CN1189742C - 用x射线辐射获取物体内部结构图像的方法及其实施设备 - Google Patents

用x射线辐射获取物体内部结构图像的方法及其实施设备 Download PDF

Info

Publication number
CN1189742C
CN1189742C CNB008060924A CN00806092A CN1189742C CN 1189742 C CN1189742 C CN 1189742C CN B008060924 A CNB008060924 A CN B008060924A CN 00806092 A CN00806092 A CN 00806092A CN 1189742 C CN1189742 C CN 1189742C
Authority
CN
China
Prior art keywords
ray
radiation
measurement result
point
current point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008060924A
Other languages
English (en)
Other versions
CN1346438A (zh
Inventor
姆拉丁·阿布比奇罗维奇·库马科夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1346438A publication Critical patent/CN1346438A/zh
Application granted granted Critical
Publication of CN1189742C publication Critical patent/CN1189742C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/316Accessories, mechanical or electrical features collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/601Specific applications or type of materials density profile
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements

Abstract

本发明涉及用于获得物体,尤其是生物体的以视觉感受形式呈现的内部结构图像的装置。根据本发明方法,由源发射的X射线辐射被集中(例如借助于X射线透镜(2))在包含物体(5)被研究区(7)内的当前测量结果所参考的点(4)的区域中。在所述区域中出现的二次辐射(康普顿,荧光辐射)被运送给(例如借助于X射线透镜(3))一个或多个检测器(6)。通过移动所述区域可对物体(5)的被研究区(7)进行扫描。物体在该点的密度是通过对从一个或多个检测器(6)接收的二次辐射强度值求总和确定的,同时用该点(4)的坐标确定。在数据处理与成像设施(12)中使用借助于传感器(11)获得的密度值和相应坐标值来产生物体被研究区中物质的密度分布图像。

Description

用x射线辐射获取物体内部结构图像的方法及其实施设备
技术领域
提出的本发明涉及内部观察装置,尤其在生物学中表示用X射线形成的体内部结构图像。这些发明可应用于探伤与医学诊断。
背景技术
已经知道,所述目的各种方法与设备可实现投射X射线透视法的传统原理。这类方法与设备由于有多影投射作用,可形成物体如生物学物体组织的内部结构图像。所得图像每一点的密度由X射线从源到检测设施通过被研究物体的即时还原所限定。如果经所述的荧光屏或X射线膜,经化学处理可获得图像目视观察(见综合辞典,莫斯科,“苏联百科全书”,1976[1],p.425;S.Webb编著的医学图像目视观察物理学,莫斯科,“Mir”,1991[2],p.41-41)。
在上述方法与设备中,以所述二维多影投射形式得到了实际三维结构图像。物体分析专家(特别在技术与医学诊断领域)必须具有一定资质与经验,有时在解释所述投射方面也不免碰到难题。其理由是:反差低,适度的信噪关系,总是规定结构元件图像,无法用密度定量比较物体独立的局部片断。在量子冲击二次康普顿散射辐射检测设施的作用下,还会降低图像清晰度与反差范围。
还知道,X射线计算机断层方法与设备可获得三维物体薄层的二维图像(V.V.Piklov,N.G.Preobrazhenskiy。计算机断层与物理实施。物理科学的进展,V.141,第三版,1983.11,P.469-498[3];还见[2],P.138-146)。在此类方法与设备中,从不同的点多重照射被研究物体,并用检测器直规接收通过该物体的辐射。用计算机解出方程系,以分离形式得到被研究剖面中物体组织的密度分布(诸分辨元的形式排序与量对应于从其实现照射的位置量与检测器数量的乘积)。根据不同剖面照射面建立的二维间层图像,可获得三维物体图像。运用计算机断层术可获得优质图像,该图像展现出组织密度的分布图(不是整体吸收置于源到一个或其它目视投射元件的辐射路径上物质(如生物组织)而产生的(图像)。然而,可通过增加照射位置量而得到。在此情况下,物质吸收的辐射剂量增大了,这是不希望的(医学应用中通常被禁止)。散射康普顿辐射是一负面因素,对这类已知的方法与设备也有影响。这两类方法与设备在医学应用方面的特征在于,当它们处于辐射路径上时(被研究区的前后),强烈的照射会作用于与研究无关的组织与器官。第二类方法与设备中的照射低于第一类方法与设备,因为在照射被研究对象周围的不同组织与器官时,选择不同的位置。
第二类装置中分辨度的提高要求加大不同点的照射量,这首先被禁止增大照射剂量所限制。产生基本信息并进而重建图像的技术设施极其复杂,它以必须应用配专用软件的快速计算机和强烈要求高精度的结构机械元件为条件。当同样的元件从不同点照射时,这类元件要保证正确测定被研究区域分辨度的同样元件。最后要取决于实际的数据(以不同的照射循环推出,但涉及同样的分辨度元件),在重建图像时,计算要用数字表示。
所述第二类方法与设备(从中获得有关各分辨元件密度的分离形式的信息)与假设的一类方法与设备极为接近。
发明内容
提出的研究工作旨在获得下述技术成果:提高限定获得图像物质密度相对指标的精度,并拒绝复杂昂贵的技术装置。利用在医学诊断和同对生物物质影响有关的其它研究工作中所提出的研究,可降低被研究对象周围组织的照射剂量。
用X射线形成物体内部结构图像时,为获得推荐方法的所述技术成果,应将这种辐射集中在包含当前测量结果所参照的点的区域内。该区域产生的二次辐射(康普顿散射的相干与不相干,荧光辐射)被传送至一个或多个检测器。通过移动所述区域,扫描被研究物体区域。同时,限定并固定具有当前测量结果所参照的点的X射线集中区域的坐标。物体物质在所述点的密度是由二次辐射强度值产生的,可从一个或多个检测器得到,同时用该点的坐标限定。用作物体物质密度指标的所得到的值与对应于它们的坐标值,用来模拟被研究物体区域物质密度分布的图象。利用被研究物体的相对偏移和相对于每个其他X射线源、X射线集中装置、将二次辐射传向检测器的装置和检测器本身的相互静态位移,可移动X射线集中区域实现对被研究区的扫描。
已经知([2],p.138-146,[3],P.471-472),当被研究物体与X射线光学系统(包括X射线源及其控制装置与检测器)实现相对偏移时,提议的方法是对被研究物体起作用的X射线。
在X射线集中在当前测量结果所参照的点的区域中工作时,该提议的方法不同于其它方法。扫描是已知并提议方法的共同特点,但是在最后一种方法中的实现是完全不同的,即把X射线集中区的当前位置移到限定被研究物体物质密度的下一点附近。在集中区中被激发的二次辐射(散射的康普顿相干与不相干荧光辐射)从该区运送到检测器(诸检测器)也是明显的特点。
在此情况下,所述二次辐射作用于检测器(诸检测器),但不是通过被研究对象的源辐射。还应明白,除了相等以外(见J.Jackson。经典电动力学.M.,“Mir,1965,pP.537-538[4]),二次辐射的强度正比于激发该辐射的物质的密度,与物质特征无关。因此,在已知方法中是防止因素的二次散射辐射变成了信息因素。在当前测量结果所参照的该点将二次辐射密度的当前值用作物质密度系数,也是提议方法的差异。
该提议方法与已知方法的差别,以下述本方法可能的特定实施情况为特征。这些情况可对X射线集中与二次散射辐射运送应用不同的方法组合。
在该特定场合中,用一个或多个准直器把X射线在该区域中以当前测量结果所参照的点集中。此时,应用合理数量间隔开的X射线源。还要用一个或多个检测器。在此情况下,所有准直器都定向成使其中央通道的轴线穿过当前测量结果所参照的该点。
在另一种特定场合中,用一个或多个X射线半透镜将X射线集中在具有当前测量结果所参照的点的区域中的,半透镜把适当数量间隔开的X射线源的发散辐射变换成准平行,此时一块或多块X射线半透镜将该辐射聚焦在检测器上,可把格式化二次辐射运送到一个或多个检测器。也可利用形成准平行辐射的一块或多块X射线半透镜把二次辐射运送到一个或多个检测器,此时所有的X射线透镜与半透镜应定向成使其光轴穿过当前测量结果所参照的该点。
在另一种特定场合中,用一块或多块把适当数量间隔开的源的发散辐射变换成准平行的X射线半透镜,将X射线集中在具有当前测量结果所参照的点的区域内。格式化二次辐射由一块或多块准直器运送到一个或多个检测器。此时,应将X射线半透镜与准直器定向成使其所有X射线半透镜与所有准直器中央沟道的所存光轴穿过当前测量结果所参照的该点。
将X射线集中在具有当前测量结果所参照的点的区域内,也可利用一个或多个间隔开的X射线源与适当数量的X射线透镜实现,这些透镜把各源的发散X射线聚焦在当前测量结果所参照的点上。利用将该辐射聚焦在检测器上并在所述点具有第二焦点的X射线透镜,可半格式化的二次辐射运送到一个或多个检测器。
在该特定场合中,利用一个或多个间隔开的X射线源和适当数量的将各源的发散X射线辐射聚焦在该固定点的X射线透镜,使X射线集中在具有当前测量结果所参照的点的区域中的,而格式化二次辐射还送到一个或多个检测器可利用准直器实现,这些准直器定向成在同一点上穿过其中央沟道的光轴。
用X射线形成物体内部结构图像的推荐设备包括:被研究物体的定位装置,X射线光学系统、被研究物体定位装置与X射线光学系统的相对移动装置、数据处理与成像装置、确定点坐标的检测器。该点位于被研究物体的物质之中,测量结果与之参照。诸结果均与被研究物体定位装置与X射线光学系统相关,而且与数据处理与成像装置的输出有关。因此,X射线光学系统包括:一个或多个X射线源、将所述一个或多个X射线源的辐射集中在具有当前测量结果所参照的点的区域内的装置、一个或多个格式化二次辐射运送装置,以及位于装置输出端的诸辐射检测器。检测器输出端接至数据处理与成像装置。
众所周知和推荐的设备有被研究物体定位装置、X射线光学系统、使它们相对移动的装置、坐标检测器及数据处理与成像装置。
与已知设备不同的是,推荐设备的X射线光学系统包括将所述一个或多个X射线源的辐射集中在具有当前测量结果所参照的点的区域内的装置。此外,为使该辐射(不是源通过被研究对象的辐射)准确地落在检测器输入端上,该系统还包括一个或多个将格式化二次辐射运送给该辐射检测器装置。与已知设备相比,坐标检测器在该推荐设备中执行另一种功能:它们确定当前测量结果所参照的点的坐标。数据处理与成像装置的功能也有所不同:该装置用输入数据操纵,直接载送有关参照这些数据的点的坐标与物质密度的信息。推荐设备的结构与其作用原理为全部消除精度与分辨度依赖于数据处理装置创造了先决条件,因为设备的这些质量指标实际上完全由X射线集中装置使用的参数来限定。
该推荐设备在不同特定实施情况下所持有的特点表征如下。
在这些特定场合之一中,推荐设备的X射线系统包括若干X射线源。因此,将诸源的辐射集中在具有当前测量结果所参照的点的区域中的每一个装置,以反将格式化二次辐射运送给诸检测器的每一个装置,都做成通道定向至X射线源辐射集中区的准直器,所有准直器中央通道的光轴都穿过当前测量结果所参照的该点。
在此特定场合中,X射线光学系统的X射线源可以是准点式,因而准直器具有聚焦在这些源上的通道,并向被研究物体的定位装置发散(展宽)。带孔径的屏位于各X射线源输出与对应准直器输入之间。
在同样特定场合中,X射线系统的诸X射线源可以扩展式,因而准直器的通道向被研究物体的定位装置会聚(变窄)。
在实施推荐设备的另一特定场合中,X射线系统的X射线源均为准点。使X射线集中在具有当前测量结果所参照的点的区域中的每个装置被做成X射线半透镜,把相应源的发散辐射变换成准平行。将格式化康普顿二次辐射运送给检测器的每个装置做成X射线半透镜,使该辐射聚焦在检测器上。这样,所有X射线半透镜的光轴都穿过当前测量结果所参照的该点。
像前一种情况一样,在以下实施推荐设备的特定场合中,X射线系统的X射线源都为准点式。使X射线集中在当前测量结果所参照的点的区域中的每个装置被做成X射线半透镜,把相应源的发散辐射变换成准平行。然而,与前一种情况不同的是,把格式化二次辐射运送给检测器的每个装置做成X射线半透镜,透镜焦点位于当前测量结果所参照的点,而且透镜将所述辐射变换成准平行且导向检测器,因而所有X射线半透镜的光轴穿过当前测量结果所参照的该点。
在另一种特定场合中,X射线光学系统的X射线源也是准点式,使X射线集中在具有当前测量结果所参照的点的区域中的每个装置被做成X射线半透镜,把相应源的发散辐射变换成准平行。然而,与前一种情况相反,将格式化二次辐射运送到检测器的每个装置做成X射线透镜,把该辐射聚焦在检测器上,在X射线集中区中有第二焦点。所有X射线半透镜与透镜的光轴都穿过当前测量结果所参照的点。
在以下特定场合中,像前两种情况一样,X射线光学系统的X射线源是准点,使X射线集中在具有当前测量结果所参照的点的区域中的每个装置被做成X射线半透镜,把相应源的发散辐射变换成准平行。这样,将格式化二次辐射运送到检测器的每个装置做成通道向相应检测器发散(展宽)的准直器,所有X射线半透镜的光轴与准直器中央通道都穿过当前测量结果所参照的点。
推荐设备的X射线光学系统可按以下方法制作。该系统的X射线源都是准点,使X射线集中在具有当前测量结果所参照的点的区域中的每个装置被做成X射线半透镜,把相应源的发散辐射变换成准平行,把格式二次辐射运送给检测器的每个装置做成通道向相应检测器会聚(变窄)的准直器,所有X射线半透镜的光轴与准直器中央通道都穿过当前测量结果所参照的点。
在实施推荐设备的下一种特定场合中,特征如下:X射线光学系统的X射线源为准点;X射线集中在具有当前测量结果所参照的点的区域中的每个装置做成X射线半透镜,聚集X射线源的发散辐射;把格式二次辐射运送给检测器的每个装置做成通道向相应检测器会聚(变窄)的准直器,所有X射线半透镜的光轴与准直器中央通道都穿过当前测量结果所参照的点。
实施该设备的另一特定场合的特征如下:X射线光学系统的X射线源为准点;X射线集中在具有当前测量结果所参照的点的区域中的每个装置做成X射线透镜,聚集X源发散的辐射;将格式化康普顿二次辐射运送到检测器的每个装置做成通道向相应检测器展宽(发散)的准直器,因而所有X射线透镜的光轴与准直器中央通道都穿过当前测量结果所参照的点。
附图简述
本发明由诸附图示出,包括:
图1表示推荐设备的基本原理:实施推荐设备的主要元件相互位置与连接的示意图像。
图2与3表示实施本方法与设备的特定情况,利用准直器集中X射线并将二次辐射运送给检测器。
图4与5表示应用X射线半透镜的同样情况;
图6表示同样的情况,利用X射线半透镜集中X射线,以及运用“全”X射线透镜将二次辐射运送给检测器。
图7与8表示同样情况,利用X射线半透镜集中X射线,以及用准直器将二次辐射运送给检测器。
图9表示同样情况,利用X射线透镜集中X射线,并将二次辐射运送给检测器。
图10与11表示同样情况,利用X射线透镜集中X射线,以及用准直器将二次辐射还送给检测器。
详细描述
推荐方法由推荐设备实施如下:
准点源1的发散X射线(图1)用X射线透镜2聚焦在物体(如生物体)被研究区7的预定点4中。该物体可按要求用定位装置10定位。聚集于点4的辐射激发物体物质5的二次发散辐射(相干与不相干康普顿辐射、荧光辐射)。二次辐射在二次辐射激发过程的随机特征造成的扰动以内的强度,正比于出现辐射的物质的密度。第二X射线透镜3的焦点位于同一点,该透镜捕获散射的二次辐射并将它聚焦在检测器6上,检测器6把它变换成电信号后导入装置12的输入端作数据处理与成像12。通过使物体定位装置10与成组设备元件(配备X射线源1、X射线透镜2、3和辐射检测器6的X射线光学系统8)的相互移动,可以选择透镜1与3总焦点4的位置。
应当说明,控制X射线的透镜(聚集发散辐射形成的准平行射来的发散辐射聚集、准平行射来聚集带)组合了运送辐射的变曲通道,这些通道里的辐射面临多次全内反射(如参见:ArkadievV.A.,KolomiytsevA.I.,KumaknovM.A.等人的“具有宽角孔径的宽带X射线光学元件”,Progress of Physies,1989,Vol.157,issue 3,P.529-537[6],里面描述了这类第一透镜;美国专利No.5744813(1998年4月28日出版)[7],其中描述了现代透镜)。作为一个整体,若透镜用于发散辐射聚集,它为筒形(即朝两面减窄),若用于作发散辐射一准平行变换或用于所述的辐射聚集,则为半筒形(即只有一面较窄)。“全透镜”与“半透镜”被广泛用于确定两种所述类型的透镜。
图1表示设备操作与应用的两种可能的变型。在一种变型中,被研究物体定位装置10与置于其内的被研究物体与处于静止状态。X射线系统移动(图1中箭头9表示X射线系统位移的可能性),保持元件1、2、3与6的相互排列(从而透镜1与3的焦点重合)。在另一变型中,与之相反,X射线系统8处于静止,定位装置10与被研究物体5一起移动。应用哪一种变型,取决于物体5的尺寸与质量同上述成组元件(包括X射线系统8)的尺寸与质量的比较。
该装置还包括与X射线光学系统8相对运动的坐标检测器11和接至检测器11的定位装置10。对于同定位装置10相连接的选择的原点读数,必须把检测器11调节成形成与透镜2和3的公共集点4的当前坐标成比例关系的信号。检测器11与6的输出信号供给数据处理与成像装置12的输入端。此时焦点4就是当前测量结果所参照的点;考虑到X射线透镜2有限的聚集区尺寸,把源1的辐射实际上集中在该点的周围。数据处理与成像装置12提供密度分布的图像重建,在屏上执行二维或三维图像的一种或其它形成算法(如见E.Lapshin.Graphics for IBM PC.M.“Solon”1995[5])。在最简情况下,如在物体5某一平面部分上作扫描时(移动以当前测量结果所参照的点4集中X射线的区域),可同时在屏上以长余辉作装置12的图像扫描。还可以存贮后续定期图像扫描得出的一定数量的测量结果。
本发明的工作原理基于这样一个事实,即散射的二次康普顿辐射的密度(该辐射的量子形成概率)正比于物质密度,所有其它因素均一样(尤其在给定的主X射线强度时作用于该物质)。
正如描述该推荐方法与设备时所述的,这些发明的主要特点是把散射的二次康普顿辐射的量子用作提供消息者,这不同于量子具有有害作用的已知的方法与设备。
正如所述的,把本发明应用于医学方面时,当生物组织的照射剂量减少时,可能出现相当高的精度是主要的优点。
为了评估可能的得益,可作如下假设:光子能量E=50keV;X射线集中区深度为50mm,尺寸为1mm×1mm×1mm(比如,这些值是早期胸部肿瘤X射线测定法研究中作为观察条件与精密研究的特征);检测器可检测5%发源于5cm深的二次辐射(这一假设表示,在二次辐射落到将辐射送到检测器的装置的输入端之前,该辐射已在病人体内行进了5cm距离,因而将二次辐射提供给检测器的透镜或准直器的捕获角为0.05×4π立体弧度)。在能量E=50keV时,考虑到在病人体内的线性光子吸收系数接近于在水中的系数,为2×10-1l/cm量级,故得到:主辐射来透入5cm深度的强度减小exp(2×10-1×5)=e≈2.71倍。从病人体内发出的二次辐射的强度(其光子能量接近50keV)也降低e≈2.71倍。因此,病人体内的辐射吸收所造成的总强度耗为e×e≈7.3倍。仅考虑一下二次辐射中低估该评估增益的康普顿分量。在厚度σk处形成康普顿二次辐射量子的概率为φ=σk×Ne×Δχ,其中二次康普顿散射部分为σk=6.55×10-25cm2;水中的电子密度是Ne=3×1023l/cm3。因此,在Δχ=1mm=10-1cm时,φ的概率=6.55×10-25×3×1023×10-1≈2×10-2。换言之,在长度Δχ=1mm上形成一个二次光子,一次辐射的平均光子必须为1∶(2×10-2)=50个。
要求密度评估(即二次光子测龄量)误差为1%量级。考虑到可能的过程特征,相对误差的均方值为σ=1/(N)1/2,N是记录的光子量。N=10000相当于值σ=0.01。
现在可对Nx建立一简单的公式—渗透5cm深度形成二次康普顿辐射必需的一次光子量。它在转动中渗透5cm深,此时N=10000光子落在检测器上:
Nx×e-2×5×10-2×2×10-2=104
这里系数5×10-2表示只有5%=5×10-2个光子落在检测器上,并记录了形成二次光子的总量。该公式得出Nx=7.3×107
如果光通量等于2.8×1010l/cm2,则以能量E=50keV的光子形成辐射区等于1伦琴(光能、其数量与剂量间关系的列表数据见[2])。若病人身体的输入端的一次X射线来的截面积为1cm2,则通量7.3×107l/cm2在病人身体内形成等于2.6×10-3伦琴的辐射区。
如在传统X射线断层术中,在观察骨质疏松症晨,照射剂量一般为100÷300毫伦琴,即大100倍(V.I.Mazurov,E.G.Zotkin,骨质疏松症诊断与治疗的主要问题。Saint-petersburg,IKF“Foliant”,1998,P.47[8])。
若由几个源照射,射来以不同方式落在集中区上面不贮藏在病人体内,剂量可减小几倍。
因此,可利用实施推荐方法与设备的变型,其中应用了几个间隔开的X射线源和检测器,并配有相应数量的辐射集中装置和将二次康普顿辐射运送给检测器的装置(透镜、半透镜与准直器)。一方面,这样能获得更有效的辐射集中(若只使用集中装置,只能使用图1的X射线透镜才能集中),并能对检测器输出增强信/噪关系。另一方面,可扩展X射线对被研究物体的影响,避免过量照射不研究的物体部分。运用若干简单求均的检测器(或更复杂地处理数据处理与成像装置12的不同检测器的输出信号(如“加权”求均),或者处理时考虑到在相互接近的各点中存在差密度相关性),其它都一样,就能不损害精度而使用更小功率的X射线源。此外,由于足求均,还减小了减低精度的其它因素的影响(比如,辐射在送往不同密度测定点的途中被源的各种吸收,二次辐射从这些点送往将二次康普顿辐射送给检测器的装置的输入端的途中)。
下面观察这些变型(图1-图11)。
图1与2的变型在技术实现上最简单。
在图2方法中,采用了准点式X射线源1和准直器13,准直器13的通道向辐射分布发散(展宽),使该辐射集中于区域16。在源1与准直器13之间有一带孔径的屏14,使辐射在准直器输入端上传输,并防止辐射直接落在物体上(绕过准直器)。通道向辐射传播(即向检测器6)会聚(变窄)的准直器15,把二次辐射运送给检测器6,这些通道在检测器敏感表面上聚焦。作为检测器6,例如可应用入口孔径小的半导体检测器。
图3中,准直器的取向与图2中的取向相反。合理地使用延伸型X射线源17,能充分发挥准直器18进入孔径的作用,把辐射集中于区域16。出于同样的理由,可以使用宽孔径的检测器20(如闪炼型)。
图4中,把准点式源1的辐射集中装置和二次辐射运送装置相应地做成X射线半透镜21、22,从而将散射的二次辐射聚焦在检测器6上。
图5中,把准点式源1的辐射集中装置和二次辐射运送装置相应地做成X射线半透镜21、23,从而半透镜23将散射的二次辐射变成准平行,并将它引导到带宽进入孔径的检测器20。
图6示出了组合式变型:把准点式源1的辐射集中装置做成X射线半透镜21,将平行射来导向区16。同时把二次康普顿辐射运送给检测器6的装置做成“全”X射线透镜3。
图7和8示出另一种组合,与前一种组合的不同之处在于,将二次康普顿辐射送往检测器的装置做成准直器。
图7中,准直器19的通道向检测器6展宽,最后一条通道具有宽进入孔径。
图8中,与之相反,准直器15的通道向检测器6变窄,最后一条通道具有窄进入孔径。
图9中,示出在精度与分辨度方面最有效的变型。在该变型中,准点式源1的辐射集中装置与对检测器6运送二次辐射的装置相应地做成“全”透镜2与3(与图1型式相比)。
图10与11示出另两种组合变型,在把“全”X射线透镜2用作准点式源1的辐射集中装置方面,二者相同。
图10示出的向检测器变窄的准直器15,用作将二次辐射运送给窄孔径检测器6的装置。
图11示出的向检测器展宽的准直器19,用作将二次康普顿辐射送给宽孔径检测器的20的装置。
应用哪一种实施本发明与设备模型的方案,依赖于:使用这类有效的辐射集中与运送装置(即X射线透镜与半透镜)的机会及要求的分辨度。后一个因素对透镜与半透镜参数的选用也有影响(如聚焦点的大小,焦区趋向透镜光轴的程度等)。因此,必须考虑到在应用“全”透镜实现高分辨度的(几毫米或更高),要用更长时间扫描被研究对象区。还要考虑其它一些情况,如能否得到所需容量与尺寸的X射线源等。
描述的有用性和实施推荐设备模型的许多其它变型,提供了各种机会来构制内观装置,以满足提出的具体要求。
信息来源
1、综合技术辞典,M.“苏联百科全书”,1976。
2、医学图像目视观察物理学;S.Webb.M.编,”Mir”,1991。
3、V.V.Piklov,N.G.Preobrazhenskiy;计算机断层术与物理实验,物理学进展,V.141,第3期,1983.11。
4、J.Jackson;经典电动学.M.,“Mir”,1965。
5、E.Lapshin.IBM PC.M.图表,“Solon”,1995。
6、V.A.Arkadiev,A.I.Lolomiytser,M.A.Lumakhov等;大角孔径的宽带X射线光学;物理学进展,1989,V.157,第3期。
7、美国专利No.5744813(1998.4.28公布)。
8、V.I.Mazurov,E.G.Eotkin;骨质疏松症诊诊断与治疗的主要问题.Saint-Petersburg,IKF”Foloant”,1998。

Claims (19)

1、一种在用X射线照射物体时用X射线形成该物体内部结构图像的方法,用一个或多个辐射检测器的输出信号来得到有关该物体物质密度的信息,其中将X射线集中在被研究物体(5)区(7)内的某一区域;所述区域包括一个当前点(4),测量结果归属于该当前点(4);将在所述区域内产生的二次辐射导向一个或多个检测器(6);
通过移动所述区域,对所述被研究物体(5)区(7)进行扫描;
物体在所述当前点上的物质密度以一个或多个检测器(6)获得的一组二次辐射强度值测定,同时用X射线辐射集中区内测量结果所归属的当前点(4)的坐标确定;
根据密度值和相应的坐标值,重建所述被研究物体(5)区(7)的物质密度的分布图案。
2、如权利要求1所述的方法,其中
通过一个或多个准直器(13、18)用相应数量间隔开的X射线源(1)把X射线集中在区域(16)内,该区域(16)包括置于被研究物体区内测量结果所归属的当前点;
还利用一个或多个准直器(15,19)将产生的二次辐射导向一个或多个检测器(6、20);
从而将所有准直器定向成使其中央通道的轴线穿过所述当前测量结果所参照的点。
3、如权利要求1所述的方法,其中
用一块或多块X射线半透镜(21)将X射线集中在包括测量结果所归属的当前点的区域(16)内,把相应数量间隔开的X射线源(1)的发散辐射变成准平行;
用一块或多块X射线半透镜(22、23)将产生的二次辐射导向一个或多个检测器(6、20),把所述辐射聚焦在检测器上或形成准平行辐射;
从而将所有X射线半透镜定向成使其光轴穿过测量结果所归属的当前点。
4、如权利要求1所述的方法,其中
用一块或多块X射线半透镜(21)将X射线集中在包括测量结果所归属的当前点的区域(16)内,把相应数量间隔开的X射线源(1)的发散辐射变成准平行;
用一块或多块X射线透镜(3)将产生的二次辐射导向一个或多个检测器(6),把所述辐射聚焦在检测器(6)上;
从而将所有X射线半透镜与透镜定向成使其光轴穿过测量结果所归属的当前点。
5、如权利要求1所述的方法,其中
用一块或多块X射线半透镜(21)将X射线集中在包括测量结果所归属的当前点的区域(16)内,把相应数量间隔开的X射线源(1)的发散辐射变成准平行;
用一块或多块准直器(19)把产生的二次辐射导向一个或多个检测器(20);
从而将X射线半透镜与准直器定向成使半透镜的光轴与准直器的中央通道穿过测量结果所归属的当前点。
6、如权利要求1所述的方法,其中
用一个或多个X射线源(1)和相应数量的X射线透镜(2)把X射线集中在区域内,区域包括位于被研究区内的测量结果所归属的当前点,把每个源(1)的发散X射线聚焦在测量结果所归属的当前点(4)上;
用X射线透镜(3)将产生的二次辐射导向一个或多个检测器(6),把所述辐射聚焦在检测器(6)上,且在所述点有第二焦点。
7、如权利要求1所述的方法,其中
用一个或多个间隔开的X射线源(1)和相应数量的X射线透镜(2)把X射线集中在区域内,区域包括位于被研究区内的测量结果所归属的当前点,把每个源(1)发散的X射线聚焦在测量结果所归属的当前点(4)上;
用准直器(15,19)将产生的二次辐射导向一个或多个检测器(6,20),准直器定向成使其中央通道的光轴穿过所述点。
8、一种用X射线产生物体内部结构图像的设备,其特征在于包括:
被研究物体(5)的定位装置(10);
X射线系统(8);
使被研究物体(5)的定位装置(10)与X射线系统(8)相对移动的装置;
数据处理与成像装置(12),其中
X射线系统(8)包括一个或多个X射线源(1);
将所述一个或多个X射线源(1)的辐射集中在包括测量结果所归属的当前点(4)的区域中的装置;
一个或多个引导二次辐射的装置;
位于所述引导二次辐射装置输出端的所述辐射的检测器(6):
所述检测器的输出端接至所述数据处理与成像装置(12);
确定点(4)坐标的检测器(11)与被研究物体(5)的定位装置(10)和X射线系统(8)相接;
被研究物体(5)区内的所述点(4)被所述测量结果参照;
所述确定点(4)坐标的检测器(11)通过其输出端与所述数据处理与成像装置(12)相接。
9、如权利要求8所述的设备,其中X射线系统包括多个X射线源(1,17);
将所述源辐射集中在包括测量结果所归属的当前点的区域(16)内的每个装置和把在所述点产生的二次辐射导向检测器(6、20)的每个装置,都被做成准直器(13、15、18、19):
所述准直器通道定向在所述X射线源的辐射集中区域(16)内;
从而所有准直器中央通道的光轴都穿过测量结果所归属的当前点。
10、如权利要求9所述的设备,其中包含在X射线源中的X射线源(1)为准点式;
准直器(13、15)的通道被聚集在所述X射线源上,并向被研究物体(5)的定位装置发散;
将有孔径的屏(14)置于各X射线源(1)的输出端与相应准直器(13)的输入端之间。
11、如权利要求9所述的设备,其中包括在X射线系统中的X射线源(17)为扩展式;
准直器(18,19)的通道向被研究物体定位装置变窄。
12、如权利要求8所述的设备,其中包含在X射线系统中的X射线源(1)为准点式;
将X射线集中在包括测量结果所归属的当前点的区域(16)中的每个装置做成X射线半透镜(21),把相应源(1)的发散辐射变换成准平行;
将产生的二次辐射运送给检测器(6)的每个装置做成X射线半透镜(22),把所述辐射聚焦在检测器(6)上;
从而使所有X射线半透镜的光轴穿过当前测量结果所参照的点。
13、如权利要求8所述的设备,其中包含在X射线系统中的X射线源(1)为准点式;
将X射线集中在包括测量结果所归属的当前点的区域(16)中的每个装置做成X射线半透镜(21),把相应源(1)的发散辐射变换成准平行;
将产生的二次辐射运送给检测器的每个装置做成X射线半透镜(23),形成准平行辐射,并在辐射集中区域(16)中有焦点;
从而使所有X射线半透镜的光轴穿过测量结果所归属的当前点。
14、如权利要求8所述的设备,其中包含在X射线系统中的X射线源(1)为准点式;
将X射线集中在包括测量结果所归属的当前点的区域(16)中的每个装置做成X射线半透镜(21),把相应源(1)的发散辐射变换成准平行;
将产生的二次辐射运送给检测器(6)的每个装置做成X射线透镜(3),把所述辐射聚焦在检测器(6)上,且在辐射集中区域(16)中有第二焦点;
使所有X射线半透镜和透镜的光轴穿过测量结果所归属的当前点。
15、如权利要求8所述的设备,其中包含在X射线系统中的X射线源(1)为准点式;
将X射线集中在包括测量结果所归属参照的点的区域(16)中的每个装置做成X射线半透镜(21),把相应源(1)的发散辐射变换成准平行;
将产生的二次辐射运送给检测器(20)的每个装置做成通道向相应检测器发散的准直器(19);
所有X射线透镜、半透镜的光轴和准直器的中央通道都穿过测量结果所归属的当前点。
16、如权利要求8所述的设备,其中包含在X射线系统中的X射线源(1)为准点式;
将X射线集中在包括测量结果所归属的当前点的区域(16)中的每个装置做成X射线半透镜(21),把相应源(1)的发散辐射变换成准平行;
将产生的二次辐射运送给检测器(6)的每个装置做成通道向相应检测器发散的准直器(16);
所有X射线半透镜的光轴和准直器的中央通道都穿过测量结果所归属的当前点。
17、如权利要求8所述的设备,其中包含在X射线系统中的X射线源(1)为准点式;
将X射线集中在包括测量结果所归属的当前点(4)的区域中的每个装置做成X射线透镜(2),聚焦X射线源(1)的发散辐射;
将产生的二次辐射运送给检测器(6)的每个装置做成X射线透镜(3),把所述辐射聚焦在相应检测器上;
所有X射线透镜的光轴都穿过测量结果所归属的当前点。
18、如权利要求8所述的设备,其中包含在X射线系统中的X射线源(1)为准点式;
将X射线集中在包括测量结果所归属的当前点的区域(16)中的每个装置做成X射线透镜(2),聚焦X射线源(1)的发散辐射;
将产生的二次辐射运送给检测器(6)的每个装置做成通道向相应检测器会聚的准直器(15);
所有X射线透镜的光轴和准直器的中央通道都穿过测量结果所归属的当前点。
19、如权利要求8所述的设备,其中包含在X射线系统中的X射线源(1)为准点式;
将X射线集中在包括测量结果所归属的当前点的区域(16)中的每个装置做成X射线透镜(2),聚集X射线源(1)的发散辐射;
将产生的二次辐射运送给检测器(20)的每个装置做成通道向相应检测器发散的准直器(19);
所有X射线透镜的光轴和准直器的中央通道都穿过测量结果所归属的当前点。
CNB008060924A 2000-02-11 2000-05-30 用x射线辐射获取物体内部结构图像的方法及其实施设备 Expired - Fee Related CN1189742C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2000103190 2000-02-11
RU2000103190/28A RU2180439C2 (ru) 2000-02-11 2000-02-11 Способ получения изображения внутренней структуры объекта с использованием рентгеновского излучения и устройство для его осуществления

Publications (2)

Publication Number Publication Date
CN1346438A CN1346438A (zh) 2002-04-24
CN1189742C true CN1189742C (zh) 2005-02-16

Family

ID=20230425

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008060924A Expired - Fee Related CN1189742C (zh) 2000-02-11 2000-05-30 用x射线辐射获取物体内部结构图像的方法及其实施设备

Country Status (11)

Country Link
US (2) US6754304B1 (zh)
EP (1) EP1202045A4 (zh)
JP (2) JP3722428B2 (zh)
KR (1) KR100485413B1 (zh)
CN (1) CN1189742C (zh)
AU (1) AU774687B2 (zh)
CA (1) CA2366547A1 (zh)
HK (1) HK1043403B (zh)
RU (1) RU2180439C2 (zh)
UA (1) UA57176C2 (zh)
WO (1) WO2001059439A1 (zh)

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2180439C2 (ru) * 2000-02-11 2002-03-10 Кумахов Мурадин Абубекирович Способ получения изображения внутренней структуры объекта с использованием рентгеновского излучения и устройство для его осуществления
UA59495C2 (uk) * 2000-08-07 2003-09-15 Мурадін Абубєкіровіч Кумахов Рентгенівський вимірювально-випробувальний комплекс
WO2003069321A1 (en) * 2002-02-14 2003-08-21 Muradin Abubekirovich Kumakhov Device for imaging the internal structure of an object
US6949748B2 (en) * 2002-04-16 2005-09-27 The Regents Of The University Of California Biomedical nuclear and X-ray imager using high-energy grazing incidence mirrors
US7070327B2 (en) * 2002-05-01 2006-07-04 Siemens Medical Solutions Usa, Inc. Focused radiation visualization
US6968035B2 (en) * 2002-05-01 2005-11-22 Siemens Medical Solutions Usa, Inc. System to present focused radiation treatment area
US20030206610A1 (en) * 2002-05-01 2003-11-06 Collins William F. Patient positioning system
US20050282300A1 (en) * 2002-05-29 2005-12-22 Xradia, Inc. Back-end-of-line metallization inspection and metrology microscopy system and method using x-ray fluorescence
US7245696B2 (en) * 2002-05-29 2007-07-17 Xradia, Inc. Element-specific X-ray fluorescence microscope and method of operation
DE10230990A1 (de) 2002-07-10 2004-02-05 Elisabeth Katz Vorrichtung zur Durchführung einer Online-Elementanalyse
CN100464182C (zh) * 2003-03-28 2009-02-25 理学电机工业株式会社 荧光x射线分析装置
US7134786B2 (en) * 2003-04-10 2006-11-14 Ge Medical Systems Global Technology Examination table providing x-ray densitometry
CN1864062B (zh) * 2003-08-04 2011-11-02 X射线光学系统公司 使用在固定角位置的源和检测器的原位x射线衍射系统
DE102004012704B4 (de) 2004-03-16 2008-01-03 Katz, Elisabeth Vorrichtung zur online-Analyse und Verwendung einer solchen Vorrichtung
US7809109B2 (en) 2004-04-09 2010-10-05 American Science And Engineering, Inc. Multiple image collection and synthesis for personnel screening
US20050267457A1 (en) * 2004-05-25 2005-12-01 Hruschka James A Tissue ablation device using a lens to three dimensionally focus electromagnetic energy
US7120228B2 (en) * 2004-09-21 2006-10-10 Jordan Valley Applied Radiation Ltd. Combined X-ray reflectometer and diffractometer
US8242453B2 (en) * 2004-10-15 2012-08-14 Koninklijke Philips Electronics N.V. Imaging system for nuclear medicine
US7110491B2 (en) * 2004-12-22 2006-09-19 Jordan Valley Applied Radiation Ltd. Measurement of critical dimensions using X-ray diffraction in reflection mode
US7804934B2 (en) 2004-12-22 2010-09-28 Jordan Valley Semiconductors Ltd. Accurate measurement of layer dimensions using XRF
US7245695B2 (en) 2005-04-11 2007-07-17 Jordan Valley Applied Radiation Ltd. Detection of dishing and tilting using X-ray fluorescence
JP4694296B2 (ja) * 2005-07-26 2011-06-08 浜松ホトニクス株式会社 蛍光x線三次元分析装置
US7231017B2 (en) * 2005-07-27 2007-06-12 Physical Optics Corporation Lobster eye X-ray imaging system and method of fabrication thereof
JP4881307B2 (ja) * 2005-08-04 2012-02-22 エスアイアイ・ナノテクノロジー株式会社 蛍光x線分析方法
US7321652B2 (en) * 2005-09-15 2008-01-22 Jordan Valley Semiconductors Ltd. Multi-detector EDXRD
KR101374308B1 (ko) * 2005-12-23 2014-03-14 조르단 밸리 세미컨덕터즈 리미티드 Xrf를 사용한 층 치수의 정밀 측정법
US20070274447A1 (en) * 2006-05-15 2007-11-29 Isaac Mazor Automated selection of X-ray reflectometry measurement locations
JP2007309685A (ja) * 2006-05-16 2007-11-29 Nec Electronics Corp 検査装置及び検査方法
US7499523B2 (en) * 2006-08-02 2009-03-03 General Electric Company Systems and methods for identifying a substance
JP4871060B2 (ja) * 2006-08-03 2012-02-08 トヨタ自動車株式会社 分析装置
JP4860418B2 (ja) * 2006-10-10 2012-01-25 株式会社リガク X線光学系
US7620147B2 (en) * 2006-12-13 2009-11-17 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
IL180482A0 (en) * 2007-01-01 2007-06-03 Jordan Valley Semiconductors Inspection of small features using x - ray fluorescence
US7643609B2 (en) * 2007-01-03 2010-01-05 Andrea Clay Secondary X-ray imaging technique for diagnosing a health condition
US8576982B2 (en) 2008-02-01 2013-11-05 Rapiscan Systems, Inc. Personnel screening system
US8638904B2 (en) 2010-03-14 2014-01-28 Rapiscan Systems, Inc. Personnel screening system
US8995619B2 (en) 2010-03-14 2015-03-31 Rapiscan Systems, Inc. Personnel screening system
US7623625B2 (en) * 2007-04-11 2009-11-24 Searete Llc Compton scattered X-ray visualization, imaging, or information provider with scattering event locating
US7711089B2 (en) * 2007-04-11 2010-05-04 The Invention Science Fund I, Llc Scintillator aspects of compton scattered X-ray visualization, imaging, or information providing
US7724871B2 (en) * 2007-04-11 2010-05-25 The Invention Science Fund I, Llc Compton scattered X-ray visualization, imaging, or information provider in soft matter such as tissue, organs, or blood, and/or in hard matter such as bones or teeth
US20080253522A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Tool associated with compton scattered X-ray visualization, imaging, or information provider
US20080253525A1 (en) * 2007-04-11 2008-10-16 Boyden Edward S Compton scattered x-ray visualizing, imaging, or information providing of at least some dissimilar matter
US8041006B2 (en) * 2007-04-11 2011-10-18 The Invention Science Fund I Llc Aspects of compton scattered X-ray visualization, imaging, or information providing
US8837677B2 (en) * 2007-04-11 2014-09-16 The Invention Science Fund I Llc Method and system for compton scattered X-ray depth visualization, imaging, or information provider
US20080253526A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Geometric compton scattered x-ray visualizing, imaging, or information providing
US20080312528A1 (en) * 2007-06-15 2008-12-18 Bertolina James A Guidance of medical instrument using flouroscopy scanner with multple x-ray sources
US7680243B2 (en) * 2007-09-06 2010-03-16 Jordan Valley Semiconductors Ltd. X-ray measurement of properties of nano-particles
US20090086899A1 (en) * 2007-09-28 2009-04-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Repositioning X-ray fluorescence visualizer, imager, or information provider
US7724867B2 (en) * 2007-09-28 2010-05-25 Invention Science Fund I, Llc Proximity-based X-Ray fluorescence visualizer, imager, or information provider
US8041005B2 (en) * 2007-09-28 2011-10-18 The Invention Science Fund I, Llc X-ray fluorescence visualizer, imager, or information provider
US7653173B2 (en) * 2007-09-28 2010-01-26 Searete Llc Combining X-ray fluorescence visualizer, imager, or information provider
US7825376B2 (en) * 2007-09-28 2010-11-02 The Invention Science Fund I Scintillator aspects for X-ray fluorescence visualizer, imager, or information provider
US7660385B2 (en) * 2007-09-28 2010-02-09 Searete Llc Time of flight aspects for X-Ray fluorescence visualizer, imager, or information provider
US7738627B2 (en) * 2007-09-28 2010-06-15 The Invention Science Fund I, Llc Geometric X-ray fluorescence visualizer, imager, or information provider
US7664224B2 (en) * 2007-09-28 2010-02-16 Searete Llc X-ray fluorescence visualizing, imaging, or information providing of chemicals, compounds, or biological materials
US7773722B2 (en) * 2007-09-28 2010-08-10 The Invention Science Fund I, Llc Personal transportable X-ray fluorescence visualizing, imaging, or information providing
US8000438B2 (en) * 2007-09-28 2011-08-16 The Invention Science Fund I, Llc Tool based X-ray fluorescence visualizing, imaging, or information providing
US20090086903A1 (en) * 2007-09-28 2009-04-02 Searete LLC, a limited liability corporation of Selective elemental color providing for X-ray fluorescence visualization, imaging, or information providing
US7649975B2 (en) 2007-09-28 2010-01-19 Searete Llc X-ray fluorescence visualizing, imaging, or information providing of chemicals, compounds, or biological materials
US7702066B2 (en) * 2007-09-28 2010-04-20 Searete Llc Portable aspects for x-ray fluorescence visualizer, imager, or information provider
EA011316B1 (ru) * 2007-11-30 2009-02-27 Фонд Сопровождения Инвестиционных Проектов "Генкей" Способ и устройство получения информации о внутренней структуре объекта и способ создания изображения объекта
US7839969B2 (en) * 2008-04-24 2010-11-23 Chevron U.S.A. Inc. Device and method for detecting deposition on an inner surface of a pipe
KR100948461B1 (ko) * 2009-03-30 2010-03-17 중앙대학교 산학협력단 물체 구성의 3차원 영상화 방법 및 장치
US8243878B2 (en) * 2010-01-07 2012-08-14 Jordan Valley Semiconductors Ltd. High-resolution X-ray diffraction measurement with enhanced sensitivity
MX2012010646A (es) 2010-03-14 2012-12-05 Rapiscan Systems Inc Sistemas de deteccion de multiples pantallas.
JP5704711B2 (ja) * 2010-04-30 2015-04-22 公立大学法人大阪市立大学 蛍光x線検出装置及び蛍光x線検出方法
US8687766B2 (en) 2010-07-13 2014-04-01 Jordan Valley Semiconductors Ltd. Enhancing accuracy of fast high-resolution X-ray diffractometry
US8848871B2 (en) * 2010-11-04 2014-09-30 Ut-Battelle, Llc X-ray backscatter imaging of nuclear materials
US8437450B2 (en) 2010-12-02 2013-05-07 Jordan Valley Semiconductors Ltd. Fast measurement of X-ray diffraction from tilted layers
US8781070B2 (en) 2011-08-11 2014-07-15 Jordan Valley Semiconductors Ltd. Detection of wafer-edge defects
US9390984B2 (en) 2011-10-11 2016-07-12 Bruker Jv Israel Ltd. X-ray inspection of bumps on a semiconductor substrate
US9442083B2 (en) * 2012-02-14 2016-09-13 Aribex, Inc. 3D backscatter imaging system
JP2015531052A (ja) * 2012-06-01 2015-10-29 ランダウアー インコーポレイテッド 職業および環境用線量測定のためのワイヤレス、動作および位置センシング集積放射線センサ
GB201213789D0 (en) * 2012-08-02 2012-09-12 Commw Scient Ind Res Org An X-ray fluorescence analyser
KR101399505B1 (ko) * 2012-11-08 2014-05-27 주식회사 아이에스피 에너지 분산형 형광 분석기의 프레임 누적 스캔 방법
US9389192B2 (en) 2013-03-24 2016-07-12 Bruker Jv Israel Ltd. Estimation of XRF intensity from an array of micro-bumps
JP6082634B2 (ja) * 2013-03-27 2017-02-15 株式会社日立ハイテクサイエンス 蛍光x線分析装置
JP6081260B2 (ja) * 2013-03-28 2017-02-15 株式会社日立ハイテクサイエンス 蛍光x線分析装置
KR20160130482A (ko) 2014-03-07 2016-11-11 라피스캔 시스템스, 인코포레이티드 초광대역 검출기
US11280898B2 (en) 2014-03-07 2022-03-22 Rapiscan Systems, Inc. Radar-based baggage and parcel inspection systems
US9632043B2 (en) 2014-05-13 2017-04-25 Bruker Jv Israel Ltd. Method for accurately determining the thickness and/or elemental composition of small features on thin-substrates using micro-XRF
US9726624B2 (en) 2014-06-18 2017-08-08 Bruker Jv Israel Ltd. Using multiple sources/detectors for high-throughput X-ray topography measurement
US9606073B2 (en) 2014-06-22 2017-03-28 Bruker Jv Israel Ltd. X-ray scatterometry apparatus
US9594033B2 (en) * 2014-07-22 2017-03-14 The Boeing Company Visible X-ray indication and detection system for X-ray backscatter applications
JP6397690B2 (ja) * 2014-08-11 2018-09-26 株式会社日立ハイテクノロジーズ X線透過検査装置及び異物検出方法
US9829448B2 (en) 2014-10-30 2017-11-28 Bruker Jv Israel Ltd. Measurement of small features using XRF
EP3224797A4 (en) 2014-11-25 2018-07-18 Rapiscan Systems, Inc. Intelligent security management system
WO2017103037A1 (en) * 2015-12-17 2017-06-22 Koninklijke Philips N.V. Method and device for a medical image analysis
US10684238B2 (en) 2016-01-11 2020-06-16 Bruker Technologies Ltd. Method and apparatus for X-ray scatterometry
US10720300B2 (en) 2016-09-30 2020-07-21 American Science And Engineering, Inc. X-ray source for 2D scanning beam imaging
US10281414B2 (en) * 2016-12-01 2019-05-07 Malvern Panalytical B.V. Conical collimator for X-ray measurements
RU2658098C1 (ru) * 2017-04-06 2018-06-19 Олег Владимирович Кофнов Дифракционный способ определения внутренних дефектов изделий, выполненных по аддитивной технологии
CN108421174B (zh) * 2018-03-29 2024-03-19 上海伽玛星科技发展有限公司 新型放射源射线聚焦准直器
US10816487B2 (en) 2018-04-12 2020-10-27 Bruker Technologies Ltd. Image contrast in X-ray topography imaging for defect inspection
JP2019191167A (ja) 2018-04-23 2019-10-31 ブルカー ジェイヴィ イスラエル リミテッドBruker Jv Israel Ltd. 小角x線散乱測定用のx線源光学系
BR112020023596A2 (pt) * 2018-05-18 2021-04-20 Enersoft Inc. sistemas, dispositivos e métodos para análise de amostras geológicas
WO2020008420A2 (en) 2018-07-05 2020-01-09 Bruker Jv Israel Ltd. Small-angle x-ray scatterometry
CN110208301A (zh) * 2019-07-05 2019-09-06 北京师范大学 一种深度分辨的x射线致辐射发光测量的装置及方法
US11781999B2 (en) 2021-09-05 2023-10-10 Bruker Technologies Ltd. Spot-size control in reflection-based and scatterometry-based X-ray metrology systems

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL247901A (zh) 1960-01-29
US3418467A (en) * 1965-02-17 1968-12-24 Philips Corp Method of generating an x-ray beam composed of a plurality of wavelengths
US3980568A (en) * 1975-10-17 1976-09-14 Hankison Corporation Radiation detection system
DE3023263C2 (de) * 1980-06-21 1986-08-14 Philips Patentverwaltung Gmbh, 2000 Hamburg Anordnung zur Ermittlung der inneren Struktur eines Körpers mittels monoenergetischer Strahlung
FI873627A (fi) * 1987-08-25 1989-02-22 Leningradskoe Nauchno-Proizvodstvennoe Obiedinenie/Çburevestnikç Flerkanalsroentgenspektrometer.
GB2214769A (en) * 1988-03-04 1989-09-06 Le N Proizv Ob Burevestnik Multichannel x-ray spectrometer
JP2853261B2 (ja) * 1989-05-16 1999-02-03 三菱マテリアル株式会社 金属分析方法および分析装置
FI894010A (fi) 1989-08-25 1991-02-26 Micronas Oy Foerfarande foer kontrollering av en tillvaextprocess foer en med fosfor dopad kiseldioxidfilm.
US5181234B1 (en) * 1990-08-06 2000-01-04 Rapiscan Security Products Inc X-ray backscatter detection system
DE9117302U1 (de) * 1990-10-31 1999-10-21 X Ray Optical Sys Inc Vorrichtung zum Steuern von Strahlen von Teilchen, Röntgen- und Gammastrahlen und Anwendungen davon
US5497008A (en) * 1990-10-31 1996-03-05 X-Ray Optical Systems, Inc. Use of a Kumakhov lens in analytic instruments
JPH05346411A (ja) * 1992-04-16 1993-12-27 Rigaku Denki Kogyo Kk 蛍光x線分析装置
RU2072515C1 (ru) 1993-01-26 1997-01-27 Акционерное общество "Элскорт" Многоканальный рентгеновский анализатор элементного состава
JP3258118B2 (ja) * 1993-03-19 2002-02-18 セイコーインスツルメンツ株式会社 帯状の試料の中心を検出する方法
US5325416A (en) * 1993-10-25 1994-06-28 Nisshin Steel Co., Ltd. Method for measuring Fe coating weight of Fe-coated stainless steel sheet
US5585603A (en) * 1993-12-23 1996-12-17 Design Systems, Inc. Method and system for weighing objects using X-rays
GB9414518D0 (en) * 1994-07-19 1994-09-07 Univ Leicester Microchannel plates
US5570408A (en) * 1995-02-28 1996-10-29 X-Ray Optical Systems, Inc. High intensity, small diameter x-ray beam, capillary optic system
US5745547A (en) * 1995-08-04 1998-04-28 X-Ray Optical Systems, Inc. Multiple channel optic
CN1069136C (zh) * 1996-02-17 2001-08-01 北京师范大学 整体x光透镜及其制造方法及使用整体x光透镜的设备
US5778039A (en) 1996-02-21 1998-07-07 Advanced Micro Devices, Inc. Method and apparatus for the detection of light elements on the surface of a semiconductor substrate using x-ray fluorescence (XRF)
US5696806A (en) * 1996-03-11 1997-12-09 Grodzins; Lee Tomographic method of x-ray imaging
JPH09329557A (ja) * 1996-06-11 1997-12-22 Seiko Instr Inc マイクロ蛍光x線分析装置
EP0910807B1 (en) * 1996-07-12 2003-03-19 American Science & Engineering, Inc. Side scatter tomography system
JPH10227749A (ja) * 1997-02-14 1998-08-25 Matsushita Electric Ind Co Ltd X線検査装置及びx線検査方法
JPH10339798A (ja) * 1997-06-07 1998-12-22 Horiba Ltd X線集光用ミラー
US6094472A (en) * 1998-04-14 2000-07-25 Rapiscan Security Products, Inc. X-ray backscatter imaging system including moving body tracking assembly
DE19820861B4 (de) * 1998-05-09 2004-09-16 Bruker Axs Gmbh Simultanes Röntgenfluoreszenz-Spektrometer
US6108398A (en) * 1998-07-13 2000-08-22 Jordan Valley Applied Radiation Ltd. X-ray microfluorescence analyzer
JP3361768B2 (ja) * 1999-03-18 2003-01-07 セイコーインスツルメンツ株式会社 蛍光x線分析装置およびx線照射位置確認方法
US6345086B1 (en) * 1999-09-14 2002-02-05 Veeco Instruments Inc. X-ray fluorescence system and method
US6381303B1 (en) * 1999-09-29 2002-04-30 Jordan Valley Applied Radiation Ltd. X-ray microanalyzer for thin films
DE10050116A1 (de) * 1999-10-21 2001-04-26 Koninkl Philips Electronics Nv Verfahren und Vorrichtung zum Untersuchen einer Probe mit Hilfe von Röntgenfluoreszenzanalyse
RU2180439C2 (ru) * 2000-02-11 2002-03-10 Кумахов Мурадин Абубекирович Способ получения изображения внутренней структуры объекта с использованием рентгеновского излучения и устройство для его осуществления
US6453002B1 (en) * 2000-04-18 2002-09-17 Jordan Valley Applied Radiation Ltd. Differential measurement of X-ray microfluorescence
US6477227B1 (en) * 2000-11-20 2002-11-05 Keymaster Technologies, Inc. Methods for identification and verification

Also Published As

Publication number Publication date
AU774687B2 (en) 2004-07-01
EP1202045A1 (en) 2002-05-02
AU4961300A (en) 2001-08-20
EP1202045A4 (en) 2006-07-26
CN1346438A (zh) 2002-04-24
JP2005099030A (ja) 2005-04-14
KR20010110739A (ko) 2001-12-13
UA57176C2 (uk) 2003-06-16
HK1043403B (zh) 2005-06-10
US20050031078A1 (en) 2005-02-10
JP3722428B2 (ja) 2005-11-30
US7130370B2 (en) 2006-10-31
JP2003522947A (ja) 2003-07-29
CA2366547A1 (en) 2001-08-16
HK1043403A1 (en) 2002-09-13
WO2001059439A1 (en) 2001-08-16
KR100485413B1 (ko) 2005-04-27
RU2180439C2 (ru) 2002-03-10
US6754304B1 (en) 2004-06-22

Similar Documents

Publication Publication Date Title
CN1189742C (zh) 用x射线辐射获取物体内部结构图像的方法及其实施设备
CN1272627C (zh) 测定恶性肿瘤位置及其放射治疗用的x射线设备
JP2515973B2 (ja) 投影式ラジオグラフイツクシステムおよび放射線検出器
JP6415023B2 (ja) 3d散乱撮像に用いるハンドヘルドx線システム
US11583237B2 (en) Method and measuring apparatus for an X-ray fluorescence measurement
CN1272638C (zh) Pet装置及pet装置的图像生成方法
CN101416073B (zh) 用于重建图像的双能量衰减数据的信噪比的动态优化
EP2629083A2 (en) 3d backscatter imaging system
CN1946342A (zh) 锥束相干散射计算机断层摄影装置
CN1720539A (zh) 使用平行射线照射的小对象的光学层析术和后标本光学放大
CN1794951A (zh) 扇形射束相干散射计算机断层摄影
KR101378757B1 (ko) 물질 원소 정보 획득 및 영상 차원의 선택이 가능한 방사선 영상화 장치
Zhang et al. X-ray luminescence computed tomography using a focused x-ray beam
Jiang et al. Monte Carlo simulation for polychromatic X-ray fluorescence computed tomography with sheet-beam geometry
Lun et al. X-ray luminescence imaging for small animals
JP5030056B2 (ja) 非破壊検査方法及び装置
RU2209644C2 (ru) Рентгеновские средства для определения местоположения и лучевой терапии злокачественных новообразований
JP2002162371A (ja) 逆コンプトン散乱光を利用した非破壊検査方法及び装置
Fang et al. Quantitative study of x-ray luminescence computed tomography
JP2008119095A (ja) X線ct装置及び散乱補正方法
JP2003079755A (ja) 光ctによる粒子線線量分布測定装置および方法
Lun X-ray Luminescence Computed Tomography for Small Animal Imaging
Hall Combined X-ray fluorescence and absorption computed tomography using a synchrotron beam
Lee et al. A new pipe wall thinning inspection system
Holley et al. Computerized heavy-ion tomography

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050216

Termination date: 20100530