microarrays of polymeric biomaterials
JP3388731B2 (ja) * 2001-03-16 2003-03-24 科学技術振興事業団 コンビナトリアル試料の熱電特性測定方法及びその装置
US7731905B2 (en) * 2001-03-26 2010-06-08 Canon Kabushiki Kaisha Process for producing probe carrier and apparatus thereof
JP2002289614A (ja) * 2001-03-26 2002-10-04 Nec Corp 誘電体膜の評価方法、熱処理装置の温度校正方法及び半導体記憶装置の製造方法
US20020176927A1 (en) * 2001-03-29 2002-11-28 Kodas Toivo T. Combinatorial synthesis of material systems
US7514263B2 (en) 2001-04-02 2009-04-07 3M Innovative Properties Company Continuous process for the production of combinatorial libraries of materials
WO2002080647A2 (en) * 2001-04-03 2002-10-17 Surromed, Inc. Methods and reagents for multiplexed analyte capture, surface array self-assembly, and analysis of complex biological samples
US20020172620A1 (en) * 2001-04-04 2002-11-21 Potyrailo Radislav Alexandrovich Systems and methods for rapid evaluation of chemical resistance of materials
US7670429B2 (en) 2001-04-05 2010-03-02 The California Institute Of Technology High throughput screening of crystallization of materials
US6692708B2 (en) * 2001-04-05 2004-02-17 Symyx Technologies, Inc. Parallel reactor for sampling and conducting in situ flow-through reactions and a method of using same
US20060129329A1 (en) * 2001-04-09 2006-06-15 Kobylecki Ryszard J Investigating different physical and/or chemical forms of materials
DE10119926A1 (de) * 2001-04-23 2002-10-24 Ernst Muenstermann Verfahren zur Optimierung der Zusammensetzung und/oder der mechanischen Eigenschaften einer oder mehrerer Schichten auf einem Substratkörper und Verwendung dieses Verfahrens
US6943036B2 (en) * 2001-04-30 2005-09-13 Agilent Technologies, Inc. Error detection in chemical array fabrication
DE10122491A1 (de) 2001-05-10 2002-11-14 Bayer Ag Vorrichtung und Verfahren zur parallelen Durchführung von Experimenten
US7858385B2 (en) 2001-05-16 2010-12-28 Los Alamos National Security, Llc Method for detecting binding events using micro-X-ray fluorescence spectrometry
US7302830B2 (en) 2001-06-06 2007-12-04 Symyx Technologies, Inc. Flow detectors having mechanical oscillators, and use thereof in flow characterization systems
US20030003021A1 (en) * 2001-06-06 2003-01-02 Monsanto Technology Llc Parallel reactor system and method
EP1401850A1 (en) 2001-06-20 2004-03-31 Nuevolution A/S Nucleoside derivatives for library preparation
US6709989B2 (en) 2001-06-21 2004-03-23 Motorola, Inc. Method for fabricating a semiconductor structure including a metal oxide interface with silicon
AU2002329186A1 (en) * 2001-06-21 2003-01-08 Virginia Tech Intellectual Properties, Inc. Electro-optical detection device
US6838052B2 (en) 2001-06-29 2005-01-04 Symyx Technologies, Inc. In-situ injection and materials screening device
US6992321B2 (en) * 2001-07-13 2006-01-31 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
WO2003008941A2 (en) * 2001-07-17 2003-01-30 Bioforce Nanosciences, Inc. Combined molecular blinding detection through force microscopy and mass spectrometry
JP4606660B2 (ja) * 2001-07-17 2011-01-05 Sabicイノベーティブプラスチックスジャパン合同会社 ポリカーボネートの製造方法およびポリカーボネート製造装置
US6646293B2 (en) 2001-07-18 2003-11-11 Motorola, Inc. Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates
US6693298B2 (en) 2001-07-20 2004-02-17 Motorola, Inc. Structure and method for fabricating epitaxial semiconductor on insulator (SOI) structures and devices utilizing the formation of a compliant substrate for materials used to form same
US6667196B2 (en) 2001-07-25 2003-12-23 Motorola, Inc. Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
US6589856B2 (en) 2001-08-06 2003-07-08 Motorola, Inc. Method and apparatus for controlling anti-phase domains in semiconductor structures and devices
US6639249B2 (en) 2001-08-06 2003-10-28 Motorola, Inc. Structure and method for fabrication for a solid-state lighting device
DE10139553B4 (de) * 2001-08-10 2008-04-10 Robert Bosch Gmbh Verfahren zur Herstellung einer Materialbibliothek
WO2003014732A1 (en) 2001-08-10 2003-02-20 Symyx Technologies, Inc. Apparatuses and methods for creating and testing pre-formulations and systems for same
US6673667B2 (en) 2001-08-15 2004-01-06 Motorola, Inc. Method for manufacturing a substantially integral monolithic apparatus including a plurality of semiconductor materials
US6860148B2 (en) 2001-08-24 2005-03-01 Symyx Technologies, Inc. High throughput fabric handle screening
US6736017B2 (en) 2001-08-24 2004-05-18 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6690179B2 (en) * 2001-08-24 2004-02-10 Symyx Technologies, Inc. High throughput mechanical property testing of materials libraries using capacitance
US6837115B2 (en) * 2001-08-24 2005-01-04 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6772642B2 (en) 2001-08-24 2004-08-10 Damian A. Hajduk High throughput mechanical property and bulge testing of materials libraries
US6769292B2 (en) * 2001-08-24 2004-08-03 Symyx Technologies, Inc High throughput rheological testing of materials
US6857309B2 (en) 2001-08-24 2005-02-22 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6650102B2 (en) 2001-08-24 2003-11-18 Symyx Technologies, Inc. High throughput mechanical property testing of materials libraries using a piezoelectric
WO2003021251A1 (en) * 2001-08-28 2003-03-13 Symyx Technologies, Inc. Methods for characterization of polymers using multi-dimentional liquid chromatography
TW573125B (en) * 2001-08-29 2004-01-21 Combinatorx Inc A screening system for identifying drug-drug interactions and methods of use thereof
US7404862B2 (en) * 2001-09-04 2008-07-29 The Trustees Of Princeton University Device and method for organic vapor jet deposition
US8535759B2 (en) * 2001-09-04 2013-09-17 The Trustees Of Princeton University Method and apparatus for depositing material using a dynamic pressure
AU2002336457A1 (en) * 2001-09-07 2003-03-24 Transform Pharmaceuticals, Inc. Apparatus and method for high-throughput preparation and characterization of compositions
US20030055587A1 (en) * 2001-09-17 2003-03-20 Symyx Technologies, Inc. Rapid throughput surface topographical analysis
US6808685B2 (en) 2001-09-17 2004-10-26 Uop Llc Apparatus and method for generating a plurality of isolated effluents
JP2003088750A (ja) * 2001-09-19 2003-03-25 National Institute Of Advanced Industrial & Technology 無機材料の製造方法
US7042488B2 (en) 2001-09-27 2006-05-09 Fujinon Corporation Electronic endoscope for highlighting blood vessel
CA2462833C (en) * 2001-10-02 2012-07-03 Northwestern University Protein and peptide nanoarrays
US6758951B2 (en) 2001-10-11 2004-07-06 Symyx Technologies, Inc. Synthesis and characterization of materials for electrochemical cells
US6689218B2 (en) * 2001-10-23 2004-02-10 General Electric Company Systems for the deposition and curing of coating compositions
US6544334B1 (en) 2001-10-23 2003-04-08 General Electric Company Systems and methods for the deposition and curing of coating compositions
US7148683B2 (en) 2001-10-25 2006-12-12 Intematix Corporation Detection with evanescent wave probe
US7122689B2 (en) * 2001-11-06 2006-10-17 Symyx Technologies, Inc. Titanium substituted pyridyl amine complexes, catalysts and processes for polymerizing ethylene and stryene
US7361310B1 (en) 2001-11-30 2008-04-22 Northwestern University Direct write nanolithographic deposition of nucleic acids from nanoscopic tips
US6881363B2 (en) 2001-12-07 2005-04-19 Symyx Technologies, Inc. High throughput preparation and analysis of materials
US20030143329A1 (en) * 2002-01-30 2003-07-31 Shchegrova Svetlana V. Error correction in array fabrication
US7013709B2 (en) 2002-01-31 2006-03-21 Symyx Technologies, Inc. High throughput preparation and analysis of plastically shaped material samples
WO2003065997A2 (en) 2002-02-06 2003-08-14 Vicor Technologies, Inc. Anti-infarction molecules
US6684683B2 (en) * 2002-02-27 2004-02-03 General Electric Company Method and apparatus for characterizing the barrier properties of members of combinatorial libraries
US20030162179A1 (en) * 2002-02-27 2003-08-28 General Electric Company Fabrication, performance testing, and screening of three dimensional arrays of materials
US6902704B2 (en) * 2002-02-28 2005-06-07 Equistar Chemicals, L.P Injection pump assembly for a combinatorial reactor and related method
AU2003222000A1 (en) * 2002-03-14 2003-09-29 Wisys Technology Foundation, Inc. Mbe-method for the production of a gallium manganese nitride ferromagnetic film
DE60324778D1 (de) 2002-03-15 2009-01-02 Nuevolution As Eine verbesserte methode zur synthese von matritzenabhängigen molekülen
US6916621B2 (en) 2002-03-27 2005-07-12 Spectral Genomics, Inc. Methods for array-based comparitive binding assays
US20030190260A1 (en) * 2002-04-05 2003-10-09 Symyx Technologies, Inc. Combinatorial chemistry reactor system
US6949267B2 (en) * 2002-04-08 2005-09-27 Engelhard Corporation Combinatorial synthesis
US7060848B2 (en) * 2002-04-24 2006-06-13 Symyx Technologies, Inc. Bridged bi-aromatic catalysts, complexes, and methods of using the same
US7091292B2 (en) * 2002-04-24 2006-08-15 Symyx Technologies, Inc. Bridged bi-aromatic catalysts, complexes, and methods of using the same
DE60335459D1 (de) * 2002-04-24 2011-02-03 Symyx Solutions Inc Verbrückte bi-aromatische liganden, komplexe, katalysatoren, verfahren zur polymerisierung und entstehende polymere
US20030203500A1 (en) * 2002-04-26 2003-10-30 Symyx Technologies, Inc. High throughput testing of fluid samples using an electric field
GB0210237D0 (en) * 2002-05-03 2002-06-12 Bp Chem Int Ltd Injector system
US20030219456A1 (en) * 2002-05-21 2003-11-27 Taing Ok Method of utilization of zygosaccharomyces rouxii
US6928877B2 (en) * 2002-05-24 2005-08-16 Symyx Technologies, Inc. High throughput microbalance and methods of using same
US20040071888A1 (en) * 2002-05-30 2004-04-15 Symyx Technologies, Inc. Apparatus and method of research for creating and testing thin films
US20050239193A1 (en) * 2002-05-30 2005-10-27 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of microorganisms and microparticles
DE10230455A1 (de) * 2002-07-06 2004-01-22 Robert Bosch Gmbh Verfahren zur Einstellung oder lokalen Veränderung einer Magnetisierung in einer Schicht einer magnetoresistiven Schichtanordnung, Heizstempel zum Anheizen der magnetoresistiven Schichtanordnung und deren Verwendung
US10730906B2 (en) 2002-08-01 2020-08-04 Nuevolutions A/S Multi-step synthesis of templated molecules
US7632916B2 (en) 2002-08-02 2009-12-15 3M Innovative Properties Company Process to modify polymeric materials and resulting compositions
US7042035B2 (en) * 2002-08-02 2006-05-09 Unity Semiconductor Corporation Memory array with high temperature wiring
EP2116604A1 (en) 2002-08-05 2009-11-11 University of Rochester Protein transducing domain/deaminase chimeric proteins, related compounds, and uses thereof
EP1527334A1 (en) * 2002-08-06 2005-05-04 SSCI, Inc. Method of comparing x-ray diffraction patterns using the fundamental parameter method
US20040028804A1 (en) * 2002-08-07 2004-02-12 Anderson Daniel G. Production of polymeric microarrays
US20050019747A1 (en) * 2002-08-07 2005-01-27 Anderson Daniel G. Nanoliter-scale synthesis of arrayed biomaterials and screening thereof
US8277753B2 (en) 2002-08-23 2012-10-02 Life Technologies Corporation Microfluidic transfer pin
US7247346B1 (en) 2002-08-28 2007-07-24 Nanosolar, Inc. Combinatorial fabrication and high-throughput screening of optoelectronic devices
US7135288B2 (en) 2002-09-27 2006-11-14 Ut-Battelle, Llc Combinatorial synthesis of ceramic materials
US7043969B2 (en) 2002-10-18 2006-05-16 Symyx Technologies, Inc. Machine fluid sensor and method
US7112443B2 (en) 2002-10-18 2006-09-26 Symyx Technologies, Inc. High throughput permeability testing of materials libraries
AU2003282936A1 (en) * 2002-10-18 2004-05-04 Symyx Technologies, Inc. Environmental control system fluid sensing system and method comprising a sesnsor with a mechanical resonator
DE10248639B4 (de) * 2002-10-18 2005-03-17 Ticona Gmbh Verfahren und Vorrichtung zur kombinatorischen Herstellung von Mischungen sowie deren Verwendung
US7635564B2 (en) * 2002-10-25 2009-12-22 Agilent Technologies, Inc. Biopolymeric arrays having replicate elements
US20040115722A1 (en) * 2002-10-25 2004-06-17 Mel Kronick Biopolymeric arrays and methods of producing the same
EP2348125B1 (en) 2002-10-30 2017-06-21 Nuevolution A/S Method for the synthesis of a bifunctional complex
US20100210027A9 (en) * 2002-11-04 2010-08-19 Hongming Chen Method for determining effect of preformulation forms on their dissolution rates
US7108992B2 (en) * 2002-11-27 2006-09-19 St. Jude Children's Research Hospital ATM kinase compositions and methods
US7141217B2 (en) 2002-12-05 2006-11-28 Uop Llc Elevated pressure apparatus and method for generating a plurality of isolated effluents
US7952349B2 (en) * 2002-12-09 2011-05-31 Ferro Solutions, Inc. Apparatus and method utilizing magnetic field
US7808236B1 (en) 2002-12-09 2010-10-05 Ferro Solutions, Inc. Energy harvester utilizing external magnetic field
US20090062886A1 (en) * 2002-12-09 2009-03-05 Ferro Solutions, Inc. Systems and methods for delivering electrical energy in the body
US20080211491A1 (en) * 2002-12-09 2008-09-04 Ferro Solutions, Inc. High sensitivity, passive magnetic field sensor and method of manufacture
AU2003291964A1 (en) 2002-12-19 2004-07-14 Nuevolution A/S Quasirandom structure and function guided synthesis methods
WO2004074818A2 (en) 2002-12-20 2004-09-02 Biotrove, Inc. Assay apparatus and method using microfluidic arrays
US7160513B2 (en) * 2002-12-20 2007-01-09 Symyx Technologies, Inc. Batch reactor with injection system
CA2512181A1 (en) * 2003-01-02 2004-07-22 Bioforce Nanosciences, Inc. Method and apparatus for molecular analysis in small sample volumes
AU2004205892B2 (en) 2003-01-17 2009-12-10 University Of Missouri Curators Corrosion resistant coatings containing rare earth compounds
US7213034B2 (en) * 2003-01-24 2007-05-01 Symyx Technologies, Inc. User-configurable generic experiment class for combinatorial materials research
US6984902B1 (en) * 2003-02-03 2006-01-10 Ferro Solutions, Inc. High efficiency vibration energy harvester
US7485390B2 (en) * 2003-02-12 2009-02-03 Symyx Technologies, Inc. Combinatorial methods for preparing electrocatalysts
EP1597395A2 (en) 2003-02-21 2005-11-23 Nuevolution A/S Method for producing second-generation library
KR100538092B1 (ko) * 2003-02-27 2005-12-21 삼성전자주식회사 불순물 농도의 수직 분포 모니터링 방법 및 장치
US20040180452A1 (en) * 2003-03-14 2004-09-16 Yongjie Cui Method and apparatus for the production of a semiconductor compatible ferromagnetic film
GB2399541A (en) * 2003-03-18 2004-09-22 Nanomagnetics Ltd Production of nanoparticulate thin films
WO2004086027A2 (en) * 2003-03-21 2004-10-07 Symyx Technologies, Inc. Mechanical resonator
US20040250622A1 (en) * 2003-03-21 2004-12-16 Symyx Technologies, Inc. Resonator sensor assembly
US7721590B2 (en) 2003-03-21 2010-05-25 MEAS France Resonator sensor assembly
US7569952B1 (en) 2003-04-18 2009-08-04 Ferro Solutions, Inc. High efficiency, inductive vibration energy harvester
US6946842B2 (en) * 2003-05-28 2005-09-20 Elliott Kirk Gozansky Analytical instrument and processes
EP1631799A2 (en) * 2003-06-06 2006-03-08 Combinatorx Incorporated System and method for multidimensional evaluation of combinations of compositions
US6805175B1 (en) 2003-06-12 2004-10-19 Symyx Technologies, Inc. Powder transfer method and apparatus
US7134459B2 (en) * 2003-06-12 2006-11-14 Symyx Technologies, Inc. Methods and apparatus for mixing powdered samples
US7672791B2 (en) * 2003-06-13 2010-03-02 International Business Machines Corporation Method of performing three-dimensional molecular superposition and similarity searches in databases of flexible molecules
WO2004113869A2 (en) * 2003-06-17 2004-12-29 Surromed, Inc. Labeling and authentication of metal objects
DE10327839A1 (de) * 2003-06-20 2005-01-05 Arvinmeritor Gmbh Fahrzeugdachmodul
US7393920B2 (en) 2003-06-23 2008-07-01 Cem Corporation Microwave-assisted peptide synthesis
US7902488B2 (en) * 2003-06-23 2011-03-08 Cem Corporation Microwave-assisted peptide synthesis
US20050048546A1 (en) * 2003-07-11 2005-03-03 Sharron Penn Multiplexed molecular beacon assay for detection of human pathogens
WO2005017502A1 (en) 2003-07-28 2005-02-24 Symyx Technologies, Inc. Parallel infrared spectroscopy apparatus and method
US20060222790A1 (en) * 2003-07-30 2006-10-05 The Regents Of The University Of California Preparation of library that includes monodisperse nanoclusters
DE10335968A1 (de) 2003-08-06 2005-02-24 Basf Ag Verfahren zur sequentiellen Herstellung einer Heterogenkatalysator-Bibliothek
US7427341B2 (en) * 2003-08-15 2008-09-23 Symyx Technologies, Inc. System for synthesis of electrode array
US7361257B2 (en) * 2003-08-15 2008-04-22 Symyx Technologies, Inc. Electrochemical screening system
KR100559792B1 (ko) * 2003-08-29 2006-03-15 한국과학기술원 액적화학증착법을 이용한 박막 또는 분말 어레이 제조 방법
US7919431B2 (en) * 2003-09-03 2011-04-05 Synfuels International, Inc. Catalyst formulation for hydrogenation
US20050054116A1 (en) * 2003-09-05 2005-03-10 Potyrailo Radislav A. Method of manufacturing and evaluating sensor coatings and the sensors derived therefrom
US20050136536A1 (en) * 2003-09-15 2005-06-23 Anderson Daniel G. Embryonic epithelial cells
DE602004023960D1 (de) 2003-09-18 2009-12-17 Nuevolution As Methode zur Gewinnung struktureller Informationen kodierter Moleküle und zur Selektion von Verbindungen
US20050095714A1 (en) 2003-10-31 2005-05-05 Wollenberg Robert H. High throughput preparation of lubricating oil compositions for combinatorial libraries
US7462490B2 (en) 2003-10-31 2008-12-09 Chevron Oronite Company Llc Combinatorial lubricating oil composition libraries
US7579192B2 (en) * 2003-10-31 2009-08-25 Chevron Oronite Company Llc High throughput screening methods for lubricating oil compositions
US20050095717A1 (en) * 2003-10-31 2005-05-05 Wollenberg Robert H. High throughput screening methods for lubricating oil compositions
US7150182B2 (en) * 2003-10-31 2006-12-19 Chevron Oronite Company, Llc High throughput screening methods for lubricating oil compositions
US7069203B2 (en) * 2003-10-31 2006-06-27 Chevron Oronite Company Llc Method and system of product development process for chemical compositions using high volume modeling
WO2005059779A2 (en) * 2003-12-16 2005-06-30 Symyx Technologies, Inc. Indexing scheme for formulation workflows
DE10361099B3 (de) * 2003-12-22 2005-05-25 Robert Bosch Gmbh Vorrichtung und Verfahren zur Analyse von mindestens zwei Materialproben auf einer Probenplatte
US20050172896A1 (en) * 2004-02-10 2005-08-11 Tihiro Ohkawa Injector for plasma mass filter
US7306948B2 (en) * 2004-02-13 2007-12-11 Chevron Oronite Company Llc High throughput screening methods for lubricating oil compositions
US7137289B2 (en) * 2004-02-13 2006-11-21 Chevron Oronite Company, Llc High throughput screening methods for lubricating oil compositions
US8249816B2 (en) * 2004-02-13 2012-08-21 Chevron Oronite Company, Llc High throughput screening methods for fuel compositions
US7985592B2 (en) 2004-02-13 2011-07-26 Chevron Oronite Company Llc High throughput screening methods for lubricating oil compositions
CA2559171A1 (en) 2004-03-12 2005-09-29 Biotrove, Inc. Nanoliter array loading
US20070300142A1 (en) * 2005-04-01 2007-12-27 King Martin T Contextual dynamic advertising based upon captured rendered text
CN101001944A (zh) * 2004-04-14 2007-07-18 催化剂设计有限公司 智能组合操作光谱催化系统
US20050233380A1 (en) 2004-04-19 2005-10-20 Sdc Materials, Llc. High throughput discovery of materials through vapor phase synthesis
US7589041B2 (en) 2004-04-23 2009-09-15 Massachusetts Institute Of Technology Mesostructured zeolitic materials, and methods of making and using the same
US7553670B2 (en) * 2004-04-28 2009-06-30 3M Innovative Properties Company Method for monitoring a polymerization in a three-dimensional sample
US7341872B1 (en) 2004-04-29 2008-03-11 Uop Llc Multiautoclave with set of vessels for combinatorial synthesis of zeolites and other materials
WO2005115630A2 (en) * 2004-04-30 2005-12-08 Bioforce Nanosciences, Inc. Method and apparatus for depositing material onto a surface
US20050278308A1 (en) * 2004-06-01 2005-12-15 Barstow James F Methods and systems for data integration
EP1603035A3 (en) * 2004-06-03 2008-03-05 MDL Information Systems, Inc. Methods and apparatus for visual application design
CN102321201B (zh) 2004-06-16 2013-06-26 陶氏环球技术有限责任公司 选择聚合改性剂的方法
JP2008503602A (ja) 2004-06-16 2008-02-07 ダウ グローバル テクノロジーズ インコーポレイティド チーグラー・ナッタ研究のための装置および方法
US7683003B2 (en) 2004-06-16 2010-03-23 Dow Global Technologies, Inc. Method for identifying Ziegler-Natta cocatalysts
US7633267B2 (en) * 2004-07-02 2009-12-15 Farasis Energy, Inc. Apparatus for combinatorial screening of electrochemical materials
JP4678620B2 (ja) * 2004-08-30 2011-04-27 独立行政法人科学技術振興機構 成膜装置用マルチソース機構
US7597852B2 (en) * 2004-09-03 2009-10-06 Symyx Solutions, Inc. Substrate for sample analyses
US7507337B2 (en) * 2004-09-03 2009-03-24 Symyx Technologies, Inc. System and method for rapid chromatography with fluid temperature and mobile phase composition control
NZ553527A (en) 2004-09-15 2009-12-24 Bp Oil Int Process for evaluating a refinery feedstock
US20060060301A1 (en) * 2004-09-17 2006-03-23 Lazovsky David E Substrate processing using molecular self-assembly
US8084400B2 (en) * 2005-10-11 2011-12-27 Intermolecular, Inc. Methods for discretized processing and process sequence integration of regions of a substrate
US7390739B2 (en) * 2005-05-18 2008-06-24 Lazovsky David E Formation of a masking layer on a dielectric region to facilitate formation of a capping layer on electrically conductive regions separated by the dielectric region
US20060292846A1 (en) * 2004-09-17 2006-12-28 Pinto Gustavo A Material management in substrate processing
US7749881B2 (en) * 2005-05-18 2010-07-06 Intermolecular, Inc. Formation of a masking layer on a dielectric region to facilitate formation of a capping layer on electrically conductive regions separated by the dielectric region
US8882914B2 (en) * 2004-09-17 2014-11-11 Intermolecular, Inc. Processing substrates using site-isolated processing
US7256296B2 (en) * 2004-09-22 2007-08-14 Symyx Technologies, Inc. Heterocycle-amine ligands, compositions, complexes, and catalysts
US7387980B2 (en) * 2004-09-22 2008-06-17 Symyx Technologies, Inc. Methods of using heterocycle-amine ligands, compositions, complexes, and catalysts
CN101076716B (zh) 2004-10-08 2011-04-13 Sdc材料有限责任公司 采样和收集在气流中流动的粉末的装置和方法
KR100624442B1 (ko) * 2004-11-03 2006-09-15 삼성전자주식회사 강유전체 박막 형성 방법
WO2006058034A2 (en) * 2004-11-22 2006-06-01 Intermolecular, Inc. Molecular self-assembly in substrate processing
US7879710B2 (en) * 2005-05-18 2011-02-01 Intermolecular, Inc. Substrate processing including a masking layer
WO2006066126A2 (en) * 2004-12-16 2006-06-22 Symyx Technologies, Inc. Phenol-heterocyclic ligands, metal complexes, and their uses as catalysts
GB0501102D0 (en) 2005-01-19 2005-02-23 Bp Chem Int Ltd Process
US20060165895A1 (en) * 2005-01-24 2006-07-27 Julio Cartagena System and a method for synthesizing nanoparticle arrays in-situ
WO2006081428A2 (en) * 2005-01-27 2006-08-03 Symyx Technologies, Inc. Parser for generating structure data
DE102005007872B3 (de) * 2005-02-21 2006-06-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur Temperaturmessung in einem mikrofluidik Kanal einer Mikrofluidikvorrichtung
KR100631972B1 (ko) 2005-02-28 2006-10-11 삼성전기주식회사 화학기상증착 공정을 이용한 초격자 반도체 구조를 제조하는 방법
US9125968B2 (en) * 2005-03-30 2015-09-08 Boston Scientific Scimed, Inc. Polymeric/ceramic composite materials for use in medical devices
EP1874950B1 (en) 2005-04-05 2015-06-03 Corning Incorporated Label free biosensors
WO2006110667A2 (en) * 2005-04-11 2006-10-19 Intematix Corporation Biased target ion beam deposition (btibd) for the production of combinatorial materials libraries
CZ2005294A3 (cs) * 2005-05-09 2007-01-31 Bvt Technologies A. S. Nanostrukturovaná pracovní elektroda elektrochemického senzoru, způsob její výroby a senzor obsahující tuto pracovní elektrodu
EP1931700B1 (en) 2005-05-19 2013-07-17 THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES FUNCTIONAL EPITOPES OF STREPTOCOCCUS PNEUMONIAE PsaA ANTIGEN AND USES THEREOF
US7420442B1 (en) * 2005-06-08 2008-09-02 Sandia Corporation Micromachined microwave signal control device and method for making same
WO2007022110A2 (en) * 2005-08-12 2007-02-22 Symyx Technologies, Inc. Event-based library process design
US9550162B2 (en) * 2005-09-19 2017-01-24 Intematix Corporation Printing liquid solution arrays for inorganic combinatorial libraries
US8008395B2 (en) * 2005-09-27 2011-08-30 Boston Scientific Scimed, Inc. Organic-inorganic hybrid particle material and polymer compositions containing same
US7955436B2 (en) * 2006-02-24 2011-06-07 Intermolecular, Inc. Systems and methods for sealing in site-isolated reactors
US7902063B2 (en) * 2005-10-11 2011-03-08 Intermolecular, Inc. Methods for discretized formation of masking and capping layers on a substrate
US8776717B2 (en) * 2005-10-11 2014-07-15 Intermolecular, Inc. Systems for discretized processing of regions of a substrate
EP2189522A1 (en) 2005-10-14 2010-05-26 MUSC Foundation For Research Development Targeting PAX2 for the induction of DEFB1-mediated tumor immunity and cancer therapy
US8080534B2 (en) 2005-10-14 2011-12-20 Phigenix, Inc Targeting PAX2 for the treatment of breast cancer
US20070102290A1 (en) * 2005-11-10 2007-05-10 The Circle For The Promotion Of Science And Engineering Novel material development apparatus and novel material development method using arc plasma
DK2336315T3 (da) 2005-12-01 2017-11-06 Nuevolution As Fremgangsmåde til enzymatisk kodning ved effektiv syntese af store biblioteker
AU2006329980A1 (en) 2005-12-16 2007-07-05 Dow Global Technologies Inc. Polydentate heteroatom ligand containing metal complexes, catalysts and methods of making and using the same
US20070148697A1 (en) * 2005-12-27 2007-06-28 Boston Scientific Scimed, Inc. Methods and system for high throughput screening of polymer materials for medical devices
KR101388389B1 (ko) * 2006-02-10 2014-04-22 인터몰레큘러 인코퍼레이티드 재료, 단위 프로세스 및 프로세스 시퀀스를 조합적으로 변경하는 방법 및 장치
US8772772B2 (en) * 2006-05-18 2014-07-08 Intermolecular, Inc. System and method for increasing productivity of combinatorial screening
JP2007224747A (ja) * 2006-02-21 2007-09-06 Mitsubishi Motors Corp ディーゼルエンジンの排ガス浄化用フィルタおよび排ガス浄化装置
US20070232556A1 (en) * 2006-03-31 2007-10-04 Montine Thomas J Methods and compositions for the treatment of neurological diseases and disorders
US20070269611A1 (en) * 2006-03-31 2007-11-22 Intematix Corporation Systems and methods of combinatorial synthesis
US7750634B1 (en) * 2006-05-22 2010-07-06 Christensen Charles L Methods and apparatus for detecting elements and compounds
US8815013B2 (en) * 2006-07-19 2014-08-26 Intermolecular, Inc. Method and system for isolated and discretized process sequence integration
US20080076679A1 (en) * 2006-08-16 2008-03-27 Intematix Corporation Systems and methods of combinatorial synthesis using laser-assisted thermal activation
US20080113877A1 (en) * 2006-08-16 2008-05-15 Intematix Corporation Liquid solution deposition of composition gradient materials
US8378777B2 (en) * 2008-07-29 2013-02-19 Cooper Technologies Company Magnetic electrical device
US8941457B2 (en) * 2006-09-12 2015-01-27 Cooper Technologies Company Miniature power inductor and methods of manufacture
US7791445B2 (en) * 2006-09-12 2010-09-07 Cooper Technologies Company Low profile layered coil and cores for magnetic components
US9589716B2 (en) 2006-09-12 2017-03-07 Cooper Technologies Company Laminated magnetic component and manufacture with soft magnetic powder polymer composite sheets
US8310332B2 (en) * 2008-10-08 2012-11-13 Cooper Technologies Company High current amorphous powder core inductor
US8466764B2 (en) * 2006-09-12 2013-06-18 Cooper Technologies Company Low profile layered coil and cores for magnetic components
US7615385B2 (en) 2006-09-20 2009-11-10 Hypres, Inc Double-masking technique for increasing fabrication yield in superconducting electronics
CA2981308C (en) 2006-09-21 2020-12-22 University Of Rochester Compositions and methods related to protein displacement therapy for myotonic dystrophy
US8236571B2 (en) * 2006-10-06 2012-08-07 Sharp Laboratories Of America, Inc. Method of making micro-pixelated fluid-assay precursor structure
US8236244B2 (en) * 2006-10-06 2012-08-07 Sharp Laboratories Of America, Inc. Micro-pixelated fluid-assay structure with on-board addressable, pixel-specific functionalization
US8232109B2 (en) * 2006-10-06 2012-07-31 Sharp Laboratories Of America, Inc. Micro-pixelated active-matrix fluid-assay performance
US8236245B2 (en) * 2006-10-06 2012-08-07 Sharp Laboratories Of America, Inc. Micro-pixelated fluid-assay precursor structure
US8231831B2 (en) * 2006-10-06 2012-07-31 Sharp Laboratories Of America, Inc. Micro-pixelated fluid-assay structure
US8232108B2 (en) * 2006-10-06 2012-07-31 Sharp Laboratories Of America, Inc. Method of making micro-pixelated fluid-assay structure
US7619229B2 (en) 2006-10-16 2009-11-17 Varian Semiconductor Equipment Associates, Inc. Technique for matching performance of ion implantation devices using an in-situ mask
WO2008051434A2 (en) 2006-10-19 2008-05-02 Nanomech, Llc Methods and apparatus for making coatings using ultrasonic spray deposition
KR101478985B1 (ko) 2006-10-19 2015-01-06 더 보드 오브 트러스티스 오브 더 유니버시티 오브 아칸소 정전기 스프레이를 사용하는 코팅 제조 방법 및 코팅 제조 장치
EP2104516B1 (en) 2006-11-01 2015-01-07 University of Rochester Methods and compositions related to the structure and function of apobec3g
ES2319007B1 (es) * 2006-12-07 2010-02-16 Rive Technology, Inc. Metodos para fabricar materiales zeoliticos mesoestructurados.
JP2007183266A (ja) * 2006-12-25 2007-07-19 Seiko Epson Corp 組成探査方法および燃料電池用電極触媒の組成探査方法
US8011317B2 (en) * 2006-12-29 2011-09-06 Intermolecular, Inc. Advanced mixing system for integrated tool having site-isolated reactors
WO2008089449A2 (en) * 2007-01-19 2008-07-24 Biodot, Inc. Systems and methods for high speed array printing and hybridization
KR101663316B1 (ko) 2007-01-26 2016-10-06 다이아몬드 이노베이션즈, 인크. 그레이드된 드릴링 커터
EP2117576B1 (en) 2007-02-08 2014-04-16 University Of Utah Research Foundation Methods and compositions related to inhibition of viral entry
US20080242559A1 (en) * 2007-03-28 2008-10-02 Northwestern University Protein and peptide arrays
US8281332B2 (en) * 2007-05-02 2012-10-02 Google Inc. Animated video overlays
US9173967B1 (en) 2007-05-11 2015-11-03 SDCmaterials, Inc. System for and method of processing soft tissue and skin with fluids using temperature and pressure changes
US20090046535A1 (en) 2007-07-25 2009-02-19 Carlson Eric D Systems and methods for mixing materials
US8771483B2 (en) * 2007-09-05 2014-07-08 Intermolecular, Inc. Combinatorial process system
US20090180931A1 (en) 2007-09-17 2009-07-16 Sequenom, Inc. Integrated robotic sample transfer device
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8206498B2 (en) * 2007-10-25 2012-06-26 Rive Technology, Inc. Methods of recovery of pore-forming agents for mesostructured materials
US20090155994A1 (en) * 2007-12-12 2009-06-18 Hawkins Gilbert A Forming thin film transistors using ablative films with pre-patterned conductors
US8129288B2 (en) * 2008-05-02 2012-03-06 Intermolecular, Inc. Combinatorial plasma enhanced deposition techniques
MX2010005882A (es) * 2008-01-15 2010-12-02 Uop Llc Multiautoclave con una serie de tanques para la sintesis combinatoria de zeolitas y otros materiales.
US8882917B1 (en) 2009-12-31 2014-11-11 Intermolecular, Inc. Substrate processing including correction for deposition location
USD627900S1 (en) 2008-05-07 2010-11-23 SDCmaterials, Inc. Glove box
US20090286944A1 (en) * 2008-05-15 2009-11-19 Symyx Technologies, Inc. Select phenol-heterocycle ligands, metal complexes formed therefrom, and their uses as catalysts
US8659379B2 (en) 2008-07-11 2014-02-25 Cooper Technologies Company Magnetic components and methods of manufacturing the same
US8279037B2 (en) * 2008-07-11 2012-10-02 Cooper Technologies Company Magnetic components and methods of manufacturing the same
US9859043B2 (en) 2008-07-11 2018-01-02 Cooper Technologies Company Magnetic components and methods of manufacturing the same
US9558881B2 (en) 2008-07-11 2017-01-31 Cooper Technologies Company High current power inductor
US9126175B2 (en) * 2008-08-13 2015-09-08 California Institute Of Technology High-throughput screening and device for photocatalysts
US8816095B2 (en) 2008-08-15 2014-08-26 Georgetown University Na channels, disease, and related assays and compositions
US7947531B1 (en) 2008-08-28 2011-05-24 Intermolecular, Inc. Combinatorial evaluation of dry semiconductor processes
US9306078B2 (en) * 2008-09-08 2016-04-05 Cbrite Inc. Stable amorphous metal oxide semiconductor
JP5315156B2 (ja) * 2008-09-19 2013-10-16 日東電工株式会社 センサ基板の製造方法
EP2184102A1 (en) * 2008-11-11 2010-05-12 Stichting Dutch Polymer Institute Particle manufacturing method, particle libraries and use thereof
JP5711663B2 (ja) * 2008-11-27 2015-05-07 エイエムシー・アブレイシブズ・マーケティング・アンド・コンサルティング・リミテッド・ライアビリティ・パートナーシップAmc Abrasives Marketing & Consulting Llp ダイヤモンド粒子を伴うデンタルケア製品
EP2370080A1 (en) 2008-12-02 2011-10-05 University of Utah Research Foundation Pde1 as a target therapeutic in heart disease
CN102333728A (zh) 2009-01-19 2012-01-25 里福技术股份有限公司 在低Si/Al沸石中引入介孔
US8524625B2 (en) * 2009-01-19 2013-09-03 Rive Technology, Inc. Compositions and methods for improving the hydrothermal stability of mesostructured zeolites by rare earth ion exchange
US20100277267A1 (en) * 2009-05-04 2010-11-04 Robert James Bogert Magnetic components and methods of manufacturing the same
FR2946462B1 (fr) * 2009-06-09 2011-07-01 Commissariat Energie Atomique Procede de realisation d'au moins un microcomposant avec un masque unique
WO2011022502A1 (en) 2009-08-18 2011-02-24 Georgetown University Boronic acid compositions and methods related to cancer
US8563325B1 (en) 2009-09-29 2013-10-22 Sandia Corporation Coaxial microreactor for particle synthesis
JP2013507365A (ja) 2009-10-07 2013-03-04 サンフォード−バーナム メディカル リサーチ インスティテュート 血餅結合脂質化合物に関する方法および組成物
BR112012007660A2 (pt) * 2009-10-09 2019-09-24 Dsm Ip Assets Bv métodos para formulação de super-revestimentos curáveis por radiação para fibra óptica
US8685875B2 (en) 2009-10-20 2014-04-01 Rive Technology, Inc. Methods for enhancing the mesoporosity of zeolite-containing materials
US8501122B2 (en) 2009-12-08 2013-08-06 Affymetrix, Inc. Manufacturing and processing polymer arrays
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9119309B1 (en) 2009-12-15 2015-08-25 SDCmaterials, Inc. In situ oxide removal, dispersal and drying
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8912136B2 (en) 2009-12-18 2014-12-16 Sanford-Burnham Medical Research Institute Methods and compositions related to clot-binding compounds
US20110171121A1 (en) * 2010-01-08 2011-07-14 Rive Technology, Inc. Compositions and methods for making stabilized mesoporous materials
US8301214B1 (en) 2010-01-08 2012-10-30 Hypres, Inc. System and method for providing multi-conductive layer metallic interconnects for superconducting integrated circuits
US8568828B2 (en) * 2010-02-12 2013-10-29 Alliance For Sustainable Energy, Llc Amorphous tin-cadmium oxide films and the production thereof
WO2011127933A1 (en) 2010-04-16 2011-10-20 Nuevolution A/S Bi-functional complexes and methods for making and using such complexes
RU2459194C2 (ru) * 2010-05-17 2012-08-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ определения плотности высокотемпературных металлических расплавов (варианты)
US20130129579A1 (en) * 2010-06-25 2013-05-23 The General Hospital Corporation Colorimetric method and device for detecting analyte quantities in fluids and materials
WO2012009606A1 (en) * 2010-07-16 2012-01-19 University Of Utah Research Foundation Electrophysiological recording system and methods of using same
KR20190014572A (ko) * 2010-11-23 2019-02-12 앤드류 알리안스 에스. 에이. 피펫의 프로그래밍 가능한 조작을 위한 장치 및 방법
US8410884B2 (en) 2011-01-20 2013-04-02 Hitran Corporation Compact high short circuit current reactor
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
EP2691105B1 (en) 2011-03-28 2018-07-11 University of Utah Research Foundation Methods and compositions related to inhibition of viral entry
AU2012240093B2 (en) 2011-04-08 2015-06-11 W. R. Grace & Co.-Conn. Mesoporous framework-modified zeolites
PL2729252T3 (pl) * 2011-07-07 2018-01-31 Holger Behnk Moduł kuwety z elektrycznie przewodzącym wspornikiem kuwety
AU2012299065B2 (en) 2011-08-19 2015-06-04 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9175382B2 (en) * 2011-10-25 2015-11-03 Intermolecular, Inc. High metal ionization sputter gun
US9376324B2 (en) 2012-01-13 2016-06-28 Rive Technology, Inc. Introduction of mesoporosity into zeolite materials with sequential acid, surfactant, and base treatment
CA2850979A1 (en) 2012-01-13 2013-07-18 Rive Technology, Inc. Introduction of mesoporosity into low silica zeolites
WO2013109406A1 (en) * 2012-01-17 2013-07-25 The Scripps Research Institute Apparatus and method for producing specimens for electron microscopy
GB201209239D0 (en) * 2012-05-25 2012-07-04 Univ Glasgow Methods of evolutionary synthesis including embodied chemical synthesis
WO2014074649A1 (en) * 2012-11-06 2014-05-15 Purdue Research Foundation Methods for directed irradiation synthesis with ion and thermal beams
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US20140178583A1 (en) * 2012-12-20 2014-06-26 Intermolecular, Inc. Combinatorial Methods and Systems for Developing Thermochromic Materials and Devices
US8765660B1 (en) 2013-03-08 2014-07-01 Rive Technology, Inc. Separation of surfactants from polar solids
US8863311B1 (en) * 2013-07-18 2014-10-14 National Taiwan University Radio-frequency reflectometry scanning tunneling microscope
CN105592921A (zh) 2013-07-25 2016-05-18 Sdc材料公司 用于催化转化器的洗涂层和经涂覆基底及其制造和使用方法
JP2016536120A (ja) 2013-10-22 2016-11-24 エスディーシーマテリアルズ, インコーポレイテッド ヘビーデューティディーゼルの燃焼機関のための触媒デザイン
CN103526193A (zh) * 2013-10-22 2014-01-22 核工业北京地质研究院 一种镍箔自沉积制源方法
KR20160074574A (ko) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 희박 NOx 트랩의 조성물
US9662640B2 (en) 2013-12-27 2017-05-30 Rive Technology, Inc. Introducing mesoporosity into zeolite materials with a modified acid pre-treatment step
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems
WO2015176757A1 (de) * 2014-05-21 2015-11-26 D. Swarovski Kg Verfahren zum partiellen beschichten einer objektoberfläche
CA2957307C (en) 2014-12-11 2019-04-16 Rive Technology, Inc. Preparation of mesoporous zeolites with reduced processing
US10626019B2 (en) 2014-12-30 2020-04-21 W. R. Grace & Co.-Conn. Methods for preparing zeolites with surfactant-templated mesoporosity and tunable aluminum content
KR102420015B1 (ko) * 2015-08-28 2022-07-12 삼성전자주식회사 Cs-ald 장치의 샤워헤드
US10991867B2 (en) 2016-05-24 2021-04-27 University Of Utah Research Foundation High-performance terbium-based thermoelectric materials
WO2019034953A1 (en) * 2017-08-18 2019-02-21 3M Innovative Properties Company MAGNETIC FILM
KR20200125978A (ko) * 2018-03-02 2020-11-05 젠자임 코포레이션 생물 제조의 다변량 스펙트럼 분석 및 모니터링
US11491508B2 (en) 2019-05-16 2022-11-08 Dragonfly Energy Corp. Systems and methods for dry powder coating layers of an electrochemical cell
CN110308113B (zh) * 2019-07-04 2021-06-22 中南林业科技大学 一种用于近红外光谱检测的全方位翻转准球形水果装置
US11752700B2 (en) 2019-10-01 2023-09-12 Massachusetts Institute Of Technology Systems and methods for formulating material in a data-driven manner
KR20210108790A (ko) * 2020-02-26 2021-09-03 삼성전자주식회사 증착 장치 및 증착 방법
CN115279936B (zh) * 2020-03-18 2024-01-09 株式会社圣蒂佳 蒸镀装置
US11542597B2 (en) 2020-04-08 2023-01-03 Applied Materials, Inc. Selective deposition of metal oxide by pulsed chemical vapor deposition
US11610652B2 (en) 2020-05-06 2023-03-21 Toyota Research Institute, Inc. Autonomous inorganic material synthesis machine
RU2745223C1 (ru) * 2020-06-17 2021-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ комбинаторного получения новых композиций материалов в многокомпонентной системе
CN112675798B (zh) * 2020-12-14 2022-11-08 上海天马微电子有限公司 微流体反应装置及微流体反应驱动方法
CN112973816B (zh) * 2021-04-15 2022-10-04 上海理工大学 一种微分分流装置及其制备方法和应用
DE102021113282A1 (de) 2021-05-21 2022-11-24 Ruhr-Universität Bochum, Körperschaft des öffentlichen Rechts Vorrichtung und Verfahren zum Erzeugen einer Materialschicht auf einer Substratoberfläche aus mehreren Materialquellen
CN114441506B (zh) * 2022-04-08 2022-06-21 港湾之星健康生物(深圳)有限公司 量子磁光传感器

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB844359A (en) * 1958-03-06 1960-08-10 Rockcote Paint Company Improvements relating to display devices
US2981607A (en) * 1958-07-11 1961-04-25 Western Electric Co Non-destructive tests for distinguishing between objects formed of dissimilar metals
US3010880A (en) * 1959-05-08 1961-11-28 Media Inc Device for determining bacterial sensitivities
US3227522A (en) * 1961-09-19 1966-01-04 Ankh Lab Inc Assaying apparatus
NL283619A (zh) * 1961-10-06
US3377209A (en) * 1964-05-01 1968-04-09 Ca Nat Research Council Method of making p-n junctions by hydrothermally growing
US3323644A (en) * 1965-01-25 1967-06-06 Miles C Wells Coin holder and visual display
US3536452A (en) 1965-04-21 1970-10-27 Marathon Oil Co Multiple reactor apparatus
US3520716A (en) 1966-06-07 1970-07-14 Tokyo Shibaura Electric Co Method of vapor depositing multicomponent film
US3431077A (en) 1966-07-18 1969-03-04 Joseph D Danforth Analytical apparatus
US3474004A (en) * 1967-09-21 1969-10-21 Aaron J Fink Disposable culture device
US3505023A (en) * 1967-11-13 1970-04-07 Research Corp Thermally conditioned spot plate
US3652457A (en) * 1968-09-30 1972-03-28 Chevron Res Hydrothermal method of manufacturing a hydrocarbon conversion catalyst containing at least one hydrogenating component and the catalyst so manufactured
US3709979A (en) * 1970-04-23 1973-01-09 Mobil Oil Corp Crystalline zeolite zsm-11
JPS4934573B1 (zh) * 1970-11-06 1974-09-14
US3812254A (en) * 1971-06-25 1974-05-21 Ppg Industries Inc Control of pythium spp.and sclerotium spp.using azides
DE2160008B2 (de) 1971-12-03 1973-11-15 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Vorrichtung zur Herstellung eines Musters in einer auf einem Träger aufgedampften Metallschicht und dessen Verwendung
US3819490A (en) * 1971-12-08 1974-06-25 E Klingstrom Testing device for use when making bacteriological tests
US3919589A (en) 1973-04-06 1975-11-11 Rca Corp Electroluminescent cell with a current-limiting layer of high resistivity
US3868221A (en) * 1973-08-31 1975-02-25 Bell Telephone Labor Inc Method and apparatus for degradation testing of stabilized polymers
GB1436859A (en) * 1973-12-01 1976-05-26 Tioxide Group Ltd Glazing composition
SE380099B (zh) 1974-02-07 1975-10-27 Monega Anstalt
US3871935A (en) * 1974-03-14 1975-03-18 Bell Telephone Labor Inc Method of encapsulating and terminating the fibers of an optical fiber ribbon
JPS5744753Y2 (zh) 1975-03-15 1982-10-02
US4099923A (en) * 1977-01-17 1978-07-11 The Standard Oil Company Automatic catalytic screening unit
DE2714939C3 (de) 1977-04-02 1980-08-14 Hoechst Ag, 6000 Frankfurt Verfahren und Vorrichtung zur Untersuchung der Wirksamkeit von festen Katalysatoren
US4225575A (en) 1978-05-15 1980-09-30 Ventrex Laboratories, Inc. Method and apparatus for performing in vitro clinical diagnostic tests using a solid phase assay system
US4185468A (en) 1978-02-28 1980-01-29 Adams Clyde M Jr Apparatus for separation, refinement, extraction and/or concentration by liquation
US4160804A (en) * 1978-08-02 1979-07-10 Victory Thomas J Device for assaying gold and other metals
FR2450162A1 (fr) * 1978-11-20 1980-09-26 Anurdi Panneau decoratif realise a partir d'elements modulaires
US4263010A (en) 1979-10-31 1981-04-21 University Patents, Inc. Control method and apparatus for crystallizer process control
US4468419A (en) * 1980-03-03 1984-08-28 Fabrik, Inc. Method of making a dinnerware article
US5328549A (en) 1980-04-10 1994-07-12 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
IL60254A (en) 1980-06-08 1983-11-30 Yeda Res & Dev Resolution of amino acids
US4416632A (en) * 1981-04-02 1983-11-22 Avalon Industries, Inc. Paint-by-numbers kit
US4422151A (en) * 1981-06-01 1983-12-20 Gilson Robert E Liquid handling apparatus
JPS58223618A (ja) * 1982-06-14 1983-12-26 Sumitomo Alum Smelt Co Ltd 導電性フイラ−用複合酸化物
US4489133A (en) 1982-11-16 1984-12-18 The Board Of Trustees Of The Leland Stanford Jr. University Two-dimensional crystallization technique
US4845069A (en) * 1983-09-29 1989-07-04 The Dow Chemical Company Porous amorphous metallo phosphates process for preparing porous amorphous metallo phosphates
DE3565986D1 (en) * 1984-05-02 1988-12-08 Brendan James Hamill An apparatus for the chemical synthesis of oligonucleotides
GB8421603D0 (en) * 1984-08-24 1984-09-26 British Petroleum Co Plc Synthetic smectites and stabilised pillared analogues
JPS6171954A (ja) * 1984-09-14 1986-04-12 Hitachi Seiko Ltd カツプ型砥石による研削方法
US4591215A (en) * 1984-09-17 1986-05-27 Howard Robbins Merchandising and display device
US5045916A (en) * 1985-01-22 1991-09-03 Fairchild Semiconductor Corporation Extended silicide and external contact technology
DD234941A1 (de) * 1985-02-28 1986-04-16 Leuna Werke Veb Verfahren und anordnung zur katalysatoraktivitaetsbestimmung
GB2176932A (en) * 1985-05-28 1987-01-07 Agricultural Genetics Co Sample plate for immunosorbent electron microscopy
IT1186974B (it) * 1985-06-18 1987-12-16 Alberto Koelowicz Perfezionamenti ai dispositivi di giunzione per vincolare i tessuti sovrapposti di indumenti o articoli con essi confezionati
US4735778A (en) * 1985-08-28 1988-04-05 Kureha Kagaku Kohyo Kabushiki Kaisha Microtiter plate
US4774058A (en) * 1985-09-26 1988-09-27 Mehl Ehrenfried L Apparatus for, and methods of, operating upon a fluid
US5242675A (en) 1985-10-15 1993-09-07 Exxon Research & Engineering Company Zeolite L
JPS62106000A (ja) 1985-10-30 1987-05-16 Fujitsu Ltd 生体高分子結晶自動作製装置
US4728591A (en) * 1986-03-07 1988-03-01 Trustees Of Boston University Self-assembled nanometer lithographic masks and templates and method for parallel fabrication of nanometer scale multi-device structures
GB2194847A (en) 1986-09-05 1988-03-16 Marconi Co Ltd Image converter
US4859538A (en) 1986-11-20 1989-08-22 Ribi Hans O Novel lipid-protein compositions and articles and methods for their preparation
US5096867A (en) * 1990-06-04 1992-03-17 Exxon Chemical Patents Inc. Monocyclopentadienyl transition metal olefin polymerization catalysts
US5198401A (en) * 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
DE3886429T2 (de) * 1987-02-05 1994-07-28 Sumitomo Electric Industries Verfahren zum Herstellen einer supraleitenden Dünnschicht.
US5306411A (en) * 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US5364765A (en) * 1987-05-28 1994-11-15 Abbott William A Method and reagent system for assaying isoenzyme profiles
US4837374A (en) * 1987-06-01 1989-06-06 Brown James R Microreactor for analyzing thin solid samples
US4814056A (en) * 1987-06-23 1989-03-21 Vac-Tec Systems, Inc. Apparatus for producing graded-composition coatings
US4990216A (en) 1987-10-27 1991-02-05 Fujitsu Limited Process and apparatus for preparation of single crystal of biopolymer
US4958335A (en) * 1987-12-23 1990-09-18 Oki Electric Industry Co., Ltd. Optical head assembly with a minimum of inertia and feasible for high high-speed access
US5034359A (en) * 1988-04-08 1991-07-23 Kabushiki Kaisha Toshiba Insulating composition
US5039614A (en) 1988-06-16 1991-08-13 Armenag Dekmezian Method and apparatus for collecting samples for analysis of chemical composition
US4956335A (en) * 1988-06-20 1990-09-11 Eastman Kodak Company Conductive articles and processes for their preparation
SE8802403D0 (sv) * 1988-06-28 1988-06-28 Pharmacia Ab Alster att anvendas vid ocklusiv epikutantestning for att pavisa kontaktallergi mot formaldehyd
AU3869289A (en) * 1988-07-14 1990-02-05 Baylor College Of Medicine Solid phase assembly and reconstruction of biopolymers
US5281540A (en) * 1988-08-02 1994-01-25 Abbott Laboratories Test array for performing assays
US5118648A (en) * 1988-10-05 1992-06-02 Mobil Oil Corporation Particulate polymer-supported olefin polymerization catalyst
US5024992A (en) * 1988-10-28 1991-06-18 The Regents Of The University Of California Preparation of highly oxidized RBa2 Cu4 O8 superconductors
US5120707A (en) * 1989-05-22 1992-06-09 Allied-Signal, Inc. Superconducting ceramics by electrodeposition of metals with embedment of particulate matter, followed by oxidation
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5424186A (en) * 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5527681A (en) 1989-06-07 1996-06-18 Affymax Technologies N.V. Immobilized molecular synthesis of systematically substituted compounds
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
WO1991002975A1 (en) 1989-08-21 1991-03-07 The Board Of Regents Of The University Of Washington Multiple-probe diagnostic sensor
US5064802A (en) * 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
JPH03174386A (ja) * 1989-11-30 1991-07-29 Nippon Dempa Kogyo Co Ltd オートクレーブ
CZ280777B6 (cs) * 1990-02-02 1996-04-17 Ústav Organické Chemie A Biochemie Avčr Mnohonásobná automatizovaná syntéza peptidů na planárních nosičích
JPH0450804A (ja) * 1990-06-15 1992-02-19 Ricoh Co Ltd マイクロレンズアレイの作製方法
DE69130666T2 (de) * 1990-06-20 1999-09-09 Nippon Steel Corp Verfahren zur Herstellung von kornorientiertem Elektrostahlblech mit sehr hohem Si-Gehalt und das nach diesem Verfahren erhältliche Stahlblech
US5801113A (en) 1990-06-22 1998-09-01 Exxon Chemical Patents, Inc. Polymerization catalyst systems, their production and use
JPH0710730B2 (ja) * 1990-11-22 1995-02-08 信越化学工業株式会社 希土類元素酸化物の製造方法
ES2155822T3 (es) * 1990-12-06 2001-06-01 Affymetrix Inc Compuestos y su utilizacion en una estrategia de sintesis binaria.
EP0569388B1 (en) * 1990-12-27 1996-03-13 Exxon Chemical Patents Inc. An amido transition metal compound and a catalyst system for the production of isotactic polypropylene
US5200910A (en) 1991-01-30 1993-04-06 The Board Of Trustees Of The Leland Stanford University Method for modelling the electron density of a crystal
JPH06102535B2 (ja) * 1991-03-01 1994-12-14 住金ホトンセラミックス株式会社 カオリナイト合成装置
US5236998A (en) 1991-03-07 1993-08-17 Occidental Chemical Corporation Process for the manufacture of linear polyethylene containing α-alkene commonomers
US5365458A (en) * 1991-03-29 1994-11-15 Nippon Densan Corporation Motor eccentricity measuring apparatus
EP0514715B1 (en) 1991-05-17 1997-12-29 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing a particulate zeolite
US5200023A (en) 1991-08-30 1993-04-06 International Business Machines Corp. Infrared thermographic method and apparatus for etch process monitoring and control
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5294198A (en) 1991-10-01 1994-03-15 Cincinnati Electronics Corporation Infrared inspection system and method employing emissivity indications
EP0607262A1 (en) * 1991-10-09 1994-07-27 Schering Corporation Crystal forming device and automated crystallization system
IL103674A0 (en) * 1991-11-19 1993-04-04 Houston Advanced Res Center Method and apparatus for molecule detection
WO1993009668A1 (en) * 1991-11-22 1993-05-27 Affymax Technology N.V. Combinatorial strategies for polymer synthesis
US5384261A (en) * 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5871713A (en) 1991-12-04 1999-02-16 Guerbet S.A. Macromolecular polyamine iodine-containing compound, process for its preparation and its use as a contrast agent
US5344236A (en) 1992-01-23 1994-09-06 Fishman Iiya M Method for evaluation of quality of the interface between layer and substrate
JP2962024B2 (ja) * 1992-02-04 1999-10-12 松下電器産業株式会社 光導波路の製造方法および光波長変換素子の製造方法
US5367403A (en) * 1992-04-08 1994-11-22 Matsushita Electric Industrial Co., Ltd. Optical element and method of fabricating the same
JP2882234B2 (ja) 1992-04-08 1999-04-12 松下電器産業株式会社 偏光分離素子の製造方法および光情報処理装置
JP3231836B2 (ja) * 1992-04-17 2001-11-26 日東電工株式会社 レンズアレイ板、液晶表示装置及び光コネクター
US5541061A (en) * 1992-04-29 1996-07-30 Affymax Technologies N.V. Methods for screening factorial chemical libraries
US5264722A (en) * 1992-06-12 1993-11-23 The United States Of America As Represented By The Secretary Of The Navy Nanochannel glass matrix used in making mesoscopic structures
US5256241A (en) 1992-08-28 1993-10-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for controlling protein crystallization
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5324483B1 (en) * 1992-10-08 1996-09-24 Warner Lambert Co Apparatus for multiple simultaneous synthesis
US5356756A (en) * 1992-10-26 1994-10-18 The United States Of America As Represented By The Secretary Of Commerce Application of microsubstrates for materials processing
JPH06171954A (ja) * 1992-12-03 1994-06-21 Mitsubishi Materials Corp コバルト酸ランタンストロンチウム粉末の製造方法
US5679548A (en) 1993-02-02 1997-10-21 The Scripps Research Institute Methods for producing polypeptide metal binding sites and compositions thereof
JPH06230204A (ja) * 1993-02-05 1994-08-19 Asahi Optical Co Ltd 屈折率分布を有する合成樹脂光学素子の製造方法
US5378916A (en) * 1993-02-17 1995-01-03 Xerox Corporation Color imaging charge-coupled array with multiple photosensitive regions
US5342581A (en) * 1993-04-19 1994-08-30 Sanadi Ashok R Apparatus for preventing cross-contamination of multi-well test plates
US5766875A (en) * 1993-07-30 1998-06-16 Molecular Devices Corporation Metabolic monitoring of cells in a microplate reader
JP3307732B2 (ja) * 1993-09-03 2002-07-24 英俊 長本 抵抗材料と抵抗率制御法
US5622719A (en) 1993-09-10 1997-04-22 Fuisz Technologies Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5416613A (en) 1993-10-29 1995-05-16 Xerox Corporation Color printer calibration test pattern
CA2174452C (en) 1993-12-21 2007-04-24 Ahmed Hussein Ali Binary cocatalyst compositions for activating heterogeneous polymerization catalysts
JPH07226884A (ja) 1994-02-14 1995-08-22 Mitsubishi Electric Corp 固体撮像装置
US6015880A (en) 1994-03-16 2000-01-18 California Institute Of Technology Method and substrate for performing multiple sequential reactions on a matrix
US5450372A (en) * 1994-03-30 1995-09-12 At&T Corp. Magnetoresistive microphone and acoustic sensing devices
JPH07309623A (ja) * 1994-05-18 1995-11-28 Shin Etsu Chem Co Ltd 角状希土類元素蓚酸アンモニウム複塩および角状希土類元素酸化物の製造方法
US5985356A (en) * 1994-10-18 1999-11-16 The Regents Of The University Of California Combinatorial synthesis of novel materials
US5688696A (en) 1994-12-12 1997-11-18 Selectide Corporation Combinatorial libraries having a predetermined frequency of each species of test compound
DE19548221C1 (de) 1995-12-22 1997-05-15 Biotest Pharma Gmbh Orale Anwendung von Immunglobulin-Präparationen zur Behandlung und Prophylaxe chronischer Schmerzzustände
US6063633A (en) 1996-02-28 2000-05-16 The University Of Houston Catalyst testing process and apparatus
IT1283191B1 (it) * 1996-03-05 1998-04-16 Luigi Ramari Connettore a innesto rapido con impegno automatico e disimpegno mediante movimento di un corpo esterno
US6200023B1 (en) * 1999-03-15 2001-03-13 Steag Rtp Systems, Inc. Method for determining the temperature in a thermal processing chamber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640254A (zh) * 2009-10-15 2012-08-15 阿科玛股份有限公司 通过UV-辅助的化学气相沉积在聚合物基底上沉积掺杂的ZnO薄膜
CN102640254B (zh) * 2009-10-15 2015-11-25 阿科玛股份有限公司 通过UV-辅助的化学气相沉积在聚合物基底上沉积掺杂的ZnO薄膜
CN102002649A (zh) * 2010-09-16 2011-04-06 无锡南理工科技发展有限公司 高强韧镁基块体金属玻璃复合材料及其制备方法
CN102002649B (zh) * 2010-09-16 2013-08-14 南京理工大学 高强韧镁基块体金属玻璃复合材料及其制备方法
CN110498615A (zh) * 2019-09-27 2019-11-26 大连交通大学 一种使用溶胶-凝胶旋涂法制备致密CuO薄膜的方法

Also Published As

Publication number Publication date
DE69534795D1 (de) 2006-04-27
MX9702876A (es) 1997-07-31
DE69534795T2 (de) 2006-10-19
EP1002572A3 (en) 2000-09-20
US20030134089A1 (en) 2003-07-17
EP1442788A2 (en) 2004-08-04
US20020119243A1 (en) 2002-08-29
EP0789671B1 (en) 2006-07-26
EP1002573A3 (en) 2000-08-16
US6346290B1 (en) 2002-02-12
US6420179B1 (en) 2002-07-16
EP1579908B1 (en) 2009-10-14
EP1479435B1 (en) 2006-02-22
EP1481726A1 (en) 2004-12-01
EP1479435A1 (en) 2004-11-24
CA2202286A1 (en) 1996-04-25
US6794052B2 (en) 2004-09-21
CN1082936C (zh) 2002-04-17
JP4814298B2 (ja) 2011-11-16
EP0789671A1 (en) 1997-08-20
US6686205B1 (en) 2004-02-03
JPH10512840A (ja) 1998-12-08
JP3893152B2 (ja) 2007-03-14
US5985356A (en) 1999-11-16
US20040014077A1 (en) 2004-01-22
US20040154704A1 (en) 2004-08-12
EP1002573A2 (en) 2000-05-24
EP1442788B1 (en) 2005-11-02
ATE318177T1 (de) 2006-03-15
US6649413B1 (en) 2003-11-18
JP2009155633A (ja) 2009-07-16
US7442665B2 (en) 2008-10-28
KR970707046A (ko) 1997-12-01
NO971777D0 (no) 1997-04-17
EP1442788A3 (en) 2004-09-15
DE69535333T2 (de) 2007-03-29
ATE321607T1 (de) 2006-04-15
EP1002572B1 (en) 2006-12-06
DE04019143T1 (de) 2005-03-31
DE69534898T2 (de) 2006-11-23
DE69536011D1 (de) 2009-11-26
EP0992281A2 (en) 2000-04-12
US6410331B1 (en) 2002-06-25
DE69535333D1 (de) 2007-01-18
EP1754533A2 (en) 2007-02-21
DE69534578T2 (de) 2006-08-10
JP2009155319A (ja) 2009-07-16
KR100407357B1 (ko) 2004-05-31
AU3957795A (en) 1996-05-06
DE69534898D1 (de) 2006-05-18
DE69535128D1 (de) 2006-09-07
NO20041097L (no) 1997-06-18
JP4324682B2 (ja) 2009-09-02
US20010055669A1 (en) 2001-12-27
DE69534578D1 (de) 2005-12-08
ATE347442T1 (de) 2006-12-15
ATE334102T1 (de) 2006-08-15
NO20043205L (no) 1997-06-18
US5776359A (en) 1998-07-07
DE69535128T2 (de) 2006-12-21
ATE445457T1 (de) 2009-10-15
WO1996011878A1 (en) 1996-04-25
EP1481726B1 (en) 2006-03-29
US6864201B2 (en) 2005-03-08
JP5335371B2 (ja) 2013-11-06
DE04009653T1 (de) 2005-03-31
US7034091B2 (en) 2006-04-25
US20010055775A1 (en) 2001-12-27
EP1754533A3 (en) 2008-09-24
ATE308378T1 (de) 2005-11-15
NO971777L (no) 1997-06-18
EP1002572A2 (en) 2000-05-24
EP1579908A1 (en) 2005-09-28
JP2004163418A (ja) 2004-06-10
EP0789671A4 (en) 1998-03-18
EP0992281A3 (en) 2000-08-16
US6326090B1 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
CN1181055A (zh) 新颖物质的组合合成
US6004617A (en) Combinatorial synthesis of novel materials
WO1996011878A9 (en) The combinatorial synthesis of novel materials
US7767627B1 (en) Combinatorial synthesis of inorganic or composite materials
AU748061B2 (en) The combinatorial synthesis of novel materials
Schultz et al. Combinatorial synthesis of novel materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20020417

EXPY Termination of patent right or utility model