CN1202986A - 实用的甚小口径终端和天线 - Google Patents

实用的甚小口径终端和天线 Download PDF

Info

Publication number
CN1202986A
CN1202986A CN96198631A CN96198631A CN1202986A CN 1202986 A CN1202986 A CN 1202986A CN 96198631 A CN96198631 A CN 96198631A CN 96198631 A CN96198631 A CN 96198631A CN 1202986 A CN1202986 A CN 1202986A
Authority
CN
China
Prior art keywords
satellite
antenna
reflector
phase place
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96198631A
Other languages
English (en)
Other versions
CN1263195C (zh
Inventor
B·B·卢斯南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dayaxek
Leigong Mountain Industrial Co.
Original Assignee
Terrastar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terrastar Inc filed Critical Terrastar Inc
Publication of CN1202986A publication Critical patent/CN1202986A/zh
Application granted granted Critical
Publication of CN1263195C publication Critical patent/CN1263195C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18597Arrangements for system physical machines management, i.e. for construction, operations control, administration, maintenance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/132Horn reflector antennas; Off-set feeding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/193Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with feed supported subreflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/22Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • H01Q5/55Feeding or matching arrangements for broad-band or multi-band operation for horn or waveguide antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18517Transmission equipment in earth stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S343/00Communications: radio wave antennas
    • Y10S343/02Satellite-mounted antenna

Abstract

一个用于发射至地球同步卫星(11)和从地球同步卫星(11)接收的数据发射/接收卫星终端使用一个天线(15A,15B),该天线在其天线接收方向图中第一频率上具有一系列零值点,所述之零值点对应于与该卫星按规则间距在空间分布的卫星。另外,一个相位和幅值补偿网络(23A,23B),调整发射信号的相位和幅值以补偿在与该天线任意设计的频率不同频率时的发射。该天线包括一个主抛物面反射器和从主抛物面反射器的平行面偏置的两个边抛物面反射器。每一个反射器使用一个双频率馈源辐射器以便在该反射器和耦合接收电子的偶极子激励器之间耦合能量。上述终端在C波段应用中特别有用。

Description

实用的甚小口径终端和天线
本申请是同一发明者在1995年10月10日申请的美国专利申请No.——(代理文书No.1227/46005)的后续申请部分,该专利申请又是申请日在1994年6月19日美国专利申请No.08/259,980的后续申请部分,这后一专利申请在这里结合作为整个发明的背景参考。
本发明一般涉及甚小口径终端(VSATs),且具体地说涉及用来发射信号至一个序列卫星和接收该序列卫星的信号的一种VSAT,并且涉及用于这类VSAT的天线。
VSAT是双向数据发射/接收终端,它以9.6千比特/秒至100千比特/秒的速率接收寻址数据流,并以类似的数据速率发送突发数据。VSAT的价格对于每秒4.8、9.6和56千比特的双向数据服务大于10,000美元。VSAT用户每年付给服务提供者的年费为6,000美元。VSAT可在国家特别部门看到,如在美国的标准石油气站,以收集帐单数据。VSAT在全世界用于缺少电话和数据网络的地区。
目前,售出的VSAT在卫星频率的C波段和Ku波段。Ku波段使用6英尺和3英尺天线,小天线具有较好的市场,因为小天线比6英尺的天线更易于在办公地点安置。6英尺的天线通常需要室外的院子或独立地块以安装天线,而3英尺天线可安装在墙上或屋顶。在Ku波段的降雨损失增加卫星段的成本较之C波段大约为10倍,因降雨损失导致数据速率降低或需更高的每比特能量。在Ku波段选择3英尺天线较之6英尺天线增加空间段成本约为4倍。然而,对许多应用来说小尺寸在用户眼中意味着增加其价值。相应的,大量3英尺Ku波段天线售出。
C波段VSAT不能与3英尺天线一同售出,因为3英尺天线的波束宽度太宽以至于不能将赤道同步轨道上的C波段卫星相互区分开。在C波段,服务于美国的卫星在空间以2度相邻。通常,在C波段频率上需要至少直径6英尺的天线将一个卫星同其它卫星区分开。
因此,本发明专注于开发一种天线的问题,该天线具有与3英尺天线相同的面积,但可在现有C波段卫星2度空间距限制下工作。由此可实现顾客方便的小尺寸天线和通过小的降雨损失敏感性获得与Ku波段相比小于10倍的空间段成本。
同一发明者申请日为1994年6月19日美国专利申请No.08/259,980,解决了关于从C波段卫星接收信号的问题。具有与3英尺天线相同面积的3个反射器阵列用来综合成一个方向图,该方向图在目标卫星方向具有增益而在与该目标卫星相隔±2度,±4度,±6度等卫星方向的接收方向图为零。
本发明扩展上述概念以在向卫星发射信号中创造一种类似的方向图。而同时保持接收天线的零方向图而不管频率的变化。这个问题的复杂性在于接收信号位于第一频率,例如:4GHz,而发射信号位于不同的频率,例如:6GHz。然而,相同的天线反射器必须用于相位和幅值的不同分布以获得传送波束形状与维持接收波束形状相同。
本发明解决这个问题通过:(1)为VSAT提供一种天线,该天线将天线面积分为3个小孔径并控制每一个区域的功率以在接收机天线方向图中产生零值点来避免接收信号受到地球同步轨道上±2度空间卫星所发射信号的干扰;并且(2)调整关于3个小孔径上的发射信号的相位和幅度以补偿由于从接收至发射时的频率变化。
用于C波段的VSAT天线接收部分将使用在美国专利No.08/259,980中发明的接收天线以形成一个3英尺等效天线用来接收在空间以近达±2度放置的卫星的4GHz信号。此外,本发明的天线包括在6GHz频率发射的能力,通过控制天线的3个部分的功率以利用±2度空间相隔的卫星。为达此目的,需要一个双频率天线馈源,该馈源为已知的,因而不需进一步的描述。
本发明的另一个部件是能够选择送往三个反射器中每一个的功率和相位以获得期望的天线方向图,以及在相同的天线上获得它,而该接收天线设计为用于在不同频率(即4GHz)上接收获得期望的天线方向图。这个概念包括通过在3个反射器之后分开4GHz和6GHz的连接网络实现。
因此,本发明使C波段VSAT具有相当于3英尺反射器表面面积的天线成为可能。具有3英尺反射器表面面积的小天线较之6英尺反射器的美学理由是显著的。因为在C波段降雨吸收的减少,对空间段成本来说小C波段VSAT较之3英尺Ku波段发射机具有10倍的成本优势。如果Ku波段服务价格对于空间段为每年6000美元,则对于完全相同的服务和大致相同的天线表面面积,C波段服务花费600美元/年。
图1:描述本发明的VSAT系统概貌。
图2:描述图1所述VSAT系统中使用的本发明之天线的一个实施例。
图3:描述图1所述VSAT系统中使用的本发明之天线的第二个实施例。
图4:描述按照本发明的功率与相位控制。
图5和6:描述在卫星上接收的信号的矢量表示。
如图2所示,本发明中的天线15包含3个同样的、边靠边相连的抛物面反射器5。三个反射器5通过传输线连向中央反射器1之后的合成盒25(图4)。在这个应用中,一个极化(例如:垂直极化)专用于传输而另一个(例如:水平极化)专用于接收。卫星17在6GHz利用一种极化接收上行信号而用相反极化在4GHz广播信号。在主反射器之后是一个用于接收的低噪声放大器(LNA)22和一个用于传输的高功率放大器(HPA)24。
接收信号将通过电缆从LNA22传向室内单元10(接收机)。传送信号将由同一电缆从室内单元10(发射机)传向HPA24。LNA22、HPA24和发射机/接收机不是本发明的一部分,而是已有设备。
在中央反射器1和二个边沿反射器2、3之间的功率分配对于在6GHz上的发射功能与在4GHz处的接收功能是不同的。在6GHz发射期间选择每个反射器的信号的相位和幅度的组合以避免空间相隔±2度的相邻卫星的互扰。
图1描述本发明的双向VSAT系统,用户A发送用户数据至发射机/接收机10A,这是公知设备。然后发射机/接收机10A发送RF信号至功率和相位控制单元23A。功率和相位控制单元23A控制天线15A的3个孔径5(见图2)中每一个的功率和相位以补偿天线15A,该天线设计为在4GHz接收信号,并因此在相同频率发射信号。为补偿频率变化,本发明在天线发射方向图中产生增益和零值点以匹配卫星的轨道配置从而目标卫星可成功地接收信号而相邻卫星不能。
天线15A发射6GHz RF信号18A到卫星17,该卫星位于围绕地球的地球同步轨道上。随后卫星17转换RF信号18A为4GHz的RF信号19B,然后该信号由一个服务于网络中所有VSAT的大型中心主站所接收。该中心主站使用大型天线,通常为30英尺直径。中心站直接连向光纤网络或其他高容量网络。如果数据准备传向另一个小型VSAT则信号转发回如专利系统的一个站或另一个标准站。
发射机和接收机
发射机/接收机10是已有设备,这种设备的一个实例是由休斯网络系统设计并由许多供应商制造。因此,为理解本发明对其内部工作的附加描述是不需要的。只要认为发射机/接收机10将接收信号转换为用户数据和将用户数据转换为可以由本发明之天线15发射的信号即可。
天线
如图2所示,天线15采用了3个抛物面反射器3,每一个具有一个馈源管13和一个副反射器9。副反射器9具有一些凹槽7,每一个凹槽有一个稍大于1/4接收信号波长的半径。换句话说,凹槽7可以在深度上变化,从而每一个凹槽对应于接收信号带宽内不同的频率。例如:如果希望有3个凹槽,则第一凹槽具有半径稍大于1/4*(4GHz+δ/2),第二个凹槽具有半径稍大于1/4*(4GHz+3δ/2),和第三个凹槽具有半径稍大于1/4*(4GHz+5δ/2),其中:
此外,馈源管13在馈源管入口处具有至少两个凹槽17,其亦稍大于接收信号波长的1/4。这些凹槽协助防止由于在馈源管13入口处和副反射器9上的过度电流激励而造成的损失。
图3描述了天线15的另一个实施例,其中外面的两个反射器2和3是以菲涅耳步(F1-F2)从全反射器1的偏置,并且天线15包括了一个单馈源4和矩形反射器1、2和3。这个实施例亦可采用关于每一个反射器的分离的馈源,如图2中的另一个实施例所示。在二个实施例中,天线15优化为接收已存在的地球同步轨道C波段卫星17来的4GHz RF信号。设计本发明用来传送信号的这种卫星的一个实例是AT&T的Telsar卫星。然后通过将在下面描述的功率和相位控制单元23来优化天线用于发射。
功率和相位控制
本发明需要利用功率和相位控制单元23来补偿天线的设计。为了在6GHz发射信号,功率和相位控制单元23调整3个反射器1、2和3所辐射的每一个信号的功率和相位以矫正辐射天线方向图用于发射6GHz而不是4GHz信号。天线15的所有其他部件可以在发射和接收期间保持相同,这大大简化了天线设计。
图4详细描述本发明之功率和相位控制单元23。在接收模式,从3个反射器A、B和C来的信号相叠加和耦合至LNA22。在发射模式,从高功率放大器(HPA)24来的信号以下面描述的不相等的结果分解后送给3个反射器A、B和C。
在前一个发明的主要内容中,3个反射器天线接收来自卫星的4GHz信号。每个天线部分具有相同幅值的增益,例如大约25dB和在1/2功率点大约为8度的波束宽度。这种8度的波束宽度不足以抑制卫星在±2度、±4度、±6度轨道位置的交扰。然而,跨过每个孔径的能量分布和3个孔径彼此之间的空间分布导致一种天线方向图,该图在朝向与中心卫星的轨道位置±2度位置的卫星方向具有零值点,另一对零值点则朝向轨道±4度位置的卫星,并在其外具有低的增益。
优选地实现的空间位置,是从中间天线轴至右边部分轴和左边部分轴分别为22”(从右天线轴至左天线轴为44”)。利用这3个天线在4GHz接收到的相等功率,在接收模式获得了期望的天线方向图。
对6GHz C波段发射频率,由于这个频率波长的不同来自3个天线的相等的功率将在错误的位置上产生零方向图。如果要使用相同的天线反射器,则天线的综合设计必须改变。
期望的解决方案将分解发射机输出功率为3个部分。送给中间反射器一个单位功率。2个边反射器将分别接收0.295单位功率。总的合成功率为:
W(1+0.295+0.295)    (2)
其中W为一个依赖于VSAT站数据速率的量。
W瓦进入中间反射器并且0.295W进入两边反射器的每个。在6GHz,这3个部分的每个具有29dB的增益。
在卫星端,从3个部分来的场将组合产生一个信号电平。如果接收机在中心线上,所有信号在相位上组合产生一个增加的增益: G c = G [ ( 1 + 2 0.295 ) 2 1 + 2 × 0.295 ] = 4.35 1.59 = 2.73 - - - - - - ( 3 )
以dB计算阵列增益比单个部分的增益大4.4dB。
Gc=29+1.2=30.2 dB    (4)
在轨道位置上卫星以2度相隔。从地球表面看去,这种相隔要稍宽一些,即2.25度。
从波束中心离开2.25的地方从3个天线来的信号相位角将发生变化。一边天线将具有相位超前:
其中D为从中心天线轴至边上天线轴的距离,α为角度,对第一个卫星为2.25度,λ为波长(对于6GHzc/f=1.97英寸,其中C是自由空间光速,即3×108米/秒)。
在C波段从一边反射器来的信号将超前中心反射器信号158度。从另一边反射器来的信号将滞后158度。
3个场将叠加在一起作为场矢量式。每个场的幅度正比于该场功率的平方根。 E certer = 1 = 1 E left = 0.295 = 0.543 - - - - - - ( 7 ) E right = 0.295 = 0.543
3个相位矢量如图5所示。如所示,垂直于反射轴的矢量分量抵消为零。沿着反射轴的分量和为:
f2.25=1+0.543cos(158°)+0.543cos(-158°)    (8)
f2.25=1-0.5-0.5=0
离中心轴2.25度处所有场相抵消,从而在期望的位置产生零值。由于各方程是对称的因而在-2.25度同样产生抵消作用。离中间卫星+5.25度处,方程得出:
φ=315°                                    (9)
这些位置的矢量如图6所示。在±4.5度处矢量等于:
f4.50=1-2×0.543cos315°=1.76               (10)
在这个矢量上的功率正比于这个值的平方。增益,如前一样,正比于上述功率与总参考功率之比: ΔG = ( 1.76 ) 2 1 + 2 × ( 0.543 ) 2 = 3.09 1.59 = 1.94 - - - - - - ( 11 )
这比一个反射器单独的增益要高2.9dB。然而,在离开主轴±4.5度距离处各独立反射器的增益至少降低15dB,一个22英寸反射器在6GHz的3dB波束宽度仅6度。因此单个反射器方向图设计为在±4.5度处产生零值而当3个反射器组合时在±2.25度处功率电平设计为零值点。
一个用户功率分配器23用来按照1,0.295,0.295的功率比率将发射功率分解为3部分。这可由微波带状线功率分配器完成,该分配器通常用在多馈源天线结构中,如用于雷达天线和服务于国家系统的形状波束同步卫星中。这类部件为已有设备。
此外,在接收和发射模式极化是不相同的。例如:垂直极化可用于发射模式,而水平极化可用于接收模式。
因此,本发明揭示出一种具有甚小口径天线的双向数据终端。本发明的VSAT系统可以高达100千比特/秒的数据速率在4-6GHz发送数据至现存的C波段卫星序列。通过采用甚小口径天线,即该天线具有3英尺半径反射器表面面积,本发明使C波段VSAT在价格上具有额外的吸引力,因为不需要发射新的卫星并且与Ku波段比较,由于降雨C波段具有低于10dB的功率要求。
虽然已经描述上述VSAT终端用于C波段应用,但其概念可以用于任何频率(例如Ku波段)其中天线尺寸由于卫星空间距的缘故而不能进一步减小时。换句话说,当天线尺寸可以减小而由之引起的问题是天线可能覆盖该卫星序列中多于一个的卫星时,本发明可适用,尽管频率可能不同。在这种情况下,计算须按照不同的频率以已知的方式赋予不同的系数。

Claims (17)

1.一个用于发射至地球同步卫星和从地球同步卫星接收的数据发射/接收卫星终端,由下述部件组成:
一个天线,该天线在其天线接收方向图中第一频率上具有一系列零值点,所述之零值点对应于与该卫星按规则间距在空间分布的卫星;和
一个相位和幅值补偿网络,用于调整发射信号的相位和幅值以补偿在第二频率与第一频率不同时的发射信号。
2.按照权利要求1的卫星终端,其天线还包括:
一个主抛物面反射器;和
两个边抛物面反射器。
3.根据权利要求2的卫星终端,其主抛物面反射器进一步具有一个主双频率馈源辐射器和一个偶极子激励器,其主双频率馈源辐射器在主抛物面反射器和偶极子激励器之间耦合能量,并且两个边抛物面反射器每一个分别具有一个附加的双频率馈源辐射器和一个偶极子激励器,其附加双频率馈源辐射器在所述的每一个边抛物面反射器和附加的偶极子激励器之间耦合能量。
4.根据权利要求2的卫星终端,其相位和幅值补偿网络还包括:
a)一个第一变换器用于在功率放大器和主反射器之间提供耦合;
b)一个第二变换器用于在功率放大器和一个边反射器之间提供耦合;和
c)一个第三变换器用于在功率放大器和另一个边反射器之间提供耦合,其中预先确定第一,第二和第三变换器使得送往每一个反射器的信号满足下列关系:
总功率=W(1+0.295+0.295)    (12)
其中W=送往中间反射器的功率,0.295表示送往边反射器的每个信号的近似功率,c为自由空间的光速,f为载波频率,并且送往一个边反射器,主反射器和另一个边反射器的信号的相位全都相等。
5.根据权利要求1的卫星终端,其相位和幅值补偿网络通过调整从每一个边反射器辐射的信号的功率和相位来对不同频率进行补偿,从而在发射频率上天线发射方向图中的零值点与卫星轨道配置相匹配。
6.根据权利要求2的卫星终端,其相位和幅值补偿网络通过调整从每一个边反射器辐射的信号的功率和相位来对不同频率进行补偿,从而在发射频率上天线发射方向图中的零值点与卫星轨道配置相匹配。
7.根据权利要求3的卫星终端,其相位和幅值补偿网络通过调整从每一个边反射器辐射的信号的功率和相位来对不同频率进行补偿,从而在发射频率上天线发射方向图中的零值点与卫星轨道配置相匹配。
8.根据权利要求4的卫星终端,其相位和幅值补偿网络通过调整从每一个边反射器辐射的信号的功率和相位来对不同频率进行补偿,从而在发射频率上天线发射方向图中的零值点与卫星轨道配置相匹配。
9.用于发射数据至卫星和从卫星接收数据的方法由下述步骤组成:
在接收天线方向图中产生零值点以匹配与该卫星按规则间距在空间分布的其它卫星,该接收天线方向图定义在第一频率上;和
通过调整发射信号的相位和幅值以补偿发射天线方向图,该发射天线方向图定义在第二频率上。
10.根据权利要求9的方法,其补偿步骤进一步包括调整每一个反射器辐射的信号的功率和相位从而在发射频率上天线发射方向图中的零值点与卫星轨道配置相匹配。
11.发射信号至卫星和从卫星接收信号的一种设备包括:
a)在接收天线方向图中产生零值点以匹配与该卫星按规则间距在空间分布的其它卫星的装置,该接收天线方向图定义在第一频率上;和
b)通过调整发射信号的相位和幅值以补偿发射天线方向图的装置,该发射天线方向图定义在第二频率上。
12.根据权利要求11的设备,其补偿装置包括一个耦合网络以调整用于天线中三个小孔径中每一个的发射信号的相位和幅值。
13.根据权利要求11的设备,其产生零值点的装置包括一个主抛物面反射器,和两个边抛物面反射器。
14.根据权利要求11的设备,其补偿装置通过调整每一个反射器辐射的信号的功率和相位从而在发射频率上天线发射方向图中的零值点与卫星轨道配置相匹配来提供不同频率的补偿。
15.根据权利要求12的卫星终端,其补偿装置通过调整每一个反射器辐射的信号的功率和相位从而在发射频率上天线发射方向图中的零值点与卫星轨道配置相匹配来提供不同频率的补偿。
16.根据权利要求13的卫星终端,其补偿装置通过调整每一个反射器辐射的信号的功率和相位从而在发射频率上天线发射方向图中的零值点与卫星轨道配置相匹配来提供不同频率的补偿。
17.根据权利要求14的卫星终端,其补偿装置通过调整每一个反射器辐射的信号的功率和相位从而在发射频率上天线发射方向图中的零值点与卫星轨道配置相匹配来提供不同频率的补偿。
CNB96198631XA 1995-10-10 1996-10-07 甚小口径终端和用于其中的天线 Expired - Fee Related CN1263195C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US54175795A 1995-10-10 1995-10-10
US08/541,757 1995-10-10
US08/542,493 1995-10-13
US08/542,493 US5745084A (en) 1994-06-17 1995-10-13 Very small aperture terminal & antenna for use therein

Publications (2)

Publication Number Publication Date
CN1202986A true CN1202986A (zh) 1998-12-23
CN1263195C CN1263195C (zh) 2006-07-05

Family

ID=27066790

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB96198631XA Expired - Fee Related CN1263195C (zh) 1995-10-10 1996-10-07 甚小口径终端和用于其中的天线

Country Status (4)

Country Link
US (1) US5745084A (zh)
CN (1) CN1263195C (zh)
AU (1) AU7393196A (zh)
WO (1) WO1997014192A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11331009A (ja) * 1998-05-08 1999-11-30 Nec Corp 無線通信装置
US6859652B2 (en) 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US7149526B2 (en) 2000-08-02 2006-12-12 Atc Technologies, Llc Coordinated satellite-terrestrial frequency reuse
US7792488B2 (en) * 2000-12-04 2010-09-07 Atc Technologies, Llc Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
US7636546B2 (en) * 2005-02-22 2009-12-22 Atc Technologies, Llc Satellite communications systems and methods using diverse polarizations
US8067917B2 (en) * 2008-04-08 2011-11-29 Liebert Corporation Hysteresis mitigation and control method
US9648568B2 (en) 2012-02-06 2017-05-09 Foundation Telecommunications, Inc. Hybrid dual-band satellite communication system
US9026106B2 (en) 2012-02-06 2015-05-05 Foundation Telecommunications, Inc. Hybrid dual-band satellite communication system
GB201212368D0 (en) * 2012-07-11 2012-08-22 Ad Astra Forever Ltd Celetial transmission

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA529210A (en) * 1956-08-14 E. Kock Winston Directive antenna systems
GB1051038A (zh) * 1962-05-28
US3273144A (en) * 1963-04-02 1966-09-13 Fishbein William Narrow beam antenna system
US3680147A (en) * 1970-08-30 1972-07-25 Robert W Redlich Colinear antenna apparatus
FR2243532B1 (zh) * 1973-09-07 1977-09-16 Thomson Csf
US5351057A (en) * 1974-11-25 1994-09-27 The United States Of America As Represented By The Secretary Of The Navy Directive optimization of coherent sidelobe canceller systems
DE2505375A1 (de) * 1975-02-08 1976-08-19 Licentia Gmbh Antennensystem bestehend aus einem parabolspiegel und einem erreger
JPS51115717A (en) * 1975-03-03 1976-10-12 Nec Corp Cross polarized wave compensating method
US4112721A (en) * 1976-04-07 1978-09-12 Nhk Spring Co., Ltd. Nc coil spring manufacturing apparatus
US4052723A (en) * 1976-04-26 1977-10-04 Westinghouse Electric Corporation Randomly agglomerated subarrays for phased array radars
US4085368A (en) * 1976-08-30 1978-04-18 Bell Telephone Laboratories, Incorporated Interference canceling method and apparatus
US4129873A (en) * 1976-11-15 1978-12-12 Motorola Inc. Main lobe signal canceller in a null steering array antenna
US4079380A (en) * 1976-11-22 1978-03-14 Motorola, Inc. Null steering apparatus for a multiple antenna array on an FM receiver
US4155092A (en) * 1977-06-03 1979-05-15 Avanti Research & Development, Inc. Omnidirectional communications antenna
US4145658A (en) * 1977-06-03 1979-03-20 Bell Telephone Laboratories, Incorporated Method and apparatus for cancelling interference between area coverage and spot coverage antenna beams
US4213133A (en) * 1977-11-10 1980-07-15 Tokyo Shibaura Denki Kabushiki Kaisha Linear antenna arrays
US4152702A (en) * 1978-02-13 1979-05-01 Motorola, Inc. Adaptive antenna lobing on spread spectrum signals at negative S/N
US4225870A (en) * 1978-05-10 1980-09-30 The United States Of America As Represented By The Secretary Of The Army Null steering antenna
IT1108290B (it) * 1978-05-11 1985-12-02 Cselt Centro Studi Lab Telecom Antenna a riflettore parabolico con caratteristiche irradiative ottimali
US4249181A (en) * 1979-03-08 1981-02-03 Bell Telephone Laboratories, Incorporated Cellular mobile radiotelephone system using tilted antenna radiation patterns
US4250506A (en) * 1979-09-12 1981-02-10 Cubic Corporation Sidelobe discriminator
USRE32905F1 (en) * 1980-10-20 1992-11-10 Satellite communications system and apparatus
US4376940A (en) * 1980-10-29 1983-03-15 Bell Telephone Laboratories, Incorporated Antenna arrangements for suppressing selected sidelobes
US4343005A (en) * 1980-12-29 1982-08-03 Ford Aerospace & Communications Corporation Microwave antenna system having enhanced band width and reduced cross-polarization
US4479129A (en) * 1981-09-10 1984-10-23 George Skahill Directive antenna system employing a paraboloidal main dish and ellipsoidal subdish
AU553961B2 (en) * 1981-11-16 1986-07-31 Nippon Electric Co. Ltd. Satellite earth station output control
FR2517626A1 (fr) * 1981-12-04 1983-06-10 Europ Agence Spatiale Engin spatial orbital, notamment satellite, a missions multiples
US4651155A (en) * 1982-05-28 1987-03-17 Hazeltine Corporation Beamforming/null-steering adaptive array
US4771289A (en) * 1982-05-28 1988-09-13 Hazeltine Corporation Beamforming/null-steering adaptive array
US4573051A (en) * 1982-08-02 1986-02-25 Selenia S.P.A. Adaptive system for suppressing interferences from directional jammers in electronically or mechanically scanning radar
US4870424A (en) * 1982-10-25 1989-09-26 Ball Corporation Method and apparatus for reducing unwanted r.f. signal antenna reception/transmission
US4607259A (en) * 1984-10-25 1986-08-19 At&T Bell Laboratories Adaptive antenna for reducing multipath fades
US4748636A (en) * 1986-04-28 1988-05-31 Nec Corporation Method and apparatus of transmitting image data in a satellite system
US5177604A (en) * 1986-05-14 1993-01-05 Radio Telcom & Technology, Inc. Interactive television and data transmission system
US4837786A (en) * 1986-08-07 1989-06-06 Comstream Corporation Technique for mitigating rain fading in a satellite communications system using quadrature phase shift keying
USRE34410E (en) * 1986-08-14 1993-10-19 Hughes Aircraft Company Antenna system for hybrid communication satellite
US4901307A (en) * 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
DE3644176A1 (de) * 1986-12-23 1988-07-14 Messerschmitt Boelkow Blohm Verfahren zur uebertragung von daten mittels eines geostationaeren satelliten und wenigstens eines subsatelliten
US5262788A (en) * 1986-12-30 1993-11-16 Thomson-Csf Device and method for data transmission and/or acquisition using two cross polarizations of an electromagnetic wave and magnetic recording device
FR2609224B1 (fr) * 1986-12-30 1989-04-07 Thomson Csf Dispositif et procede de transmission et/ou d'acquisition des donnees utilisant deux polarisations croisees d'une onde electromagnetique et dispositif d'enregistrement magnetique
US5345473A (en) * 1987-01-22 1994-09-06 Outokumpu Oy Apparatus for providing two-way communication in underground facilities
CA1273065A (en) * 1987-06-17 1990-08-21 Makoto Yoshimoto Dual polarization transmission system
CA1293999C (en) * 1987-08-24 1992-01-07 Osamu Ichiyoshi Earth station capable of effectively using a frequency band of asatellite
US4941048A (en) * 1988-12-14 1990-07-10 Zenith Electronics Corporation Decoder-operated television signal switch
USH740H (en) * 1989-06-13 1990-02-06 The United States Of America As Represented By The Secretary Of The Army Antenna sidelobe interference canceller
USH739H (en) * 1989-06-13 1990-02-06 The United States Of America As Represented By The Secretary Of The Army Auxiliary antenna interference canceller
JP2906462B2 (ja) * 1989-07-18 1999-06-21 ソニー株式会社 テレビジョン受信機
US4985772A (en) * 1989-09-12 1991-01-15 Zenith Electronics Corporation Television signal decoder bypass switch
JP2536194B2 (ja) * 1989-10-31 1996-09-18 三菱電機株式会社 マイクロストリップアンテナ
FR2653941B1 (fr) * 1989-10-31 1992-02-28 Thomson Lgt Antenne de reception multifocale a direction de pointage unique pour plusieurs satellites.
US5414431A (en) * 1990-01-02 1995-05-09 Gte Spacenet Corporation Satellite communication system
US5237610A (en) * 1990-02-01 1993-08-17 Scientific-Atlanta, Inc. Independent external security module for a digitally upgradeable television signal decoder
US5351239A (en) * 1990-03-16 1994-09-27 Newbridge Networks Corporation Digital data transmission system
US5073900A (en) * 1990-03-19 1991-12-17 Mallinckrodt Albert J Integrated cellular communications system
US5119104A (en) * 1990-05-04 1992-06-02 Heller Alan C Location system adapted for use in multipath environments
JP3057512B2 (ja) * 1990-08-28 2000-06-26 ソニー株式会社 受信装置
JP2552030B2 (ja) * 1990-09-27 1996-11-06 マスプロ電工株式会社 衛星信号受信装置
EP0507440A1 (en) * 1991-02-25 1992-10-07 Gerald Alexander Bayne Antenna
US5289497A (en) * 1991-05-23 1994-02-22 Interdigital Technology Corporation Broadcast synchronized communication system
JP2788560B2 (ja) * 1991-07-10 1998-08-20 富士通株式会社 受信衛星切換装置
US5127021A (en) * 1991-07-12 1992-06-30 Schreiber William F Spread spectrum television transmission
US5191350A (en) * 1991-07-19 1993-03-02 Conifer Corporation Low wind load parabolic antenna
JP3057834B2 (ja) * 1991-08-05 2000-07-04 ソニー株式会社 Cs放送受信システム
US5231494A (en) * 1991-10-08 1993-07-27 General Instrument Corporation Selection of compressed television signals from single channel allocation based on viewer characteristics
US5189433A (en) * 1991-10-09 1993-02-23 The United States Of America As Represented By The Secretary Of The Army Slotted microstrip electronic scan antenna
FR2685131B1 (fr) * 1991-12-11 1994-05-27 Telediffusion Fse Antenne de reception a reflecteur fixe pour plusieurs faisceaux de satellite.
JPH05176329A (ja) * 1991-12-20 1993-07-13 Sony Corp 衛星放送受信システム
US5455960A (en) * 1992-01-16 1995-10-03 Harris Corporation Low-power access technique for certain satellite transponders
US5355512A (en) * 1992-03-12 1994-10-11 General Electric Co. Uplink null intrusion rejection for satellite communications systems
US5280297A (en) * 1992-04-06 1994-01-18 General Electric Co. Active reflectarray antenna for communication satellite frequency re-use
JP3241098B2 (ja) * 1992-06-12 2001-12-25 株式会社東芝 多方式対応の受信装置
EP0583830A1 (fr) * 1992-08-19 1994-02-23 Philips Electronique Grand Public Boîtier de raccordement à un système de distribution de signaux de télévision, et système de distribution avec des moyens de sélection
KR950005647B1 (ko) * 1992-10-29 1995-05-27 주식회사금성사 엔티에스씨(ntsc) 신호와 에치디티브이(hdtv) 신호의 공용 수신시스템
JPH06152447A (ja) * 1992-10-30 1994-05-31 Uniden Corp 衛星放送受信システムのアンテナ方向調整方法および装置
US5296862A (en) * 1992-11-18 1994-03-22 Winegard Company Method for automatically positioning a satellite dish antenna to satellites in a geosynchronous belt
US5351130A (en) * 1993-01-28 1994-09-27 Houston Satellite Systems, Inc. Satellite receiver with improved memory back-up and loading capabilities
JP3401820B2 (ja) * 1993-02-12 2003-04-28 ソニー株式会社 モニタ装置
US5379320A (en) * 1993-03-11 1995-01-03 Southern California Edison Company Hitless ultra small aperture terminal satellite communication network
US5438590A (en) * 1993-05-24 1995-08-01 Comstream Corporation Transmitting and receiving apparatus and method including punctured convolutional encoding and decoding
US5491472A (en) * 1993-12-28 1996-02-13 Kurtz; Fred R. RF switching with remote controllers dedicated to other devices
US5461427A (en) * 1994-06-28 1995-10-24 Thomson Consumer Electronics, Inc. Television receiver having the capability to associate any HDTV and any NTSC channel

Also Published As

Publication number Publication date
AU7393196A (en) 1997-04-30
US5745084A (en) 1998-04-28
CN1263195C (zh) 2006-07-05
WO1997014192A1 (en) 1997-04-17

Similar Documents

Publication Publication Date Title
US11165151B2 (en) True time delay compensation in wideband phased array fed reflector antenna systems
EP1122813B1 (en) An improved phased array terminal for equatorial satellite constellations
AU721537B2 (en) Apparatus and method for reusing satellite broadcast spectrum for terrestrially broadcast signals
US5543809A (en) Reflectarray antenna for communication satellite frequency re-use applications
EP0238621B1 (en) Steered-beam satellite communication system
JPH0552098B2 (zh)
HU221392B1 (en) Method and arrangement for the telecommunication by electromagnetic waves
JPH0552099B2 (zh)
JPH0728175B2 (ja) ハイブリッド通信衛星用アンテナシステム
CN1263195C (zh) 甚小口径终端和用于其中的天线
US6208312B1 (en) Multi-feed multi-band antenna
JP2839274B2 (ja) アンテナシステム
US6563473B2 (en) Low sidelobe contiguous-parabolic reflector array
Nakaya et al. Model-based/waveform hybrid coding for videotelephone images
EP0427201B1 (en) Satellite beam-forming network system having improved beam shaping
KR20010073260A (ko) 무지향(전방향) 안테나
Strickland Contiguous paraboloid arrays for mobile satellite communications
Shoki et al. Development of a breadboard model for the 22‐ghz band satellite broadcasting multibeam antenna
Yoshimoto et al. A trade-off study on 22 GHz-band multibeam satellite broadcasting systems
Hori et al. Design of offset double torus dual-beam antenna by minimizing aperture mapping distortion
Strickland Low profile array for broadband aeronautical satellite data links
JPS6251808A (ja) 衛星受信アンテナ装置
Teshirogi et al. Multibeam array antenna for data relay satellite
Dybdal et al. An uplink multiple beam concept for theater coverage
Arimoto et al. A multibeam antenna for 27/22 GHz band satellite broadcasting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: TERRASTAR INC

Free format text: FORMER OWNER: LEIGONGSHAN INDUSTRY CO., LTD.

Effective date: 20040723

Owner name: LEIGONGSHAN INDUSTRY CO., LTD.

Free format text: FORMER OWNER: TERRASTAR, INC.

Effective date: 20040723

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20040723

Address after: New Hampshire

Applicant after: Dayaxek

Address before: New Hampshire

Applicant before: Leigong Mountain Industrial Co.

Effective date of registration: 20040723

Address after: New Hampshire

Applicant after: Leigong Mountain Industrial Co.

Address before: Illinois State

Applicant before: Terrastar, Inc.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060705

Termination date: 20141007

EXPY Termination of patent right or utility model