CN1202727A - 制造半导体器件的方法 - Google Patents

制造半导体器件的方法 Download PDF

Info

Publication number
CN1202727A
CN1202727A CN98102274A CN98102274A CN1202727A CN 1202727 A CN1202727 A CN 1202727A CN 98102274 A CN98102274 A CN 98102274A CN 98102274 A CN98102274 A CN 98102274A CN 1202727 A CN1202727 A CN 1202727A
Authority
CN
China
Prior art keywords
oxide layer
silicon oxide
substrate
groove
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98102274A
Other languages
English (en)
Other versions
CN1105400C (zh
Inventor
石川拓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN1202727A publication Critical patent/CN1202727A/zh
Application granted granted Critical
Publication of CN1105400C publication Critical patent/CN1105400C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region

Abstract

一种半导体器件的制造方法,首先在衬底上形成隔离多个半导体元件的隔离沟槽,然后在沟槽侧壁上形成热氧化膜,再利用化学汽相淀积在衬底上形成硅氧化膜。最后在高压环境中对整个衬底退火。

Description

制造半导体器件的方法
本发明涉及制造半导体器件的方法,特别涉及制造在衬底上具有电路元件隔离(isolatior)沟槽的半导体器件的方法。
近来,随着半导体器件的集成化和工作速度的增长,各种各样的技术已显著发展,用于使负载在每个半导体器件上的分立电路元件小型化,并且使用硅氮化膜用于电隔离分立电路元件的LOCOS(硅局部氧化)隔离的应用越来越受限制了。
因而,已经发展了利用沟槽的新的元件隔离技术。例如,日本专利特许公开No.shobo-124840提出了一种形成沟槽、在沟槽中填入绝缘膜并在等于或低于衬底熔点的温度退火的技术。
另外解决方法由Han Sim Lee等人在关于VLSI技术汇编技术文章1996学术讨论会公开的“An optimized Densification of the Filled oxidefor Quarter Micron shallow Trench Isolation”中提出了。下面参照本说明书附图的图4说明此项技术。
如图4所示,在硅衬底101上形成多个预定沟槽104,然后在沟槽104的侧壁上形成热氧化膜102,再利用低压化学汽相淀积(以下也称LP-CVD)法在沟槽104中填满硅氧化膜105,并利用化学和机械抛光(这以下称CMP处理)使其平整。
在Lee等人的文章中,公开了硅氧化膜的致密化,即抗湿腐蚀能通过在水蒸汽气氛中在低温下退火实现。
Lee等人指出,由于沟槽的侧壁被氧化,因此沟槽中产生的应力导致晶体缺陷。
但是,在这个常规技术中,由于通过CVD填满沟槽的硅氧化膜不够致密,因此湿腐蚀速度很快。因而,如图4所示,在通过CMP方法抛平后,在填满沟槽的膜中产生凹痕106,或者在单个沟槽中心产生狭缝(未示出)。
同时,为了改进前述的不便,作为一个例子,需要在等于或高于1200℃高温下通过退火使硅氧化膜致密化。但是如果采用这项技术,则在衬底中产生的大的热应力将引起晶体滑移或错位。
然而在此常规技术中,由于通过退火的致密化是在低温下进行的,因此沟槽内壁被氧化,以致于在沟槽中产生大的应力,由此引起衬底中的缺陷。
因此,本发明的目的是提供制造半导体器件的方法,该方法利用高压环境在低温下充分使沟槽一成型膜致密化,并能减少可能产生的凹痕,同时,还能有效地使分立电路元件彼此隔离。
根据本发明第一方案,上述目的是通过下述制造半导体器件的方法实现的,该方法包括下列步骤:在衬底上形成隔离沟槽,用于隔离多个半导体电路元件;在沟槽成型步骤中所形成的隔离沟槽的侧壁上形成热氧化膜;通过化学汽相淀积(CVD)在衬底上形成硅氧化膜;在高压环境中,对衬底和硅氧化膜同时退火。
最好是,在高压环境中进行CVD硅氧化膜和衬底的退火,以使硅氧化膜在与常压环境相比的较低温度下致密化。
根据本发明的第二方案,上述目的还通过另一种制造半导体器件的方法实现,该方法包括下列步骤:在半导体衬底上形成用于隔离多个半导体电路元件的隔离沟槽;在沟槽成型步骤中所形成的隔离沟槽的侧壁上形成热氧化膜;在衬底上形成硅氮化膜;在衬底上利用化学汽相淀积(CVD)形成硅氧化膜,以及在高压环境中,对所述硅氧化膜和衬底同时退火。
在本发明第二方案中,象本发明第一方案一样,硅氧化膜和衬底的退火是最好是在高压环境中进行,以使硅氧化膜在与常压环境相比的较低温度下致密化。而且最好是,高压环境含有水蒸汽。
根据本发明第三方案,上述目的还通过再一种制造半导体器件的方法实现,该方法包括下列步骤:在衬底形成用于隔离多个半导体电路元件的隔离沟槽;在沟槽成型步骤中所形成的隔离沟槽的侧壁上形成热氧化膜;利用化学汽相淀积(CVD)在衬底上形成硅氧化膜;在高压环境中对整个衬底退火。
在本发明第三方案中,象本发明第二方案一样,硅氧化膜和衬底的退火最好是在高压环境中进行,以使硅氧化膜在与常压环境相比的较低温度下致密化。而且最好是,高压环境含有水蒸汽。
通过下面参照附图的描述,使本发明的上述和其它目的、特点和优点更明显,其中:
图1(a)到1(d)是表示根据本发明第一实施例的半导体器件制造方法的连续工艺步骤截面示意图;
图2(a)到2(d)是表示根据本发明第二实施例的半导体器件制造方法的连续工艺步骤的截面示意图;
图3是表示硅氧化膜的粘度随膜中水含量变化的特性曲线;
图4表示根据常规技术利用沟槽使电路元件彼此隔离的方法。
本发明的原理特别适用于制造半导体器件的方法,下面参照附图描述本发明的两个优选实施例。
在本发明的优选实施例中,利用在衬底上形成和构图的硅氧化和氮化膜作为掩模,在电路元件之间形成沟槽,然后在衬底上利用CVD形成硅氧化膜。
然后,通过在高压环境中退火使硅氧化膜结构致密化,再通过CMP处理整平所得到的硅氧化膜,以使最后得到的硅氧化膜只在沟槽中。
在沟槽侧壁上没有硅氮化膜的情况下,所用的环境最好是水蒸汽、氧气、氮气、氢气和N2O中的任何一种或者它们的组合。
图1(a)到1(d)是表示根据本发明第一实施例的半导体器件的制造方法的连续工艺步骤的截面示意图。
在该制造方法中,经过热氧化膜2在衬底上形成硅氮化膜3。利用光刻和干腐蚀以沟槽的所要求图形构图硅氮化膜3和热氧化膜2。
然后用硅氮化膜3作为掩模,干腐蚀衬底的硅以形成所要求形状的沟槽4。形成这些沟槽4之后,在沟槽4的侧壁上形成保护沟槽4的热氧化膜1A(图1(a))。
然后利用低压CVD在衬底上形成填满沟槽4的硅氧化膜5(图1(b))。
接着,为使其结构紧密,在没有水蒸汽或氧气的高压环境中退火硅氧化膜5。
在这些环境中的退火过程中,硅氧化膜一般是很粘稠的液体,但在温度很低时如室温,它呈现固态。当温度上升时,粘度下降,大约在达到它的熔点时,硅氧化膜能象液体一样完全可流动的。
这种粘度的下降还会发生在相对低温时;例如,在1000℃时粘度近似小于1012泊。此时,如果压力作用于硅氧化膜的表面上,则其结构将重新排列。
然后在常压下,没有从外界施加作用力,因此其结构将不会重新排列,直到温度升高为止。因而,可以通过在高压环境中对硅氧化膜进行退火而使小量硅氧化膜结构紧密。
而且由于高压退火是在没有水蒸汽或氧气的环境中进行的,因此沟槽中的硅不会被氧化,从而由于沟槽侧壁上的硅氧化膜的生长而防止了沟槽内部的应力的增加。
通过在高压环境中退火而进行结构致密化之后,利用CMP处理进行整平。此时,硅氮化膜3作为抗化学和机械抛光的阻挡层,从而保证最佳抛光(1(c))。
这个利用CMP处理的整平是在使用含有氟酸的溶液的清洗步骤中进行的。因此被充分致密化的硅氧化膜5将不会减少其质量并不会产生凹痕。
然后通过湿法或使用等离子体的干法腐蚀去掉用作阻挡层的硅氮化膜3,并也去掉热氧化层2(图1(d))。
接着,也是在形成栅极氧化膜时用含有氟酸的溶液清洗过程中,这个被充分致密化的硅氧化膜5将不会减少其质量,从而变水平或平坦。实施例2
图2(a)到2(f)是表示根据第二实施例半导体器件制造方法的连续步骤的截面图。
在此制造方法中,象图1的第一实施例的方法一样,经过第一热氧化膜12在片状衬底11上形成第一硅氮化膜13,其厚度为100埃。
然后利用光刻或干法腐蚀以所要求的图形构图第一硅氮化膜13和第一热氧化膜12。再用第一硅氮化膜13作为掩模,干法腐蚀衬底11的硅,从而形成所要求形状的沟槽14。形成这些沟槽14之后,在沟槽14内壁上形成保护沟槽14的第二热氧化3膜11A(图2(a))。
然后利用低压CVD在衬底11上形成第二硅氮化膜16,从而覆盖第一硅氮化膜13和第二热氧化膜11A(图2(b))。此时,如果其厚度太厚,则第二硅氮化膜16将被过腐蚀,从而在化学和机械抛光之后产生凹痕,如果太薄,则第二硅氮化膜16在退火过程中将具有较小的抗氧化性。因此,第二硅氮化膜16的厚度最好大约在50到100埃范围内。
如图2(c)所示,用如下方式腐蚀第二硅氮化膜16,即:其剩余未腐蚀部分只覆盖沟槽14的内壁。这将减小作用到第二硅氮化膜16上的应力。接着利用低压CVD在衬底11上形成CVD硅氧化膜17,从而填满沟槽14(图2(d))。
然后,为使其结构致密,在含有水蒸汽的高压环境中对硅氧化膜17退火。
在含水蒸汽环境中退火过程中,大量水渗入硅氧化膜17中。硅氧化膜17的水含量和其粘度的关系如图3所示曲线。从图3的曲线中看出,随着水含量的增加,硅氧化膜17粘度急剧下降。
这样,在含水蒸汽环境中,硅氧化膜17能在低温被软化。通过在被限制到相对低范围的温度下加高压,可以使硅氧化膜17充分致密化。
此时,沟槽14内壁上的第二硅氮化膜16用于防止衬底11的硅氧化,从而由于沟槽内壁硅的氧化,而使沟槽内部应力不会增加。
接着,通过退火致密化之后,利用CMP处理修平或整平硅氧化膜17。此时,在化学和机械抛光(CMP)处理过程中第一硅氮化膜13是作为阻挡层,结果,能够实现最佳抛光(图2(e))。
这种情况下,在化学和机械抛光之后用含有氟酸的溶液清洗过程中,硅氧化膜17由于退火已经被充分致密化了并且其质量没有减少也没有产生凹痕。
再利用湿法或使用等离子体的干法腐蚀去掉用作阻挡层的第一硅氮化膜13,并去掉第一热氧化膜12(图2(f))。
在形成栅极氧化膜的下一工序过程中用含氟酸的溶液清洗时,被充分致密化的硅氧化膜17不会使其质量减少,结果得到平滑表面。
根据本发明的半导体器件,由于在通过CVD形成沟槽中所使用的硅氧化膜在高压环境中通过退火被充分致密化了,因此可以完全消除了凹痕,这凹痕在根据常规技术整平之后会产生在沟槽成型膜的两相反端上。因此可以减少衬底中产生的缺陷,同时,确实可靠地隔离衬底上的分立电路元件。
另外,给出的在沟槽的内壁上形成硅氮化膜,可以更有效地防止沟槽侧壁硅的氧化。因此可以避免任何可能的应力,这应力随着时间的推移有产生在沟槽中的趋势,这样就提高了整个器件的耐用性。
显然,本发明不限于所述的实施例,在不脱离本发明范围和精神的情况下,各种修改和改变都是可以做出的。

Claims (20)

1.一种制造半导体器件的方法,包括下列步骤:
(a)在衬底上形成用于隔离多个半导体电路元件的隔离沟槽;
(b)在所述沟槽成型步骤中所形成的所述隔离沟槽的侧壁上形成热氧化膜;
(c)利用化学汽相淀积(CVD)在衬底上形成硅氧化膜;和
(d)在高压环境中对整个衬底退火。
2.如权利要求1的方法,其中所述退火使硅氧化膜致密化。
3.如权利要求2的方法,其中所述退火之后,通过如下方式利用化学和机械抛光(CMP)整平被致密化的硅氧化膜,该方式为:部分硅氧化膜只残留在沟槽中。
4.如权利要求1的方法,其中所述高压环境不含有水蒸汽。
5.如权利要求4的方法,其中所述高压环境是氮气、氢气、惰性气体中的任何一种或者它们的组合的环境。
6.一种制造半导体器件的方法,包括下列步骤:
(a)在衬底上形成用于隔离多个半导体电路元件的隔离沟槽图形;
(b)在所述隔离沟槽侧壁上形成热氧化膜;
(c)在衬底上形成硅氮化膜;
(d)利用化学汽相淀积(CVD)在衬底上形成硅氧化膜;和
(e)在高压环境中对整个衬底退火。
7.如权利要求6的方法,其中所述退火使硅氧化膜致密化。
8.如权利要求7的方法,其中所述退火之后,以如下方式利用化学和机械抛光(CMP)平整被致密化的硅氧化膜,该方式为:部分硅氧化膜只残留在沟槽部。
9.如权利要求6的方法,其中所述高压环境不含有水蒸汽或氧气。
10.如权利要求5的方法,其中所述高压环境是氮气、氢气、惰性气体中的任何一种或者其组合的环境。
11.如权利要求8的方法,其中在所述平整过程中,硅氮化膜用作为阻挡层。
12.如权利要求11的方法,还包括用含有氟酸的溶液清洗整个衬底的步骤,在该步骤过程中,利用化学和机械抛光(CMP)进行所述平整。
13.如权利要求12的方法,其中在所述清洗之后,作为阻挡层的硅氮化膜与热氧化膜同时利用湿法腐蚀或使用等离子体的干法腐蚀被去掉。
14.一种制造半导体器件的方法,包括下列步骤:
(a)在衬底上形成用于隔离多个半导体电路元件的隔离沟槽图形;
(b)在所述隔离沟槽的侧壁上形成热氧化膜;
(c)在所述沟槽的所述侧壁上所形成的所述热氧化膜上形成硅氮化膜;
(d)利用化学汽相淀积(CVD)在衬底上形成硅氧化膜;和
(e)在高压环境中对整个衬底退火,以使硅氧化膜致密化。
15.如权利要求14的方法,其中利用低压化学汽相淀积(LP-CVD)在衬底上形成所述硅氧化膜。
16.如权利要求14的方法,其中所述硅氮化膜的厚度大约50到100埃。
17.如权利要求15的方法,其中所述形成硅氮化膜的步骤包括腐蚀硅氮化膜,使其未腐蚀部分只覆盖沟槽的侧壁。
18.如权利要求14的方法,其中在所述退火之后,以如下方式利用化学和机械抛光(CMP)整平硅氧化膜,该方式为:部分硅氧化膜只残留在沟槽中。
19.如权利要求15的方法,其中所述高压环境含有水蒸汽。
20.如权利要求18的方法,还包括在所述平整之后用含有氟酸的溶液清洗整个衬底的步骤。
CN98102274A 1997-06-13 1998-06-15 制造半导体器件的方法 Expired - Fee Related CN1105400C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP156256/1997 1997-06-13
JP9156256A JPH113936A (ja) 1997-06-13 1997-06-13 半導体装置の製造方法
JP156256/97 1997-06-13

Publications (2)

Publication Number Publication Date
CN1202727A true CN1202727A (zh) 1998-12-23
CN1105400C CN1105400C (zh) 2003-04-09

Family

ID=15623826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98102274A Expired - Fee Related CN1105400C (zh) 1997-06-13 1998-06-15 制造半导体器件的方法

Country Status (4)

Country Link
US (1) US6277706B1 (zh)
JP (1) JPH113936A (zh)
KR (1) KR19990006961A (zh)
CN (1) CN1105400C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311539C (zh) * 2003-11-06 2007-04-18 株式会社瑞萨科技 半导体装置的制造方法
CN103258777A (zh) * 2012-02-17 2013-08-21 格罗方德半导体公司 用于制造具有均匀梯状高度的隔离区的半导体装置的方法
CN107768308A (zh) * 2016-08-23 2018-03-06 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825848A (en) * 1986-11-12 1989-05-02 Macias Paul C Exhaust system for cooking appliances
KR100315441B1 (ko) * 1999-03-25 2001-11-28 황인길 반도체 소자 분리를 위한 얕은 트렌치 제조 방법
KR100315452B1 (ko) * 1999-03-25 2001-11-28 황인길 반도체 소자 분리를 위한 얕은 트렌치 제조 방법
JP3245136B2 (ja) * 1999-09-01 2002-01-07 キヤノン販売株式会社 絶縁膜の膜質改善方法
JP2001085511A (ja) 1999-09-14 2001-03-30 Toshiba Corp 素子分離方法
KR100302878B1 (ko) * 1999-09-15 2001-11-07 황인길 반도체 소자 분리를 위한 트렌치 제조 방법
JP2001144170A (ja) 1999-11-11 2001-05-25 Mitsubishi Electric Corp 半導体装置およびその製造方法
KR100338771B1 (ko) * 1999-11-12 2002-05-30 윤종용 수소 어닐링 단계를 포함하는 공정이 간단한 트렌치소자분리방법
US6825087B1 (en) * 1999-11-24 2004-11-30 Fairchild Semiconductor Corporation Hydrogen anneal for creating an enhanced trench for trench MOSFETS
KR20010059658A (ko) * 1999-12-30 2001-07-06 박종섭 반도체장치의 게이트산화막 형성방법
US6817903B1 (en) * 2000-08-09 2004-11-16 Cypress Semiconductor Corporation Process for reducing leakage in an integrated circuit with shallow trench isolated active areas
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
JP2002076113A (ja) * 2000-08-31 2002-03-15 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
KR100346845B1 (ko) * 2000-12-16 2002-08-03 삼성전자 주식회사 반도체 장치의 얕은 트렌치 아이솔레이션 형성방법
GB0101528D0 (en) * 2001-01-20 2001-03-07 Trikon Holdings Ltd A method of filling trenches
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US20030001216A1 (en) * 2001-06-27 2003-01-02 Motorola, Inc. Semiconductor component and method of manufacturing
KR100421046B1 (ko) * 2001-07-13 2004-03-04 삼성전자주식회사 반도체 장치 및 그 제조방법
KR100428768B1 (ko) * 2001-08-29 2004-04-30 삼성전자주식회사 트렌치 소자 분리형 반도체 장치 및 그 형성 방법
US6816355B2 (en) * 2001-09-13 2004-11-09 Seiko Epson Corporation Capacitor, semiconductor device, electro-optic device, method of manufacturing capacitor, method of manufacturing semiconductor device, and electronic apparatus
JP3577024B2 (ja) 2001-10-09 2004-10-13 エルピーダメモリ株式会社 半導体装置及びその製造方法
KR100429555B1 (ko) * 2002-06-29 2004-05-03 주식회사 하이닉스반도체 반도체 소자의 트렌치형 소자분리막 형성방법
JP3586268B2 (ja) * 2002-07-09 2004-11-10 株式会社東芝 半導体装置及びその製造方法
US7576388B1 (en) 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
KR100994719B1 (ko) 2003-11-28 2010-11-16 페어차일드코리아반도체 주식회사 슈퍼정션 반도체장치
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
DE102004020834B4 (de) * 2004-04-28 2010-07-15 Qimonda Ag Herstellungsverfahren für eine Halbleiterstruktur
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US7504306B2 (en) 2005-04-06 2009-03-17 Fairchild Semiconductor Corporation Method of forming trench gate field effect transistor with recessed mesas
KR100714306B1 (ko) * 2005-07-25 2007-05-02 삼성전자주식회사 반도체소자 및 그 제조방법
US8501632B2 (en) * 2005-12-20 2013-08-06 Infineon Technologies Ag Methods of fabricating isolation regions of semiconductor devices and structures thereof
KR100731097B1 (ko) * 2005-12-28 2007-06-22 동부일렉트로닉스 주식회사 반도체소자의 격리막 및 그의 형성방법
US8936995B2 (en) * 2006-03-01 2015-01-20 Infineon Technologies Ag Methods of fabricating isolation regions of semiconductor devices and structures thereof
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
US20080054409A1 (en) * 2006-08-31 2008-03-06 Cheon-Man Shim Fabricating method of semiconductor device
KR101630734B1 (ko) 2007-09-21 2016-06-16 페어차일드 세미컨덕터 코포레이션 전력 소자
US7772668B2 (en) * 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
JP5319247B2 (ja) * 2008-11-14 2013-10-16 株式会社東芝 半導体装置の製造方法
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8816431B2 (en) 2012-03-09 2014-08-26 Fairchild Semiconductor Corporation Shielded gate MOSFET device with a funnel-shaped trench
US9142400B1 (en) 2012-07-17 2015-09-22 Stc.Unm Method of making a heteroepitaxial layer on a seed area
CN104517884B (zh) * 2013-09-27 2017-11-14 中芯国际集成电路制造(上海)有限公司 一种制作半导体器件的方法
US10991619B2 (en) 2019-04-18 2021-04-27 International Business Machines Corporation Top via process accounting for misalignment by increasing reliability
CN111430293A (zh) * 2020-04-28 2020-07-17 长江存储科技有限责任公司 浅沟槽隔离结构制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455325A (en) * 1981-03-16 1984-06-19 Fairchild Camera And Instrument Corporation Method of inducing flow or densification of phosphosilicate glass for integrated circuits
JPS60124840A (ja) 1983-12-09 1985-07-03 Fujitsu Ltd 半導体装置の製造方法
JPH01128527A (ja) 1987-11-13 1989-05-22 Fujitsu Ltd 半導体装置の製造方法
JPH06252259A (ja) 1993-02-26 1994-09-09 Ricoh Co Ltd 半導体装置とその製造方法
JPH0786393A (ja) 1993-09-17 1995-03-31 Toshiba Corp 半導体素子の素子分離方法
JP2751820B2 (ja) * 1994-02-28 1998-05-18 日本電気株式会社 半導体装置の製造方法
US5492858A (en) * 1994-04-20 1996-02-20 Digital Equipment Corporation Shallow trench isolation process for high aspect ratio trenches
WO1996002070A2 (en) * 1994-07-12 1996-01-25 National Semiconductor Corporation Integrated circuit comprising a trench isolation structure and an oxygen barrier layer and method for forming the integrated circuit
US5933748A (en) * 1996-01-22 1999-08-03 United Microelectronics Corp. Shallow trench isolation process
US5817566A (en) * 1997-03-03 1998-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Trench filling method employing oxygen densified gap filling silicon oxide layer formed with low ozone concentration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311539C (zh) * 2003-11-06 2007-04-18 株式会社瑞萨科技 半导体装置的制造方法
CN103258777A (zh) * 2012-02-17 2013-08-21 格罗方德半导体公司 用于制造具有均匀梯状高度的隔离区的半导体装置的方法
CN103258777B (zh) * 2012-02-17 2015-08-19 格罗方德半导体公司 用于制造具有均匀梯状高度的隔离区的半导体装置的方法
CN107768308A (zh) * 2016-08-23 2018-03-06 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN107768308B (zh) * 2016-08-23 2020-10-09 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法

Also Published As

Publication number Publication date
JPH113936A (ja) 1999-01-06
KR19990006961A (ko) 1999-01-25
US6277706B1 (en) 2001-08-21
CN1105400C (zh) 2003-04-09

Similar Documents

Publication Publication Date Title
CN1105400C (zh) 制造半导体器件的方法
US7884413B2 (en) Semiconductor device
US7407864B2 (en) Polysilazane perhydride solution and method of manufacturing a semiconductor device using the same
CN1129171C (zh) 半导体器件的电容器的形成方法
CN1858898A (zh) 浅渠沟隔离结构的制造方法以及半导体结构
CN2751439Y (zh) 隔离沟槽的结构
CN1773690A (zh) 半导体结构及其制造方法
JP2001319927A (ja) スピンオンガラス組成物及びこれを利用した半導体装置のシリコン酸化膜の形成方法
CN1431715A (zh) 半导体器件及其制造方法
CN1622310A (zh) 具有沟道隔离结构的半导体装置及其制造方法
CN1129179C (zh) 浅沟槽隔离方法
JP2001035916A (ja) 浅いトレンチ素子分離形成方法
CN1208815C (zh) 半导体器件及其制造方法
JP4955314B2 (ja) 多孔性シリコン酸化膜の製造方法
US7026256B2 (en) Method for forming flowable dielectric layer in semiconductor device
CN1249791C (zh) 介电层的制造方法
CN1231064A (zh) 半导体器件及其制造方法
CN1519910A (zh) 半导体装置的制造方法
CN1622309A (zh) 隔离半导体元件的方法
KR100505608B1 (ko) 반도체장치의 트렌치 소자분리 구조 및 그 제조방법
KR100523658B1 (ko) 구리 확산 장벽 제조 방법
CN1448995A (zh) 在具有金属图案的半导体基底形成堆叠式介电层的方法
CN1444264A (zh) 微浅绝缘沟槽结构制备法
CN1254852C (zh) 制作电绝缘层的方法
CN116093015A (zh) 半导体结构的制造方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: NEC ELECTRONICS TAIWAN LTD.

Free format text: FORMER OWNER: NIPPON ELECTRIC CO., LTD.

Effective date: 20030418

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20030418

Address after: Kanagawa, Japan

Patentee after: NEC Corp.

Address before: Tokyo, Japan

Patentee before: NEC Corp.

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee