CN1221842C - 图像显示装置和图像投影设备 - Google Patents

图像显示装置和图像投影设备 Download PDF

Info

Publication number
CN1221842C
CN1221842C CNB038000458A CN03800045A CN1221842C CN 1221842 C CN1221842 C CN 1221842C CN B038000458 A CNB038000458 A CN B038000458A CN 03800045 A CN03800045 A CN 03800045A CN 1221842 C CN1221842 C CN 1221842C
Authority
CN
China
Prior art keywords
phase
light
pixel
substrate
shift structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038000458A
Other languages
English (en)
Other versions
CN1496490A (zh
Inventor
渡边真也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1496490A publication Critical patent/CN1496490A/zh
Application granted granted Critical
Publication of CN1221842C publication Critical patent/CN1221842C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators

Abstract

一种用于LCD投影设备的图像显示装置具有布置在矩阵中的像素的周期结构,和支承像素的衬底,调制从入射表面进入的光线,并从出射表面将最终的光线射出。在光线通过的衬底的表面上形成有相移结构,用于随机改变光线的相位。相移结构具有凹凸结构,通过蚀刻形成。可选地,所述相移结构制成凹凸结构,该结构通过在光线通过的衬底的表面上形成随机厚度的电介质透明薄膜而形成。所述相移结构通过光刻法形成。所述相移结构具有在像素单元中厚度变化的凹凸结构。因此防止了由非常细小的像素的周期结构产生的高次衍射光线的出现,由此增加了0次光线的数量。

Description

图像显示装置和图像投影设备
技术领域
本发明涉及一种图像显示装置和一种应用该图像显示装置的图像投影设备。更具体地,本发明涉及一种用于图像显示装置的技术,所述图像显示装置设置有布置于矩阵中的多个像素的周期结构,以及支承所述多个像素的衬底,该图像显示装置调制从像素中的进入表面进入的光线,并且从出射表面发射出最终的光线,该技术防止由细小像素的周期性结构导致高次衍射光线的出现,并且增加了本质上所需的非衍射光线的数量。
背景技术
在过去的LCD投影机和其它图像显示设备中,LCD面板或其它图像显示装置中的像素的尺寸(像素间距)通常为10多微米或更大。然而在最近几年,在减小LCD面板的尺寸和增大LCD面板的规格上取得了进步,在市场上已经开始出现像素间距为10微米或更小的LCD面板。
随着像素间距细致程度的提高,出现了下述问题。
第一个问题在于,入射到LCD面板的光束被像素周期结构衍射,并产生不必要的高次衍射光线,尤其是带有不可忽视的衍射率减小的1次衍射光线。这不仅是在LCD投影设备中杂散光线(闪光)的成因,而且由于本质上需要的0次光线(非衍射光线)的数量减小并导致亮度的降低,所以使亮度降低。
第二个问题在于,光线能通过的区域与整体的像素区域的面积比减小,开孔率减小。像素不仅由形成孔的像素电极形成,而且包括薄膜晶体管或其它开关器件和保持电容器。随着像素间距变得更小,被开关器件和保持电容器占据的面积相对增加。孔的面积被上述量所牺牲掉(变小),并且导致开孔率减小。
将对第一个问题加以解释。即使在间距为10多微米的传统LCD面板中,理论上,由于存在像素的周期结构,会产生衍射光线。该衍射现象可通过方程表示,sin(θ)=(λ/p)。这里,λ代表波长,p代表像素间距,θ代表衍射角度。在过去,像素间距大,因此由上述方程给定的衍射角度θ较小,并且0次光线和高次衍射光线(1次、2次)根本上区分不大,因此上述问题没有显著出现。但是,由于最近几年来像素间距的细度提高,由上述方程给定的衍射角度θ变大,并且再不能忽视上述问题。该问题在于,例如,在David Armitage的文章“反射微显示装置中的分辨率”(SPIE,vol.3634,10(1999))中有解释。
下面将对所述第二个问题进行解释。在该类型的图像显示装置中,尤其是投影型图像显示装置中,用于调制经过每个像素的光束的开关器件和保持电容器的电路图案邻近像素电极设置。然而随着像素间距的细度的增大,被电路图案占据的面积比增大。因此,出现了开孔率下降、光线的利用效率下降的问题。作为解决这一问题的一种手段,例如在未审查的公开专利No.3-236987中公开了一种提供微透镜阵列的方法,该微透镜阵列包括很多个布置在像素的入射侧的微透镜,并且利用微透镜阵列聚焦照射到像素的光束。但是微透镜对应于像素布置。因此,微透镜自身具有类似于像素阵列的饥饿感,并且又出现了衍射光线。这在与由像素周期结构产生的衍射叠加时成为更不可忽视的问题。
发明内容
为了解决现有技术中的上述问题,本发明设计了如下的装置。
即,本发明的第一方面是一种图像显示装置,该装置具有布置在矩阵中像素的周期结构,和支承所述多个像素的衬底,用于调制从入射表面进入该装置的光线,并从出射表面将最终的光线射出,在光线通过的一衬底的表面上形成有相移结构,用于随机改变光线的相位。
在本发明的一实施例中,所述相移结构包括凹凸结构,该结构通过蚀刻光线通过的衬底的表面到随机深度而形成。
在本发明的另一实施例中,所述相移结构包括凹凸结构,该结构通过在光线通过的衬底的表面上形成随机厚度的电介质透明薄膜而形成。
优选地,所述相移结构通过光刻法形成。
另外,所述相移结构具有在像素单元中厚度变化的凹凸结构。
本发明还包括利用所述图像显示装置作为灯泡的图像投影设备。
本发明的第二方面是一种图像显示装置,该装置设置有布置在矩阵中的像素的周期结构,以及支承所述多个像素的衬底,用于调制从入射表面进入该装置的光线,并从出射表面将最终的光线射出,其特征在于,在光线通过的衬底的表面上形成有相移结构和微透镜结构,该相移结构用于随机改变光线的相位,该微透镜结构用于朝向像素会聚进入的光线。
在本发明的一实施例中,所述相移结构包括凹凸结构,该结构通过蚀刻光线通过的衬底的表面到随机深度而形成。
在本发明的另一实施例中,所述相移结构包括凹凸结构,该结构通过在光线通过的衬底的表面上形成随机厚度的电介质透明薄膜而形成。
优选地,所述相移结构通过光刻法形成。另外,所述相移结构具有在像素单元中厚度变化的凹凸结构。
优选地,所述微透镜结构具有与各像素相同的孔径,并且以与像素的周期结构相同的周期排布。另外,所述微透镜结构使进入的光线会聚,以便使该光线聚焦到像素处。
本发明还包括利用所述图像显示装置作为灯泡的图像投影设备。
根据本发明的第一方面,通过在图像显示装置的入射表面或出射表面处形成赋予入射光线随机相差的相移结构,防止了由细小像素周期结构产生的高次衍射光线的出现,增加了0次光线(本质上需要的非衍射光线)的数量,并且显示凸现的亮度提高。
根据本发明的第二方面,通过在图像显示装置的入射表面或出射表面处形成赋予入射光线随机相差的相移结构,防止了由细小像素周期结构产生的高次衍射光线的出现,增加了0次光线(本质上需要的非衍射光线)的数量,同时通过在像素的入射表面上形成微透镜结构,防止了用于驱动像素开关的电路图案阻挡入射光线,并且显示凸现的亮度提高。此时,通过形成赋予入射光线随机相差的相移结构,也可防止由细小像素周期结构导致的高次衍射光线的出现。
附图说明
图1是示意图,示出了使用投影型LCD面板的普通LCD投影设备的一光学系统;
图2A和2B是一普通投影型LCD面板的配置的局部放大图;
图3A至3B示出了一例子,其中在光线进入侧(玻璃防尘板例)的如图2A和2B所示的副衬底表面上形成有相移结构;
图4解释了由于普通周期结构所引起的衍射现象;
图5解释了将相移结构填加到周期结构上,作为本发明第一实施例;
图6示出了在TFT衬底上形成相移结构,作为本发明的第二实施例;
图7示出了在玻璃防尘板上形成相移结构,作为本发明的第三实施例;
图8A和8B示出了一普通反射型LCD面板的配置;
图9A至9C示出了在图8A和8B中的LCD面板中的副衬底上形成相移机构的例子;
图10示出了在图8A和8B中的LCD面板中的玻璃防尘板上形成相移机构的例子;
图11A至11D解释了利用光刻法形成相移结构的方法,作为本发明的第一实施方式;
图12解释了图11A至11D中的第一EB掩膜;
图13A至13D解释了利用光刻法形成相移结构的方法,作为本发明的第二实施方式;
图14解释了图13A至13D中的第二EB掩膜;
图15A至15D解释了利用光刻法形成相移结构的方法,作为本发明的第三实施方式;
图16解释了图15A至15D中的第三EB掩膜;
图17解释了在图8A和8B中的LCD面板中的副衬底上形成相移机构的例子;
图18A至18D解释了利用光刻法形成相移结构的方法,作为本发明的第四实施方式;
图19是示意图,示出了透射型液晶显示面板,作为根据本发明的图像显示装置的配置的具体例子;
图20是示意性横截面图,示出了本发明的改进形式的一实施例,解释了在副衬底上形成相移结构和微透镜结构的例子;
图21是横截面图,示出了在图19所示的透射型液晶显示面板中的副衬底上形成相移结构和微透镜结构的例子;
图22是横截面图,示出了在图19所示的透射型液晶显示面板中的玻璃防尘板上形成相移结构,在副衬底上形成微透镜结构的例子;
图23示出了作为本发明一实施例的反射型LCD面板,解释了在副衬底上形成相移结构和微透镜结构的例子;
图24示出了作为本发明另一实施例的反射型LCD面板,解释了的玻璃防尘板上形成相移结构,在副衬底上形成微透镜结构的例子;
图25A和25B是加工图,示出了形成在根据本发明的LCD面板中使用的微透镜结构的实施方法;
图26A至26C是加工图,示出了形成在根据本发明的LCD面板中使用的微透镜结构的实施方法;
图27A至27D是加工图,示出了形成在根据本发明的LCD面板中使用的微透镜结构的实施方法;
图28是示意性横截面图,示出了作为本发明一实施例的微透镜结构和相移结构的结合状态。
具体实施方式
下面,将参照附图对本发明的实施例进行详细的描述。
投影型LCD面板
图1是示意图,示出了使用投影型LCD面板的普通LCD投影机的光学系统。在图1中示出的LCD投影机的光学系统包括光源灯管001,第一蝇眼透镜002,第二蝇眼透镜002,用于分离和混合P波和S波的PS分离混合元件004,聚焦透镜005,RGB分色滤光镜006和007,平面镜008a至008c,向场镜009a至009c,中继镜010和011,二向色棱镜012,投影型LCD面板013a至013c,以及投影透镜014,并且该光学系统将放大的图像投影到屏幕015上。
注意,为了使RGB分色滤光镜006和007提取出R(红色)、G(绿色)、B(蓝色)分量,例如,滤光镜006将B分量反射向平面镜008a,并且使G和R分量通过滤光镜007,同时滤光镜007将G分量反射向透镜009b,并使R分量通过透镜009c。
图1所示的投影型LCD面板根据输入投影型LCD面板013a至013c的图像信号来调制B、G、R分量,并且将调制后的放大图像投影在屏幕015上。
本发明改进了诸如投影型LCD面板013a至013c的LCD面板。
图2A和2B分别是普通投影型LCD面板的配置的局部放大图,在图2A示出了装有外部框架的状态,图2B示出了去除外部框架的状态。普通的投影型LCD面板包括TFT衬底101,副衬底102,出射侧玻璃防尘侧板103,入射例防尘板104,外部框架105,以及挠性接线106。液晶密封在TFT衬底101和副衬底102之间。有效像素面积是附图标记107指示的面积。在普通的投影型LCD面板中,光线从副衬底102侧作为输入光线Li进入,并从TFT衬底101侧作为输出光线Lo射出。
图3A和3B示出了一例子,其中相移结构109形成在光线出射侧(玻璃防尘板104侧)的图2A和2B所示副衬底102的表面上。图3B示出了图3A中的有效像素区107中的放大部分,而图3C示出了图3B中放大的横截面A-A。副衬底102的入射表面被蚀刻或者形成有薄膜,其深度或厚度从d=0到d=λ/|N1-N2|,作为间距与二维布置的多个像素中的像素108相同的单元结构。注意,d指代深度,λ指代波长,N1指代在中心波长的衬底折射率,N2指代在中心波长的相移结构的折射率。例如,当参考波长λ=550nm,N1=1.5,N2=1.0(空气)时,d为0~110nm之间的任何数值。这时,通过像素的光线给定的相差如下:
2π/λ×d×|N1-N2|=0~2π
利用蚀刻深度或薄膜形成厚度为0的区域作为基准。另外,当折射率为N2的相移结构不是空气结构,而是填充在其中的透明树脂时,如果例如N2=1.4,那么d将是0~5500nm之间的任何数值。使像素间距和相移结构的间距匹配的原因是为了防止相移结构的边界(蚀刻深度或薄膜形成厚度变化的线)进入像素并由此影响图像的质量。
总之,如图4所示,当光线通过周期结构并到达所述的观测表面时,将由光波形成衍射(干扰)图案,该光波在从单个周期单元到观测表面的光学路径长度差值为半波长的偶数倍的位置相互增强,在光学路径长度的差值为半波长的奇数倍的位置相互减弱。这时,0次光线的衍射率(光量与入射光量的比值)减少大约60%至70%,而相反地,衍射率为10%至20%左右的1次衍射光线或者衍射率为百分之几左右的高次衍射光线将不会产生。但是,这以进入周期结构的光线的相位相互对准(align)为基础。
但是,如图5所示,通过在周期结构的入射表面(或出射表面)处形成随机的相移结构,刚射出之后的光线的相位变得不再对准,并且由此能抑制衍射图案(高次衍射光线)的产生。因此,通过在副衬底102的入射表面上形成根据本发明的相移结构,能抑制高次衍射光线的出现。
在本发明的第一实施例中,相移结构形成在副衬底102的入射表面处,但即使是如图6所示将相移结构形成在TFT衬底101的出射表面处,或者形成在玻璃防尘板104的入射表面(或出射表面)处,也能获得类似的效果。
在普通的投影LCD面板中,光线进入副衬底侧,从TFT衬底侧射出,但即使构造成光线进入TFT衬底侧,从副衬底侧射出,也可通过在一衬底的入射表面或出射表面处形成相移结构来获得类似的效果。
在本实施例中,该示例示出了在投影型LCD面板的出射表面上形成相移结构,但本发明可应用于其它的投影型(或透射型)图像显示装置。
如上所述,根据本发明的图像显示装置,作为其基础结构,设置有布置在矩阵中的像素108的周期结构,以及支承所述像素的基底101、102,该装置调制进入像素单元的入射表面的光线,并且从出射表面发射出最终的光线。本发明的特征在于,在例如有光线通过的衬底101的表面上形成用于随机改变光线的相位的相移结构109。所述相移结构109包括凸凹结构,该结构通过将有光线通过的衬底101的表面蚀刻一任意的深度而形成。可选地,相移结构可以是这样的凸凹结构,该结构通过在有光线通过的衬底的表面上形成任意厚度的透明电介质薄膜而形成。优选地,相移结构109具有在像素单元中厚度不同的凸凹结构。
图8A和8B示出了普通反射型LCD面板的结构。图8A示出了装有外部框架的状态,图8B示出了去除外部框架的状态。该普通的反射型LCD面板包括TFT衬底201,副衬底202,反射板203,玻璃防尘板204,外部框架205,以及挠性电缆206。可选地,也存在副衬底202形成在反射板203侧,并且TFT衬底201形成在玻璃防尘板204侧的情况。有效的像素区是附图标记207指代的区域。
图9A至9C示出了在如图8A和8B所示的LCD面板中,在光线进入的副衬底202的表面上(玻璃防尘板204侧)形成相移结构的例子。图9B示出了图9A中部分有效像素区207的放大图,图9C示出了在图9B中的放大的A-A横截面。TFT衬底201的像素区的表面被蚀刻或形成有薄膜,其深度或厚度在d=0到d=λ/|N1-N2|,作为间距与像素208相同的单元结构。d指代深度,λ指代中心波长,N1指代在中心波长的衬底折射率,N2指代在中心波长的相移结构的折射率。例如,当参考波长λ=550nm,N1=1.5,N2=1.0(空气)时,d为0~550nm之间的任何数值。当相移结构填充有诸如透明树脂等,例如N2=1.4时,d为0~2750nm之间的任意数值。这时,通过像素的光线给定的相差如下:
2×2π/λ×d×|N1-N2|=0~2π
以蚀刻深度或形成薄膜的厚度为0的区域作为基准。
由此,与上述实施例相同,能够抑制由非常细的像素的周期结构导致的高次衍射光线的出现。
在本发明的这一实施例中,相移结构形成在副衬底202的表面上,但是即使是如图10所示在玻璃防尘板204上或者TFT衬底202的表面上形成像素结构,可获得类似的效果。另外,类似地,即使是副衬底202形成在反射板204侧,而TFT衬底201形成在玻璃防尘板侧的反射型LCD面板的情况下,如果将相移结构形成在TFT衬底侧或者副衬底侧,也能获得相同的效果。在根据本发明的本实施例中,所述例子示出了将相移结构应用于反射型LCD面板,但本发明也可应用于其它反射型图像形成设备。例如,本发明可应用于LCOS(Liquid Crystal On Silicon,硅上液晶),DLP(DigitalLight Processor,数字光处理器),DMD(Digital Mirror Device,数字平面镜设备)等。
通过蚀刻形成相移结构的方法
作为形成相移结构109或209的方法有利用光刻法蚀刻的方法、薄膜形成法等。下面给出了利用蚀刻形成相移结构的方法。所述形成相移结构的方法与利用光刻法制造普通衍射型光学器件的方法相同。
(1)曝光和显影
首先,如图11A所示,利用第一EB掩膜121和紫外发射器将事先涂敷在副衬底102上的光阻材料110曝光,并使之如图11B所示显影。
如图12所示,第一EB掩膜121具有Cr(白色部分)区和非Cr(黑色部分)区,作为尺寸与随机布置在其上的单个像素相同的单元区域。当使利用该方法曝光的副衬底102显影时,随机阵列的光阻材料图案111被转移。
(2)蚀刻和光阻材料的去除
在这一状态下,如图11C所示,将衬底蚀刻到λ/2/|N-1|=550nm的深度(在反射型的情况下,蚀刻深度为以上数值的一半,275nm),并且如图11D所示,将光阻材料图案111去除,使蚀刻区的随机图案结构112形成在副衬底102的表面上。
接着,如图13A所示,将光阻材料110再次涂敷在具有图案结构112的副衬底102上,然后借助于紫外发射器,利用第二EB掩膜122使该衬底类似地曝光,并如图13B所示显影,该衬底被蚀刻到λ/4/|N-1|=275nm的深度(在反射型的情况下,蚀刻深度为以上数值的一半,或者138nm),并且如图13D所示,将光阻材料图案113剥离。如图14所示,第二EB掩膜122以与第一掩膜121相同的方式具有随机布置的单个像素的单元Cr区和非Cr区。但是,其布置的图案与EB掩膜121不同。通过该过程,将具有随机设置的四种蚀刻深度的结构114形成在副衬底102的表面上。
另外,如图15A至15D所示,通过使用第三EB掩膜123,以如参照图11A至11D和图12A至12D所述的方法相同的方式,进行紫外曝光、显影、蚀刻和去除光阻材料。如图16所示,第三EB掩膜123与第一EB掩膜121和第二EB掩膜122相同,具有随机布置的单个像素的单元Cr区和非Cr区。但是,其布置的图案与第一EB掩膜121和第二EB掩膜122不同。在这一过程中蚀刻的深度为λ/8/|N-1|=138nm的深度(在反射型的情况下,蚀刻深度为以上数值的一半,69nm)。如果去除光阻材料图案,那么在副衬底102的表面上形成具有如下8种蚀刻深度的相移结构109(8个水平的二元结构):138nm、275nm、413nm、550nm、688nm、825nm、963nm和1100nm(对于反射型的情况,69nm、138nm、207nm、275nm、344nm、413nm、482nm和550nm)。
在上述过程之后,如果将TFT衬底101和玻璃防尘板103和104粘合到形成有相移结构109的副衬底102上,如图17所示,得到了带有随机相移结构的图像显示装置。
相移结构也可通过形成电介质透明薄膜来形成,而不是通过蚀刻所述衬底。图18A至18D示出了这一例子。在图18A至18D中示出的过程类似于参照图15A至15D所解释的过程,但是,代替图15C所示的蚀刻步骤,进行图18C所示的薄膜形成步骤,薄膜的厚度与蚀刻的深度相同。
在上述具体示例中,给出了8水平的二元类型,但是如果利用n个不同的EB掩膜重复n次相同的步骤,那么能形成2n水平的二元形状,可预期更好地改进相移效果。
另外,当将具有随机紫外光透射率的灰度水平(gray-level)掩膜用于每个像素单元区时,可用一步形成无限水平随机相移结构,并且可预期进一步改进相移效果。而且,可通过X射线平版印刷LIGA方法等形成。
透射型液晶面板
图19是一透射型液晶面板的示意图,该透射型液晶面板作为根据本发明的图像显示装置的配置的具体例子。
这种透射型液晶面板用于LCD投影机。
如图19所示,有源矩阵型透射型液晶面板将液晶303保持在以预定距离结合的驱动衬底301和副衬底302之间。在驱动衬底301的内表面上设置有相互垂直的扫描线304和信号线305。在交叉点处,像素电极306和包括像素开关的薄膜晶体管(TFT)307布置在矩阵中。另外,虽然未示出,但驱动衬底301的内表面上形成有摩擦定向薄膜。此外,驱动衬底301的外表面上形成有根据本发明的相移结构。在另一方面,副衬底302的内表面上形成有副电极308以及滤色器层309。滤色器层309具有RGB区,并且与各像素电极306对齐。另外,虽然未示出,副电极208的表面上也设置有类似摩擦定向薄膜。此外,偏振板310、311粘附在结合的驱动衬底301和副衬底302的外表面上。
薄膜晶体管307可通过扫描线304选取,并且信号电荷经信号线305写入像素电极306中。将电压施加在像素电极306与副电极308之间,由此使液晶有源。这通过将成对的交叉?(cross-nichol)布置的偏振板310、311的实现,通过感测液晶,使白光对于彩色显示装置的透射改变。如果将这一显示在前方利用放大投影光学系统投影在屏幕上,就得到了液晶投影设备。特别地,通过安装设置有滤色器层309的有源型透射型液晶面板,可获得单板型液晶投影设备。
图20是示意性横截面图,示出了本发明的一改进形式,并且示出了在副衬底102上形成相移结构109和微透镜结构130的例子。
本示例的投影型LCD面板包括TFT衬底101,副衬底102,出射侧玻璃防尘侧板103,入射侧防尘板104。液晶密封在TFT衬底101和副衬底102之间。在普通投影LCD面板的情况下,光线从副衬底102侧进入、从TFT衬底101侧射出。
LCD面板由布置在矩阵中的像素108形成。像素的具体结构由图19示出。其中有光线通过的透明像素电极所在的孔区,以及用于开关和驱动像素电极的电路图案所在的非孔区。在现有技术中,光线不能通过有电路图案形成的非孔区,由此导致光线利用效率的下降。光线通过的面积与像素整个面积的比被称作“开孔率”。在普通投影LCD面板的情况下,开孔率为50%至60%左右的投影LCD面板是主流。因此,近一半的光线被电路图案阻挡。
因此,在本发明的改进类型的面板中,如图20所示,具有对应于像素设置的非常小的透镜的组群。在TFT衬底101侧,这些微透镜130形成在副衬底102的表面上对应于单个像素的阵列中。入射光通过微透镜130会聚在相应的像素电极108上,从而防止入射光线被像素开关和驱动电路图案阻挡。这时,微透镜130的外部直径等于像素的外部直径,并且微透镜阵列的间距与像素的间距相等。
如图20所示,本发明的LCD面板形成有相移结构109。即,将TFT衬底101侧的副衬底102的表面蚀刻或形成薄膜,其深度或厚度在d=0到d=λ/|N1-N2|,作为间距与像素108相同的单元结构。d指代深度,λ指代中心波长,N1指代在中心波长的衬底折射率,N2指代在中心波长的相移结构的折射率。例如,当参考波长λ=550nm,N1=1.5,N2=1.0(空气)时,d为0~1100nm之间的任何数值。这时,通过像素的光线给定的相差如下:
2×2π/λ×d×|N1-N2|=0~2π
以蚀刻深度或形成薄膜的厚度为0的区域作为基准。另外,当折射率N2不是空气的折射率,而是所填充的诸如透明树脂等的折射率,例如N2=1.4时,d为0~5500nm之间的任意数值。使像素间距与相移结构的间距匹配的原因是为了防止相移结构109的边界(蚀刻深度或薄膜形成厚度改变的线)进入像素中,进而影响图像的质量。
注意,图20中示出的相移结构109在深度d方向上画有阴影,但是当介质N2为空气时,相移结构的实际深度d最大大约为1微米,因此微透镜的聚焦点的差异根本不会引起问题。如上所述,通过在TFT衬底101侧的副衬底102的表面上形成相移结构109和微透镜结构130,防止了由像素的周期结构造成的高次衍射光线的产生,并同时防止了用于驱动像素的电路图案阻挡光线,由此有助于提高光线的利用效率。
在图20中示出的实施例中,在TFT衬底侧的副衬底102的表面上形成有相移结构109和微透镜结构130,但是即使如图21所示只在玻璃防尘板104侧的副衬底102的表面上、或者如图22所示只在玻璃防尘板104的出射表面(或入射表面)上形成相移结构109也能获得类似的效果。普通的投影LCD面板在副衬底侧接收光线,并从TFT衬底侧将该光线输出,但即使构造成光线入射到TFT衬底侧,从副衬底侧出射,也能通过在出射侧类似地形成根据本发明的微透镜结构,并且在入射侧衬底的入射表面或出射表面、或者出射侧衬底上形成相移结构,从而获得类似的效果。
另外,在本实施例中,一个示例示出了在投影型LCD面板的出射表面上形成相移结构,但本发明可应用于其它投影型(或透射型)图像显示装置。
如上所述,根据本发明更先进的形式的图像显示装置,作为基础的配置,设置有布置在矩阵中的像素108的周期结构、以及支承像素的衬底101和102,对从像素单元的入射表面进入的光线进行调制,并将该光线从出射表面射出。其特征在于,在例如有光线通过的衬底101的表面上形成用于随机改变光线相位的相移结构109和微透镜结构130。该相移结构109包括凸凹结构,该凸凹结构是通过在有光线通过的衬底101的表面上蚀刻随机深度而形成的。相移结构109例如通过光刻法形成。优选地,相移结构109具有在像素单元中厚度不同的凸凹结构。
反射型LCD面板
图20至22示出的实施例均为透射性LCD面板。与此相对,图23示出的实施例为反射型LCD面板。即,图23是作为本发明一实施例的反射型LCD面板的视图,示出了在副衬底202上形成相移结构209和微透镜机构230的示例。
这种反射型液晶面板用于LCD投影机。
如图23所示,该反射型LCD面板包括TFT衬底201,副衬底202,TFT衬底上的反射板203,玻璃防尘板204等。可选地,也存在TFT衬底201形成在玻璃防尘板204侧的情况。
在图23中示出的实施例中,在光线出射侧的副衬底202的表面上形成有对应于像素208的相移结构209和微透镜结构230。像素208具有反射入射光线的像素电极所在的孔区、以及用于开关和驱动该像素电极的电路图案所在的非孔区。在现有技术中,形成有电路图案的非孔区不反射光线,由此导致光线利用的效率下降。因此,在本实施例中,在TFT衬底201侧的副衬底202的表面上,微透镜230形成在对应于各个像素208的阵列中,从而将光线会聚在像素208上,由此防止像素驱动电路图案对光线的吸收。此时,微透镜230的外部形状与像素208的外部形状相同,并且微透镜阵列的间距与像素中的像素的间距相同。另外,微透镜的聚点位置是在反射层表面上的像素中心处,因此反射的光线再次被微透镜转换为平行光,并被输出。
将副衬底202的像素区203的表面(与玻璃防尘板204相对的表面)蚀刻或形成薄膜,其深度或厚度在d=0到d=λ/|N1-N2|,作为间距与像素208相同的单元结构。d指代深度,λ指代中心波长,N1指代在中心波长的衬底折射率,N2指代在中心波长的相移结构的折射率。当相移结构填充有诸如透明树脂等,例如N2=1.4时,d为0~2750nm之间的任意数值。这时,通过像素的光线给定的相差如下:
2×2π/λ×d×|N1-N2|=0~2π
相对于蚀刻深度或形成薄膜的厚度为0的区域。因此以与透射型LCD面板相同的方式形成随机相移结构,并且防止了由像素周期结构导致的高次衍射光线的出现。
注意,图23中的相移结构在深度d方向以阴影画出,但当介质N2为空气时,相移结构的实际深度d最大大约为1微米,因此微透镜的聚焦点的差异不会造成问题。如上所述,通过在TFT衬底201侧的副衬底202的表面上形成相移结构209和微透镜结构230,防止了像素周期结构引起的衍射光线的产生,并且同时防止了用于驱动像素的电路图案阻挡光线,由此有助于提高利用光线的效率。
图24是横截面图,示出了作为本发明其它实施例的反射型LCD面板,示出了在玻璃防尘板204上形成相移结构209、在副衬底202上形成微透镜结构230的例子。
在图23中示出的实施例中,副衬底202的表面上形成有相移结构209和微透镜结构230,但即使如图24所示,在副衬底202的表面上形成微透镜结构230、在玻璃防尘板204的表面上形成相移结构209,也能获得相同的效果。
制造微透镜阵列的方法
图25A和25B为加工图,示出了根据本发明制造微透镜阵列的方法,并且使用了压模(stamper)方法。首先,如图25所示,将Ni电铸掩膜压在事先形成在玻璃衬底410的表面上的第一光学树脂层420上,以便转移微透镜表面。第一光学树脂层420由低折射率的紫外树脂组成。接着,用波长接近365nm的紫外光以3000mJ的能量从玻璃衬底410的后侧照射,以凝固该紫外树脂。注意,将相移结构409事先形成在玻璃衬底410的后侧上。
接着,如图25B所示,在微透镜表面的凹凸中埋入具有第二折射率的树脂,并且用平面压模FS使其平坦,从而形成第二光学树脂层430。在本实施例中,高折射率紫外树脂滴下以填埋微透镜表面的凸凹部,然后利用平面压模FS使表面平坦。在该状态下,照射紫外光以固定第二光学树脂430的平坦的表面。注意,取代滴下液体树脂,可通过旋涂来供给树脂。由此获得了带有多层结构的微透镜阵列,其中包括低折射率的第一光学树脂层420和高折射率的第二光学树脂层430。
下面,参照图26A至26C,将对使用湿刻的微透镜阵列的制造方法进行描述。首先,如图26A所示,清洁二氧化硅基(silica-base)玻璃衬底410,然后涂敷抗蚀剂,使之曝光,并显影,以便使其形成为对应于像素的图案。注意,二氧化硅基玻璃衬底410首先形成有相移结构409。接着,如图26B所示,利用抗蚀剂各向同性地蚀刻二氧化硅基玻璃衬底410,从而形成球形透镜表面R。注意,取代抗蚀剂,可使用具有优良化学抗蚀性的金属、多晶硅、无定形硅膜等作为掩膜材料。作为蚀刻剂,可使用HF基或BHF基的蚀刻剂。然后,如图26C所示,在二氧化硅基玻璃衬底410上涂敷折射率不同的透明树脂430。可通过旋涂或喷射来涂敷该树脂。于是将通过湿刻形成为球形的透镜表面R埋入树脂中,随后用紫外光照射该树脂,或者对其进行加热处理,从而使该树脂完全凝固。可使用环氧基、丙烯酸基、硅树脂基、氟基树脂,或其它树脂,但每种树脂可通过紫外射线处理或热处理加以凝固和硬化。由此对应于像素产生出微透镜。
参照图27A至27C,将对利用湿刻制造微透镜阵列的方法的另一例子进行描述。在该示例中,与参照图26A至26C描述的示例不同,二氧化硅基玻璃衬底没有形成相移结构——通过另一步骤在遮盖玻璃侧形成相移结构。首先,如图27A所示,清洁二氧化硅基玻璃衬底,然后涂敷抗蚀剂,使之曝光,并显影,以便使其形成为对应于像素的图案。接着,如图27B所示,利用抗蚀剂各向同性地蚀刻二氧化硅基玻璃衬底410,从而形成球形透镜表面R。注意,取代抗蚀剂,可使用具有优良化学抗蚀性的金属、多晶硅、无定形硅膜等作为掩膜材料。作为蚀刻剂,可使用HF基或BHF基的蚀刻剂。然后,如图27C所示,将二氧化硅基玻璃衬底410覆盖一遮盖玻璃,并且将折射率不同的透明树脂填入这两者之间的间隙中。可真空注入该树脂。可选地,可使用旋涂或喷射的方法。于是将通过湿刻形成为球形的透镜表面R埋入树脂中,随后用紫外光照射该树脂,或者对其进行加热处理,从而使该树脂完全凝固。可使用环氧基、丙烯酸基、硅树脂基、氟基树脂,或其它树脂,但每种树脂可通过紫外射线处理或热处理加以凝固和硬化。由此对应于像素产生出微透镜。最后,如图27D所示,将遮盖玻璃抛光,然后在表面上形成ITO或其它透明电极,以获得副衬底。然后,尽管过程没有示出,将形成有像素电极或薄膜晶体管的驱动衬底和所述副衬底粘合在一起,将液晶填入两者之间的间隙中,以便完成无源矩阵型液晶显示装置。
图28是示意性横截面图,示出了用于无源矩阵显示装置的衬底的例子,该装置层叠和结合有分开制备的相移结构和微透镜结构。如图28所示,遮盖玻璃事先形成有相移结构,该相移结构形成随机衍射光栅。形成这一相移结构的方法是利用图11至18所示的过程。对应于各像素的衍射光栅的高度合适地设定,并且随树脂的折射率、衬底折射率的差异而变化。在另一方面,二氧化硅基玻璃衬底事先形成有微透镜结构。细小的微透镜一体地对应每一像素分开形成。事先形成有相移结构的遮盖玻璃和事先形成有微透镜结构地二氧化硅基衬底利用树脂对准并粘合在一起。在本发明的情况下,用于粘合所述遮盖玻璃和二氧化硅基玻璃衬底的树脂具有近似为1.60的折射率。可使用丙烯酸基、环氧基、或氨基甲酸乙酯基(urethane-based)树脂。另外,当反转相移结构的凸凹部时,可使用氟基或硅树脂基树脂等作为粘合树脂。在本实施例中,衍射光栅只形成在遮盖玻璃处,微透镜的高度位置不需要进行调整,因此能只结合相移结构和微透镜结构得到好产品,这使产量提高。
如上所述,根据本发明的第一方面,通过形成相移结构,能减少高次衍射光线的出现,并且防止在液晶投影设备中出现闪光。另外,通过形成相移结构,本质上需要的0次衍射光线(非衍射光线)的数量增加,有助于提高亮度。
根据本发明的第二方面,通过形成相移结构,可减少高次衍射光线的出现,并且防止在液晶投影设备中出现闪光。另外,通过形成相移结构,本质上需要的0次衍射光线(非衍射光线)的数量增加,有助于提高亮度。而且,通过形成微透镜结构,防止了由像素开关电路区域造成对光线的阻挡,这有助于提高所投射图像的亮度。
工业适用性
利用本发明的LCD面板作为图像调制装置的LCD投影设备可用于多种领域中的图像显示。

Claims (8)

1、一种用于图像投影设备的图像显示装置,该装置具有布置在矩阵中像素的周期结构,支承所述多个像素的衬底,和在所述衬底的表面上形成的相移结构,用于在光线通过该相移结构时随机改变光线的相位。
2、如权利要求1所述的图像显示装置,其特征在于,所述相移结构包括凹凸结构,该结构通过蚀刻光线通过的衬底的表面到随机深度而形成。
3、如权利要求1所述的图像显示装置,其特征在于,所述相移结构包括凹凸结构,该结构通过在光线通过的衬底的表面上形成随机厚度的电介质透明薄膜而形成。
4、如权利要求1所述的图像显示装置,其特征在于,所述相移结构通过光刻法形成。
5、如权利要求1所述的图像显示装置,其特征在于,所述相移结构具有在像素单元中厚度变化的凹凸结构。
6、如权利要求1所述的图像显示装置,其特征在于,在所述衬底的一表面上进一步形成一微透镜结构,该微透镜结构用于朝向所述像素会聚所述光线。
7、一种图像投影设备,包括按以下顺序沿光学轴布置的光源、显示面板和放大投影光学系统,
所述显示面板具有布置在矩阵中像素的周期结构,和支承所述多个像素的衬底,并且
在所述衬底的表面上形成的相移结构,用于在光线通过该相移结构时随机改变光线的相位。
8、如权利要求7所述的图像投影设备,其特征在于,在所述衬底的一表面上进一步形成一微透镜结构,该微透镜结构用于朝向所述像素会聚所述光线。
CNB038000458A 2002-01-23 2003-01-21 图像显示装置和图像投影设备 Expired - Fee Related CN1221842C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13612/2002 2002-01-23
JP2002013612 2002-01-23

Publications (2)

Publication Number Publication Date
CN1496490A CN1496490A (zh) 2004-05-12
CN1221842C true CN1221842C (zh) 2005-10-05

Family

ID=27606074

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038000458A Expired - Fee Related CN1221842C (zh) 2002-01-23 2003-01-21 图像显示装置和图像投影设备

Country Status (6)

Country Link
US (2) US6955436B2 (zh)
JP (1) JP4311205B2 (zh)
KR (1) KR100954016B1 (zh)
CN (1) CN1221842C (zh)
TW (1) TWI237725B (zh)
WO (1) WO2003062913A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378939A (zh) * 2009-03-31 2012-03-14 琳得科株式会社 掩膜用部件、使用该部件制造掩膜的方法及感光性树脂印刷版的制造方法
WO2020238887A1 (zh) * 2019-05-31 2020-12-03 京东方科技集团股份有限公司 对置基板及其制备方法、液晶面板以及3d打印装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708112B2 (ja) * 2003-12-09 2005-10-19 シャープ株式会社 マイクロレンズアレイ付き表示パネルの製造方法および表示装置
FR2872590B1 (fr) * 2004-07-02 2006-10-27 Essilor Int Procede de realisation d'un verre ophtalmique et composant optique adapte pour la mise en oeuvre de ce procede
JP4165479B2 (ja) * 2004-09-08 2008-10-15 セイコーエプソン株式会社 プロジェクタ
FR2879757B1 (fr) * 2004-12-17 2007-07-13 Essilor Int Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu
KR100713132B1 (ko) * 2005-05-27 2007-05-02 삼성전자주식회사 프로젝터
FR2888948B1 (fr) 2005-07-20 2007-10-12 Essilor Int Composant optique transparent pixellise comprenant un revetement absorbant, son procede de realisation et son utilisation dans un element optique
FR2888951B1 (fr) * 2005-07-20 2008-02-08 Essilor Int Composant optique pixellise aleatoirement, son procede de fabrication, et son utilisation dans la fabrication d'un element optique transparent
FR2888950B1 (fr) * 2005-07-20 2007-10-12 Essilor Int Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent
FR2888947B1 (fr) * 2005-07-20 2007-10-12 Essilor Int Composant optique a cellules
JP2007219489A (ja) * 2006-01-19 2007-08-30 Epson Imaging Devices Corp 液晶表示装置およびそれを用いたヘッドアップディスプレイ
US7999889B2 (en) * 2006-03-29 2011-08-16 Sharp Kabushiki Kaisha Scattering-type display including diffraction reducing layer
JP5234303B2 (ja) 2006-10-13 2013-07-10 Nltテクノロジー株式会社 表示装置、および電子機器
FR2907559B1 (fr) * 2006-10-19 2009-02-13 Essilor Int Composant optique elecro-commandable comprenant un ensemble de cellules
JP5093717B2 (ja) * 2006-10-23 2012-12-12 Nltテクノロジー株式会社 光学素子およびこれを用いた照明光学装置、表示装置、電子機器
FR2910642B1 (fr) * 2006-12-26 2009-03-06 Essilor Int Composant optique transparent a deux ensembles de cellules
FR2911404B1 (fr) * 2007-01-17 2009-04-10 Essilor Int Composant optique transparent a cellules remplies de materiau optique
US7567319B2 (en) * 2007-05-21 2009-07-28 United Microelectronics Corp. LCoS display with a color pixel array with multiple reflective layers and fabrication method thereof
US8643822B2 (en) * 2007-07-03 2014-02-04 Jds Uniphase Corporation Non-etched flat polarization-selective diffractive optical elements
JP5268342B2 (ja) * 2007-12-14 2013-08-21 キヤノン株式会社 画像表示装置
US7969644B2 (en) * 2008-09-02 2011-06-28 Elbit Systems Of America, Llc System and method for despeckling an image illuminated by a coherent light source
JP5402261B2 (ja) * 2009-06-05 2014-01-29 セイコーエプソン株式会社 電気光学表示装置及びプロジェクター
US8982480B2 (en) * 2009-12-29 2015-03-17 Elbit Systems Of America, Llc System and method for adjusting a projected image
US8905547B2 (en) * 2010-01-04 2014-12-09 Elbit Systems Of America, Llc System and method for efficiently delivering rays from a light source to create an image
KR20130008100A (ko) * 2011-06-22 2013-01-22 삼성디스플레이 주식회사 유기 발광 조명 장치
JP5643720B2 (ja) * 2011-06-30 2014-12-17 株式会社沖データ ディスプレイモジュール及びその製造方法と表示装置
KR101292370B1 (ko) 2012-02-27 2013-08-01 경희대학교 산학협력단 디지털 홀로그램을 이용하는 3차원 영상 표시 장치
US8628990B1 (en) * 2012-09-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Image device and methods of forming the same
JP5963637B2 (ja) * 2012-10-10 2016-08-03 キヤノン株式会社 撮像装置付き表示装置
JP6351401B2 (ja) * 2014-06-27 2018-07-04 キヤノン株式会社 投写型表示装置および画像表示システム
JP2019529985A (ja) * 2016-09-09 2019-10-17 フサオ イシイ 回折格子の製造方法
KR20210111278A (ko) 2019-01-09 2021-09-10 페이스북 테크놀로지스, 엘엘씨 Ar, hmd 및 hud 애플리케이션을 위한 광학 도파관들의 불-균일한 서브-동공 반사기들 및 방법들
CN110533662B (zh) * 2019-09-19 2022-05-20 京东方科技集团股份有限公司 一种成像质量分析方法及其装置
KR20210121357A (ko) * 2020-03-27 2021-10-08 삼성디스플레이 주식회사 표시 장치와 그의 제조 방법
US20220004148A1 (en) * 2020-07-06 2022-01-06 Grimaldi, Inc. Apparatus and method of reproduction of a diffractive pattern

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652351B2 (ja) * 1986-04-08 1994-07-06 キヤノン株式会社 光変調素子
US4856869A (en) 1986-04-08 1989-08-15 Canon Kabushiki Kaisha Display element and observation apparatus having the same
JPH03289692A (ja) * 1990-04-06 1991-12-19 Matsushita Electric Ind Co Ltd 空間光変調素子及びこれを用いたホログラム画像情報記録装置
JP3006294B2 (ja) 1992-07-30 2000-02-07 日本電気株式会社 光学的文字読取装置
US5682265A (en) * 1994-02-18 1997-10-28 Massachusetts Institute Of Technology Diffractive microstructures for color separation and fusing
US6560018B1 (en) * 1994-10-27 2003-05-06 Massachusetts Institute Of Technology Illumination system for transmissive light valve displays
JPH10253977A (ja) 1997-03-13 1998-09-25 Toshiba Corp 反射板および露光装置
WO1998053365A1 (fr) * 1997-05-20 1998-11-26 Seiko Epson Corporation Element modulateur de lumiere et ecran de projection
US6322236B1 (en) 1999-02-09 2001-11-27 3M Innovative Properties Company Optical film with defect-reducing surface and method for making same
EP2506089A3 (en) * 2000-05-30 2012-12-19 Dai Nippon Printing Co., Ltd. Computer-generated hologram and its fabrication process, reflector using a computer-generated hologram, and reflective liquid crystal display
US6791739B2 (en) * 2001-08-08 2004-09-14 Eastman Kodak Company Electro-optic despeckling modulator and method of use
US6577429B1 (en) * 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378939A (zh) * 2009-03-31 2012-03-14 琳得科株式会社 掩膜用部件、使用该部件制造掩膜的方法及感光性树脂印刷版的制造方法
WO2020238887A1 (zh) * 2019-05-31 2020-12-03 京东方科技集团股份有限公司 对置基板及其制备方法、液晶面板以及3d打印装置

Also Published As

Publication number Publication date
WO2003062913A1 (fr) 2003-07-31
US7128426B2 (en) 2006-10-31
US20040114111A1 (en) 2004-06-17
JPWO2003062913A1 (ja) 2005-05-26
TWI237725B (en) 2005-08-11
CN1496490A (zh) 2004-05-12
KR100954016B1 (ko) 2010-04-20
KR20040079830A (ko) 2004-09-16
TW200307164A (en) 2003-12-01
JP4311205B2 (ja) 2009-08-12
US6955436B2 (en) 2005-10-18
US20050253975A1 (en) 2005-11-17

Similar Documents

Publication Publication Date Title
CN1221842C (zh) 图像显示装置和图像投影设备
US20180126646A1 (en) Light engines for photo-curing of liquid polymers to form three-dimensional objects
JP4598676B2 (ja) 2次元走査型画像表示装置
TWI277771B (en) Method of manufacturing microlens, microlens, microlens array, electro-optical device, and electronic apparatus
JP4142568B2 (ja) 光学素子および該光学素子を用いるカラー表示装置
AU2018213856B2 (en) Method and apparatus using light engines for photo-curing of liquid polymers to form three-dimensional objects
CN1818769A (zh) 空间光调制装置及图像显示装置
CN1975569A (zh) 灰度掩模、微透镜及其制造方法、空间光调制装置及投影机
TWI308973B (zh)
CN1826557A (zh) 二维成像装置
JP2010122689A (ja) 表示装置
CN1896862A (zh) 照明装置以及投射型视频显示装置
CN109378404B (zh) 一种3d显示面板及其制作方法,以及显示装置
CN1766730A (zh) 屏幕、屏幕的制造方法及投影机
JP2007025458A (ja) マイクロレンズ付き液晶表示パネルおよびその製造方法
CN1955787A (zh) 空间光调制装置和投影机
JP2008151912A (ja) スクリーン、プロジェクタ及び画像表示装置
JP2008151914A (ja) スクリーン、プロジェクタ及び画像表示装置
CN1768301A (zh) 投影机
CN104062799A (zh) 光学元件、投影式图像显示设备以及原始记录
WO2018012303A1 (ja) 液晶プロジェクタ
JP2007264640A (ja) 表示パネルの製造方法
JP2004199050A (ja) 反射性基板とそれを用いた液晶表示パネル
KR20070027136A (ko) 랜덤 위상 컴퓨터 구동 홀로그램을 이용한 스펙클 제거장치
JP2008151913A (ja) スクリーン、プロジェクタ及び画像表示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051005

Termination date: 20120121