CN1228418C - 轻质烯烃的收率得到提高的流化催化裂化方法 - Google Patents

轻质烯烃的收率得到提高的流化催化裂化方法 Download PDF

Info

Publication number
CN1228418C
CN1228418C CNB018204929A CN01820492A CN1228418C CN 1228418 C CN1228418 C CN 1228418C CN B018204929 A CNB018204929 A CN B018204929A CN 01820492 A CN01820492 A CN 01820492A CN 1228418 C CN1228418 C CN 1228418C
Authority
CN
China
Prior art keywords
catalyst
riser tube
catalyzer
raw material
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018204929A
Other languages
English (en)
Other versions
CN1527874A (zh
Inventor
R·M·皮特曼
L·L·厄普森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Original Assignee
UOP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UOP LLC filed Critical UOP LLC
Publication of CN1527874A publication Critical patent/CN1527874A/zh
Application granted granted Critical
Publication of CN1228418C publication Critical patent/CN1228418C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Abstract

一种用于得到轻质烯烃的FCC方法。该方法包括将烃类原料流与含有再生催化剂和结焦催化剂的混合催化剂接触。催化剂是包括第一种成分和第二种成分的组合物。所述的第二种成分含有不大于中等孔径的沸石,其中沸石至少占催化剂组合物的1重量%。烃类原料流与混合催化剂在提升管中的接触时间平均小于或等于2秒。将结焦催化剂的第一部分传送至再生区,同时将结焦催化剂的第二部分与再生催化剂混合并将其引入到提升管中。

Description

轻质烯烃的收率得到提高的流化催化裂化方法
                        发明背景
本发明涉及利用催化剂粒子的流体化物流将重质烃类转化成轻质烃类的流化床催化裂化(FCC)转化。更具体地讲,本发明涉及生产轻质烯烃的FCC方法。
催化裂化通过将烃类在反应区与由细分的微粒物质组成的催化剂接触来实现。与加氢裂化相对的催化裂化的反应在不加入氢气或不消耗氢气的条件下进行。当进行裂解反应时,大量焦炭沉积在催化剂上。催化剂是在高温下通过在再生区燃烧其上的焦炭来再生的。含焦炭的催化剂(在本文中称作“结焦催化剂”)被连续地从反应区输送至再生区进行再生并被来自再生区的基本上不含焦炭的再生催化剂所代替。通过各种气流进行的催化剂粒子的流化使得催化剂在反应和再生区之间进行传送。在催化剂的流化物流中裂解烃类、在反应区和再生区之间输送催化剂以及在再生器内燃烧焦炭的方法对于FCC领域的技术人员来说是已知的。
丙烯通常是通过FCC方法、脱氢方法以及主要由蒸汽裂解方法产生的。对丙烯的需求开始超过供应。FCC装置正在满足该日益增长的对丙烯的需求。但是,FCC装置通常仅产生约5重量%的丙烯。因此,有必要对FCC装置进行改进,以增加丙烯的产量。数个参考文献公开了改进的FCC方法以提高丙烯收率。
这些方法中的大多数都是通过利用延长反应时间以及升高催化剂的温度来提高转化率,以增加丙烯收率。称作深度催化裂化(“DCC”)的这样一种方法需要5-10秒的接触时间来增加丙烯收率。但是,该方法还产生了相对大量的干气,也就是氢气、乙烷和甲烷。参见David Hutchinson和Roger Hood,Catalytic Cracking to Maximize Light Olefins,PETROLEET TECHNIQUES,March-April 1996,第29页。US-A-4,980,053也公开了在Y-型沸石和pentasil择形沸石的混合物上进行裂解以得到显著的丙烯收率的深度催化裂化方法。类似地,该专利还公开了其努力延长催化剂的接触时间,这有可能是它所报道的干气收率相对较高的原因。
其它的公开了催化剂的接触时间短的专利没有提到显著的轻质烯烃的收率。US-A-5,965,012公开了具有催化剂循环安排的原料与催化剂的接触时间非常短的FCC方法。但是,该短暂的接触时间不是发生在提升管中。裂解在其中只是再生催化剂接触原料的腔室中进行。将裂解产物立即从裂解室中取出并且在与提升管分开的导管中从催化剂中分离出来。US-A-6,010,618公开了另一种FCC方法。该方法通过快速从至提升管出口半程长之下较远处除去提升管中的裂解产物来提供非常短的催化剂与原料在提升管中的接触时间。US-A-5,296,131公开了超短时的FCC催化剂接触时间以提高对汽油的选择性,同时降低了焦炭和干气产量。这些专利没有将显著的轻质烯烃的产量作为目标。
US-A-5,389,232公开了在提升管内用石脑油终止原料与催化剂混合物的反应以缩短催化剂与原料的接触时间,从而得到轻质烯烃。但是,该专利报道了相对低的轻质烯烃的收率。
其它专利公开了使用催化剂循环而不进行再生的方法。US-A-3,888,762公开了将汽提催化剂和再生催化剂输送至提升管的底部而不进行混合。US-A-4,853,105公开了其中将汽提的结焦催化剂再循环回到接近提升管中部偏上的FCC方法。该汽提的结焦催化剂在提升管中与原料的接触时间小于1秒,但是原料还有约为10至约50秒的与再生催化剂接触的接触时间。US-A-5,858,207公开了其中将再生催化剂和汽提的结焦催化剂进行二次汽提、然后返回提升管以接触原料的FCC方法。US-A-5,372,704公开了其中将来自第一个FCC装置的废催化剂加入到第二个石脑油裂解装置的提升管中、然后再循环回到第一个FCC装置的提升管中的FCC方法。
US-A-4,990,314、4,871,446和4,787,967公开了其中将一部分催化剂再循环回到提升管而不经再生的两种成分催化剂的FCC系统。具体地讲,催化剂的一种成分通常包括用于裂解大分子烃类的大孔沸石,另一种成分包括用于裂解小分子烃类的中孔沸石。由于认识到中孔沸石的催化剂成分易于水热降解,所以这些专利试图将含有中孔沸石的催化剂成分的均相组合物循环回到提升管而不进行再生。将中孔沸石的催化剂成分从再生区中分离出来需要特殊构型的催化剂基质和/或设计复杂的装置。US-A-4,717,466公开了其中使用两个提升管的该方法的改进方法。一个提升管的底部含有高浓度的ZSM-5催化剂成分,其增大的直径用于延长与轻质原料的接触时间。
PCT公开WO 95/27019报道了在循环的流化床反应器中乙烯、丙烯和丁烯的总计收率为26.2重量%,相对短的停留时间为0.1至3.0秒。在该申请中公开的反应区终止于外部的分离催化剂和产物的旋风分离器。将催化剂汽提,然后输送至反应区的底部,或者输送至循环的流化床再生器。该公开文件没有教导在催化剂组合物中使用中孔或小孔沸石。
也许是由于担心大孔或无定形催化剂的浓度不足以将原料裂解至石脑油范围的分子,一些专利在催化剂组合物中没有使用中孔或小孔沸石。必须进行两个裂解步骤以得到轻质烯烃。首先,含有大孔沸石和/或无定形活性物质的催化剂成分将原料裂解成石脑油范围的烃类。第二,含有中孔或小孔沸石的催化剂成分将石脑油范围的烃类裂解成轻质烯烃。中孔或小孔沸石不能裂解原料中较大的烃分子。因此,人们担心催化剂组合物中高浓度的中孔或小孔沸石成分可能会过分地稀释无定形的或大孔的催化成分,从而抑制将FCC原料裂解成石脑油范围的烃类的第一步骤。
US-A-6,106,697通过使用两级催化裂化系统而避免了这种担心,其中在一个FCC装置中大孔沸石成分将原料裂解成石脑油范围的烃类,然后在另一个FCC装置内在中孔至小孔的沸石催化剂成分上将石脑油范围的烃类裂解以得到轻质烯烃。US-A-5,997,728公开了在含有相对高比率的中孔或小孔沸石催化剂和大孔沸石的催化剂组合物上、在催化剂的接触时间为5秒条件下裂解原料以得到良好的丙烯收率、但干气收率也较高的FCC方法。但是,PCT公开WO 00/31215公开了在催化裂化过程中使用负载到基本惰性的基材上的ZSM-5和/或ZSM-11沸石成分以得到高收率的轻质烯烃的催化裂化方法。
US-A-5,597,537教导了利用催化剂与原料的比率高以及更高的再生器温度的FCC方法,从而保证汽油馏分的烯烃将过度裂解以提供高收率的C3和C4烯烃。该专利还教导了将一部分结焦催化剂循环回到提升管底部的混合室,同时将另一部分结焦催化剂输送至再生器进行再生。将再生的催化剂部分和再循环的结焦催化剂部分在一个混合容器中混合并达到热平衡,然后将其引入到提升管中以催化新加入的原料。尽管该专利确实指出所公开的方法可以用于停留时间较短的裂解,但是它的解释是:停留时间的减小是需要防止催化剂结焦,而不是生成大量的C3和C4烯烃。该专利还教导了将中孔沸石成分加入到催化剂组合物中,以防止催化剂结焦。但是,它没有将组合使用中孔沸石成分和缩短的接触时间以得到更高收率的轻质烯烃。该专利反映出的担心是:含有用中孔沸石成分稀释的、来自循环而没有再生的结焦催化剂的大孔沸石和/或无定形活性物质的催剂成分的活性不足以将原料裂解成石脑油范围内的烃类。因此,需要将结焦降至最小。
本发明的目的是提供生成较高收率的轻质烯烃以及较少干气的FCC方法。
                        发明概述
将一种FCC方法进行改进以在相对高的转化率下生成更高收率的轻质烯烃,尤其是乙烯、丙烯和丁烯以及较少的干气,即氢气、甲烷和乙烷。
我们已发现将包括大孔沸石和/或无定形活性物质和不大于中等平均孔径的沸石在内的结焦催化剂进行再循环并将其与再生催化剂混合可以提高轻质烯烃的收率和总转化率。我们发现甚至在较短的提升管停留时间的情况下也是如此。另外,由混合热的再生催化剂与温度较低的循环催化剂产生的较低的催化剂温度可以提高烯烃的选择性。
从如下的详细描述,本发明的另外目的、实施方案和细节将更加明显。
                        附图简述
图1是表示本发明的FCC装置的概略断面图。
图2是对再生的和混合的催化剂组合物的转化率进行比较的图。
                        发明详述
在被改进以生成更大量的轻质烯烃的FCC方法的上下文中,对本发明进行更加充分地的解释。轻质烯烃是含有6个或更少的碳原子且优选少于5个碳原子的烯烃。图1表示按照本发明排列的FCC装置的典型的简要布置图。在所示的具体工艺过程布置图的上下文中对本发明的描述不意味着将本发明限制于在其中所公开的细节。
图1所示的FCC布置图由分离器10、再生器12、混合器14和立式提升管16组成,所述的立式提升管提供了在其中发生转化的气流输送区域。所述的排列使催化剂进行循环并且以下文所述的方式接触原料。
催化剂含有两种可以在或不在相同的基质上的成分。将这两种成分在整个全部的系统内循环。第一种成分可以包括在流化催化裂化领域使用的任何的已知催化剂、诸如无定形的活性粘土型催化剂和/或高活性的结晶状分子筛。分子筛催化剂因其对所需产物的选择性显著提高而优于无定形催化剂。沸石是FCC方法中最常用的分子筛。优选第一催化剂成分含有大孔沸石诸如Y-型沸石、活性氧化铝物质、含有二氧化硅或氧化铝的粘结剂物质和惰性填料诸如高岭土。
适用作第一催化剂成分的沸石分子筛应该具有较大的平均孔径。一般地,大孔径分子筛的孔的开口由大于10且通常是12元环所定义的有效直径大于0.7nm。大孔的孔径指数约高于31。适宜的大孔沸石成分包括合成沸石诸如X-型和Y-型沸石、丝光沸石和八面沸石。我们已发现在第一催化剂成分中优选稀土含量低的Y沸石。稀土含量低是指在催化剂的沸石部分含有小于或等于约1.0重量%稀土氧化物。W.R.Grace & Co生产的OctacatTM催化剂是适宜的稀土含量低的Y-沸石催化剂。
第二催化剂成分含有包含中孔或小孔沸石催化剂(以ZSM-5、ZSM-11、ZSM-12、ZSM-23、ZSM-35、ZSM-38、ZSM-48为例的)的催化剂和其它类似的物质。US-A-3,702,886描述了ZSM-5。其它适宜的中孔或小孔沸石包括镁碱沸石、毛沸石和Petroleos de Venezuela,S.A开发的ST-5。第二催化剂成分优选将中孔或小孔沸石分散在含有粘结剂物质诸如二氧化硅或氧化铝和惰性填料诸如高岭土的基质上。第二种成分还可以含有一些其它的活性物质诸如β沸石。这些催化剂组合物的结晶状沸石的含量为10-25重量%或更高,基质材料的含量为75-90重量%。优选含有25重量%结晶状沸石材料的催化剂。可以使用具有更高的结晶状沸石含量的催化剂,只要它们具有令人满意的耐磨损性。中孔和小孔沸石的特征在于其有效的孔口直径小于或等于0.7nm,为10元或更小的环,且孔径指数小于31。
总催化剂组合物应该含至少1.0重量%,优选1-10重量%的中孔至小孔的沸石,更优选大于或等于1.75重量%。当第二催化剂成分含25重量%结晶状沸石时,该组合物含4-40重量%的第二催化剂成分,优选的含量则是大于或等于7重量%。特别优选ZSM-5和ST-5型沸石,因为它们的高耐抗结焦性将趋于保持催化剂组合物多次通过提升管时的裂解活性位,由此保持总活性。催化剂组合物的其余物质包括第一催化剂成分。催化剂组合物中第一和第二种成分的相对比率在整个FCC装置内将基本上不变。
在催化剂组合物的第二种成分中,中孔或小孔沸石的高浓度可通过进一步裂解轻质石脑油范围的分子来提高对轻质烯烃的选择性。但是,与此同时,所形成的第一催化剂成分的小的浓度仍然具有足够活性以将重质进料分子的转化率保持在合理的高度。
适于通过本发明的方法加工处理的FCC原料包括常规的FCC原料和高沸点的或残油原料。最常用的常规原料是减压瓦斯油。所述的减压瓦斯油通常是沸程为343°至552℃(650°至1025°F)的烃类物质并且通过常压残油的真空分馏制得。重质的或残油原料、即沸点高于499℃(930°F)的物质也是适宜的。本发明的FCC方法最适合于比沸点高于约177℃(350°F)的石脑油范围的烃类重的原料。
然后参看图1,提升管16为原料烃的裂解提供了转化区域。立式提升管16的直径可小于混合器14,所以当离开混合器14进入提升管16时催化剂加速。本发明的一个实施方案是在提升管中原料接触催化剂的停留时间小于或等于2秒。根据需要的产物分布,可以优选任何的小于或等于2秒的停留时间。更短的停留时间能够保证一旦得到的所需产物不会转化成不需要的产物。因此,可改变提升管的直径和高度以得到需要的停留时间。
提升管通常在稀相条件下在原料注入点的上面进行运转,其中密度通常小于320kg/m3(20lb/ft),更通常是小于160kg/m3(10lb/ft)。将原料通过喷嘴17引入到提升管中,位置在进入提升管的入口28与出口30之间并在出口30的上游的远侧。当原料进入提升管时因汽化产生的体积膨胀将提升管内的催化剂的密度进一步降至通常小于160kg/m3(10lb/ft)。在接触催化剂之前,原料的温度通常为149°至316℃(300°至600°F)。可在最初的进料点的下游加入增加量的原料。
然后将混合的催化剂和发生反应的原料蒸汽从提升管16的上部通过出口30排出,然后分离形成包括烯烃在内的裂解产物蒸气流,和覆盖有大量焦炭并通常将其称作“结焦催化剂”的催化剂颗粒收集物。为了将可能促进所需产物进一步转化成不需要的其它产物的原料与催化剂的接触时间降至最小,本发明可以使用任何排列的分离器以从产物流中快速除去结焦催化剂。尤其是,位于提升管16末端的旋转臂29通过向离开的催化剂和裂解产物蒸气流混合物施加切向速度可以进一步提高初始催化剂与裂解烃类的分离。这样的旋转臂更详细地记载于US-A-4,397,738。旋转臂位于腔室31的上部,汽提区38位于腔室31的下部。通过旋转臂29分离出的催化剂向下进入汽提区38。含有裂解烃类(包括轻质烯烃)和一些催化剂的裂解产物蒸气流通过与旋风分离器32相通的导管33离开腔室31。旋风分离器32从产物蒸汽流中除去剩下的催化剂颗粒以将微粒浓度降至非常低的量。然后产物蒸气通过出口从分离器10的顶部离开。通过旋风分离器32分离出的催化剂返回到分离器10并通过料腿导管35进入密相床36,在此它将通过开口37进入汽提区。
汽提区38通过与蒸汽逆流接触从催化剂的表面除去吸附的烃类。蒸汽通过管线40进入汽提区38。
本发明将结焦催化剂的的第一部分再循环回到提升管16而不首先进行再生。将结焦催化剂的第二部分在再生器12中再生,然后将其输送到提升管16中。可将催化剂的第一和第二部分在混合器14中混合,然后引入到提升管16中。可将再循环的催化剂部分从汽提区38取出并传送至混合器14。循环导管22将离开汽提区38的其烃类经蒸汽汽提的结焦催化剂的第一部分作为循环催化剂部分以通过控制阀24调节的速率传送回到混合器14。将结焦的、汽提的催化剂的第二部分以通过控制阀46调节的速率经结焦催化剂导管42传送回到再生区来除去焦炭。
关于该方法的再生方面,将经导管42传送至再生器12的结焦催化剂通过与含氧气体接触以按常规的方法燃烧催化剂粒子表面的焦炭。含氧气体通过入口48进入再生器12的底部并穿过催化剂的密相流化床(未示出)。主要由CO2组成、可能含有CO的烟道气从密相床向上进入再生器12的稀相。分离器诸如旋风分离器49或其它的设备除去上升的烟道气夹带的催化剂粒子,然后烟道气经出口50离开容器。催化剂粒子上的焦炭的燃烧提高了经再生器立管18取出的催化剂的温度。
再生器立管18将再生催化剂从再生器12以通过控制阀20调节的速率传送到混合器14中。在该混合器中再生催化剂与通过循环导管22来自分离器10的循环催化剂混合。经导管26传送至混合器14的流化气体接触催化剂并将催化剂保持在流化态以混合循环的和再生的催化剂。
根据再生器的温度和结焦催化剂的循环速率,将相对较热的再生催化剂用相对较冷的未再生的结焦催化剂冷却以使得再生催化剂的温度降低28℃或更多,优选28°至83℃(50°至150°F)。我们已发现,减少催化剂与原料的接触可以增加轻质烯烃的收率、降低干气的收率。在FCC操作中目前使用的提高转化率的其它方法引起不良的结焦和干气的选择性。
接触原料的混合催化剂的量将随着再生催化剂的温度和构成混合催化剂的成分中循环与再生催化剂的比率而进行变化。术语“混合催化剂”是指节接触原料的固体总量并包括来自再生器12的再生催化剂和来自该工艺过程的反应器的循环催化剂部分。混合催化剂与原料的比率一般为10至50。优选混合催化剂与原料的比率为10至30,更优选15至25。催化剂与原料的比率高可以达到有利于产生轻质烯烃的最大转化率。
虽然在FCC领域内已公知增加催化剂与原料的比率将提高转化率,但是,由于在标准的FCC装置内该比率不是一个独立变量,所以不可以轻易地增加催化剂与原料的比率。相反,催化剂与原料的比率取决于装置的热平衡限度。因此,通常见到的只是相对较低的催化剂与原料的比率4-10。一种增加提升管内的催化剂与原料的比率的方法是将结焦催化剂和再生催化剂一起循环回到提升管,因为这样避免了热平衡限制。但是,这样的增加催化剂与原料的比率的方法因催化剂的结焦失活而不被期望保持较高的催化剂活性。我们的研究已表明结焦催化剂和再生催化剂的混合物相对于再生催化剂具有可比活性。因此,可以有效地利用将结焦催化剂进行循环以增加提升管中催化剂与原料的比率,由此操作可以在催化剂与原料的接触时间非常短的条件下使用被含有中孔至小孔沸石的催化剂高度稀释的催化剂来进行,同时仍保持较高的转化率。为了将主要的轻质烯烃的收率最大化,使转化率达到最大值是特别重要的。我们发现含有相对低浓度的第一催化剂成分和相对高浓度的第二催化剂成分的催化剂组合物仍具有提高的转化率和对轻质烯烃的选择性,甚至当一部分催化剂组合物结焦并且提升管的停留时间非常短时也如此。这一点是完全料想不到的。
一般地,进入混合区的循环催化剂与再生催化剂的比率将在0.1至5.0的宽范围内,更通常是0.3至3.0。优选混合催化剂含有循环催化剂与再生催化剂的比率为1∶1。返回至混合器14的循环催化剂部分上的焦炭量随着催化剂颗粒循环通过提升管的次数而变化。由于从提升管中分离出催化剂粒子是随机的,所以离开提升管的颗粒的焦炭含量通常是分散的,并且在仅一次通过提升管的颗粒的焦炭含量和已多次通过提升管的颗粒的焦炭含量之间进行变化。然而,进入再生区的结焦催化剂部分以及循环催化剂部分的平均焦炭浓度可为0.3至1.1重量%。优选的平均的焦炭浓度为0.5至1.0重量%。此外,混合催化剂组合物在接触进料之前含有至少0.1重量%的焦炭。
当使用混合器14时,催化剂部分的混合可以进行足够长的时间以达到接近热平衡。更多的关于混合器中的条件的细节在US-A-5,597,537中给出。
来自再生器立管18的再生催化剂的温度通常为677°至760℃(1250°至1400°F),更优选699°至760℃(1290°至1400°F)。循环催化剂部分的温度通常为510°至621℃(950°至1150°F)。循环的和再生的催化剂的相对比率将决定进入提升管的混合的催化剂混合物的温度。混合的催化剂混合物的温度通常约为593°至704℃(1100°至1300°F),更优选在约649℃(1200°F)下。
在较低的烃分压下的操作有利于生成轻质烯烃。因此,将提升管的压力设定在约172至241kPa(25至35psia),烃分压约为约35至172kPa(5至25psia),优选的烃分压约为69至138kPa(10至20psia)。该相对低的烃分压通过使用作为稀释剂的蒸汽至稀释剂是原料的10-55重量%、优选是原料的约15重量%的程度来达到。可以使用其它的稀释剂诸如干气来达到同等的烃分压。
在提升管的出口裂解物流的温度约为510°至621℃(950°至1150°F)。但是,我们已发现提升管的出口温度高于566℃(1050°F)将生成更多的干气和略多的烯烃。然而,提升管的出口温度低于566℃(1050°F)将生成更少的乙烯和丙烯。因此,提升管温度在538℃(1000°F)至593℃(1100°F)之间较好,在1050°F周围的温度是最佳的。
                        实施例1
我们进行了一项研究以确定在含有大量的小孔至中孔沸石成分的催化剂组合物的存在下以及在催化剂接触原料的温度代表循环催化剂体系的工艺过程系统中减小提升管接触时间的影响的益处。研究在FCC提升管操作中在有利于得到更高收率的轻质烯烃的条件下进行。试验采取了三个提升管的停留时间:2.5秒、1.5秒和0.7秒来进行。在FCC过程中,提升管在141kPa(20.5psia)、再生器温度约为654℃(1210°F)、出口温度为566℃(1050°F)、原料温度约为121℃(250°F)、提升管的烃分压约为76kPa(11psia)以及催化剂与原料的比率约为28的条件下运转。原料是高硫柴油,催化剂组合物是80重量%OctacatTM(一种Y-型沸石催化剂成分)和20重量%添加剂(含有约25重量%ST-5中孔沸石)的混合物。选择该研究中报道的在37℃的转化率以显示对轻质烃类的转化率、而不是显示转化成石脑油的标准的FCC转化(221℃)。将提升管中每一个停留时间的结果列于表I中。
                        表I
  提升管的停留时间(秒)
  0.7   1.5   2.5
  干气H2-C2(重量%)   2.29   2.78   4.11
  乙烯(重量%)   5.96   6.88   6.02
  丙烯(重量%)   21.64   22.30   19.36
  丁烯(重量%)   14.12   13.41   12.56
  在37℃下的转化率(重量%)   60.4   62.4   58.1
提升管中的停留时间从2.5秒减至0.7秒使得丙烯的收率相对增加12%,相应的干气的收率相对降低44%。这相当于丙烯的绝对收率提高2.3重量%,干气的绝对收率降低1.8重量%。提升管中的停留时间从2.5秒减至1.5秒使得丙烯的收率相对提高15%,相应的干气的收率相对降低了32%。乙烯的产量在1.5秒的提升管停留时间内增加并且在0.7秒的提升管停留时间内降低。另外,丁烯的产量随着提升管内的停留时间的减小而增加。出乎意料地是,2.5秒的停留时间实际上比更短的时间1.5或0.7秒具有更低的转化率。我们将这种转化率的下降归因于副反应诸如生成高分子量的成分的烯烃低聚反应的减少。因此,在较低的提升管停留时间下某些收率上的优点是由于提升管中保留了烯烃,所述的烯烃不仅可以增加烯烃的收率,而且通过防止沸点高于37℃的物质的重整来维持转化率。我们认为,当提升管的停留时间从1.5秒降至0.7秒时观察到的转化率的下降是由于裂解时间不足,尽管转化率因形成大分子的副反应减少而仍然高于在2.5秒所得到的转化率。
                        实施例2
本发明的一个益处是将结焦催化剂循环并将其与再生催化剂混合可以将进入提升管的催化剂的温度降低28°至83℃(50°至150°F),随再生器的温度和结焦催化剂的循环速率而定。本发明进行了研究来确定在其中含有高浓度的中孔沸石的催化剂的系统中在较短的提升管停留时间下降低接触原料的催化剂温度的影响。在649℃(1200°F)和732℃(1350°F)下观察到接触原料的催化剂温度的影响,其中催化剂组合物含有20重量%添加剂(含有约25重量%ST-5中孔沸石)和80重量%OctacatTM(含有Y-型沸石的催化剂)。试验在压力为141kPa(20.5psia)、烃分压为76kPa(11psia)、提升管出口温度为566℃(1050°F)、原料温度为149℃(300°F)以及提升管的接触时间为1.5秒的条件下进行。使用的原料是78重量%直馏柴油和12重量%常压瓦斯油的混合物。选择较高的催化剂温度732℃(1350°F)来代表标准的FCC再生器的温度。与较热的催化剂入口温度732℃(1350°F)所使用的催化剂与原料的比率为12相比,较低的催化剂入口温度649℃(1200°F)使得催化剂与原料的比率为28。由于在这两种情况下均将提升管的出口温度保持在566℃(1050°F),所以降低催化剂的入口温度迫使操作在提升管中催化剂与原料的比率升高的条件下进行。将含量为60重量%的惰性催化剂与含量为40重量%的OctacatTM催化剂混合以降低催化剂的温度,从而减小催化剂活性比并得到可以与更高的催化剂温度下得到的转化率相比较的转化率。再一次选择该研究中报道的在37℃的转化率以显示对轻质烃类的转化率、而不是显示转化成石脑油的标准的FCC转化(221℃)。结果表示在表II中。
                      表II
           催化剂的温度
  732℃(1350°F)   649℃(1200°F)
 催化剂与原料的比率   12   28
 惰性催化剂(重量%)   0   60
 干气(重量%)   4.07   2.97
 乙烯(重量%)   5.31   5.31
 丙烯(重量%)   16.97   20.69
 丁烯(重量%)   12.67   14.52
 汽油(重量%)   26.32   22.98
 在37℃下的转化率(重量%)   54.6   55.6
将催化剂的温度对丙烯收率的影响进行比较的结果表明将催化剂的入口温度降低66℃(150°F)导致丙烯的相对收率增加22%、绝对收率增加3.7重量%。另外,在催化剂的入口温度降低的条件下,丁烯的相对收率增加15%、绝对收率增加1.9重量%,并且干气的相对收率降低27%、绝对收率降低1.1重量%。较低的催化剂温度的转化率也提高了。
                        实施例3
我们对完全再生的催化剂和含有50重量%结焦催化剂和50重量%再生催化剂的混合物进行了比较。试验在循环提升管的中试装置中进行,该装置能够将结焦催化剂和再生催化剂循环回到提升管。再生催化剂上的焦炭量是约0.01重量%,然而在50/50的结焦/再生催化剂混合物上的焦炭量为0.27至0.35重量%。在研究中使用的原料是沸点范围为274℃至573℃(526至1063°F)的西德克萨斯中度真空瓦斯油。使用的催化剂是常用的含有称作OrionTM(由W.R.Grace & Co.生产)的FCC催化剂的Y-型沸石,该催化剂先前被用于商业的FCC装置以保证达到平衡活性。主要的提升管中试装置的试验均在提升管的出口温度为515℃(960°F)、提升管的压力为241.3kPa(35psia)的条件下进行。
出乎意料地是,图2所示的这些试验的结果说明完全再生的催化剂和含有50重量%循环的结焦催化剂和50重量%完全再生的催化剂具有可比活性。在提升管中试验过的催化剂与油的比率的宽范围内,观察到了原料生成汽油或轻质物质(221℃(430°F))的类似转化。在这些试验中评价的催化剂不含任何的小孔至中孔的沸石。这些小孔沸石具有较高的耐结焦性。因此,我们期望它们在不经再生循环时能够保持活性。
                        实施例4
我们还进行了另一种研究来比较在改变含有ZSM-5的添加剂成分的浓度下的原料转化率。这些试验在提升管的中试装置中使用沸点范围为239℃至472℃(463至882°F)的柴油/常压瓦斯油的混合物(78%/22%)来进行。催化剂组合物包括OctacatTM、Y-型沸石、为保证平衡活性而从商用FCC装置取出的标准的FCC催化剂和Olefins MaxTM(W.R.Grace & Co.生产的的一种添加剂(含有25重量%ZSM-5))。添加剂的量在0至40%内变化。所有试验均在催化剂与原料的比率约为28、提升管的出口温度为566℃(1050°F)、提升管的分压为79.3kPa(11.5psia)以及提升管中原料与催化剂的接触时间为1.5秒的条件下进行。
令人感兴趣地是,我们发现将添加剂增加至非常高的含量对沸点低于37℃(98°F)的轻质物质的转化率仅有很低的影响。数据表示在表III中。尽管当添加剂的量从10增加至40重量%时转化率确实从61.9稍微下降至60.0重量%,但是数据表明标准的FCC催化剂(Y-型沸石)的活性甚至在高度稀释以后也被良好地保持。由于ZSM-5添加剂只能裂解轻质的石脑油范围的分子,所以人们曾认为ZSM-5的加入在升高的含量下会显著地降低原料的转化率。我们的试验表明在非常高的中孔沸石添加剂含量以及较短的催化剂与原料的接触时间下使用高于常用的催化剂与原料的比率可以达到显著的原料转化率。
                               表III
  添加剂的量(重量%)   0   10   20   30   40
  在98F的转化率(重量%)   59.2   61.9   61.3   60.8   60.0
  焦炭(重量%)   3.51   2.78   2.46   2.30   1.88
  干气(重量%)   3.36   3.16   3.18   2.71   2.83
  乙烯(重量%)   2.80   5.01   5.61   6.15   7.51
  丙烯(重量%)   16.21   20.32   20.78   21.33   21.73
  丁烯(重量%)   14.55   14.43   14.18   13.67   12.97

Claims (10)

1.一种用于流化催化裂化烃类原料流以得到轻质烯烃的方法,所述的方法包括:
将烃类原料流与含有再生催化剂和结焦催化剂的混合催化剂接触,所述的催化剂是包括第一种成分和第二种成分的催化剂组合物,所述的第一种成分含有一种大孔分子筛,所述的第二种成分含有具有不大于中等孔径的沸石,所述的具有不大于中等孔径的沸石至少占催化剂组合物的1.0重量%,所述的接触在提升管(16)进行以裂解所述原料流中的烃类,得到含有包括轻质烯烃的烃类产物和结焦催化剂的裂解物流;
将所述的裂解物流从所述提升管(16)的末端(30)进行传送,使得所述的烃类原料流与混合催化剂在提升管(16)中的接触时间平均小于或等于2秒;
将包括轻质烯烃的所述的烃类产物与所述的结焦催化剂相分离;
将所述的结焦催化剂的第一部分传送至再生区(12)并燃烧所述的催化剂上的焦炭以生成再生催化剂,所述的再生催化剂基本上具有与接触烃类原料流的混合催化剂相同的第一种成分和第二种成分的相对比率;
将所述的结焦催化剂的第二部分与所述的再生催化剂相混合以制备混合催化剂;并且
将所述的混合催化剂引入到所述的提升管(16)中。
2、根据权利要求1所述的方法,其中所述的第一催化剂成分在催化剂组合物中的量不大于80重量%。
3、根据权利要求1所述的方法,其中所述的分子筛选自X型沸石和Y型沸石。
4、根据权利要求1所述的方法,其中将所述的结焦催化剂的所述的第二部分和所述的再生催化剂在提升管(16)的外部混合,再接触所述的原料流。
5、根据权利要求1所述的方法,其中在所述的提升管(16)中所述烃类的所述分压小于或等于172kPa。
6.根据权利要求1所述的方法,其中在所述的提升管(16)中在原料流中稀释剂的量大于或等于10重量%。
7.根据权利要求1所述的方法,其中在提升管(16)中催化剂与原料的比率大于或等于10。
8.根据权利要求1所述的方法,其中在提升管(16)中结焦催化剂与再生催化剂的比率为0.3至3.0。
9.根据权利要求1所述的方法,其中在提升管(16)的顶端裂解物流的温度为510°至621℃。
10.根据权利要求1所述的方法,其中在初始温度为621°至677℃的条件下将烃类原料流与混合催化剂接触,其中混合催化剂的温度比来自再生区(12)的再生催化剂的温度低28℃或更多。
CNB018204929A 2000-11-13 2001-11-13 轻质烯烃的收率得到提高的流化催化裂化方法 Expired - Fee Related CN1228418C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/711,576 US6538169B1 (en) 2000-11-13 2000-11-13 FCC process with improved yield of light olefins
US09/711,576 2000-11-13

Publications (2)

Publication Number Publication Date
CN1527874A CN1527874A (zh) 2004-09-08
CN1228418C true CN1228418C (zh) 2005-11-23

Family

ID=24858634

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018204929A Expired - Fee Related CN1228418C (zh) 2000-11-13 2001-11-13 轻质烯烃的收率得到提高的流化催化裂化方法

Country Status (9)

Country Link
US (2) US6538169B1 (zh)
EP (1) EP1414930B1 (zh)
CN (1) CN1228418C (zh)
AT (1) ATE381604T1 (zh)
AU (1) AU2002228803A1 (zh)
CA (1) CA2428147C (zh)
DE (1) DE60132024T2 (zh)
ES (1) ES2298282T3 (zh)
WO (1) WO2002038700A2 (zh)

Families Citing this family (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835302B2 (en) * 2001-03-23 2004-12-28 Uop Llc FCC process and apparatus with automatic catalyst recycle control
US20050100494A1 (en) 2003-11-06 2005-05-12 George Yaluris Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
US20050100493A1 (en) * 2003-11-06 2005-05-12 George Yaluris Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
US20050161369A1 (en) 2004-01-23 2005-07-28 Abb Lummus Global, Inc. System and method for selective component cracking to maximize production of light olefins
US7304011B2 (en) * 2004-04-15 2007-12-04 W.R. Grace & Co. -Conn. Compositions and processes for reducing NOx emissions during fluid catalytic cracking
US20050232839A1 (en) * 2004-04-15 2005-10-20 George Yaluris Compositions and processes for reducing NOx emissions during fluid catalytic cracking
US7589041B2 (en) 2004-04-23 2009-09-15 Massachusetts Institute Of Technology Mesostructured zeolitic materials, and methods of making and using the same
TWI395614B (zh) * 2004-08-02 2013-05-11 Grace W R & Co 用於減低流體觸媒裂解期間之NOx排放之鎂鹼沸石
US7582203B2 (en) 2004-08-10 2009-09-01 Shell Oil Company Hydrocarbon cracking process for converting gas oil preferentially to middle distillate and lower olefins
RU2399648C2 (ru) * 2004-08-10 2010-09-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ для получения среднедистиллятного продукта и низших олефинов из углеводородного сырья и устройство для его осуществления
SG169976A1 (en) * 2005-04-27 2011-04-29 Grace W R & Co Compositions and processes for reducing nox emissions during fluid catalytic cracking
US7288685B2 (en) * 2005-05-19 2007-10-30 Uop Llc Production of olefins from biorenewable feedstocks
US7868214B2 (en) * 2005-05-19 2011-01-11 Uop Llc Production of olefins from biorenewable feedstocks
US7601254B2 (en) * 2005-05-19 2009-10-13 Uop Llc Integrated fluid catalytic cracking process
US7594994B1 (en) 2005-10-06 2009-09-29 Uop Llc FCC riser residence time extension device
US20070129586A1 (en) * 2005-12-02 2007-06-07 Zimmermann Joseph E Integrated hydrocarbon cracking and product olefin cracking
CN1986505B (zh) * 2005-12-23 2010-04-14 中国石油化工股份有限公司 一种增产低碳烯烃的催化转化方法
JP4714589B2 (ja) * 2006-01-20 2011-06-29 石油コンビナート高度統合運営技術研究組合 重質油の接触分解触媒及びオレフィンと燃料油の製造方法
US20070205139A1 (en) * 2006-03-01 2007-09-06 Sathit Kulprathipanja Fcc dual elevation riser feed distributors for gasoline and light olefin modes of operation
US20090124842A1 (en) * 2006-07-12 2009-05-14 Reagan William J Fcc catalyst for light olefin production
US7758817B2 (en) * 2006-08-09 2010-07-20 Uop Llc Device for contacting high contaminated feedstocks with catalyst in an FCC unit
JP5189981B2 (ja) * 2006-08-18 2013-04-24 Jx日鉱日石エネルギー株式会社 バイオマスの処理方法、燃料電池用燃料、ガソリン、ディーゼル燃料、液化石油ガス及び合成樹脂
CN101134172B (zh) * 2006-08-31 2010-10-27 中国石油化工股份有限公司 一种烃类转化催化剂
CN101134913B (zh) * 2006-08-31 2011-05-18 中国石油化工股份有限公司 一种烃类催化转化方法
US20080078692A1 (en) * 2006-09-28 2008-04-03 Wegerer David A Absorption recovery processing of FCC-produced light olefins
US7687048B1 (en) 2006-09-28 2010-03-30 Uop Llc Amine treatment in light olefin processing
US20080081938A1 (en) * 2006-09-28 2008-04-03 Schultz Michael A Absorption recovery processing of light olefins free of carbon dioxide
US7737317B1 (en) 2006-09-28 2010-06-15 Uop Llc. Fractionation recovery processing of FCC-produced light olefins
US7973209B1 (en) 2006-09-28 2011-07-05 Uop Llc Fractionation recovery processing of light olefins free of carbon dioxide
US7947860B2 (en) * 2006-09-28 2011-05-24 Uop Llc Dividing wall separation in light olefin hydrocarbon processing
WO2008055185A2 (en) * 2006-10-30 2008-05-08 Metabank Computer-based fund transmittal system and method
ES2319007B1 (es) * 2006-12-07 2010-02-16 Rive Technology, Inc. Metodos para fabricar materiales zeoliticos mesoestructurados.
US8066868B1 (en) * 2006-12-20 2011-11-29 Uop Llc Fluid catalytic cracking to produce and recover light olefins
US7589559B2 (en) * 2006-12-20 2009-09-15 Silicon Image, Inc. Current mode circuitry to modulate a common mode voltage
US7763165B1 (en) * 2006-12-21 2010-07-27 Uop Llc Fractionation recovery processing of FCC-produced light olefins
US8007661B1 (en) * 2006-12-21 2011-08-30 Uop Llc Modified absorption recovery processing of FCC-produced light olefins
US8608942B2 (en) * 2007-03-15 2013-12-17 Kellogg Brown & Root Llc Systems and methods for residue upgrading
CA2684223A1 (en) * 2007-04-13 2008-10-23 Shell International Research Maatschappij B.V. Systems and methods for making a middle distillate product and lower olefins from a hydrocarbon feedstock
KR20100017363A (ko) * 2007-04-30 2010-02-16 쉘 인터내셔날 리써취 마트샤피지 비.브이. 탄화수소 원료로 중질 증류 생성물 및 저급 올레핀을 산출하는 시스템 및 방법
US7820033B2 (en) * 2007-04-30 2010-10-26 Kellogg Brown & Root Llc Method for adjusting yields in a light feed FCC reactor
BRPI0811967B1 (pt) 2007-06-01 2023-01-17 Terravia Holdings, Inc Microalga chlorella ou prototheca e método para produção de lipídios microbianos
RU2474606C2 (ru) * 2007-10-10 2013-02-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Системы и способы получения средних дистиллятов и низших олефинов из углеводородного сырья
US8206498B2 (en) * 2007-10-25 2012-06-26 Rive Technology, Inc. Methods of recovery of pore-forming agents for mesostructured materials
US7795486B2 (en) * 2007-10-26 2010-09-14 Uop Llc Integrated production of FCC-produced C3 and cumene
BRPI0704422A2 (pt) * 2007-10-29 2009-06-23 Petroleo Brasileiro Sa sistema catalìtico e aditivo para maximização de olefinas leves em unidades de craqueamento catalìtico fluido em operações de baixa severidade
US8080698B2 (en) * 2007-10-30 2011-12-20 Kellogg Brown & Root Llc Method for olefin production from butanes and cracking refinery hydrocarbons and alkanes
US20090112030A1 (en) * 2007-10-30 2009-04-30 Eng Curtis N Method for olefin production from butanes
US20090112032A1 (en) * 2007-10-30 2009-04-30 Eng Curtis N Method for olefin production from butanes and cracking refinery hydrocarbons
US20090112031A1 (en) * 2007-10-30 2009-04-30 Eng Curtis N Method for olefin production from butanes using a catalyst
US7981256B2 (en) * 2007-11-09 2011-07-19 Uop Llc Splitter with multi-stage heat pump compressor and inter-reboiler
US7943038B2 (en) * 2008-01-29 2011-05-17 Kellogg Brown & Root Llc Method for producing olefins using a doped catalyst
KR101606496B1 (ko) * 2008-03-13 2016-03-25 차이나 페트로리움 앤드 케미컬 코포레이션 저급 원료유로부터 경질 연료를 제조하는 방법
US8349170B2 (en) 2008-05-14 2013-01-08 Exxonmobil Research And Engineering Company FCC reactor and riser design for short contact-time catalytic cracking of hydrocarbons
BRPI0802222B1 (pt) * 2008-06-03 2022-01-04 Petróleo Brasileiro S.A. - Petrobras Processo para produzir olefinas leves a partir de uma carga contendo triglicerídeos
WO2010002792A2 (en) 2008-06-30 2010-01-07 Kior, Inc. Co-processing solid biomass in a conventional petroleum refining process unit
US8003835B2 (en) * 2008-10-27 2011-08-23 Kior Inc. Biomass conversion process
US20100101273A1 (en) * 2008-10-27 2010-04-29 Sechrist Paul A Heat Pump for High Purity Bottom Product
US8182654B2 (en) * 2008-10-27 2012-05-22 Uop Llc Heat pump for high purity bottom product
US8137632B2 (en) * 2008-11-04 2012-03-20 Kior, Inc. Biomass conversion process
MX2011005630A (es) 2008-11-28 2011-09-28 Solazyme Inc Producción de aceites específicos en microorganismos heterótroficos recombinantes.
US8137631B2 (en) * 2008-12-11 2012-03-20 Uop Llc Unit, system and process for catalytic cracking
US8007728B2 (en) * 2008-12-11 2011-08-30 Uop Llc System, apparatus, and process for cracking a hydrocarbon feed
US8940955B2 (en) * 2008-12-19 2015-01-27 Uop Llc Fluid catalytic cracking system and process
US8246914B2 (en) * 2008-12-22 2012-08-21 Uop Llc Fluid catalytic cracking system
US8889076B2 (en) * 2008-12-29 2014-11-18 Uop Llc Fluid catalytic cracking system and process
US8486369B2 (en) 2009-01-19 2013-07-16 Rive Technology, Inc. Introduction of mesoporosity in low Si/Al zeolites
US8524625B2 (en) 2009-01-19 2013-09-03 Rive Technology, Inc. Compositions and methods for improving the hydrothermal stability of mesostructured zeolites by rare earth ion exchange
ES2343937B1 (es) * 2009-01-29 2011-06-03 Uop Llc Catalizador fcc para produccion de olefinas ligeras.
US8124822B2 (en) * 2009-03-04 2012-02-28 Uop Llc Process for preventing metal catalyzed coking
US8124020B2 (en) * 2009-03-04 2012-02-28 Uop Llc Apparatus for preventing metal catalyzed coking
US9284495B2 (en) * 2009-03-20 2016-03-15 Uop Llc Maintaining catalyst activity for converting a hydrocarbon feed
RU2405622C2 (ru) 2009-03-23 2010-12-10 Владимир Андреевич Бушуев Лопаточный реактор для пиролиза углеводородов
US20100243528A1 (en) * 2009-03-30 2010-09-30 Bell Leonard E Method and system relating to a wet gas compressor
US8748681B2 (en) * 2009-03-31 2014-06-10 Uop Llc Process for oligomerizing dilute ethylene
US8575410B2 (en) * 2009-03-31 2013-11-05 Uop Llc Process for oligomerizing dilute ethylene
MX2011010303A (es) * 2009-03-31 2011-10-11 Uop Llc Proceso para oligomerizar etileno diluido.
US8685875B2 (en) 2009-10-20 2014-04-01 Rive Technology, Inc. Methods for enhancing the mesoporosity of zeolite-containing materials
US8231847B2 (en) * 2009-11-09 2012-07-31 Uop Llc Apparatus for recovering FCC product
US8414763B2 (en) * 2009-11-09 2013-04-09 Uop Llc Process for recovering FCC product
US8506891B2 (en) * 2009-11-09 2013-08-13 Uop Llc Apparatus for recovering products from two reactors
US8354018B2 (en) * 2009-11-09 2013-01-15 Uop Llc Process for recovering products from two reactors
US8702971B2 (en) 2010-03-31 2014-04-22 Uop Llc Process and apparatus for alkylating and hydrogenating a light cycle oil
US9126174B2 (en) 2010-03-31 2015-09-08 Uop Llc Hydroprocessing method, or an apparatus relating thereto
US9433912B2 (en) 2010-03-31 2016-09-06 Indian Oil Corporation Limited Process for simultaneous cracking of lighter and heavier hydrocarbon feed and system for the same
US8415264B2 (en) * 2010-04-30 2013-04-09 Uop Llc Process for regenerating catalyst in a fluid catalytic cracking unit
US8604260B2 (en) 2010-05-18 2013-12-10 Kior, Inc. Biomass pyrolysis conversion process with high olefin production and upgrade
SG10201504197SA (en) 2010-05-28 2015-06-29 Solazyme Inc Food Compositions Comprising Tailored Oils
US8506795B2 (en) 2010-06-04 2013-08-13 Uop Llc Process for fluid catalytic cracking
CN102453501B (zh) * 2010-10-26 2014-01-15 中国石油化工股份有限公司 一种烃油转化方法
CN102453502B (zh) * 2010-10-26 2014-01-15 中国石油化工股份有限公司 烃油转化方法
US9017428B2 (en) 2010-11-16 2015-04-28 Kior, Inc. Two-stage reactor and process for conversion of solid biomass material
US8747654B2 (en) 2010-12-03 2014-06-10 Uop Llc Process for recovering catalytic product
EP3643774A1 (en) 2011-02-02 2020-04-29 Corbion Biotech, Inc. Tailored oils produced from recombinant oleaginous microorganisms
US9101854B2 (en) 2011-03-23 2015-08-11 Saudi Arabian Oil Company Cracking system and process integrating hydrocracking and fluidized catalytic cracking
US9101853B2 (en) 2011-03-23 2015-08-11 Saudi Arabian Oil Company Integrated hydrocracking and fluidized catalytic cracking system and process
AU2012240093B2 (en) 2011-04-08 2015-06-11 W. R. Grace & Co.-Conn. Mesoporous framework-modified zeolites
US20120312722A1 (en) * 2011-06-10 2012-12-13 Uop, Llc Process for fluid catalytic cracking
WO2013019512A1 (en) 2011-07-29 2013-02-07 Saudi Arabian Oil Company Integrated selective hydrocracking and fluid catalytic cracking process
US9227181B2 (en) 2011-09-13 2016-01-05 Basf Corporation Catalyst to increase propylene yields from a fluid catalytic cracking unit
US8993824B2 (en) 2011-09-28 2015-03-31 Uop Llc Fluid catalytic cracking process
US8747759B2 (en) 2011-12-12 2014-06-10 Uop Llc Process and apparatus for mixing two streams of catalyst
US8747758B2 (en) 2011-12-12 2014-06-10 Uop Llc Process and apparatus for mixing two streams of catalyst
US8747657B2 (en) 2011-12-12 2014-06-10 Uop Llc Process and apparatus for mixing two streams of catalyst
US8815082B2 (en) 2011-12-12 2014-08-26 Uop Llc Process and apparatus for mixing two streams of catalyst
CA2862414C (en) 2012-01-06 2020-07-07 Kior, Inc. Two-stage reactor and process for conversion of solid biomass material
CN103930369A (zh) 2012-01-13 2014-07-16 瑞弗科技有限公司 低硅沸石的中孔隙率的引入
US9376324B2 (en) 2012-01-13 2016-06-28 Rive Technology, Inc. Introduction of mesoporosity into zeolite materials with sequential acid, surfactant, and base treatment
CA3092028C (en) 2012-01-13 2022-08-30 Lummus Technology Llc Process for separating hydrocarbon compounds
US8691077B2 (en) 2012-03-13 2014-04-08 Uop Llc Process for converting a hydrocarbon stream, and optionally producing a hydrocracked distillate
US8815166B2 (en) 2012-03-20 2014-08-26 Uop Llc Process and apparatus for mixing two streams of catalyst
US9375695B2 (en) 2012-03-20 2016-06-28 Uop Llc Process and apparatus for mixing two streams of catalyst
US9228140B2 (en) 2012-03-20 2016-01-05 Saudi Arabian Oil Company Integrated hydroprocessing, steam pyrolysis and catalytic cracking process to produce petrochemicals from crude oil
US8936758B2 (en) 2012-03-20 2015-01-20 Uop Llc Process and apparatus for mixing two streams of catalyst
US8916099B2 (en) 2012-03-20 2014-12-23 Uop Llc Process and apparatus for mixing two streams of catalyst
US8864979B2 (en) 2012-03-21 2014-10-21 Uop Llc Process and apparatus for fluid catalytic cracking
CN103360197B (zh) * 2012-03-30 2015-07-01 中国石油化工股份有限公司 一种c4-c8烯烃高选择性生产丙烯的方法
EP3550025A1 (en) 2012-04-18 2019-10-09 Corbion Biotech, Inc. Tailored oils
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
US9745519B2 (en) 2012-08-22 2017-08-29 Kellogg Brown & Root Llc FCC process using a modified catalyst
WO2014089479A1 (en) 2012-12-07 2014-06-12 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US9816079B2 (en) 2013-01-29 2017-11-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US9567615B2 (en) 2013-01-29 2017-02-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US8765660B1 (en) 2013-03-08 2014-07-01 Rive Technology, Inc. Separation of surfactants from polar solids
US9290749B2 (en) 2013-03-15 2016-03-22 Solazyme, Inc. Thioesterases and cells for production of tailored oils
US9783836B2 (en) 2013-03-15 2017-10-10 Terravia Holdings, Inc. Thioesterases and cells for production of tailored oils
US9370758B2 (en) 2013-03-26 2016-06-21 Uop Llc Process for transferring catalyst and an apparatus relating thereto
WO2014176515A2 (en) 2013-04-26 2014-10-30 Solazyme, Inc. Low polyunsaturated fatty acid oils and uses thereof
US10053715B2 (en) 2013-10-04 2018-08-21 Corbion Biotech, Inc. Tailored oils
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
WO2015084779A1 (en) 2013-12-02 2015-06-11 Saudi Arabian Oil Company Integrated solvent-deasphalting and fluid catalytic cracking process for light olefin production
US9662640B2 (en) 2013-12-27 2017-05-30 Rive Technology, Inc. Introducing mesoporosity into zeolite materials with a modified acid pre-treatment step
CA3123783A1 (en) 2014-01-08 2015-07-16 Lummus Technology Llc Ethylene-to-liquids systems and methods
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CA3225180A1 (en) 2014-01-09 2015-07-16 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US9205394B2 (en) 2014-03-31 2015-12-08 Uop Llc Process and apparatus for distributing fluidizing gas to an FCC riser
US9376633B2 (en) 2014-03-31 2016-06-28 Uop Llc Process and apparatus for distributing fluidizing gas to an FCC riser
US10357761B2 (en) 2014-05-22 2019-07-23 Saudi Arabian Oil Company Catalyst for fluidized catalytic cracking and method for fluidized catalytic cracking
EP3172320B1 (en) 2014-07-24 2019-11-20 Corbion Biotech, Inc. Variant thioesterases and methods of use
BR112017005370A2 (pt) 2014-09-18 2017-12-12 Terravia Holdings Inc acil-acp tioesterases e mutantes das mesmas
CN107001056B (zh) 2014-12-11 2019-04-02 瑞弗科技有限公司 以减少的处理制备介孔沸石
US9468897B2 (en) 2014-12-19 2016-10-18 Uop Llc Process and apparatus for improving light olefin yield from a fluid catalytic cracking process
US10626019B2 (en) 2014-12-30 2020-04-21 W. R. Grace & Co.-Conn. Methods for preparing zeolites with surfactant-templated mesoporosity and tunable aluminum content
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
JP2018512851A (ja) 2015-04-06 2018-05-24 テラヴィア ホールディングス, インコーポレイテッド Lpaatアブレーションを有する油産生微細藻類
US20160362613A1 (en) * 2015-06-09 2016-12-15 Exxonmobil Research And Engineering Company Fluid catalytic cracking with supplemental heat
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US9777228B2 (en) * 2015-06-30 2017-10-03 Uop Llc Process for cracking hydrocarbons to make diesel
WO2017003788A1 (en) 2015-06-30 2017-01-05 Uop Llc Process and apparatus for selectively hydrogenating diolefins
EP3786138A1 (en) 2015-10-16 2021-03-03 Lummus Technology LLC Oxidative coupling of methane
WO2017180910A1 (en) 2016-04-13 2017-10-19 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
WO2018053110A1 (en) 2016-09-16 2018-03-22 Lummus Technology Inc. Fluid catalytic cracking process and apparatus for maximizing light olefin yield and other applications
KR102278856B1 (ko) 2016-09-16 2021-07-19 루머스 테크놀로지 엘엘씨 유동 촉매 분해 공정에의 오염물질 향상된 제거를 위한 공정 및 장치
US10758883B2 (en) 2016-09-16 2020-09-01 Lummus Technology Llc Fluid catalytic cracking process and apparatus for maximizing light olefin yield and other applications
US10626339B2 (en) 2016-09-20 2020-04-21 Uop Llc Process and apparatus for recycling cracked hydrocarbons
JP2020500966A (ja) 2016-11-21 2020-01-16 サウジ アラビアン オイル カンパニー 水蒸気分解、流動接触分解、及びナフサから濃化学物質改質油への転化を統合した、原油を石油化学製品及び燃料製品に転化するためのプロセス及びシステム
US20180142167A1 (en) 2016-11-21 2018-05-24 Saudi Arabian Oil Company Process and system for conversion of crude oil to chemicals and fuel products integrating steam cracking and fluid catalytic cracking
CN110072972B (zh) 2016-12-13 2022-07-12 沙特基础工业全球技术公司 在使用干气稀释剂的循环再生工艺中用于轻质烯烃制备的石脑油催化裂化
WO2018118105A1 (en) 2016-12-19 2018-06-28 Siluria Technologies, Inc. Methods and systems for performing chemical separations
ES2960342T3 (es) 2017-05-23 2024-03-04 Lummus Technology Inc Integración de procedimientos de acoplamiento oxidativo del metano
US10870802B2 (en) 2017-05-31 2020-12-22 Saudi Arabian Oil Company High-severity fluidized catalytic cracking systems and processes having partial catalyst recycle
EP3649097A4 (en) 2017-07-07 2021-03-24 Lummus Technology LLC SYSTEMS AND PROCESSES FOR THE OXIDATIVE COUPLING OF METHANE
US10781377B2 (en) 2017-11-30 2020-09-22 Uop Llc Process and apparatus for cracking hydrocarbons to lighter hydrocarbons
US10889768B2 (en) 2018-01-25 2021-01-12 Saudi Arabian Oil Company High severity fluidized catalytic cracking systems and processes for producing olefins from petroleum feeds
CN110724550B (zh) 2018-07-16 2021-04-06 中国石油化工股份有限公司 一种采用快速流化床进行催化裂解的方法和系统
CN110724553B (zh) 2018-07-16 2021-04-06 中国石油化工股份有限公司 一种采用稀相输送床与快速流化床进行催化裂解的方法和系统
US11173482B2 (en) 2019-05-28 2021-11-16 Saudi Arabian Oil Company Combustion of spent adsorbents containing HPNA compounds in FCC catalyst regenerator
US11220637B2 (en) 2019-10-30 2022-01-11 Saudi Arabian Oil Company System and process for steam cracking and PFO treatment integrating selective hydrogenation and FCC
US11220640B2 (en) 2019-10-30 2022-01-11 Saudi Arabian Oil Company System and process for steam cracking and PFO treatment integrating selective hydrogenation, FCC and naphtha reforming
US11230672B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking
US11434432B2 (en) 2020-09-01 2022-09-06 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a greater boiling point fraction with steam
US11230673B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a lesser boiling point fraction with steam
US11332680B2 (en) 2020-09-01 2022-05-17 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of lesser and greater boiling point fractions with steam
US11352575B2 (en) 2020-09-01 2022-06-07 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize hydrotreating of cycle oil
US11505754B2 (en) 2020-09-01 2022-11-22 Saudi Arabian Oil Company Processes for producing petrochemical products from atmospheric residues
US11242493B1 (en) 2020-09-01 2022-02-08 Saudi Arabian Oil Company Methods for processing crude oils to form light olefins
CN113621400B (zh) * 2021-09-03 2023-01-17 中国石油化工股份有限公司 烃类原料的裂解方法
EP4230710A1 (en) 2022-02-21 2023-08-23 Indian Oil Corporation Limited Production of high yields of light olefins from heavy hydrocarbons
US11566185B1 (en) 2022-05-26 2023-01-31 Saudi Arabian Oil Company Methods and catalysts for cracking hydrocarbon oil

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888762A (en) 1972-10-12 1975-06-10 Universal Oil Prod Co Fluid catalytic cracking process
US4440629A (en) * 1982-09-13 1984-04-03 Uop Inc. Hydrocarbon hydrocracking process
US4871446A (en) 1986-09-03 1989-10-03 Mobil Oil Corporation Catalytic cracking process employing mixed catalyst system
US4990314A (en) 1986-09-03 1991-02-05 Mobil Oil Corporation Process and apparatus for two-phase fluid catalytic cracking system
US4853105A (en) 1986-09-03 1989-08-01 Mobil Oil Corporation Multiple riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
US4787967A (en) 1986-09-03 1988-11-29 Mobil Oil Corporation Process for two-phase fluid catalytic cracking system
US4717466A (en) 1986-09-03 1988-01-05 Mobil Oil Corporation Multiple riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
CN1004878B (zh) 1987-08-08 1989-07-26 中国石油化工总公司 制取低碳烯烃的烃类催化转化方法
US5372704A (en) 1990-05-24 1994-12-13 Mobil Oil Corporation Cracking with spent catalyst
US5997728A (en) 1992-05-04 1999-12-07 Mobil Oil Corporation Catalyst system for maximizing light olefin yields in FCC
US5389232A (en) 1992-05-04 1995-02-14 Mobil Oil Corporation Riser cracking for maximum C3 and C4 olefin yields
CA2103230C (en) * 1992-11-30 2004-05-11 Paul E. Eberly, Jr. Fluid catalytic cracking process for producing light olefins
US5296131A (en) 1992-12-02 1994-03-22 Mobil Oil Corporation Process for short contact time cracking
US5346613A (en) 1993-09-24 1994-09-13 Uop FCC process with total catalyst blending
FI98529C (fi) 1994-03-31 1997-07-10 Neste Oy Menetelmä ja laitteisto keveiden olefiinien valmistamiseksi
US6010618A (en) 1997-12-05 2000-01-04 Uop Llc FCC process with two zone short contact time reaction conduit
US5858207A (en) 1997-12-05 1999-01-12 Uop Llc FCC process with combined regenerator stripper and catalyst blending
US5965012A (en) 1997-12-05 1999-10-12 Uop Llc FCC process with short primary contacting and controlled secondary contacting
US6106697A (en) 1998-05-05 2000-08-22 Exxon Research And Engineering Company Two stage fluid catalytic cracking process for selectively producing b. C.su2 to C4 olefins
JP2002530514A (ja) 1998-11-24 2002-09-17 モービル・オイル・コーポレイション オレフィン製造のための接触分解
US20020003103A1 (en) 1998-12-30 2002-01-10 B. Erik Henry Fluid cat cracking with high olefins prouduction

Also Published As

Publication number Publication date
US6538169B1 (en) 2003-03-25
CA2428147A1 (en) 2002-05-16
US20030121825A1 (en) 2003-07-03
ES2298282T3 (es) 2008-05-16
EP1414930A2 (en) 2004-05-06
AU2002228803A1 (en) 2002-05-21
EP1414930B1 (en) 2007-12-19
DE60132024D1 (de) 2008-01-31
ATE381604T1 (de) 2008-01-15
CN1527874A (zh) 2004-09-08
WO2002038700A3 (en) 2004-02-19
CA2428147C (en) 2011-08-30
DE60132024T2 (de) 2008-12-04
WO2002038700A2 (en) 2002-05-16
US7312370B2 (en) 2007-12-25

Similar Documents

Publication Publication Date Title
CN1228418C (zh) 轻质烯烃的收率得到提高的流化催化裂化方法
US6222087B1 (en) Catalytic production of light olefins rich in propylene
CN100349837C (zh) 用于烯烃的综合催化裂化和蒸汽热解方法
US5456821A (en) Catalytic conversion with improved catalyst
US5348643A (en) Catalytic conversion with improved catalyst
CN1123623C (zh) 油的流化催化裂化法
JP5180218B2 (ja) 軽質オレフィン系炭化水素処理における隔壁分離
CN1831091A (zh) 用于升级fcc产品的带有具有充分混合功能的附加反应器的设备
US9227167B2 (en) Process for cracking a hydrocarbon feed
CN1756829A (zh) 在流化催化裂化装置中c6循环用于生产丙烯
CN1423689A (zh) 掺入择形沸石催化剂的循环油转化方法
CN1422327A (zh) 改进的循环油转化方法
CN1910264A (zh) 选择成分裂化以使轻质烯烃的生产最大化的系统和方法
CN1423686A (zh) 循环油和催化石脑油的混合物再裂化使轻烯烃产率最大
CN109666505A (zh) 一种催化裂解的工艺和系统
CN1281722C (zh) 利用c4-c6馏分生产轻质烯烃的催化转化方法
CN1212372C (zh) 一种利用c4馏分增产小分子烯烃的催化转化方法
CN1223653C (zh) 用于提高汽油中心馏分质量的流化催化裂化方法
CN1159416C (zh) 一种制取乙烯和丙烯的催化转化方法
CN1208435C (zh) 一种制取异丁烷和富含异构烷烃汽油的催化转化方法
Bulatov et al. FCC process of heavy feed stock with improved yield of light olefins
JPH01132689A (ja) オクタン価増加方法
CN115895710A (zh) 一种生产低碳烯烃的催化转化方法及装置
CN1667090A (zh) 利用附加反应器改质fcc产物的方法
JPS63159492A (ja) 流動接触分解法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051123

Termination date: 20161113

CF01 Termination of patent right due to non-payment of annual fee