CN1222591C - 加氢处理催化剂颗粒 - Google Patents

加氢处理催化剂颗粒 Download PDF

Info

Publication number
CN1222591C
CN1222591C CNB011258217A CN01125821A CN1222591C CN 1222591 C CN1222591 C CN 1222591C CN B011258217 A CNB011258217 A CN B011258217A CN 01125821 A CN01125821 A CN 01125821A CN 1222591 C CN1222591 C CN 1222591C
Authority
CN
China
Prior art keywords
catalyzer
extrudate
shape
catalyst
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB011258217A
Other languages
English (en)
Other versions
CN1340600A (zh
Inventor
J·巴托尔迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN1340600A publication Critical patent/CN1340600A/zh
Application granted granted Critical
Publication of CN1222591C publication Critical patent/CN1222591C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • B01J35/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten

Abstract

一种加氢处理催化剂,其含负载于多孔耐火性载体上的选自周期表第VI-B和VIII族的一种或多种金属的氧化物及/或硫化物,其中该催化剂为带圆边的棱角形挤出物型。

Description

加氢处理催化剂颗粒
技术领域
本发明涉及一种加氢处理催化剂颗粒。
背景技术
加氢处理反应属于慢反应,因此,重要的是要使催化剂具有较大的内表面积。为了使催化剂面积最大,应使催化剂的孔隙率尽可能的大。对用于加氢处理重油的催化剂,孔隙率显得更重要,因为其孔隙空间是用于聚积来自进料的金属及焦炭。对于这样的催化剂,可达到的最大孔隙率不仅决定催化剂的活性,而且也决定它的寿命,因为催化剂对焦炭及金属的储存容量与孔隙率有关。催化剂形状强度(SCS)随其孔隙率增大而降低。在许多应用中,催化剂颗粒的SCS是催化剂孔隙率的限制因素。
在高温下,即通常在250-450℃范围,在15-200巴的氢分压及液时空速(LHSV)0.1-5.0h-1范围内,用加氢处理催化剂加氢处理矿物油,可以脱除矿物油中的杂原子。准确的条件将取决于所需的转化率、待处理的进料类型、以及所需运转周期的长短。对于炼油厂,运转周期是非常重要的因素。短期运转意味着成本高,因为催化剂置换速率高,而且为催化剂置换,停工相对更多(即暂停进料),造成减产,导致经济损失。加氢处理反应器中所用催化剂可以是本领域已知的用于加氢处理烃类进料的任何催化剂。这种催化剂含有负载于耐火性多孔无机氧化物载体上的至少一种金属。具有加氢处理活性的金属的实例包括选自第VI-B及VIII族的金属,如Co、Mo、Ni、W及Fe,而以混合物Co-Mo、Ni-Mo及Ni-W是优选的。对这些金属均使用其氧化物或硫化物。适宜作为载体的多孔材料的实例包括氧化铝、二氧化硅-氧化铝、氧化铝-二氧化钛、天然及合成分子筛及其混合物,而以氧化铝及二氧化硅-氧化铝是优选的。催化剂通常的几何形状为圆柱形、三叶形、四小叶形(quardrolobal)或球形。催化剂颗粒的大小与形状取决于实际应用的场合。在许多工艺方法中,催化剂的应用受到扩散过程的限制,在这些情况下催化剂粒度必须尽可能地小。在含痕量金属的重油改质过程中,尤其重要的是使用微粒型的催化剂,因为承载金属物种的扩散处于强扩散控制之中。在这种工艺的过程中,金属被聚集在催化剂的孔隙系统中,催化剂的有效使用期由其不断脱除金属的能力决定。脱除金属的能力取决于在孔隙系统中金属的分布,也取决于催化剂对积聚焦炭及金属可提供的空间大小。当催化剂颗粒横截面上通过进料沉积的金属分布均匀时,则它对金属的储存容量可达到最大。采用大孔隙的催化剂,即一种具有大微孔双峰分布的孔隙系统,或采用细微挤出物型的催化剂,可获得均匀分布。采用常规生产催化剂载体的技术时,增加催化剂载体的孔隙率,可使其对焦炭及金属的储存容量增大。
为增加催化剂孔隙率所采取的这些步骤却都降低了单颗粒的强度。颗粒越小,强度越低,为增加催化剂孔容而进行的高温处理会降低颗粒的强度,而且孔隙率越高,其强度越低。孔隙率对强度的影响是众所周知的,并可用里兹科维茨(Rytzkevitz)提出的关系式来描述(见美国陶瓷学会会志(J.Amer.Ceram.Soc.),36(2),65-68页(1953)):
SCS=exp(-bXΘ);
其中Θ是催化剂的孔隙率,毫升孔容积/毫升颗粒体积,b是常数,对多孔隙材料在5-7之间。
上述关系式中,常数b取决于多孔催化剂主体的性能和几何形状。对于给定的材料,其强度会随形状改变而变化。导致强度增大的形状容许在达到所需机械强度下使用更大孔隙率的材料。
本发明一般目的在于提供具有其机械强度提高了的形状和高孔隙率的催化剂,其机械强度的提高用测试成型后催化剂形状颗粒强度(SCS)的标准试验方法ASTM D4179确定。这些催化剂在重油改质中有用,催化剂的有效使用期通过催化剂储存污染物诸如金属和焦炭的能力来确定。在沸腾床操作中,采用按照本发明的几何形状,可提高催化剂机械强度,而不会改变其沸腾特征,因为其几何形状接近于这类方法中常用的圆柱形挤出物。
因此,本发明提供一种加氢处理催化剂,其含有选自周期表第VI-B及VIII族的一种或多种金属的氧化物和/或硫化物,该氧化物和/或硫化物被负载于带有圆边的棱角形挤出物的耐火性多孔载体上。
具体实施方式
实施例1
取1000克由Haldor Topsφe A/S公司市售的B20氧化铝和y克水,在西格玛捏合器中(sigma kneeler)混合15分钟,直至形成适合于挤出的糊剂。将所形成的糊剂分为三份,按照以下实施例2-4挤出为不同形状。
实施例2(参照例)
将实施例1中制成的糊剂送入活塞式挤出机中,挤出为1毫米圆柱形的挤出物。在空气中干燥所制成的挤出物24小时,在烤炉中在850℃下加热焙烧该挤出物2小时。用测径器确定所得氧化铝载体尺寸,用Quantacrome孔率计测量浸入汞的方法确定孔隙率,对SCS采用测试成型后催化剂形状颗粒强度标准试验方法ASTM D4179确定。结果列入表1中。
实施例3
将实施例1的糊剂挤出为带有圆边的1毫米正方形挤出物形状。从附图1明显可见该挤出物形状。按照实施例2所示同样方法进行挤出、干燥、焙烧和测量。
实施例4
将实施例1的糊剂挤出为带有圆边的1.1毫米正方形挤出物形状。从附图1明显可见该挤出物形状。按照实施例2所示同样方法进行挤出、干燥、焙烧和测量。
表1带有圆边的方形的侧面抗碎强度
  SCSKP/MM  孔容毫升/公斤   直径毫米
  实施例2、参照   0.51  947   1.01
  实施例3   1.04  959   1.01
  实施例4   1.28  972   1.11
如上表1所见,其SCS比参照产品的侧面抗碎强度高了许多。对于粒径相当的产品,其SCS是常规产品SCS的2倍以上。
实施例5
按与对照实施例1糊剂的同样方法,制备一种糊剂,但不同的是,只将这些成分在西格玛捏合器中混合14分钟,直至形成适合于挤出的糊剂。在Zigma混合器中将一部分糊剂分成三份,并按照实施例6-8挤出为不同形状。
实施例6(参照)
将实施例5的糊剂挤出为带有圆边的1毫米圆柱形挤出物形状。挤出物的形状示于图1。按实施例2所出同样的方法进行挤出、干燥、焙烧及测量。
实施例7
将实施例5的糊剂挤出为带有圆边的1毫米正方形挤出物形状。挤出物的形状示于图2。按实施例2所指同样的方法进行挤出、干燥、焙烧及测量。
实施例8
将实施例5的糊剂挤出成为带有圆边的1毫米六边形的挤出物形状。挤出物的形状示于图2。按实施例2所指同样的方法进行挤出、干燥、焙烧及测量。
实施例9
将对照例2的剩余糊剂再混合另外2分钟,然后加以成型。将所成型的糊剂分为三份,按照实施例10-12挤出为不同形状。
实施例10(参照)
将实施例9的糊剂挤出为带有圆边的1毫米圆柱形挤出物形状。挤出物的形状示于图1。按实施例2所指同样的方法进行挤出、干燥、焙烧及测量。
实施例11
将实施例9的糊剂挤出为带有圆边的1毫米方形挤出物形状。挤出物的形状示于图2。按实施例2所示同样的方法进行挤出、干燥、焙烧及测量。
实施例12
将实施例9的糊剂挤出为带有圆边的1毫米六边形的挤出物形状。挤出物的形状示于图2。按实施例2所示同样的方法进行挤出、干燥、焙烧及测量。
制备后,测定按照实施例6-8及10-12制成的颗粒的孔隙率及机械强度。所得结果列在表2中。
表2
  形状   尺寸  PV,毫升/公斤   R-MESO,   SCS,kp/mm
  实施例6,参照   圆柱形   1.01  1048   73.2   0.55
  实施例7   方形   1.01  1094   73.9   0.72
  实施例8   六角形   1.01  1055   75.6   0.96
  实施例10,参照   圆柱形   1.01  1016   69.8   0.66
  实施例11   方形   1.01  1044   74.1   0.78
  实施例12   六角形   1.01  1000   73.2   0.98
可以看出,方形和六边形颗粒的机械强度都比圆柱形颗粒的高。也可发现,按照上述里兹科维茨(Rytzkevitz)关系式的机械强度随孔隙率降低。因此,用非圆柱形颗粒能达到较高的机械强度是有利的,因为可以制成具有更高孔隙率的颗粒。对于像沸腾床(H-oil或LC精制)工艺,提供高孔隙率的催化剂是有利的。对于这些方法,催化剂的有效使用将取决于其对油中污染物的摄取及储存的能力。最常见污染物通常为焦炭、镍、钒及其它油中常见组分形式。

Claims (1)

1.一种加氢处理催化剂,所述催化剂含负载于多孔耐火性载体上的选自周期表第VI-B和VIII族的一种或多种金属的氧化物及/或硫化物,其特征在于该催化剂的形状为带圆边的四方形或六边形挤出物,其中的圆边半径在0.4-0.7毫米之间。
CNB011258217A 2000-08-30 2001-08-29 加氢处理催化剂颗粒 Expired - Fee Related CN1222591C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200001280 2000-08-30
DKPA200001280 2000-08-30

Publications (2)

Publication Number Publication Date
CN1340600A CN1340600A (zh) 2002-03-20
CN1222591C true CN1222591C (zh) 2005-10-12

Family

ID=8159680

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011258217A Expired - Fee Related CN1222591C (zh) 2000-08-30 2001-08-29 加氢处理催化剂颗粒

Country Status (6)

Country Link
US (1) US6667271B2 (zh)
EP (1) EP1184077B1 (zh)
JP (1) JP2002119866A (zh)
CN (1) CN1222591C (zh)
AT (1) ATE306986T1 (zh)
DE (1) DE60114109T2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006278461A1 (en) * 2005-08-03 2007-02-15 Ccmi Corporation Enhancement of surface-active solid-phase heterogeneous catalysts
WO2007040348A1 (en) * 2005-10-04 2007-04-12 Sang Wook Lee Ceramic catalyst support
US7910518B2 (en) * 2008-03-10 2011-03-22 Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg Geometrically sized solid shaped carrier for olefin epoxidation catalyst
CN103270001B (zh) 2010-12-29 2015-11-25 圣戈本陶瓷及塑料股份有限公司 多波瓣的多孔陶瓷本体及其制造方法
MX2013007317A (es) 2010-12-30 2013-07-22 Chevron Usa Inc Catalizadores de hidroprocesamiento y metodos para fabricar los mismos.
CN107847913A (zh) 2015-07-22 2018-03-27 巴斯夫公司 用于乙酸乙烯酯单体产生制备的高几何表面积催化剂
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US20190233741A1 (en) 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
WO2023137350A1 (en) 2022-01-13 2023-07-20 Chevron U.S.A. Inc. Improved ebullated bed reactor and process
WO2023154077A1 (en) 2022-02-14 2023-08-17 Chevron U.S.A. Inc. Metals recovery from spent supported catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901821A (en) * 1974-03-18 1975-08-26 Air Prod & Chem Multi-component catalyst
US4131643A (en) * 1975-09-05 1978-12-26 Kobe Steel Limited Catalyst for converting nitrogen oxides and method for converting nitrogen oxides in exhaust gases by using said catalyst
US4233187A (en) * 1979-03-26 1980-11-11 United Catalysts Inc. Catalyst and process for steam-reforming of hydrocarbons
US4441990A (en) * 1982-05-28 1984-04-10 Mobil Oil Corporation Hollow shaped catalytic extrudates
USRE32044E (en) * 1984-06-27 1985-12-03 United Catalysts, Inc. Catalyst for steam reforming of hydrocarbons
DE3930533C1 (zh) * 1989-09-13 1991-05-08 Degussa Ag, 6000 Frankfurt, De
IT1256156B (it) 1992-10-06 1995-11-29 Montecatini Tecnologie Srl Catalizzatore in granuli particolarmente per la deidrogenazione ossidativa di metanolo a formaldeide
DK0847803T3 (da) * 1996-04-08 2003-03-03 Catalysts & Chem Ind Co Hydrometalliseringskatalysator til hydrocarbonolie og fremgangsmåde til hydrodemetallisering af hydrocarbonolie under anvendelse af katalysatoren

Also Published As

Publication number Publication date
EP1184077B1 (en) 2005-10-19
US20020045540A1 (en) 2002-04-18
CN1340600A (zh) 2002-03-20
DE60114109D1 (de) 2005-11-24
US6667271B2 (en) 2003-12-23
DE60114109T2 (de) 2006-07-27
ATE306986T1 (de) 2005-11-15
JP2002119866A (ja) 2002-04-23
EP1184077A1 (en) 2002-03-06

Similar Documents

Publication Publication Date Title
JP5694264B2 (ja) 高度に安定な、重質炭化水素の水素化脱硫触媒およびその製造方法およびその使用
US10569254B2 (en) Catalyst support and catalysts prepared therefrom
CN1222591C (zh) 加氢处理催化剂颗粒
EP2411145B1 (en) A high surface area composition for use in the catalytic hydroconversion of a heavy hydrocarbon feedstock, a method making such composition and its use
JP6396289B2 (ja) 水素化処理触媒および重質炭化水素供給原料を処理するための方法
CN1044337C (zh) 一种具有双重孔氧化铝载体的制备方法
US4568657A (en) Catalyst formed of natural clay for use in the hydrodemetallization and hydroconversion of heavy crudes and residues and method of preparation of same
CA2391793C (en) Hydrofining catalyst and hydrofining process
US4411824A (en) Method of making a catalyst suitable for hydrometalation of hydrocarbonaceous feedstocks
JP2013049857A (ja) モリブデンおよび第viii族金属を含む触媒ならびに水素化脱硫水素蒸留物のためのその使用
US6551500B1 (en) Hydrocracking catalyst, producing method thereof, and hydrocracking method
CN1216316A (zh) 加氢保护催化剂及其制备方法
EP3448962B1 (en) An ebullated bed process for high conversion of heavy hydrocarbons with a low sediment yield
JPH09248460A (ja) 重質油の水素化処理用触媒および水素化処理方法
CN100340336C (zh) 一种含硅铝酸盐分子筛催化剂及其制备方法和应用
EP3448963B1 (en) A method of operating an ebullated bed process to reduce sediment yield
KR20230079012A (ko) 중질 탄화수소 수소화처리 촉매 및 이의 제조 및 사용 방법
JP2022156584A (ja) 炭化水素油の水素化処理触媒の製造方法、及び炭化水素油の水素化処理方法
EP4274683A1 (en) High activity hydrotreating catalysts and processes using same
JP4800637B2 (ja) 炭化水素油の水素化処理触媒組成物および該触媒組成物を使用した炭化水素油の水素化処理方法
CN112745923A (zh) 联合处理催化裂化柴油和催化裂解柴油的方法和系统
JPH0628738B2 (ja) 水素化脱硫・水素化分解触媒
JP2001205083A (ja) 炭化水素油中の芳香族化合物の水素化処理用触媒およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051012

Termination date: 20140829

EXPY Termination of patent right or utility model