CN1230802C - 无源双极电弧控制系统和方法 - Google Patents

无源双极电弧控制系统和方法 Download PDF

Info

Publication number
CN1230802C
CN1230802C CNB011427868A CN01142786A CN1230802C CN 1230802 C CN1230802 C CN 1230802C CN B011427868 A CNB011427868 A CN B011427868A CN 01142786 A CN01142786 A CN 01142786A CN 1230802 C CN1230802 C CN 1230802C
Authority
CN
China
Prior art keywords
voltage
sputtering
cathode
control system
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB011427868A
Other languages
English (en)
Other versions
CN1350284A (zh
Inventor
杰弗·C·塞勒斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MKS Instruments Inc
Original Assignee
ENI TECHNOLOGY Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENI TECHNOLOGY Co filed Critical ENI TECHNOLOGY Co
Publication of CN1350284A publication Critical patent/CN1350284A/zh
Application granted granted Critical
Publication of CN1230802C publication Critical patent/CN1230802C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3444Associated circuits
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0206Extinguishing, preventing or controlling unwanted discharges

Abstract

一种用无源电路控制直流溅射系统中的电弧形成的方法和系统,该电弧控制系统包括:溅射腔;此溅射腔包括阳极和由靶材料形成作为阴极的溅射靶。直流电源,用来提供直流阴极电压使阴极电流由阳极流向阴极;谐振网络,连接在直流电源和腔之间,此谐振网络具有与电弧产生对应地,使阴极电流谐振通过0,在阴极和阳极之间形成正电压的Q;以及反向电压钳位电路,与谐振网络连接,用来将阴极电压钳制到预先设定的反向电压。反向阴极电压通过在溅射靶沉积带正电的电介质来抑制随后的电弧。电弧控制系统限制了由电弧消耗的能量。

Description

无源双极电弧控制系统和方法
技术领域
本发明一般地涉及基于等离子的薄膜工艺。特别涉及一种用于减少电弧恢复时间的用于直流溅射系统的电弧控制装置。
背景技术
随着对诸如CD、DVD、MD、MO、DLC薄膜的光盘媒质和硬盘的需求不断增长,用于制造以上媒质的溅射处理过程也越来越重要。已有多种溅射系统用于从半导体到钻头的设备中的绝缘沉积或导电涂层。用于光盘和磁盘的薄膜通常都通过溅射工艺来制造,此溅射工艺很难控制工艺开始时的溅射气体,即占主要比例的腔内气体和石化产品的易失部分。
在初始溅射阶段,气体随着释放的靶材料进入等离子腔。结果形成的化合物,典型地为氧气和氮化物,可在靶表面形成薄膜。这称为靶毒化,并将导致在直流溅射中产生电弧。电弧虽然不可避免,在以上处理过程中有利有弊,它常可去除靶上的有害物质,但地可能产生对基底和磁盘有害的粒子。
其它电弧来源如水蒸气、大气、杂质和工件引入的气体也会产生电弧。
除特殊缺陷之外,电弧还可能导致通常称为“鼠咬”的缺陷,如图1所示。鼠咬9通常指沿工件涂层边缘产生的不规则。鼠咬的产生与电源和所附的能源储存部件的配置有关。在如CD镀膜的应用中,鼠咬的影响可能随着工件邻近于掩模边缘部分的增加而减弱。但是,掩模限制了工件的有用区域,使得更需要维护,即由于形成涂层导致掩模的替换。
为控制电弧,传统的直流溅射系统包括附属于电源或与电源结合的电弧抑制系统。电弧抑制系统可分成两类。第一类,周期电弧控制系统,为避免电弧,周期性产生阴极电压的中断或电压反向。第二类,电弧初始控制系统,只在电弧已被检测到的初期产生中断。
周期抑制系统普遍采用至少一个有源开关(与阴极并联或串联)来中断电流或提供反向电压给阴极。开关的频率和脉冲宽度通常设置为使得电弧被抑制,从而消除靶毒化和相关电弧的影响。周期中断阴极电压引起的不利之处是由于阴极电压不连续提供而导致基本沉积率降低。周期抑制系统的另一不利之处是有源设备和附加控制电路的额外成本。通常,周期抑制系统只用于需要无缺陷沉积时如半导体制造。
电弧初始控制用于以降低消耗和缩短沉积时间为主要要求的设备制造。以往,电弧初始控制系统检测初始电弧,并相应地切断阴极电源供应。通常,在切断阴极能源供应之前,这些控制系统保留适量能源供电弧消耗。供电弧消耗的能源量由电弧初始控制系统附属的电源类型决定。由于像周期抑制系统之类的电弧控制系统不能完全防止电弧,而只能响应电弧检测,因此将出现不同级别的粒子缺陷。而且,电源和电弧控制系统的一些结合使用也可能产生鼠咬。而且,由于电弧产生时基底无沉积,沉积时间可能也会造成负面影响。
尽管现有技术可提供直流溅射系统,还没有证明可以提供对沉积时间或涂层质量无负面影响的低消耗电弧控制。因此,希望提供不损害处理过程中沉积率的低缺陷电弧控制系统。而且,消除工件的缺陷是必要的。还需要减少由于靶毒化造成的沉积。
发明内容
本电弧控制系统和方法提供一种用于控制电弧的系统。此电弧控制系统包括:溅射腔,此溅射腔包括阳极和由靶材料形成并用作阴极的溅射靶;直流电源,提供直流阴极电压使阴极电流由阳极流向阴极;谐振网络,连接在直流电源和腔之间,此谐振网络具有足够的Q,使响应电弧的产生,阴极电流谐振到本领域中公知的负值;以及反向电压钳位电路,与谐振网络连接,将阴极电压钳位到预先设定的反向电压值,并且允许谐振波形的负端驱动阴极和为靶表面反向充电。由此该网络中的反向电流可以畅通无阻地流入阴极。此后反向电流使阴极充电至钳位正电压。
此外,根据本发明,提供了一种针对直流反应溅射系统的电弧控制系统,包括:溅射腔,容纳阳极和由靶材料形成的作为阴极的溅射靶,此靶材料由金属材料形成;直流电源,用来提供阴极电压使阴极电流从阳极流向阴极;电容-电感滤波器,连接在直流电源和溅射腔之间,该谐振网络具有一个Q值,使得阴极电流谐振到负向电流;以及与滤波器连接的、串联相连的单向齐纳二极管和双向齐纳二极管,用于在通过谐振阴极电流变为反向电流时,将阴极电压钳位到预先设定的反向电压。
此外,根据本发明,提供了一种在直流溅射系统中涂敷工件的方法,包括以下步骤:提供溅射腔,其具有由靶材料形成的作为阴极的溅射靶;向阴极和阳极之间施加直流阴极电压,使得在阴极和阳极之间流过电流;在工件上沉积薄膜;滤波阴极电流使得响应电弧的产生,阴极电流谐振到反向电流电平;以及钳位阴极电压到预先设定的反向电压。
为了进一步了解本发明的目的和优点,请参照以下描述及附图。
附图说明
图1表示一有鼠咬的示例性工件;
图2是根据本发明的溅射系统方框图;
图3是本发明优选实施例的示意图;
图3A是电压钳位电路示意图;
图3B是另一电压钳位电路示意图;
图4A是表示电压反转过程中的溅射系统;
图4B是表示电压反转过程中的传统溅射系统;
图4C是表示根据本发明的电压反转过程中的溅射系统;
图5是表示与电弧有关的阴极电流和电压波形信号图。
具体实施方式
图2是根据本发明的直流溅射系统10。在本发明的优选实施例中,直流溅射系统10利用直流溅射工艺来沉积工件16的涂层。尽管本实施例中的工件是诸如CD和DVD的光盘存储媒质,但涂敷钻头、玻璃面板、玩具、切割工具、光学设备等物体的衬底或溅射薄膜也在本发明所涵盖的范围之内。由于在沉积处理的开始阶段,溅射腔中通常有大约50%的空气,这使得此工艺非同一般。在运行的第一部分,空气中的氧气和氮气可将一些铝沉积转化成Al2O3和AlN沉积。在该处理过程的较早部分,由于排气、大气污染会造成电弧。
溅射系统10包括为沉积工艺提供控制环境的溅射腔12。真空泵11通常用于使溅射腔12保持在可控气压。工件16可为CD、DVD、切削刃或者其它物体。作为阴极的溅射靶18,用作涂层的材料源。本优选实施例中靶18是Al,当然也可采用其它合适的材料以及合金如金、Si、Ta、B和Ti。在溅射腔12中的另一导体作为阳极20。阴极18和阳极20与用来向在溅射腔中引入等离子体提供电能的直流电源24连接。本优选实施例中在处理开始阶段引入的大气已被污染。用于提供在等离子体中流动的负离子的限量溅射气体也被供给溅射腔12。典型地,把氩气和另一种惰性气体用作溅射气体。
在本发明的该具体应用中,光盘被涂层,腔12内包括一对护罩用于屏蔽工件16的内外边体。护罩精确地确定了光盘的内外径。外护罩14位于靶材料18和光盘16之间以防止涂层材料在外边缘上沉积。内护罩17也相应地设置以防止在光盘的内边缘涂敷。
直流电源24为溅射处理提供电能。直流电源24将未调整的交流线性电能转化为适用于溅射系统10的已调整的直流电能。本发明的该优选实施例中,直流电源24为一开关模式电源,然而,本发明的范围并不受电源类型的限制。例如,也可采用其它类型如SCR(硅控整流器)和二级管-变压器电源之类的电源。直流电源24的正极26和负极28的输出分别与阳极20和阴极18连接。电源24为溅射腔12提供所需的电压/电流。正如本领域普技术人员所知,额定电压适合靶材料和即将执行的溅射操作。因此,本发明的范围包括可使用宽范围电压的溅射处理。谐振网络30和电压钳位电路32连接于直流电源24与阴极18和阳极20之间。谐振网络30存储形成电弧时驱动阴极18和阳极20电压反向的电能。尽管谐振网络30是和电源24分开显示的,但谐振网络30与电源24集成在一起也属于本发明的保护范围。实际上,正如以下将描述的一样,谐振网络30的作为与电源24的输出滤波器相关。电压钳位电路32在形成电弧期间限制阴极18和阳极20之间电压反向的振幅,还可构成为钳制超过一般情况的电压以保护电源24和工件16。
如图3所示,是溅射系统10的优选实施例中一部分电路图。直流电源24包括一包含输出电感34和输出电容36的输出滤波器33,还有其它元件外。正如本领域普通技术人员所知,在本发明所要求的保护范围内有多种输出滤波器配置。例如,多级滤波器、阻尼输出滤波器、和高阻抗输出滤波器都在本发明的保护范围内。
谐振网络30用来在普通的系统10的操作中存能量。所存储的能量随后在电弧发生时将释放给溅射腔12以提高系统响应。谐振电容38与直流电源24的正负输出26和28相连。本发明的优选实施例中,0.1μF聚丙烯薄膜电容用作谐振电容38,虽然相应于电源24和磁电管阴极18的输出设计还可采用许多值。谐振电感40连接在谐振电容38和电压钳位电路32之间。谐振电感40储存能量用于反应电弧形成,也可限制电弧形成期间输出电流的增长速率。本发明的优选实施例中,谐振电感40是12μH,虽然其它值也可用。
电压钳位电路32限制溅射腔12中的电压振幅。电压钳位电路32包括连接在阴极18和阳极20之间的反向电压钳位设备44。反向电压钳位设备44将施加于溅射腔12中的反向电压限制在可熄灭电弧形成但足以防止背溅射或鼠咬的程度。本发明的优选实施例中,正向电压钳位设备42与反向电压钳位设备44串联,但本发明的范围还包括反向电压钳位设备44与正向电压钳位设备42并联,和只有反向电压钳位设备44而无正向钳位设备(如图3A,电压钳位电路32A)。本发明的优选实施例中反向电压钳位设备44是与正向钳位设备42串联的单向齐纳二极管(transorb)。本发明的两个次佳实施例如图3A和3B所示为电压钳位电路32A和32B。在电压钳位电路32A中,反向电压钳位设备44为与反向偏移二极管串联的一串单向齐纳二极管。在电压钳位电路32B中,反向电压钳位设备44为与一串单向齐纳二极管串联的双向齐纳二极管。
正向电压钳位设备42用来防止溅射系统10产生过量正向输出电压。正向电压钳位电路的选择和执行为本领域普通技术人员所公知。本发明的优选实施例中,一串单向齐纳二极管用作正向电压钳位设备。
实际上的涂层沉积需要溅射腔12内的等离子体触发。等离子体是由阳极20和阴极18之间的高到至少使一部分喷溅气体离子化的电压产生的。与施加的电压有关的强电场从气体原子中分出电子,形成在等离子体中流动的负离子和电子。具有足够的动能的负离子由稳态电场加速至靶18上,使得负离子撞击靶18上的原子。在工艺的初级阶段一些释放的靶原子与溅射腔12中的大气结合。未结合的释放的靶原子则分散在溅射腔12中并覆盖暴露表面。在此工艺过程中由于靶毒化、工件16排气、污染、以及由于其他原因造成的薄片使得间断地产生电弧。
如图3和5,以下将描述整个电弧形成期间的溅射系统10的操作:当电弧产生时,从阴极18到阳极20的阻抗迅速增长导致阴极电流48的迅速增长。提供阴极电流48增长的能量来自输出电容36和谐振电容38所存储的能量。随着瞬变电流不断流入,存储在输出电容36和谐振电容38中的能量也被传送到谐振电感40。当电容36和38的电压谐振到0时阴极电流48达到峰值。如普通技术人员所知,阴极电流48的峰值与存储在电感40和电容26、28的能量比率有关。此比率通常指滤波器的Q。当阴极电流48开始减少时,能量开始由谐振电感40传回电容36和38,使电容反向充电。当电容36和38持续充电时阴极18和阳极20之间的电压反向。
提供给阴极18的反向电压的振幅一直增长到反向电压钳位设备42被激活。一种现有的技术允许电压反向至与普通阴极电压(+500V至-500V)几乎相等的值。另一现有技术将负电压钳制在0伏,允许非反向电流流入阴极。本发明的优选实施例中,反向电压钳位设备42将阴极18钳制在低于200V。本发明认识到鼠咬实质上是流入阳极20的反向电源所导致的。因此,要产生鼠咬,除了阴极18的反向电流还必须有大的反向电压。当存在足够的反向电压和电流时工件的背溅射产生鼠咬。在本实施例中,在反向电平达到200V或更大时背溅射开始产生。鼠咬产生在工件边界也就是电场强度最高处,因此在第一位置分解反应气体,允许反向电流。本发明的范围还包括为钳位设备42选择钳位电压,此电压足以熄灭电弧产生但低于产生鼠咬的背溅射电压。
本发明还认识到在电弧形成时提供低于溅射电压的反向电压可以减少溅射系统10的恢复时间。阴极18上的反向电压有助于避免电弧产生。在本优选实施例中,溅射系统10恢复时间为6μs。而且,一部分来自能量储存部件的能量消耗在反向电压钳位设备42中,致使较少的能量消耗在电弧中。由于较少的能量消耗在电弧中而且电弧时间缩短,由电弧产生的小缺陷也就相应减少。而且,在减少由靶材料和电介质混和物形成的附加电容中所存储的电荷的反应沉积处理过程中,将反向电压施加于阴极18可减少电弧随后产生的可能性。
在电弧被扑灭后,阴极电流继续谐振。当阴极电流48经过0安培时,阴极电压50使溅射电压和电源复位。
如图4A、4B和4C,是电压反向期间溅射系统10与传统溅射系统的状态的对比。图4B是表示电压反向期间传统溅射系统的操作。图4C是表示电压反向期间本发明优选实施例溅射系统的操作。在通常的操作中,在电弧产生之前,溅离阴极18的靶材料在工件16上形成涂层19。当涂层19形成时,低电平的负电荷在涂层19上并沿着其表面积聚。当电压反向时,阴极电压18漂移到相对于阳极20为正的方向。随着反向电压大小的增加,先前被吸引到阴极18的正离子越来越被排斥。
在传统的溅射系统(如图4B)中,正离子不是流向阴极18,而是增加地流向带负电荷工件16。当离子流向工件16时,由于高电场的原因离子被吸引到涂层19的外部和内部边缘。当离子附着在涂层19上时,随着边缘大量的溅射,传送的动量导致涂层19的部分被背溅射。随着沿涂层19边缘持续背溅射,鼠咬9逐渐显现出来。包括主要Al和小部分Al2O3的背溅射涂层19在包括护罩14和17、以及阴极18的溅射腔12内表面上沉积。
在本发明的优选实施例的溅射系统10中,反向电压的大小被钳制在可防止正离子流向负电荷工件16的足够低的电压。由于离子不附着在涂层19上,困扰传统溅射系统的鼠咬9在本优选实施例中将不会产生。
本发明中的电弧控制系统使得电弧恢复时间最短,由此增加了发生材料沉积的处理时间的比例。而且,该系统在电弧形成时可防止鼠咬产生。
还有,电弧控制系统减少了腔内消耗的电弧能量,从而减少了工件的缺陷。而且,随后的电弧产生之前的时间延长了,又延长了发生材料沉积的处理时间。
而且,电弧控制系统设计为包括数目相当少的无源细件。
因此,由以上可得出本发明的结论,通过提供用于直流溅射系统的一种电源控制方法,可以完全实现本发明的主要的和其它的目的。而且,同样明显地,在不偏离本发明的前提下可对已描述的实施例作修改和/或改变。因此,很显然,前面的描述和附图只是对优选实施例的说明,并非一种限制,本发明的实质的精神和范围将参照随后的权利要求及其法律上等效的内容来确定。

Claims (19)

1.一种针对直流溅射系统中的电弧的电弧控制系统,包括:
溅射腔,容纳阳极、和由靶材料形成的作为阴极的溅射靶;
直流电源,用来提供直流阴极电压使阴极电流流过阳极和阴极;
谐振网络,连接在直流电源和溅射腔之间,此谐振网络具有一个Q值,使得响应电弧的产生,阴极电流谐振到反向电流电平,以及
反向电压钳位电路,与谐振网络连接,用来将阴极电压钳位到预先设定的钳位电压。
2.根据权利要求1所述的电弧控制系统,其中谐振网络是电容-电感滤波器。
3.根据权利要求1所述的电弧控制系统,其中反向电压钳位电路包括至少一个与反向偏移二极管串联的齐纳二极管。
4.根据权利要求1所述的电弧控制系统,还包括与反向电压钳位电路串联的正向电压钳位电路,其中反向电压钳位电路包括至少一个双向齐纳二极管,正向电压钳位电路包括至少一个单向齐纳二极管。
5.根据权利要求1所述的电弧控制系统,其中直流电源从包括硅控整流器电源、开关模式电源和二极管变压电源的组中选择。
6.根据权利要求1所述的电弧控制系统,其中预先设定的钳位电压低于背溅射电压。
7.根据权利要求1所述的电弧控制系统,其中直流溅射系统是直流反应溅射系统。
8.根据权利要求7所述的电弧控制系统,其中靶材料为金属材料。
9.根据权利要求7所述的电弧控制系统,其中靶材料为金属混合物。
10.根据权利要求7所述的电弧控制系统,其中靶材料从包括铝、硅、钛、钽、锆、碳和硼的组中选择。
11.一种针对直流反应溅射系统的电弧控制系统,包括:
溅射腔,容纳阳极和由靶材料形成的作为阴极的溅射靶,此靶材料由金属材料形成;
直流电源,用来提供阴极电压使阴极电流从阳极流向阴极;
电容-电感滤波器,连接在直流电源和溅射腔之间,该谐振网络具有一个Q值,使得阴极电流谐振到负向电流;以及
与滤波器连接的、串联相连的单向齐纳二极管和双向齐纳二极管,用于在通过谐振阴极电流变为反向电流时,将阴极电压钳位到预先设定的反向电压。
12.根据权利要求11所述的电弧控制系统,其中直流电源提供约为200~800V的正向电压,和约为75~200V的预先设定的反向电压。
13.一种在直流溅射系统中涂敷工件的方法,包括以下步骤:
提供溅射腔,其具有由靶材料形成的作为阴极的溅射靶;
向阴极和阳极之间施加直流阴极电压,使得在阴极和阳极之间流过电流;
在工件上沉积薄膜;
滤波阴极电流使得响应电弧的产生,阴极电流谐振到反向电流电平;以及
钳位阴极电压到预先没定的反向电压。
14.根据权利要求13所述的方法,还包括将反应气体导入溅射腔以与溅射靶反应。
15.根据权利要求14所述的方法,其中沉积步骤还包括以下步骤:
从惰性气体形成离子;
将离子对准溅射靶以打出靶材料,由此被打出的靶材料与反应气体结合形成电介质;以及
放置工件使得电介质在其上积聚。
16根据权利要求15所述的方法,其中靶材料是铝,电介质是铝的氧化物。
17.根据权利要求16所述的方法,其中预先设定的反向电压低于背溅射电压。
18.根据权利要求16所述的方法,其中直流阴极电压为约430V,预先设定的反向电压为约75~200V。
19.根据权利要求16所述的方法,其中滤波步骤包括:提供一串联电感以削弱电弧形成过程中的阴极电流的增加。
CNB011427868A 2000-10-04 2001-10-04 无源双极电弧控制系统和方法 Expired - Lifetime CN1230802C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/678,993 2000-10-04
US09/678,993 US6524455B1 (en) 2000-10-04 2000-10-04 Sputtering apparatus using passive arc control system and method

Publications (2)

Publication Number Publication Date
CN1350284A CN1350284A (zh) 2002-05-22
CN1230802C true CN1230802C (zh) 2005-12-07

Family

ID=24725152

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011427868A Expired - Lifetime CN1230802C (zh) 2000-10-04 2001-10-04 无源双极电弧控制系统和方法

Country Status (6)

Country Link
US (3) US6524455B1 (zh)
EP (1) EP1195793A2 (zh)
JP (1) JP2002220665A (zh)
KR (1) KR20020027241A (zh)
CN (1) CN1230802C (zh)
TW (1) TW519671B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524455B1 (en) * 2000-10-04 2003-02-25 Eni Technology, Inc. Sputtering apparatus using passive arc control system and method
US6808607B2 (en) * 2002-09-25 2004-10-26 Advanced Energy Industries, Inc. High peak power plasma pulsed supply with arc handling
CN100366790C (zh) * 2002-10-16 2008-02-06 爱发科股份有限公司 薄膜成膜装置和薄膜成膜方法
US6995545B2 (en) * 2003-08-18 2006-02-07 Mks Instruments, Inc. Control system for a sputtering system
US6967305B2 (en) * 2003-08-18 2005-11-22 Mks Instruments, Inc. Control of plasma transitions in sputter processing systems
DE10341717A1 (de) * 2003-09-10 2005-05-25 Applied Films Gmbh & Co. Kg Anordnung für n Verbraucher elektrischer Energie, von denen m Verbraucher gleichzeitig mit Energie versorgt werden
US7342754B2 (en) * 2004-03-02 2008-03-11 Eaton Corporation Bypass circuit to prevent arcing in a switching device
WO2005094210A2 (en) * 2004-03-12 2005-10-13 The Hartz Mountain Corporation Multi-action anthelmintic formulations
US7501161B2 (en) * 2004-06-01 2009-03-10 Applied Materials, Inc. Methods and apparatus for reducing arcing during plasma processing
US6943317B1 (en) 2004-07-02 2005-09-13 Advanced Energy Industries, Inc. Apparatus and method for fast arc extinction with early shunting of arc current in plasma
CN1721346B (zh) * 2004-07-16 2011-03-23 鸿富锦精密工业(深圳)有限公司 模造玻璃的模仁制造方法
US7067829B2 (en) * 2004-11-23 2006-06-27 Ibis Technology Coporation Power sag detection and control in ion implanting system
US7749564B2 (en) * 2005-03-31 2010-07-06 Caterpillar Inc. Method and apparatus for the production of thin film coatings
US7305311B2 (en) * 2005-04-22 2007-12-04 Advanced Energy Industries, Inc. Arc detection and handling in radio frequency power applications
DE102006043898A1 (de) * 2006-09-19 2008-04-17 Siemens Ag Vorrichtung und Verfahren zum Betrieb einer Plasmaanlage
DE102006043900B4 (de) * 2006-09-19 2008-09-18 Siemens Ag Vorrichtung und Verfahren zum Betrieb einer Plasmaanlage
US8217299B2 (en) * 2007-02-22 2012-07-10 Advanced Energy Industries, Inc. Arc recovery without over-voltage for plasma chamber power supplies using a shunt switch
US9613784B2 (en) * 2008-07-17 2017-04-04 Mks Instruments, Inc. Sputtering system and method including an arc detection
US8044594B2 (en) * 2008-07-31 2011-10-25 Advanced Energy Industries, Inc. Power supply ignition system and method
US20110236591A1 (en) * 2008-11-28 2011-09-29 General Plasma Inc. Bipolar rectifier power supply
US8395078B2 (en) 2008-12-05 2013-03-12 Advanced Energy Industries, Inc Arc recovery with over-voltage protection for plasma-chamber power supplies
EP2790205B1 (en) 2009-02-17 2018-04-04 Solvix GmbH A power supply device for plasma processing
DE102010031568B4 (de) 2010-07-20 2014-12-11 TRUMPF Hüttinger GmbH + Co. KG Arclöschanordnung und Verfahren zum Löschen von Arcs
US8552665B2 (en) 2010-08-20 2013-10-08 Advanced Energy Industries, Inc. Proactive arc management of a plasma load
US20160215386A1 (en) * 2013-09-09 2016-07-28 Itn Energy Systems, Inc. Modulation of reverse voltage limited waveforms in sputtering deposition chambers
US9755625B2 (en) 2014-04-30 2017-09-05 Fairchild Korea Semiconductor Ltd. Pulse generator and driving circuit comprising the same
DE102015119455B3 (de) 2015-11-11 2016-11-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zum Unterdrücken von Arcs in einem Elektronenstrahlerzeuger
CN112187032B (zh) * 2019-07-04 2022-03-15 台达电子工业股份有限公司 电源供应装置及其操作方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156081A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH02156083A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH0414312A (ja) 1990-05-08 1992-01-20 Matsushita Electric Ind Co Ltd チョッパ型コンパレータ
JP3429801B2 (ja) * 1992-03-02 2003-07-28 新電元工業株式会社 スパッタ装置用電源
JPH05311418A (ja) 1992-05-12 1993-11-22 Shibaura Eng Works Co Ltd アーク放電防止回路
DE69322404T2 (de) 1992-09-30 1999-04-29 Advanced Energy Ind Inc Fort C Topographisch genaues duennfilm-beschichtungssystem
JPH06145973A (ja) * 1992-11-10 1994-05-27 Shimadzu Corp スパッタリング装置
US5718813A (en) 1992-12-30 1998-02-17 Advanced Energy Industries, Inc. Enhanced reactive DC sputtering system
US5505835A (en) * 1993-02-22 1996-04-09 Matsushita Electric Industrial Co., Ltd. Method for fabricating optical information storage medium
US5651865A (en) 1994-06-17 1997-07-29 Eni Preferential sputtering of insulators from conductive targets
US5603848A (en) * 1995-01-03 1997-02-18 Texas Instruments Incorporated Method for etching through a substrate to an attached coating
US5616224A (en) 1995-05-09 1997-04-01 Deposition Sciences, Inc. Apparatus for reducing the intensity and frequency of arcs which occur during a sputtering process
US5584974A (en) * 1995-10-20 1996-12-17 Eni Arc control and switching element protection for pulsed dc cathode sputtering power supply
US5770023A (en) 1996-02-12 1998-06-23 Eni A Division Of Astec America, Inc. Etch process employing asymmetric bipolar pulsed DC
US5729119A (en) * 1996-06-28 1998-03-17 Siemens Energy & Automation, Inc. Dual mode power supply and under voltage trip device
US5796214A (en) * 1996-09-06 1998-08-18 General Elecric Company Ballast circuit for gas discharge lamp
US6524455B1 (en) * 2000-10-04 2003-02-25 Eni Technology, Inc. Sputtering apparatus using passive arc control system and method

Also Published As

Publication number Publication date
US7261797B2 (en) 2007-08-28
TW519671B (en) 2003-02-01
JP2002220665A (ja) 2002-08-09
EP1195793A2 (en) 2002-04-10
US6863789B2 (en) 2005-03-08
KR20020027241A (ko) 2002-04-13
US20050167262A1 (en) 2005-08-04
CN1350284A (zh) 2002-05-22
US6524455B1 (en) 2003-02-25
US20030146083A1 (en) 2003-08-07

Similar Documents

Publication Publication Date Title
CN1230802C (zh) 无源双极电弧控制系统和方法
EP0663019B1 (en) Topographically precise thin film coating system
US5286360A (en) Apparatus for coating a substrate, especially with electrically nonconductive coatings
CN1203208C (zh) 用于溅射设备的电源装置
EP2157205B1 (en) A high-power pulsed magnetron sputtering process as well as a high-power electrical energy source
CA2305938A1 (en) Filtered cathodic arc deposition method and apparatus
US6522076B2 (en) Process and switching arrangement for pulsing energy introduction into magnetron discharges
KR20010013110A (ko) 정전압과 부전압 사이에서 교대되는 다중 양극을 이용하는절연재료의 연속적인 퇴적
KR20020046276A (ko) 이온 소스를 이용하는 박막 퇴적 시스템의 개선된 전자방출 표면
WO1996024154A1 (en) Plasma noise and arcing suppressor apparatus and method for sputter deposition
US8980072B2 (en) Method and arrangement for redundant anode sputtering having a dual anode arrangement
US7179350B2 (en) Reactive sputtering of silicon nitride films by RF supported DC magnetron
Ohira et al. Parameters influencing breakdown characteristics of vacuum gaps during spark conditioning
JP4218864B2 (ja) 放電用電源、スパッタリング用電源及びスパッタリング装置
KR100469552B1 (ko) 플라즈마 표면 처리 장치 및 방법
Rintamaki et al. Radio frequency plasma processing effects on the emission characteristics of a MeV electron beam cathode
RU2098510C1 (ru) Устройство для обработки в разряде в условиях низкого давления
CN114438458A (zh) 一种氧化铪薄膜的制备方法
KR100480922B1 (ko) 전자빔 경화장비의 실리콘그리드구조 및 실리콘그리드가장착된 전자빔 경화장비
Ito et al. Vacuum electrical breakdown characteristics and surface chemical compositions of titanium electrodes with oxidation conditions
Zucker Welcoming Address
JPH0250955A (ja) 高効率シートプラズマスパッタリング方法
KR20030096471A (ko) 스퍼터링 설비
JPS63459A (ja) 真空ア−ク蒸着装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MKS EQUIPMENT CO.,LTD.

Free format text: FORMER OWNER: ENI TECHNOLOGY CO.,LTD.

Effective date: 20090710

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090710

Address after: Massachusetts USA

Patentee after: MKS Instruments Inc.

Address before: American New York

Patentee before: ENI Technology Co.

CX01 Expiry of patent term

Granted publication date: 20051207

CX01 Expiry of patent term