CN1248238A - 对苯二酸的生产 - Google Patents

对苯二酸的生产 Download PDF

Info

Publication number
CN1248238A
CN1248238A CN98802775A CN98802775A CN1248238A CN 1248238 A CN1248238 A CN 1248238A CN 98802775 A CN98802775 A CN 98802775A CN 98802775 A CN98802775 A CN 98802775A CN 1248238 A CN1248238 A CN 1248238A
Authority
CN
China
Prior art keywords
reaction
terephthalic acid
reaction medium
temperature
reaction zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98802775A
Other languages
English (en)
Other versions
CN1095822C (zh
Inventor
J·A·图尔纳
D·J·罗雅尔
D·S·胡加尔
G·H·琼斯
D·C·伍德科克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invista Technologies Sarl
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9703897.0A external-priority patent/GB9703897D0/en
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN1248238A publication Critical patent/CN1248238A/zh
Application granted granted Critical
Publication of CN1095822C publication Critical patent/CN1095822C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Abstract

通过对芳族羧酸的前体进行液相氧化来生产芳族羧酸如对苯二酸,所述氧化反应以基本上所有在反应过程中生产的芳族羧酸在反应期间都保持在溶液中的方式进行。

Description

对苯二酸的生产
本发明涉及微溶于乙酸和水中的芳香羧酸、特别是对苯二酸的生产。
对苯二酸是生产通常用于纤维生产及制造瓶子的聚酯聚合物的重要中间体。目前已有的对苯二酸的生产技术包括在加入促进剂如溴的溶解重金属催化剂体系的存在下,采用包含低级C2-C6脂族一元羧酸(通常是乙酸)的溶剂中的分子氧对对二甲苯原料进行液相氧化。在高温及压力(通常分别为150-250℃及6-30巴(bara))的条件下,反应在至少一个搅拌容器中进行,空气被喷入反应混合物中,通常以高的如至少为95%的收率制得对苯二酸。通过将溶剂蒸发与反应过程中所产生的水一起所得的蒸汽冷凝并作为回流返回到反应容器中,使在进行氧化的容器保持等温的反应条件。在对苯二酸的常规生产中,由于对苯二酸仅微溶于溶剂中,因此大部分的产物沉淀于反应的进程中,结果各种杂质如4-羧基苯甲醛(4-CBA)和各种发色体与对苯二酸发生共沉淀得到粗制产物,而为了满足许多聚酯生产商的要求,这种粗制的产物必须进行提纯以降低其杂质含量。在一个提纯方法中,将粗制产物溶解于水中,并在高温和压力的条件和氢化催化剂的存在下与氢进行接触,其后通过结晶以及固-液分离技术将提纯后的对苯二酸进行回收。
本发明寻求提供一种以得到足够纯的产物供后续使用而无须再进行另外一个提纯过程的方式来生产对苯二酸的方法。
根据本发明的第一个方面,提供一种通过用氧在含有对苯二酸的前体及溶剂的反应介质中,在使得基本上所有在氧化反应区中制得的对苯二酸在反应期间保留在溶液中的条件下对所述前体进行液相氧化来生产对苯二酸的方法,其特征在于以一种连续活塞流反应的方式使反应介质通过反应区来进行所述的氧化反应。
优选的反应器是活塞流反应器或两个或两个以上活塞流反应器的串联,优选以非沸腾的模式进行操作,虽然此处所定义的本发明各个不同方面皆不局限于这种具体类型的连续流反应器。例如反应可在串联的非沸腾连续搅拌釜反应器中以接近连续活塞流的方式进行,或在包括一个或一个以上非沸腾连续搅拌釜反应器和一个或一个以上以任何次序排列的活塞流反应器的反应体系中进行。
术语“连续活塞流方式”指的是与间歇式的反应器相反,反应器中各种反应剂的导入与产物的移出同时以连续的方式进行。反应介质在反应区内的停留时间一般不超过10分钟,优选不超过8分钟,停留时间能达到不超过5分钟,如不超过3分钟。
根据本发明的第二方面(它可以但非必须与本发明的第一方面一起使用),提供一种通过用氧在含有对苯二酸的前体及溶剂的反应介质中,在使得基本上所有在氧化反应区中制得的对苯二酸在反应期间保留在溶液中的条件下,对所述前体进行液相氧化来生产对苯二酸的方法,其特征在于用基本上都溶解于反应介质中的所有的氧进行所述氧化反应。
因此,在本发明的该方面中,液相氧化反应以反应期间基本上所有得到的对苯二酸都保留在溶液中的方式进行,籍此降低主要的杂质4-CBA由于在反应期间发生共沉淀而污染回收的对苯二酸的程度。根据本发明该方面的方法中基本上所有所用的氧都溶解于反应介质中。采用溶解于反应介质中的氧使得氧可以更均匀分布于整个反应介质中。通过这种方式最大限度地减少了反应介质内缺氧的区域,从而减少了不合需要的各种副产物如1,2,4-苯三酸、苯甲酸和发色体的生成。总的来说,这样做能得到低污染物含量的产物,且不会造成溶剂的过度使用,反过来可以省去生产质量足以用于制造高品位聚酯的对苯二酸常规所用的提纯过程。
虽然在此处公开的本发明上述及其它方面中,优选在反应期间所有反应中制得的对苯二酸都保留在溶液中,但我们不排除在反应期间发生一些沉淀的可能性,如高达10%(重量)、更常见不超过5%(重量)、但优选不超过约2%(重量)的所产生的对苯二酸可能会在反应过程中发生沉淀。
优选反应介质由至少两种不同的液相组分混合而成,并在这些组分混合形成反应介质之前加入至少部分氧并溶解于一种或一种以上所述液相组分中。
例如,各个液相组分可包括一种由所述前体组成或含有所述前体的组分以及第二种由所述溶剂组成或含有所述溶剂的组分,反应所需的至少部分氧可加入到并溶解于第二种组分中,使得在各种组分混合形成反应介质之前氧与前体之间无法开始反应。
通常所述溶剂主要为脂族一元羧酸(优选含2-6个碳原子),并可例如选自乙酸、丙酸、丁酸、异丁酸、正戊酸、三甲基乙酸、己酸以及这些羧酸中的一种与水的混合物,水在任何情况下都是在反应过程中产生的。目前优选的溶剂为乙酸和水。但我们不排除采用其它溶剂如苯甲酸的可能性,如苯甲酸与水的混合物。
常规通过对二甲苯的液相氧化生产对苯二酸中所用水的含量通常为输送至反应区中的形成混合溶剂的羧酸/水的3-10%(重量)。可应用于此处所公开的本发明各个方面中的特征是水的含量可以基本上大于存在于常规对苯二酸生产过程中送往反应区总进料中的水分含量;在此处所公开的本发明的各个方面中,反应开始时反应介质组成可含有约3%-约30%(重量),如12%(重量)或更高(如10%-30%(重量))的水。为了确保反应期间基本上所有制得的对苯二酸都能保留在溶液中而在本发明的方法中采用较高的溶剂与前体之比,因此增大的水分含量是可行的。例如,当所述前体含有对二甲苯时,对二甲苯在乙酸/水混合物中的溶解度随水分含量的增大而急剧下降,在常规对苯二酸生产中由于溶剂/对二甲苯之比较低(通常为4∶1-7∶1),因而可存在于反应介质中的水分的量受到限制。因此在本发明的方法中增大的水分含量是可以接受的。
溶剂/前体之比通常至少为30∶1,如至少为50∶1。在实施中可以基本上大于50∶1,例如可高达200∶1,如高达150∶1。当我们提及溶剂/前体之比时,应理解存在于反应介质中的水分组分构成了溶剂的一部分,并被包括在确定溶剂/前体之比的范围内。
根据本发明的第三方面(它可以但非必须与本发明的第一和/或第二方面一起使用),提供一种通过用氧在含有对苯二酸的前体及溶剂的反应介质中,在使得基本上所有在氧化反应区中制得的对苯二酸在反应期间保留在溶液中的条件下,对所述前体进行液相氧化来生产对苯二酸的方法,其特征在于通过形成从进口区至出口区通过反应区的反应介质流并沿通过反应区流动的方向建立温度线图使得反应介质在出口区的温度高于进口区的温度来进行所述反应。
通过对苯二酸的前体的氧化生产对苯二酸是一个高度放热的反应。常规通过移出反应热(通过使反应的溶剂和水蒸发并从反应器中移出所产生的蒸汽),在反应器中基本上保持等温的条件。在根据本发明该方面的方法中,反应在非等温的条件下进行。因而反应热不必移出或仅需移出至较少的程度,从而反应区内的温度从反应区的进口区至出口区的温度增高。通常对苯二酸从反应介质中的后续回收包括使反应介质冷却以将产物沉淀并从所得的母液中分离出来,而该母液则被循环到反应区中。通过使反应介质的温度在流经反应区的过程中不断提高,所回收母液的温度使得回收母液在重新导入反应区之前不再需要或仅需要进行极少的加热。因此,例如沉淀和分离出对苯二酸后所回收的母液温度与反应区进口的温度之差不超过约30℃、更优选不超过约20℃。
应理解的是,我们不排除在反应的过程中例如由于在沿流动方向的一个或一个以上部位上的温度不足以维持完全的溶解而导致发生一些对苯二酸从溶液中沉淀的可能性;通过绘制沿流动方向的温度线图使得沉淀的对苯二酸至少部分再溶解可以补偿这种沉淀。也可以控制温度使得当反应介质流经反应区时,任何存在于提供给反应区中的液相组分中的对苯二酸微细颗粒至少一部分得以溶解。通过例如在对苯二酸回收的过程中从反应区的反应介质下流中分离出来的母液循环可将这些细颗粒导入。
通常通过使反应介质的温度提高和/或通过控制由于反应的放热所引起的温度升高建立起温度线图。
所述反应区可以由单一容器或管道组成,或可包括一系列的亚反应区,每一个亚反应区由单独的容器或管道或由单一容器内的各个室所组成。
从进口区到出口区的温度线图在流动的方向上可基本上连续增加,或也可以分段增加。例如,当反应区包括一系列亚反应区时,则在该亚反应区内至少有一个这样的亚反应区可以用于移出或加入热以建立温度线图,优选该温度线图是恒定的,使基本上所有的对苯二酸在整个反应区中都保持在溶液内。
可以存在一个以上的反应区,例如两个或两个以上的反应区并联,每一个装有反应剂或溶剂,而且如需要来自这种多个反应区的产物流可以汇合成为单一的产物流。
当反应热从反应区(或其一个或一个以上亚反应区)中移出时,可从反应介质到受热器经热交换器的表面通过热传递除去,例如与可吸收热的流体进行热交换,和/或通过导入骤冷液如溶剂和/或前体或不溶混液体(将在此后做更详细的描述),它们可以在沿流经反应器的反应介质流动的方向上的一个或一个以上阶段加入。
当使用可接受热的流体时,通常使其流经一个或一个以上具有器壁的流动通道,通道的外表面暴露于反应区内的反应介质中。例如可接受热的流体可通过浸渍于反应介质中的旋管进行循环。或者反应器可设计成类似壳式热交换器中的管道的形式,反应剂与溶剂通过壳体流动,而可接受热的流体则通过壳体内的管道流动。
然而我们不排除以其它方式进行热传递的可能性,例如通过使可接受热的流体通过至少部分环绕反应区的夹套装置。例如上述壳体设计中的管道可以使得反应剂与溶剂流经管道而可接受热的流体则流经壳体。
可接受热的流体可与流经反应区的反应介质呈逆流和/或并流通过反应区。传导可接受热的流体的通道方便地设置于反应器的内部。
优选在可接受热的流体与反应介质进行热交换后对其进行加工以回收热能、机械能和/或电能。所回收的动力部分可用于加压作为氧化剂提供给过程中的空气或氧气,如通过驱动适用于此目的的压缩机来得到利用。例如,在动力回收系统中传递到可接受热的流体的热可转化为机械能或电能。一个方法是使用这些可接受热的流体以生产蒸汽,然后使其过热,并提供给蒸汽涡轮以回收动力。
可接受热的流体在通过反应区之前可进行预热,而这种预热可通过与从氧化反应中所得的产物蒸汽进行热交换得以实现。
可接收热的流体可方便地包括水或油,如矿物油。或者可接受热的流体可包括反应介质或其一种组分(即溶剂和/或前体)。例如,反应期间所产生的反应热可部分用于预热流入的反应介质,并当反应介质流经反应区时部分用于提高其温度使得基本上所有的对苯二酸都保持在溶液中。
反应开始时的初始温度需足够高以确保引发反应,但又不能太高使反应期间温度升高导至引起溶剂及芳族化合物过度燃烧的温度。通常的进口温度为80-200℃、优选为120-180℃,如140-170℃。从反应区中出来的产物流的温度将超过进口温度,可为180-250℃、优选为180-230℃(如190-220℃)。
在通过反应区后,基本上所有的对苯二酸都在溶液中。溶液也可以含有催化剂、相对少量的中间产物(如对甲苯甲酸和4-CBA)以及付产物如发色体和1,2,4-苯三酸。可通过例如诱发或使所需的产物对苯二酸在一个或一个以上阶段中从溶液中结晶,然后在一个或一个以上阶段中通过固-液分离加工所得的淤浆而使其沉淀出来。
在沉淀过程如结晶完成之前以及当基本上所有的对苯二酸和其它组分仍在溶液中时,可对反应介质进行处理以除去某些组分。例如通过离子交换技术采用例如阳离子交换树脂或通过电渗析技术包括离子交换膜可对反应介质进行处理以除去催化剂金属离子。
由于从沉淀及分离阶段所得的产物/母液淤浆相对于本发明方法中所使用的较高的溶剂∶前体之比较稀,因此优选在固-液分离的上流对产物进行浓缩。淤浆的浓缩可在结晶过程的下流通过例如一个或一个以上旋液分离器进行,或可在结晶过程中通过使用联合的结晶/浓缩装置进行。
优选将固-液分离后所回收的基于溶剂的母液(它可能但不必含有溶解的催化剂组分)循环至氧化反应区。
通过常规结晶技术,包括减少反应介质压力可进行对苯二酸的回收。然而这种压力减少需要为循环至反应系统中的母液重新加压。
在本发明的另一方面(它可以但非必须与上述的方面一起使用)中,提供一种通过用氧在含有对苯二酸的前体及溶剂的反应介质中,在使得基本上所有在氧化反应区中制得的对苯二酸在反应期间保留在溶液中的条件下,对所述前体进行液相氧化来生产对苯二酸的方法,其特征在于通过以避免反应介质基本上减压籍此使回收的母液的压力基本上等于反应器的操作压力或接近其的压力,即比反应器的操作压力低不超过约5巴、优选不超过约2巴的压力的方式进行沉淀,将对苯二酸从反应介质中回收。
在此处所公开的上述和以下的各方面中,在母液重新导回氧化反应区之前,可使其通过与反应介质在反应介质从反应区中出来和/或当反应介质正通过反应区时进行热交换而得到加热,籍此冷却反应介质。
通常所得的沉淀物含有不超过5000ppm(重量)的4-CBA。优选沉淀自反应介质的对苯二酸含有不超过3000ppm(重量)、更优选不超过约1000ppm(重量)、最优选不超过约500ppm(重量)(如20-300ppm(重量))的4-CBA。
反应介质冷却后最好进行后续对苯二酸的沉淀,优选在超计大气压的条件下,以进行固-液分离的所得淤浆的温度为120-180℃、更优选为约130-约175℃、最优选为约140-约170℃的方式进行。虽然在如此高的温度下进行进行固-液分离使大部分的对苯二酸都保留在溶液中,但我们发现,当温度起先从反应介质自反应区中导出的温度下降时,所回收产物中的主要杂质的含量也降低,然后当温度再次下降时此含量却上升。
根据本发明的再一个方面(它可以但非必须与此处所公开的本发明其它方面一起使用),提供一种通过用氧在含有对苯二酸的前体及溶剂的反应介质中,在使得基本上所有在氧化反应区中制得的对苯二酸在反应期间保留在溶液中的条件下,对所述前体进行液相氧化来生产对苯二酸,其后对反应介质进行冷却以沉淀出通过固-液分离得以回收对苯二酸的方法,其特征在于固-液分离在约120-约180℃、更优选为约130-约175℃、最优选为约140-约170℃的温度下进行。
根据本发明的还一个方面(它可以但非必须与此处所公开的本发明其它方面一起使用),提供一种通过将对苯二酸的前体在溶剂中进行液相氧化来生产对苯二酸的方法,液相氧化在反应区中以使得基本上所有制得的对苯二酸在反应期间都保留在反应介质的溶液中的方式进行,其特征在于将氧化剂在反应介质从反应区的进口区至出口区的流动方向上的两个或两个以上间隔的位置处导入到反应区中。
本发明的该方面特别适用于反应区至少部分由活塞流反应器所形成的情况,并且当氧化剂为基本上纯氧或富含氧的气体时特别有利。
这些位置可方便地相对于通过氧化区的溶剂及反应剂的总体流动进行定位,将氧化剂在一初始的位置上导入到反应中,而至少另一个位置位于所述初始位置的下流。可将氧化剂基本上连续地导入到通过反应区和/或亚反应区的反应介质流路的长度上;例如,氧化剂可通过浸渍在反应介质中并沿流动方向延伸的多孔管进行导入,穿孔的数量、间距和分布使得氧化剂在沿所述反应区和/或亚反应区的长度基本上所有的点处进行导入。
在上述本发明各方面中的氧化剂可方便地为分子氧,例如基本纯氧、空气或其它含氧的气体(即含有氧作为其主要或次要组分的气体),或溶解于液体中的氧。使用基本纯氧作为氧化剂可以避免气体空隙度及活塞流动线图的破裂而在同时可以提供在适度的操作压力下加强反应所需的高的氧气传质速率。
氧气可以与稀释气体如比氮气更易溶于溶剂中的二氧化碳混合使用。稀释气体可以来自例如氧化反应期间所产生的排出气。当稀释气体来自排出气时,优选对排出气进行处理,例如通过高温催化燃烧将任何存在的溴代甲烷转化为HBr和Br2,并可进行至少部分的循环而无须除去其内含的HBr,因HBr可作为催化剂组分用于氧化反应中。例如,在对MeBr进行处理,将其转化为HBr和Br2后,部分的排出气可转移用于稀释提供给反应的氧气,而剩余的部分则可进一步进行处理,如进行处置或用作流化介质以作输送用途。可对处理过的废气的转移部分进行冷却(如通过与MeBr转化步骤的排出气上流进行热交换)并重新压缩(在与所提供的氧气混合之前或之后)足以使其重新导入到氧化反应中。对剩余排出气的处理可包括将其提供给动力回收系统如骤冷器并进行涤气(骤冷器的上流和/或下流)以除去任何残余的各种污染物,如HBr和Br2
氧化剂可包含原子氧以代替分子氧,如一种化合物,如室温下每分子含有一个或一个以上氧原子的液相化合物。一种这样的化合物的例子为过氧化氢。
除了溶剂∶前体之比外,还需考虑其它各种参数如温度和水分含量以确保反应期间基本上所有制得的对苯二酸都保持在溶液中。
通常选择反应在其中进行的各种高压条件,使得在反应期间反应介质保持在液相状态(非沸腾条件)。一般反应在10巴-100巴的压力下进行,通常为20巴-80巴,取决于氧化剂的性质;例如,如果采用溶解氧(采用基本纯氧)进行反应,则压力通常为约60-约80巴,但也可以更高些,如当氧气与稀释剂溶解于反应介质中时可为100巴以上。
根据本发明的再一方面(它可以但非必须与此处所公开的本发明的其它方面一起使用),提供一种通过用氧在含有对苯二酸的前体及溶剂的反应介质中,在使得基本上所有在氧化反应区中制得的对苯二酸在反应期间保留在溶液中的条件下,对所述前体进行液相氧化来生产对苯二酸的方法,其特征在于与反应区有关的总的氧化反应体积A(m3)、所回收的对苯二酸的4-CBA含量B(ppm w/w)以及从氧化反应中回收的对苯二酸的量C(te/hr)之间的关系如下式所示:
                (A*B)/C<4,000。
术语“总的氧化反应体积”应理解为包含形成反应区的反应容器(并联和/或串联)的总体积,包括在这种容器中所提供的任何蒸汽域空间,如用于液/气分离的空间。
优选所述关系式为:
                    (A*B)/C<3,000。
通常在本发明该方面的上下文中,所回收的对苯二酸的4-CBA含量将不大于约5,000ppm(w/w)、优选不大于约3,000ppm(w/w)、更优选不大于约1,000ppm(w/w),也可能低于约500ppm(w/w),如在约20-约300ppm(w/w)的范围内。通常对苯二酸的生产率将超过20te/hr。
本发明的该方面可通过根据本发明的各方面的对苯二酸的操作方法而得以完成;例如在非沸腾的条件下,以供氧连续活塞流(或准活塞流)的方式进行生产。例如,通过总氧化反应体积小于160m3的设计,可以完成根据本发明操作以60te/hr的速率、250ppm(w/w)的4-CBA含量(在这种情况下(A*B)/C<1,000)生产对苯二酸产品的提供基本纯氧单活塞流反应器。相反,目前常规设计的氧化反应器在操作和设计生产60te/hr粗制的对苯二酸,4-CBA含量约为2500ppm(w/w)时需要总的氧化反应体积超过400m3,因此在这种情况下(A*B)/C>16,000,这清楚地说明通过利用本发明可以显著降低反应器的体积。在采用多个反应器以高的催化剂浓度和高温(因而燃烧高含量的乙酸)生产纤维级的对苯二酸(4-CBA含量为500ppm,速率为60te/hr)的常规单级氧化方法中,所需的总氧化反应体积约为800m3,运使(A*B)/C>6,600。
在本发明的一个相关方面中,提供了通过将对苯二酸的前体进行液相氧化来生产对苯二酸,以及在操作上设计生产4-CBA含量B低于约5,000ppm(w/w)、生产率C至少为20te/hr的设备,其特征在于氧化反应在其中进行的容器的总氧化反应体积A(m3)满足以下条件:
                   A<(4,000*C)/B
在上述本发明任何一个方面中的方法通常都在氧化催化剂的存在下进行。当使用催化剂时,它必须溶于包含溶剂及对苯二酸前体的反应介质中,或也可以使用多相催化剂。无论是均相催化剂还是多相催化剂通常都包含一种或一种以上的重金属化合物,如钴和/或锰化合物,并可任选地包括氧化促进剂如溴或乙醛。例如,催化剂可以采用用于对苯二酸前体液相氧化中的任何形式,如在脂族羧酸溶剂如溴化物、钴和/或锰的溴化链烷酸盐或链烷酸盐(通常是C1-C4链烷酸盐如乙酸盐)中的对苯二酸前体。其它重金属化合物如钒、铬、铁、钼、镧系元素如铈、锆、铪和/或镍都可以代替钴和/或锰使用。最好催化剂体系包括溴化锰(MnBr2)。氧化催化剂还可选或另外包括一种或一种以上贵金属或其化合物,如高度分离的形式或金属海绵状物形式的铂和/或钯或其化合物。所用的氧化促进剂可以为元素溴、离子溴化物(如HBr、NaBr、KBr、NH4Br)和/或有机溴化物(如溴化苯、苄基溴、一溴或二溴乙酸、溴乙酰溴、四溴乙烷、二溴化乙烯等)的形式。或者氧化促进剂可包括酮,如甲基乙基酮或醛,如乙醛。
当催化剂为多相形式时,它最好位于反应区内以确保连续流动的反应介质与催化剂之间能保持接触。在这种情况下,对催化剂可进行适宜地负载和/或约束在反应区内以确保这种接触对流动截面不会造成过分地限制。例如,可将多相催化剂涂覆于或施用于或包含于位于反应区内的静态元素(如形成网眼结构的元素)中,使反应介质流过这些催化剂。当各反应剂流经反应区时,这些静态元素还起着增强其混合的作用。或者所述催化剂可以是流动丸片、颗粒、细分的形式、金属海绵状物的形式等,如需要可提供各种装置以将其限制于反应区内,使得在操作时催化剂丸片等悬浮或浸渍在流经反应区的反应介质中。以这些方式使用多相催化剂具有能够将催化的作用限制在充分限定的区域内的优点,使得一旦反应介质通过该区域时进一步的氧化减速进行或可得到显著的抑制。同时也可以避免为进行催化剂回收的准备工作。
氧化催化剂的载体对氧化反应可以具有较低的催化活性或甚至对其呈惰性。载体可以是多孔的。一般而言,在主要的各种条件下催化剂载体材料基本上是耐腐蚀的,并且基本上是抗氧化的。因此,取决于各种主要的条件,催化剂载体材料可选自例如二氧化钛、二氧化硅、氧化铝、二氧化硅氧化铝、α-氧化铝、γ-氧化铝、δ-氧化铝和η氧化铝、富铝红柱石、尖晶石和氧化锆。优选含有α-氧化铝、γ-氧化铝、二氧化硅或二氧化硅氧化铝的载体。
氧化催化剂的载体组分可以是纯物质或各种材料的组合物,后者例如用于将所需的各种化学或物理特性赋予所述催化剂。例如,氧化催化剂可包含具有高度耐磨性的底物以及具有较高表面积的底物覆层。可采用常规浸渍技术来制造所述催化剂。在主要的各种条件下用作底物的材料一般都是耐腐蚀及基本上都是抗氧化的。因而取决于各种主要的条件,底物材料可选自α-氧化铝、富铝红柱石和尖晶石。用作组合物底物覆层的材料为二氧化硅、氧化铝、二氧化钛、氧化锆、α-氧化铝、γ-氧化铝、δ-氧化铝和η氧化铝。
本发明现将参照示意根据本发明各种不同的方面应用于生产对苯二酸的附图作为例子进行描述。在各图中:
图1是示意总的氧化过程的方框图;
图1A是示意不同进料混合形成反应介质的一个方法的视图;
图2是可用于采用基本纯氧或富含氧的气体作为氧化剂的本发明方法中的一种氧化反应器图解的流程图;
图3示意了图2中所示的氧化反应器的一种修改;
图4是另一种反应图解,其中采用连续搅拌釜反应器进行反应;
图5是用于对苯二酸结晶和回收的一个实施方案的流程图;
图6是示意使用精馏器从结晶过程中制得的闪蒸蒸汽中回收溶剂和水的一个流程图;
图7是示意产物回收图解的一个流程图,其中结晶与浓缩在相同的容器中进行;
图8示意具有去除热量的活塞流反应器体系的一种形式;和
图9是用于进行此处所报道的各实施例的实验工作的装置的示意图。
参照图1,对苯二酸在反应器系统10中通过对苯二酸的前体如对二甲苯在溶剂如乙酸中进行液相氧化进行制备,所述氧化在催化剂系统的存在下进行。反应器系统10可以是各种形式,如单一活塞流反应器、两个或两个以上串联的活塞流反应器、一个活塞流反应器与一个或一个以上连续搅拌釜反应器联合,或两个或两个以上连续搅拌釜反应器串联并设置成效果近似活塞流。各种可能的反应器系统构型的一些例子将在以下进行描述。前体、补充溶剂、补充催化剂(如包含钴和锰化合物与作为氧化促进剂的溴)和回收的母液及溶剂组分在混合器和预加热器部分12中进行混合得到反应介质,其中混合物中溶剂(新的及回收的)与前体的比率基本上高于常规对二甲苯通过液相氧化生产对苯二酸中所用的比率。在系统稳定态操作的条件下通过回收母液和溶剂提供至少部分的预加热(所需之处)。通过回收的母液所提供的热量将足以消除在稳定态条件下对外部热源的需求,虽然在这种情况下开始时仍需要一个外部热源。通常溶剂∶前体之比为约70∶1(重量比)。混合物经管线14提供给反应系统的进口区。提供给反应系统的混合物的温度通常为约150℃,并被泵唧至适宜的压力水平以确保反应期间基本上能防止反应介质发生沸腾。各种液相组分除了在混合器12中进行混合外,它们还可以先进行预加热但彼此分开,然后导入到反应器系统(在这种情况中单元12仅仅是一个预加热器)并作为两种或两种以上不同的进料14提供给反应器系统10,在反应器系统10的进口区进行混合(作为这种方案的一个实例,请参照图1A)。
氧气经管线16提供。氧气的提供可以是各种形式,包括基本纯氧、空气、富含氧的空气、含氧和稀释剂如氮气或二氧化碳等的气体。虽然氧气的提供通过进入反应器系统的单线16表示,但提供氧气的方法以及按其浓度提供的氧气的性质是可以变化的,这从下述更具体的实施方案中将变得显而易见。同时虽然所显示的氧气源是与溶剂/对二甲苯反应介质分别供给反应器系统的,但优选将其至少部分(参见管线17)预溶于反应介质中,或预溶于其反应器系统上流的一种或一种以上组分(如乙酸和/或母液循环)中,或预溶于混合器/预加热器部分12中,而不管所用的氧源是何种类型,但当使用基本纯氧或用惰性气体稀释的氧气时特别优选这么做。
优选溶剂/前体/催化剂反应介质作为活塞流或近似活塞流从进口区至出口区流经反应器系统,产物流在出口区经管线18移出。反应以溶剂/前体混合物通过反应区期间所生成的基本上所有对苯二酸都保留在溶液中,籍此使各种中间产物如对甲苯甲酸和4-CBA在反应期间都保留在溶液中(因而可用于进行反应)的方式进行。通过这种方式可以确保产物具有较低含量的4-CBA。
产物流经管线18流到结晶部分20,产物对苯二酸在其中发生沉淀形成对苯二酸在母液中的稀薄的淤浆,母液主要含有所用的溶剂和一些水、溶解的催化剂组分、对苯二酸、其中间产物以及在反应中形成的付产物。结晶过程包括降低压力和温度,并且在过程结束时淤浆的压力可为低于大气压至基本上高于大气压、优选高于大气压。
可选择结晶过程终结时的温度,使随后从淤浆中回收的母液处于适宜的温度,以便当与补充的溶剂及前体混合时混合流具有与反应区的所需进口区温度相对应的预定温度。氧化反应生成了水,去除至少一部分反应水的一个方法是使用与结晶部分相连的压力精馏器/蒸馏塔,例如通过将来自至少一个结晶器的闪蒸蒸汽在高压下直接提供给蒸馏塔以将溶剂(作为塔底产物)从水(蒸汽形式的塔顶产物)中分离出来。然后通过蒸汽冷凝涡轮可将加压的塔顶蒸汽用于动力回收系统中。这样方案的一个实例将参照图6在下面所做的更详细的描述。
当对苯二酸通过包括将反应器产物流的压力降低至其饱和蒸汽压以下以通过急骤蒸发开始除去溶剂以及溶剂冷却的结晶过程而得以沉淀时,在对苯二酸回收后将至少残余母液的主体重新加压并循环回反应器中。在另一个旨在避免对母液循环蒸汽重新加压的方法中,通过冷却反应器产物流而不降低其压力可使对苯二酸发生沉淀。然后通过热交换表面除去热量并用于例如产生蒸汽或过程加热等。在这种装置中,冷却对苯二酸将使换热器表面结垢而降低其效率。通过使用换热器表面刮板装置可处理这种结垢问题。
另一个旨在降低母液循环流必须重新加压程度的方法包括通过去除溶剂使对苯二酸从反应介质中沉淀出来而无须冷却溶剂。溶剂去除可通过使其强制经过半渗透膜(可渗透乙酸和水以及可任选渗透催化剂及反应杂质,但不可渗透对苯二酸)而得以实现。溶剂去除后,对苯二酸开始沉淀而使膜孔堵塞而造成膜效率下降,这可通过例如设计高剪切力经过膜表面和/或使膜在系列中间容器中停留(在其中发生主体结晶)而得到抵消。因通过膜系统的压力降不是主要的,故可以降低循环母液所需的泵唧费用。
结晶后淤浆的强度将显著低于在常规生产对苯二酸中的情况,即这是由于采用高的溶剂∶前体比率之故。因此最好在进行固-液分离之前先对淤浆进行浓缩。这可在结晶部分的下流的浓缩部分22中进行,该浓缩部分可例如包括一个或一个以上产生包含淤浆中对苯二酸晶体的主要部分和母液的稠化底流和包含母液(其中对苯二酸微粒可能悬浮)的溢流的旋液分离阶段。通过一个或一个以上旋液分离器进行淤浆的浓缩从这些设备较低的费用来看是特别有利的,但也可以采用其它设备,如一种或几种离心机(喷嘴,滗析器等)、过滤器(包括横向流微过滤)或澄清/稠化设备单独或联合与结晶器使用(如此后所述)。
来自浓缩部分22的溢出流经管线24和26循环至混合器/预加热器12。将浓缩液提供给固-液分离部分28,对苯二酸晶体在其中从母液中分离出来,如在我们先前公开的国际专利申请第WO 93/24440号和WO 94/17982号(其整个公开此处通过引用并入本文)中所述采用例如一个或一个以上在超计大气压、大气压或低于大气压的条件下操作的过滤装置(有或没有洗涤装置)进行固-液分离。因而,例如联合的固体分离及水洗设备可包括离心机、带式压滤机单元、淤浆一侧处于压力下操作的旋转圆筒过滤器单元或旋转过滤器单元(如由大量接收淤浆的槽所形成的BHS-Fest压滤鼓,其中,在提供给槽的液压下母液从滤饼中以水的形式滤出)。淤浆过滤后可对回收的对苯二酸进行干燥。如还未在大气压下,则可将对苯二酸的滤饼经适宜的排压设备如锁紧进料斗装置、旋转阀、柱塞泵、螺杆加料设备或渐进式进料设备如用来泵唧固体含量较高的冷糊状物的渐进式空腔泵转移到低压区(如大气压)以进行干燥。
分离时的温度和所需的洗涤程度将取决于反应中所产生的杂质含量以及所需要的产品规格。虽然一般而言我们希望生产足够纯的对苯二酸而无须进行进一步的提纯(例如通过使对苯二酸的水溶液进行氧化和/或氢化而将4-CBA转化为对苯二酸或对甲苯甲酸,视具体情况而定),但我们不排除在本发明的方法中进行这种提纯的可能性。固-液分离后可经管线30回收产物以进行干燥并用于下流通过采用二醇(如乙二醇)进行酯化生产聚酯而无须要求介入化学提纯。产品的干燥可在例如旋管式蒸汽管干燥器或流化床干燥器中进行。
作为滤液从固-液分离部分28中获得的母液经管线32和26循环到混合器/预加热器12。母液可能含有一些固相微粒形式的对苯二酸。由于预加热或者在反应体系内的原因,这些微粒内容物可能至少部分重新溶解于反应介质中;然而即使一些微粒内容物流经反应体系时仍未溶解一般也是可以接受的,因与常规生产对苯二酸的方法所制得的微粒相比这些微粒是较纯的。虽然未在图1中示意,但对所回收的母液(管线32和26)可在其返回到混合器12之前采用换热器进行加热以实现从管线18中的产物流到母液循环的热传递。或者也可对母液进行冷却(如母液被用作预溶氧气的媒介物),在这种情况中可使母液与送入反应器系统的进料或进料14中的一种进行热交换以完成对进料流的加热。
为了给溶液“种晶”和成核和/或促进颗粒的生长,可将部分结晶过程中的回收下流固体循环回一个或一个以上结晶器中。例如,为实现此目的,可将部分含有微粒的溢流或来自浓缩部分的稠化底流循环到结晶过程中。
结晶过程通常包括从淤浆中闪蒸出溶剂及水,而水是以反应付产物的形式产生的。所得蒸汽和/或冷凝液通过管线35提供给溶剂回收部分34。在溶剂回收部分中所回收的溶剂经管线38和26送往混合器/预加热器12,而气体及其它易挥发成分经管线42与任何从反应系统和/或结晶器部分经管线44回收的易挥发成分与气体,包括未反应的氧气一起流至放空处理系统40。当反应器系统在足够高的压力条件下进行操作以确保在整个反应过程中保持单一相的方式时,从反应器系统得不到放空气体;代之气态组分当从结晶部分的溶液中释放出来时是通过排空去除的。在溶剂回收部分34中从溶剂中分离出来的水经管线46送往污水处理设备。
可以改变将氧气导入到反应中的方法。在本发明一个优选实施方案中,将氧气或含氧的气体以使基本上所有氧气或含氧气体溶解于反应介质中,使得反应可以用这些组分在单一相的条件下进行的方式导入到反应介质中,而在常规的对苯二酸生产方法中将在气相和溶解于液相反应介质中的固相中进行。图1A示意了一个得到这种效果的方案。在此方案中,为反应器10A提供以下各液相组分:
A.对二甲苯和乙酸溶剂(液相);
B.乙酸溶剂中补充的催化剂(液相);
C.从过程中回收的母液(液相);和
D.氧气或含氧气体(气相)。
将与进料C相比体积较小的进料A和B泵唧至系统压力,然后在混合器M1中开始混合并按需要在混合期间、混合前或混合后进行预加热,籍此得到混合的进料E。将进料E送入反应器系统的进口区10A。将超过反应所需化学计量量的氧气经进料D加入到处于系统压力下的母液进料C中,然后,如需要使加入的氧气进行预加热,将所得含氧液体进料F送入进口区10A。氧气可以例如作为单一射流在紧挨静态混合器M2的上游加入到母液循环流中。设计静态混合器M2以确保:通过母液流的连续混合使溶液中不再有局部高浓度的氧气;通过防止气泡聚结来控制最大的气泡尺寸;将气泡均匀地分布于整个母液循环流中以使所有气体都溶解于液流中的时间达到最小。进口区10A包括混合装置M3如静态混合器用于确保进料E和F的完全混合籍此形成反应介质。
选择系统的操作压力即进料E和F被加压达到的压力以使所有导入的氧气或含氧气体进入溶液液相反应介质中,而同时确保能防止反应介质出现沸腾。当氧源采用纯氧时,系统的操作压力通常可以超过约60巴,当存在稀释剂时将相应增加。例如当氧气以含80%氧气和20%氮气的气体的形式提供时,系统的操作压力通常将超过约75巴。进料E和F的温度使得当将其混合时能确保在反应器系统10的进口处保持与氧化反应开始时所需反应介质温度(如150℃)的恒定。
乙酸/对二甲苯比率取决于经进料A和B所导入的溶剂以及经母液进料C所循环的乙酸。该比率使得基本上所有在随后反应中所制得的对苯二酸保持在整个反应区的溶液中,考虑到随着反应介质向反应器系统的出口区10B推进时生成越来越多的对苯二酸以及反应介质的温度由于反应器系统进行非等温操作而导致温度从进口区10A到出口区10B增加所引起的升高。可以特制所得的温度线图,而其中一个控制温度线图的方法是将进料F在各个阶段而非在进口区10A处一次性导入反应器系统10中。因此,如图1A虚线所示,可将进料F分成不同的进料F、F1、F2……,进料F在进口区10A处导入,而剩余的进料F1、F2……在沿反应介质流经反应器系统的路径的不同点之处作为骤冷进料注入反应介质中。在每个注入点处提供适宜的混合装置M4、M5,以确保注入的液体与剩余的反应介质之间完全混合。当反应器系统包含两个或两个以上不同的反应器时,进料F1、F2……可方便地在各连续反应器之间的过渡处注入到反应介质中。
在实施上,由于母液进料C在稳定态操作条件期间通常组成了反应介质的主体,因此它是将氧气导入到反应中的最佳媒介物;但我们不排除氧气通过一种或一种以上其它进料的方式代替母液进料或除了母液外导入到反应器系统中的可能性。
我们现提及图2,该图示意参照图1所述方法的一种形式,其中反应器系统为绝热活塞流反应器60的形式,具有一个各种反应剂进入进行混合的进口区,通过组合来自混合器/预加热器66经管线62提供的对二甲苯、新溶剂以及补充的催化剂的混合物和管线64循环的母液制得液相反应介质。氧化剂(在这种情况下为基本纯氧)经压缩机68和管线70提供并与母液循环进料64组合。通过适宜加强的混合使各种反应剂汇合以制得氧气溶解于液相中的单一相。通常将液相反应介质泵唧至60巴的压力,并将氧气压缩至压力超过60巴以便于将其导入到液相中。当处于图1实施方案的情形中时,反应介质包含对二甲苯(pX)、基于溶剂的母液和反应器系统的下流回收溶剂、补充溶剂以及补充催化剂。通常提供给反应器系统进口62的反应介质/氧化剂混合物的温度为150℃。反应器系统的单相操作可以有利地减少/抑制乙酸甲酯的形成(其中乙酸用作溶剂),并且与常规反应器相比可使溶剂的燃烧程度降低。此外,使用氧气而非空气使随后的结晶过程中排放的气体体积明显减少。
在反应器系统60的进口区处可导入用于反应的所有氧气,在这种情况中,为了获得氧气溶解于液相中的单相条件将要求反应器在高压下(如60-100巴)进行操作。如需要,通过在沿反应器60的流动方向上分配氧气供应可以显著降低反应器的压力。因而,如图2中所示,通过管线70提供部分的氧气,而剩余的氧气则在一系列沿反应器60的长度方向的位置上经N个注入点70A、70B和70C(其中N不小于1)注入。在示于图3的一个变体中,通过内部延伸和沿反应器60长度方向上的多孔导管等将氧化剂导入可实现其基本上的连续分布。如图2或图3中所示,通过连续导入氧化剂可以控制在具体位置上提供给反应的氧化剂的量以满足该位置上对氧气的需求,并确保在反应器内没有缺氧气的区域。此外,假设使反应器保持在足以防止反应介质在反应期间发生沸腾现象的水平则可以降低其压力。
当供应给反应器60进口的混合物的溶剂∶对二甲苯的比率为例如约60∶1时,在反应过程中绝热温度上升至约70℃。反应释放热可以通过使温度从反应器进口62处的例如150℃的温度上升至在反应器出口处72的约220℃而得以除去,无须通过例如间接热交换或通过导入冷却剂液体(即反应介质或热载体)进行骤冷将热量去除。然而应理解的是本发明、包括图2的实施方案都不局限于仅仅通过从反应器的进口至出口温度上升来去除释放热,可以采用任何适宜的去除热量的方法以除去至少部分反应热。
使从活塞流反应器出口72处移出的产物流在通常对应于参照图1所述设备20、22、28和34部分的产品与溶剂回收部分74中进行加工,所回收的产品、回收的水与回收的母液吹扫流分别如76、78、80和82所述。因在该实施方案中基本纯氧用作氧化剂,将氮气或其它惰性气体经管线84提供给结晶过程以确保经管线86回收的排放气体是不可燃的。通常将氮气提供给结晶系列的至少第一个结晶容器(温度、压力最高)的液面上空间。排放气流86流经热交换器88,在进入加热炉92进行加热前在其中被经管线90供应的热处理后排放气体预加热,然后在单元94中进行催化燃烧以破坏各种污染物,如一氧化碳和可转化为CO2与水的各种有机物。处理后的气体在经管线90通过热交换器88后,如需要可在用水或碱液洗涤除去任何存在于排放气流86中的溴代甲烷由于催化燃烧而生成的残余污染物如溴和HBr之后进行排放。
在图2实施方案的一个变体中,可以有两个或两个以上的活塞流反应器串联连接,任选地将氧化剂多级地注入一个或一个以上串联连接的反应器中。例如,来自第一个反应器的含有产物流可直接送入下一个反应器中(当存在两个以上的活塞流反应器时以此类推)。可将骤冷介质导入到第一个反应器下流的一个或一个以上反应器中以便整体控制反应器系统温度线图的恒定,使基本上所有生成的对苯二酸都保持在溶液中。骤冷介质通常包含反应中所用的溶剂(如参照图1A所述的母液),任选具有预溶于其中的氧气。在另一个变体中,导入到一个或一个以上第一个反应器下流的反应器的热量控制介质可取决于所建立起来的整个反应器系统的温度线图,在从前一个反应器中转移时起着加热而非冷却含有产物流的作用。
在上述中使所用的催化剂都溶解于供应给氧化反应的溶剂介质中;然而如先前所讨论的那样,可以使用多相催化剂。优选催化剂体系包括锆。例如,我们发现,补充15%(重量)锆的钴与相同条件(停留时间,进料组成和温度)下,但没有这种补充的情况相比可使4-CBA含量明显降低,即,与没有补充锆情况下4-CBA浓度为250ppm相比,在催化剂体系有锆取代的4-CBA的浓度约为100ppm。
在图2的实施方案中,氧化反应在一个或一个以上活塞流反应器中进行。图4则示意了另一种方法,其中通过一系列连续搅拌釜反应器170A、170B和170C,任选与小型活塞流反应器172联合形成反应区。在该实施方案中,通过使用多级CSTRs可得到近似活塞流的操作----所用的CSTRs数量越多,则反应器系统的操作越接近活塞流的方式,因而溶剂燃烧与4-CBA的关系越发令人满意。来自混合器/预加热器174的反应介质具有图2实施方案所述的组成,并通过泵唧加压提供给反应系统的进口176(也即系列中第一个CSTR 170A的进口),反应介质被加压至足够极限以避免在每一个CSTR中发生显著的沸腾现象的压力,如约25巴的压力。将来自每一个CSTR的流出物经管线178和180提供给下一个CSTR,并经管线182提供给活塞流反应器172(当存在时)。将稀释气体如CO2中的空气或氧气通过压缩机184压缩至约32巴的压力并经管线186供应给每一个CSTR以及活塞流反应器172(当存在时)。在一个修改中,基本纯氧可用作提供给各个CSTR和/或活塞流反应器的氧化剂,条件是针对系统中存在高浓度的氧气所引起的危险性采取适宜的预防措施。例如,各个CSTR可用空气提供,而活塞流反应器可用基本纯氧或富氧源如与稀释气体如CO2或氮气混合的氧气提供。无论氧气以任何方式提供,最好在氧气出口至CSTR处控制流向每一个CSTR的空气/氧气的流量以确保其不会发生缺氧的现象。
在反应区中将反应介质的温度设计成基本上所有由对二甲苯的氧化所生成的对苯二酸在通过反应区时都保持于溶液中。在本文中应理解的是,可能有一些来自母液循环的对苯二酸以不溶微粒的形式存在于固相中(如前所提及)。因而,在一个提供给反应区进口区的反应介质的温度为150℃的方案中,第一个CSTR 170A可能在约180℃的温度下进行操作,第二个CSTR的温度为约200℃,第三个CSTR的温度为约210℃,籍此使温度线图保持恒定,从而使基本上所有生成的对苯二酸都保持在溶液中。换言之,当反应进行期间以及生成越来越多的对苯二酸时,使反应介质通过下一个温度足以使已经生成和即将在所涉及的CSTR中生成的对苯二酸都保持在溶液中的CSTR。在每一个CSTR内压力可能都普遍相同,但我们不排除反应器系统以压力从一个CSTR到下一个CSTR上升的方式操作的可能性。
废气从每一个CSTR 170A、170B、170C在通过各自的冷凝器190A、190B、190C的塔顶流中移出。这些冷凝器并非用于主体蒸发(boiloff)(如在常规设计中)的冷凝,因各个CSTR都是以非沸腾的方式进行操作,这些冷凝器起着“分离(knock back)”一些可能作为废气流中蒸汽或液滴所夹带的溶剂的作用。反应介质在每一个CSTR中的停留时间与常规生产对苯二酸的CSTR的停留时间(通常为不小于30分钟)相比将较短。通常在每一个CSTR 170A、170B、170C中的停留时间可为几分钟,如每个CSTR约1-2分钟。
可将从最后的CSTR 170C中移出的产物流直接送至产物/溶剂回收部分192,但当需要低的4-CBA含量的对苯二酸产物而又不会造成溶剂的过度燃烧时,可以使用一小型的活塞流反应器172以进一步降低离开最后CSTR 170C的产物中4-CBA和其它杂质的含量。用于此目的的活塞流反应器仅需要较小的体积,如每一个CSTR的容量为100m3,则所述活塞流反应器172的容量可为10-20m3。因此,例如在氧化反应中所获得的对苯二酸的大部分(如至少75%)是在各个CSTR中制得的,而剩余的则在所述活塞流反应器中制得。
产物/溶剂回收部分192通常类似于图1和图2中所述。管线194、196、198和200分别代表所回收的对苯二酸产物、所回收的水、循环至混合器/预加热器174的母液以及母液清洗流。来自冷凝器190A、190B、190C的废气流的压力很高,如25-30巴,并将特别含有残余的氧气、一氧化碳、二氧化碳、大部分的氮气、溶剂以及其它有机物如溴代甲烷和乙酸甲酯。该放空气流202进一步在冷凝器204中进行冷却,冷却液(主要是溶剂)经管线206送至溶剂回收部分。然后使冷却后的放空气流与洗涤液在高压吸收器209中进行接触以除去其它有机物。洗涤后的放空气体在燃烧燃料的预加热器210中进行预加热,在单元212中进行催化燃烧,并通过骤冷器214回收动力。然后从骤冷器214中回收的含有氮气的气流216在排放和/或用于其它用途如用作生产厂的惰性气体之前可进一步通过如用水或碱液洗涤进行处理以去除任何残余的污染物如溴和/或HBr。该放空气体的处理过程通常可见述于公开的国际专利申请第WO 96/39595号中。
在图4实施方案的一个修改中,当存在活塞流反应器时可以采用单一的CSTR代替如图所示一系列的CSTR。装置的布置可以使得例如氧化反应的主要部分在CSTR中进行,如在整个反应所获得的对苯二酸当中至少75%是在CSTR中制得的,而剩余部分则在活塞流反应器中得到。在另一个修改中,可按在US-A-5371283中所公开的方式进行设计将基本纯氧或富含氧气的气体(即氧气浓度超过空气中含量,如23-100%的气体)提供给所述CSTR或每一个CSTR,并在反应器内通过建立起一个静止区的装置使得氧气泡被限制于循环液体中并被阻止进入反应器液面上空间。这可以通过如在US-A-5371283(其整个公开此处通过引用并如本文)中所述,通过位于气相与液相之间的界面区域的挡板和/或通过反应器内采用惰性气体如氮气使液面上空间发生液泛来实现。以这种方式可以较为容易地监测放空气体中的氧气含量以避免在反应器液面上空间发生可燃的危险性。
在上述采用一个或一个以上活塞流反应器的实施方案中,示意了沿水平方向延伸的纵轴定位的反应器。然而应理解的是这不是必要的,反应器也可以定位为液体的流动一般在垂直的方向上进行。
在图1、2和4中所述的产物回收部分的一种形式示于图5中。在来自反应器系统的管线220上的产物流进入第一个搅拌结晶容器222A,在其中闪蒸以降低其压力及温度,使产物流中的对苯二酸成分发生部分沉淀,并释放出包含溶剂和水的蒸汽。产物流接着经管线224送往第二个搅拌结晶容器222B,在其中闪蒸以再降低其压力和温度,随后对苯二酸晶体再次发生沉淀并释放出溶剂和水蒸汽。通常对于管线220上的温度为210-220℃的产物流而言,在第一个结晶器中将产物流闪蒸至约195℃和9巴,而在第二个结晶器中闪蒸至约151℃和3巴。虽然在图5中示意了两阶段结晶过程,但应理解的是可以有两个阶段以上或甚至仅有一个阶段的结晶过程。
包含在基于溶剂的母液中的沉淀的对苯二酸晶体的产物流处于较稀薄淤浆----如含有约3.5%(重量)的固体的形式。将该淤浆经泵226送往一个或一个以上旋液分离器228(在图5中仅示意其中的一个,当采用一个以上的旋液分离器时通常它们是并联和/或串联的)。淤浆在旋液分离器228中进行稠化,得到稠化了(如高达约30%(重量)的固体)的底流230以及包含基于溶剂的母液(对苯二酸微粒悬浮于其中)的溢流232。将底流送往一排压容器234,稠化淤浆的压力在其中被降低至约1巴或更低,并被送往旋转真空过滤器236的淤浆接收室,通过该过滤器大部分对苯二酸晶体从母液中分离出来得到在真空过滤器的圆桶滤布上的滤饼。将滤饼从滤布上除去并提供给干燥器237,得到干燥后的对苯二酸晶体。
对溶剂在结晶过程中的不同阶段进行回收。对来自容器222A、B的含水和溶剂闪蒸蒸汽进行回收并通过冷凝器238A、B,得到的作为冷凝液的溶剂,其经管线240、242和244循环到混合器部分(参见图1、2和4)。溶剂作为来自旋液分离器的溢流回收并经管线232和244循环。另外溶剂还从溶剂回收部分246中进行回收并经管线248、242和244进行循环。溶剂回收部分246可被蒸馏塔(图中未示出)如共沸蒸馏塔所取代,将在生产过程中来自各种来源的含溶剂和水的进料流送入此塔以将溶剂从水中分离出来,而水则经管线249送往废水处理系统(图中未示出)。一种这样的进料流包含从结晶容器222A、B中获得的闪蒸气流250,紧接着在冷凝器238A、B和252中进行热回收。蒸汽流250也含有残余氧气和各种惰性成分如氮气、一氧化碳、二氧化碳、溶剂、水和乙酸甲酯(当空气用作氧源时存在该成分)。将包含从母液循环流中取出的清洗流蒸发出来溶剂/水的第二种溶剂/水进料流255提供给蒸馏塔。将气态组分从蒸馏过程中制得的塔顶组分进行相分离并经管线254提供给放空气体处理(如催化燃烧、经骤冷器进行动力回收以及洗涤)。从蒸馏塔中回收的溶剂通常足够地纯净可用于洗涤所回收的对苯二酸。因此,例如可将部分溶剂流248经管线260传递并用于洗涤在旋转真空过滤器236的滤布上所形成的滤饼。如需要,该溶剂可用于逆流洗涤滤布上的滤饼。虽然在图5中示意了旋转真空过滤器,但应理解的是可以采用其它设备如带式滤器进行所述固-液分离步骤。水可以用作洗涤液代替溶剂进行洗涤。
图6示意了一种从结晶过程中回收溶剂的方式,其中通过冷凝蒸汽涡轮回收能量。使来自反应器系统的产物流300进行结晶,图中示意了两个阶段。在每一个容器302A、B中的结晶以图5所述的方式进行,并得到包含蒸汽和溶剂蒸汽的闪蒸气流。使来自容器302A的闪蒸气送往冷凝器304,在其中热量被输送到经管线306供应的锅炉给水中,籍此得到用于生产过程中的管线308中的低压蒸汽。冷凝器304起着“分离”溶剂的作用,由于它不含对苯二酸,故将其经管线309送往通向反应器内混合器/预加热器的溶剂循环管线310而非输送到第二个结晶容器302B中。未进行冷凝的废溶剂闪蒸气经管线305送往第二个结晶容器302B,在此处与来自容器的闪蒸气组合并直接进入分馏塔/精馏塔312。或者可如下所述将来自管线305的闪蒸气直接送往放空处理。来自容器302B的闪蒸气将是带压的,通常为3巴。通常设置蒸馏塔312以接收来自最后一个结晶阶段(当使用一系列结晶阶段时)的闪蒸气;但我们不排除将蒸馏塔与结晶最后一个阶段的一个上流相连接的可能性。将来自容器302B的淤浆提供给314所示的固体回收过程,得到管线316上的干燥对苯二酸晶体和管线318上的母液循环。
塔312制得包含少量水分的溶剂的塔底产物(管线320)和含有一些溶剂的富含水的塔顶产物(管线322)。将富含溶剂的塔底产物经管线310循环至反应器系统,而同时通过蒸汽冷凝涡轮324对塔顶产物进行处理以回收动力,所述涡轮在进口管线326上可接收如来自管线308的蒸汽以及来自塔顶产物(管线322)的低压蒸汽。残余有机物、残余氧气、氮气以及在管线322上形成塔顶产物的蒸汽的气流在通过热交换器328及火焰加热器330时得到预加热。接着在单元332中进行催化燃烧以破坏各种污染物(主要是溶剂)。所得管线334上的高压、高温气流(通常在催化燃烧后温度为450℃)通过在热交换器328中将热量传输给管线322上进入的塔顶气流而得到冷却以调节其温度,经管线336提供给冷凝蒸汽涡轮324以与其有效的操作相配合,即在涡轮的出口338处得到约12%的湿度。在热交换器342中将来自涡轮338的出口气流冷却并部分可用作蒸馏塔312的回流(管线340)。从涡轮324中回收的剩余水分可用于生产过程中的其它地方或送至废水处理,如作为锅炉给水送至冷凝器304。在图6蒸馏方案的一个修改中,所有来自第一个结晶器302A的闪蒸气可以直接排进第二个结晶器302B中。
如前所述,在结晶过程中所得到的淤浆将是稀薄的,即在固-液分离之前使该产物相对于母液含量进行浓缩是符合要求的。图7示意了在结晶过程中采用联合的结晶和浓缩设备实现浓缩的设备。参照图7,结晶/浓缩器部分包括一个Draft Tube Baffle(DTB)结晶器。在图7中,为了使描述更加简明而未示出装置的几个分部分(如溶剂脱水、固体干燥、吹扫处理)和泵以及控制阀门。装置所删除的分部分可根据常规对苯二酸生产技术进行确定。
经管线400在压力下提供的氧气和经管线402提供的热母液循环在混合器401中进行混合以预溶氧气并得到氧化后的母液进料404。在活塞流反应器410的进口处,包含新的对二甲苯、催化剂及乙酸溶剂的进料406与氧化后的母液进料404进行混合并开始反应。反应放热使得反应器410的温度升高,再加上选择合适的反应介质的溶剂∶对二甲苯的比率可以确保在反应期间使制得的对苯二酸都保持在溶液中。反应产物经管线408向前送往压力(因而温度)控制的DTB结晶器412。在进入通流管413的中心后进料发生部分闪蒸。因两相闪蒸的进料的密度小于主体混合物,因而在结晶器412内建立起一个循环流(如需要,该循环可通过上泵搅拌器414得到进一步增强)。蒸汽从液体表面释放出来,并经管线415送至产生用于过程中加热和动力回收的水蒸汽的蒸汽冷凝器416。收集大多数冷凝的溶剂并与母液一起经管线418、420和402进行循环,但一些则经管线422送往溶剂脱水。少量来自冷凝器416的气体放空气流(未反应的氧气加上碳氧化物以及低含量的挥发性有机物)经管线424向前送至放空气体处理过程。
DTB结晶器412具有一个沉降区426,基本上无固体的母液(可能含有一些微粒晶体)从中导出在管线430上循环。产物淤浆从淘析支架(elutriation leg)432中以较高的淤浆强度,如高达约30%(重量)的固体导出。在淘析支架432中可用经管线434提供的洁净溶剂逆流对晶体进行洗涤。将富含固体的淤浆经管线436向前输送例如通过单一闪蒸结晶器438(或一些串联的结晶器)进行冷凝及减压,经冷凝器440进行热消耗以冷却水和/或回收热,所得不可冷凝物经管线442和424送往放空气体处理,而冷凝物经管线444通过管线420和402进行循环。然后将冷却及减压后的淤浆经管线435向前送往在超计大气压、大气压或低于大气压下操作的旋转过滤器或带式滤器或离心机的产物分离部分446。湿的固体产物经管线448回收以便进行产物干燥。二次母液经管线450从分离部分446中回收。经管线452取出少量母液吹扫流以从过程中除去各种可溶的杂质。所示的吹扫流是从产物分离液体中取出的,但也可以例如从一次母液流430中取出。
将从母液吹扫流452中回收的溶剂(以及任选的催化剂)、干燥的产物、脱水后的溶剂以及所有结晶器冷凝器冷凝液流一起汇合、预加热(当需要时通过加热器454来实现)并与一次母液循环430混合。经混合,任何在一次母液中的微粒都将得到溶解(可以提供一个微粒溶解容器以提供溶解时所需的停留时间)。当溶剂温度上升时仍未溶的微粒将进入到反应器的溶液中。
如前所述,可以控制整个反应器系统如单一活塞流反应器的温度线图以满足各种要求,特别是应考虑受化学及化工因素影响的各种限制。例如,对于反应器进口温度通常希望其尽可能地低,只要高于反应开始温度即可。最好其温度为或接近对苯二酸从主体母液中分离出来时的温度,因循环母液由于所包括的流量太大而使其冷却或加热的费用太昂贵。同时我们还发现产物的质量受到进行固-液分离时的温度的强烈影响。这些考虑因素促使反应器进口的温度应在120-180℃的范围内,如140-170℃。对于绝热(无外部加热或冷却)反应器而言其出口温度与反应器进口温度以及溶剂比有关。然而,出口温度受限于以下几个因素:
需要最大限度地减少溶剂和前体的燃烧(即乙酸和对二甲苯燃烧成CO/CO2)表明需要操作在反应器出口温度低于230℃,如210℃下进行;和
通过使出口温度与出口溶剂流量进行适宜的结合需要确保基本上所有制得的对苯二酸都保持在溶液中。
当进口温度在160-170℃的范围以及出口温度不超过210℃时,一简单的绝热反应器将要求溶剂∶前体的比率大于100∶1。这样高的溶剂比将为反应器、结晶器、产物回收设备和循环系统带来庞大的基本投资以及操作费用。如此高的溶剂∶前体比率可以通过使反应器系统在介于绝热和等温的条件下通过进行除去一些反应热,并将如此去除的热用于例如产生动力回收和/或过程加热所需的水蒸气而得以避免。
在图8中简示了去除反应热而同时确保所需的反应器出口温度的一种方法。在该实施方案中,供应有反应剂/溶剂/循环进料500、502的反应器系统510的非绝热/非等温操作通过采用一种或一种以上热交换装置512A、512B、512C……的内部冷却来保证,在其中由管线514所提供的一种适宜冷却剂(如锅炉供水或矿物油)在反应器系统内进行内部循环。如图所示,热交换器是以管排的形式,冷却剂流与通过反应器系统的反应介质流呈并流或逆流的方式在管内进行循环。当冷却剂包含水时,可将冷却剂作为水蒸气经管线518除去。所用的冷却剂也可以是过程中所用的一种流,如对二甲苯进料、母液循环(在氧气投加和溶解之前或之后),使得所回收的热可用于例如使提供给反应器入口处的一种或一种以上的进料的温度上升。通过适宜地选择冷却管或旋管的数量、大小和位置、溶剂∶前体比率、溶剂操作温度、产生水蒸气的温度以及流动的模式可以避免对苯二酸在热交换表面上发生沉淀现象。在流动模式上冷却剂可与反应介质呈逆流和/或并流;然而优选并流流动。在图8中,反应器系统可以被例如单一活塞流反应器组成或可包括两个或两个以上的活塞流反应器,其中的一个或一个以上装有如上所述的热交换器以调节温度。
虽然本发明已参照附图对采用对二甲苯作为对苯二酸的前体做了描述,但应理解也可以采用其它前体代替对二甲苯或除对二甲苯外还采用如4-甲苯甲醛和4-甲苯甲酸。实施例
采用示于图9中的活塞流反应器的方案进行实验室工作。容器D302装有已知用量的乙酸/水溶液中的对二甲苯。容器D301装有已知用量的乙酸/水溶液中的液体催化剂。通过打开阀V20将来自供应源AS的空气通过浸渍管导入到D301和D302中。设定系统的压力以确保所需量的氧气(超过化学计量的对二甲苯需要量)进入到溶液中。氧气溶解后打开阀V21,设定压力差(ΔP)控制器DCP,以便在D301/D302和下流容器之间建立一个恒定的压力。当此后液流建立起来后固定的压力差固定了反应器的停留时间。
打开阀V23和V25以交叉连接两个进料容器D301和D302。阀V27和V28保持关闭以防止发生以反应旋管RC的方式(已装有乙酸)流过活塞流反应器。容器D301和D302以及反应旋管全都浸渍在油浴B中,B将容器D301和D302的内容物预热至所需的反应温度。当D301/D302达到所需的温度时反应开始,通过打开阀V28建立起通过反应旋管进入Off-Spec容器OSV的流动,以及随后用来自反应旋管的乙酸取代进入Off-Spec容器OSV。一预定时间后,通过打开阀V27并关闭阀V28将来自反应旋管的产物流切换到样品容器SV中。随后将来自反应旋管RC的产物流切换回Off-Spec容器OSV。实验后将所有容器冷却、经管线AV放空、洗涤并经排放管线D排出。回收样品容器中的固体和液体内容物、称重并分析,并逆运算出离开反应旋管的反应溶液的组成。
在表1中报道了实验中反应中间产物对甲苯甲醛(ptolald)、对甲苯甲酸(ptol)以及4-羧基苯甲醛(4-CBA)的浓度,其中反应停留时间是变化的。在所用的小规模设备中,反应在准等温条件下进行,整个过程接近油浴的温度210℃。实施例清楚地表明停留时间对中间产物浓度的影响。在停留时间为4.86分钟时,对二甲苯单程转化为反应中间产物的转化率低于0.5%。在停留时间为1.28分钟时,对二甲苯单程转化为反应中间产物的转化率约为16%。但对二甲苯转化为4-CBA(易于与产物对苯二酸发生共沉淀的中间产物)很明显不超过1%。表1:活塞流反应器----氧化结果
在所有实验中以下各参数是固定(所有组成均为w/w):
溶剂:    水5%,乙酸95%
对二甲苯:    0.5% w/w(200∶1溶剂比)
催化剂:      Co 632ppm,Mn 632ppm,Br 1264ppm+Zr 96ppm
油浴温度:    210℃
 实施例  停留时间(分钟)     溶液中的ptolald(ppm w/w)     溶液中的ptol(ppm w/w)      溶液中的4-CBA(ppm w/w)
    1     1.28     228     687     76
    2     1.78     55     411     51
    3     2.28     132     312     42
    4     2.31     99     192     38
    5     3.29     15     82     6
    6     4.86     1.7     27     <0.1
2.结晶/热过滤实验
在维持液相的高温(210℃)和压力下制备在5% w/w水、95% w/w乙酸溶剂中的2% w/w对苯二酸(TA)、125ppm 4-CBA、175ppm ptol和其它氧化中间产物的溶液。使该溶液连续通过一减压阀进入结晶容器中,控制该容器的压力及温度使TA从溶液中沉淀出来。将在结晶器中制得的淤浆向前通过压力和温度都减少至环境条件的其它结晶容器中,TA再一次沉淀出来。
在该实验过程中回收来自第一个结晶器的晶体(热过滤的TA)并分析4-CBA和对甲苯甲酸(ptol)含量以及中值粒度(采用CoulterLS230激光衍射psd分析仪)。同时也回收来自下流容器的晶体(冷过滤的TA)并分析以做参比之用。
在表2中报道了实验中的热过滤TA/4-CBA含量以及中值粒度,其中第一个结晶器的温度、停留时间和搅拌速度都是变化的。为了参比起见也包括一个冷过滤TA的分析结果。实施例7、8和9显示,当过滤温度从196℃降低至148℃时,热过滤的TA、4-CBA和ptol含量也随之下降。这些数据也表明中值粒度随温度的降低而增大。在另外一个实验中,实施例10和11表明在热过滤的TA中,过滤温度从151℃减少至126℃时导致4-CBA的含量增加,而ptol含量和中值粒度则减小。
当综合来看中间产物的结合(intermediates incorporation)以及中值粒度情况时,实施例7-11表明第一个结晶器的最佳温度在150+/-25℃的范围,尤其为140-170℃。
实施例12和13则表明将第一个结晶器的停留时间从9分钟增加到18分钟有利于中间产物的结合和中值粒度。当与实施例10进行对比时,实施例14和15表明将第一个结晶器的搅拌器的速度从270转/分增大到1000转/分时对中值粒度没有太大的影响,但减少了中间产物的结合。表2:结晶/热过滤结果
在所有实验中以下各种参数都是固定的(所有组成为w/w):
溶剂:                    水5%,乙酸95%
进料溶液芳族化合物:      TA2%,4-CBA 125ppm,ptol 175ppm
进料溶液温度:            210℃
 实施例 第一个结晶器停留时间(分钟)   第一个结晶器搅拌器速度(转/分)  第一个结晶器温度(℃)    4-CBA含量(ppm)  Ptol含量(ppm)  中值粒度(微米)
    7   12    1,000   196   2,360   345    59
    8   12    1,000   176   1,040   218    114
    9   12    1,000   148   670   89    134
   10   18    1,500   151   710   138    96
   11   18    1,500   126   1,060   117    86
  12    18   1,000   173   980   150   106
  13    9   1,000   179   1,140   217   96
  14    12   270   152   930   123   139
  15    12   500   150   790   106   135
  参比    12   1,000   148  2,340(冷过滤)  281(冷过滤)  102(冷过滤)

Claims (41)

1.一种通过使对苯二酸的前体与氧在含有所述前体及溶剂的反应介质中,在使得基本上所有在氧化反应区中制得的对苯二酸在反应期间都保留在溶液中的条件下进行液相氧化来生产对苯二酸的方法,其特征在于以一种连续活塞流反应的方式使反应介质通过反应区来进行所述的氧化反应。
2.如权利要求1中所权利要求的方法,其中所述反应区包括一个活塞流反应器或一系列的两个或两个以上活塞流反应器。
3.如权利要求1或2中所权利要求的方法,其中所述反应区包括至少一个与至少一个活塞流反应器连接的连续搅拌釜反应器(CSTR)或串联的多级CSTRs以便接近连续活塞流。
4.如权利要求1-3中任一项所权利要求的方法,其中所述氧化反应在基本上所有的氧气都溶解于反应介质中的条件下进行。
5.如权利要求4中所权利要求的方法,其中通过混合至少两种不同的液相组分和至少部分在这些组分混合形成反应介质之前加入并溶解于一种或一种以上所述液相组分中的氧气来制得所述反应介质。
6.如权利要求4或5中所权利要求的方法,其中将氧气加入到并溶解于反应完成后从反应介质中回收的母液循环流中。
7.如此前各权利要求中的任一项所权利要求的方法,其中所述溶剂主要是脂族一元羧酸。
8.如此前各权利要求中的任一项所权利要求的方法,其中在反应开始时反应介质的水分含量为5%-30%(重量)。
9.如此前各权利要求中的任一项所权利要求的方法,其中在反应开始时溶剂/前体之比至少为30∶1。
10.如此前各权利要求中的任一项所权利要求的方法,其中通过制得从进口区到出口区流经反应区的反应介质流并建立沿流经反应区方向上的温度线图以使得反应介质在出口区的温度高于进口区的温度来进行反应。
11.如权利要求10中所权利要求的方法,其中通过使反应介质的温度升高和/或通过控制由于反应所产生的释放热导致的温度上升来建立所述温度线图。
12.如此前各权利要求中的任一项所权利要求的方法,其中通过从反应介质到受热器横穿过热交换表面进行传热,将至少部分所述反应热从反应区中除去。
13.如权利要求12中所权利要求的方法,其中所述受热器包含可接收热的流体。
14.如权利要求13中所权利要求的方法,其中使所述可接收热的流体流经具有器壁的一个或一个以上流动通道。
15.如权利要求13中所权利要求的方法,其中所述反应区包括在壳体热交换器中的管子,可接收热的流体流经壳体而反应介质则流经壳体内部的管子。
16.如权利要求13中所权利要求的方法,其中所述反应区包括在壳体热交换器中的管子,反应介质流经壳体而可接收热的流体则流经壳体内部的管子。
17.如权利要求13中所权利要求的方法,其中将所述可接收热的流体直接加入到反应介质中。
18.如权利要求1-17中任一项所权利要求的方法,其中所述反应介质在反应区内的停留时间不超过8分钟。
19.如权利要求1-17中任一项所权利要求的方法,其中所述反应介质在反应区内的停留时间不超过5分钟。
20.如此前各权利要求中的任一项所权利要求的方法,其中反应开始时所述反应介质的温度为120-200℃,而所述反应介质从反应区出来的温度为180-250℃。
21.如此前各权利要求中的任一项所权利要求的方法,其中在流经反应系统后,对所述反应介质进行处理以沉淀出对苯二酸并将其从母液中分离出来,然后将母液循环到反应区中。
22.如权利要求21中所权利要求的方法,其中所述沉淀和分离过程以使得在对苯二酸沉淀和分离之后所回收的母液温度与反应区进口处的主要温度相差不超过30℃的方式进行。
23.如权利要求21或22中所权利要求的方法,其中所述沉淀的对苯二酸在分离步骤的上流被进一步浓缩。
24.如权利要求23中所权利要求的方法,其中所述浓缩步骤在对苯二酸从反应介质中沉淀之后进行。
25.如权利要求23中所权利要求的方法,其中采用联合的结晶/浓缩设备在沉淀结晶过程中进行所述浓缩步骤。
26.如权利要求21-25中任一项所权利要求的方法,其中所述沉淀步骤以使得避免反应介质显著减压,籍此使即将进行回收的母液处于与反应操作压力基本相同或接近的压力下的方式进行。
27.如此前各权利要求中的任一项所权利要求的方法,其中在反应介质从反应区中出来后和/或当反应介质正通过反应区时,使所述回收后的母液通过与反应介质进行热交换而得到加热。
28.如此前各权利要求中的任一项所权利要求的方法,其中在对苯二酸从所述反应介质中沉淀出来之前对所述反应介质进行处理以除去催化剂金属离子。
29.如此前各权利要求中的任一项所权利要求的方法,其中所述对苯二酸的沉淀是通过冷却来实现的,并且通过固-液分离将对苯二酸从所得的母液中的晶体淤浆中回收,所述冷却的程度使得进行固-液分离的所得淤浆的温度在120-180℃的范围内。
30.如权利要求29中所权利要求的方法,其中所述冷却的程度使得进行固-液分离的所得淤浆的温度在130-170℃的范围内。
31.如此前各权利要求中的任一项所权利要求的方法,其中将所述氧气在反应介质从反应区的进口区至其出口区的流动方向上的两个或两个以上间隔的位置处导入到反应区中。
32.如此前各权利要求中的任一项所权利要求的方法,其中所述氧化反应在包括锆的催化剂体系的存在下进行。
33.如权利要求32中所权利要求的方法,其中将所述催化剂体系溶解于所述反应介质中。
34.如此前各权利要求中的任一项所权利要求的方法,其中所述氧化反应在多相催化剂体系的存在下进行。
35.如此前各权利要求中的任一项所权利要求的方法,其中所述与反应区有关的总的氧化反应体积A(m3)、所回收的对苯二酸的4-CBA含量B(ppm w/w)以及从氧化反应中回收的对苯二酸的量C(te/hr)之间的关系如下式表示:
                   (A*B)/C<4,000。
36.如权利要求35中所权利要求的方法,其中所述关系式为:
                   (A*B)/C<3,000。
37.如权利要求35或36中所权利要求的方法,其中所回收的对苯二酸的4-CBA含量不超过约5,000ppm w/w。
38.如权利要求35或36中所权利要求的方法,其中所回收的对苯二酸的4-CBA含量不超过约3,000ppm w/w。
39.一种通过用氧在含有对苯二酸的前体及溶剂的反应介质中,在使得基本上所有在氧化反应区中制得的对苯二酸在反应期间都保留在溶液中的条件下,对所述前体进行液相氧化来生产对苯二酸的方法,具有以下任何一个或一个以上的特征:
(a)所述反应在基本上所有的氧气都溶解于所述反应介质中的条件下进行;
(b)在所述反应完成后,将至少部分氧气加入和溶解于从反应介质中回收的母液循环流中;
(c)在反应开始时,所述反应介质的水分含量在10-30%(重量)的范围内,如超过12%(重量)和高达30%(重量);
(d)所述反应在非等温条件下进行;
(e)通过与可接收热的介质进行热交换将热量从所述反应中除去;
(f)通过将骤冷液或可接受热的液体加入到所述反应介质中而将热量从所述反应中除去;
(g)所述沉淀和分离过程以使得在对苯二酸沉淀和分离之后所回收的母液温度与反应区进口处的主要温度相差不超过30℃的方式进行;
(h)所述对苯二酸的沉淀是通过冷却来实现的,并且通过固-液分离将对苯二酸从所得的在母液中的晶体淤浆中回收,所述冷却的程度使得进行固-液分离的所得淤浆的温度在120-185℃的范围内;
(i)所述氧化反应在包括锆的催化剂体系的存在下进行;和
(j)所述与反应区有关的总的氧化反应体积A(m3)、所回收的对苯二酸的4-CBA含量B(ppm w/w)以及从氧化反应中回收的对苯二酸的量C(te/hr)之间的关系如下式表示:
                  (A*B)/C<4,000。
40.通过此前各权利要求中的任一项的方法生产的对苯二酸。
41.用于通过对对苯二酸的前体进行液相氧化生产对苯二酸以及在操作上设计以生产率C至少为20te/hr生产4-CBA含量B低于约5,000ppm w/w的装置,其特征在于所述氧化反应在其中进行的容器的总氧化反应体积A(m3)满足以下条件:
                  A<(4,000*C)/B。
CN98802775A 1997-02-27 1998-02-19 对苯二酸的生产 Expired - Fee Related CN1095822C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9703897.0 1997-02-27
GBGB9703897.0A GB9703897D0 (en) 1997-02-27 1997-02-27 Production of aromatic carboxylic acids
US3966297P 1997-02-28 1997-02-28
US60/039,662 1997-02-28

Publications (2)

Publication Number Publication Date
CN1248238A true CN1248238A (zh) 2000-03-22
CN1095822C CN1095822C (zh) 2002-12-11

Family

ID=26311061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98802775A Expired - Fee Related CN1095822C (zh) 1997-02-27 1998-02-19 对苯二酸的生产

Country Status (13)

Country Link
US (1) US6307099B1 (zh)
EP (1) EP0971870B1 (zh)
JP (1) JP2001513102A (zh)
KR (1) KR20000075766A (zh)
CN (1) CN1095822C (zh)
AU (1) AU6109198A (zh)
BR (1) BR9807459B1 (zh)
CA (1) CA2279510C (zh)
DE (1) DE69818651T2 (zh)
ES (1) ES2206894T3 (zh)
ID (1) ID23502A (zh)
TR (1) TR199902058T2 (zh)
WO (1) WO1998038150A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199082A (zh) * 2010-03-26 2011-09-28 英威达技术有限公司 芳香羧酸和氧化催化剂的回收
CN107522610A (zh) * 2006-03-01 2017-12-29 奇派特石化有限公司 用于氧化蒸煮的具有提高的停留时间分布的多元羧酸生产系统

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034269A (en) * 1998-08-03 2000-03-07 E. I. Du Pont De Nemours And Company Process for producing pure carboxylic acids
US6949673B2 (en) * 2000-01-12 2005-09-27 E.I. Du Pont De Nemours And Company Process for producing carboxylic acids
BR0107739A (pt) * 2000-01-21 2002-10-22 Bp Corp North America Inc Processos para a produção de ácido carboxìlico aromático, de recuperação de energia, e para a produção de ácido dicarboxìlico aromático, e, processo contìnuo para a produção de um ácido tricarboxìlico aromático
US6765113B2 (en) * 2000-07-19 2004-07-20 E.I. Du Pont De Nemours And Company Production of aromatic carboxylic acids
KR100841503B1 (ko) 2000-10-02 2008-06-25 미츠비시 가스 가가쿠 가부시키가이샤 결정화 방법
WO2002092214A1 (fr) * 2001-05-15 2002-11-21 Mitsubishi Chemical Corporation Procede de production d'un compose
US6657068B2 (en) 2002-03-22 2003-12-02 General Electric Company Liquid phase oxidation of halogenated ortho-xylenes
US6657067B2 (en) 2002-03-22 2003-12-02 General Electric Company Method for the manufacture of chlorophthalic anhydride
US6649773B2 (en) 2002-03-22 2003-11-18 General Electric Company Method for the manufacture of halophthalic acids and anhydrides
ATE375974T1 (de) * 2002-07-09 2007-11-15 Invista Tech Sarl Verfahren zur herstellung aromatischer dicarbonsäuren unter superkritischen bedingungen
EP1541217A4 (en) * 2002-08-30 2011-10-26 Mitsubishi Heavy Ind Ltd SEPARATOR, REACTOR AND PROCESS FOR PRODUCING AROMATIC CARBOXYLIC ACID
US7276625B2 (en) * 2002-10-15 2007-10-02 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
US7193109B2 (en) 2003-03-06 2007-03-20 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
US7546747B2 (en) 2004-01-15 2009-06-16 Eastman Chemical Company Process for production of a dried carboxylic acid cake suitable for use in polyester production
US7214760B2 (en) * 2004-01-15 2007-05-08 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
JP2005298380A (ja) * 2004-04-08 2005-10-27 Daicel Chem Ind Ltd 芳香族カルボン酸の製造法
US7504535B2 (en) 2004-09-02 2009-03-17 Eastman Chemical Company Optimized liquid-phase oxidation
US7692036B2 (en) 2004-11-29 2010-04-06 Eastman Chemical Company Optimized liquid-phase oxidation
US7568361B2 (en) 2004-09-02 2009-08-04 Eastman Chemical Company Optimized liquid-phase oxidation
US7692037B2 (en) 2004-09-02 2010-04-06 Eastman Chemical Company Optimized liquid-phase oxidation
US7582793B2 (en) 2004-09-02 2009-09-01 Eastman Chemical Company Optimized liquid-phase oxidation
US7615663B2 (en) * 2004-09-02 2009-11-10 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7572936B2 (en) 2004-09-02 2009-08-11 Eastman Chemical Company Optimized liquid-phase oxidation
US7589231B2 (en) 2004-09-02 2009-09-15 Eastman Chemical Company Optimized liquid-phase oxidation
US7507857B2 (en) 2004-09-02 2009-03-24 Eastman Chemical Company Optimized liquid-phase oxidation
US7741515B2 (en) 2004-09-02 2010-06-22 Eastman Chemical Company Optimized liquid-phase oxidation
US7910769B2 (en) 2004-09-02 2011-03-22 Eastman Chemical Company Optimized liquid-phase oxidation
US7683210B2 (en) 2004-09-02 2010-03-23 Eastman Chemical Company Optimized liquid-phase oxidation
US7381836B2 (en) 2004-09-02 2008-06-03 Eastman Chemical Company Optimized liquid-phase oxidation
WO2006068472A1 (en) 2004-12-20 2006-06-29 Process Design Center B.V. Process for preparing aromatic carboxylic acids
US20060205977A1 (en) * 2005-03-08 2006-09-14 Sumner Charles E Jr Processes for producing terephthalic acid
US7550627B2 (en) 2005-03-08 2009-06-23 Eastman Chemical Company Processes for producing aromatic dicarboxylic acids
US20060205974A1 (en) * 2005-03-08 2006-09-14 Lavoie Gino G Processes for producing aromatic dicarboxylic acids
US20060264656A1 (en) * 2005-05-19 2006-11-23 Fujitsu Limited Enrichment process using compounds useful in a polyester process
US7884231B2 (en) * 2005-05-19 2011-02-08 Eastman Chemical Company Process to produce an enriched composition
US20060264662A1 (en) * 2005-05-19 2006-11-23 Gibson Philip E Esterification of an enriched composition
US7741516B2 (en) 2005-05-19 2010-06-22 Eastman Chemical Company Process to enrich a carboxylic acid composition
US7919652B2 (en) * 2005-05-19 2011-04-05 Eastman Chemical Company Process to produce an enriched composition through the use of a catalyst removal zone and an enrichment zone
US7880031B2 (en) * 2005-05-19 2011-02-01 Eastman Chemical Company Process to produce an enrichment feed
US7557243B2 (en) * 2005-05-19 2009-07-07 Eastman Chemical Company Enriched terephthalic acid composition
US7897809B2 (en) * 2005-05-19 2011-03-01 Eastman Chemical Company Process to produce an enrichment feed
US20060264664A1 (en) * 2005-05-19 2006-11-23 Parker Kenny R Esterification of an exchange solvent enriched composition
US7834208B2 (en) * 2005-05-19 2010-11-16 Eastman Chemical Company Process to produce a post catalyst removal composition
US7432395B2 (en) * 2005-05-19 2008-10-07 Eastman Chemical Company Enriched carboxylic acid composition
US7304178B2 (en) * 2005-05-19 2007-12-04 Eastman Chemical Company Enriched isophthalic acid composition
US7884232B2 (en) 2005-06-16 2011-02-08 Eastman Chemical Company Optimized liquid-phase oxidation
US20080293964A1 (en) * 2005-12-09 2008-11-27 Milan Hronec Process for Preparing High Purity Terephthalic Acid
KR100744754B1 (ko) 2005-12-13 2007-08-01 삼성석유화학(주) 방향족 카르복실산의 제조방법
US8048192B2 (en) * 2005-12-30 2011-11-01 General Electric Company Method of manufacturing nanoparticles
US20070179312A1 (en) * 2006-02-02 2007-08-02 O'meadhra Ruairi Seosamh Process for the purification of a crude carboxylic axid slurry
US8697906B2 (en) * 2006-03-01 2014-04-15 Grupo Petrotemex, S.A. De C.V. Methods and apparatus for producing a low-moisture carboxylic acid wet cake
US7863483B2 (en) * 2006-03-01 2011-01-04 Eastman Chemical Company Carboxylic acid production process
US7847121B2 (en) * 2006-03-01 2010-12-07 Eastman Chemical Company Carboxylic acid production process
US7888529B2 (en) 2006-03-01 2011-02-15 Eastman Chemical Company Process to produce a post catalyst removal composition
US8173836B2 (en) * 2006-03-01 2012-05-08 Grupo Petrotemex, S.A. De C.V. Method and apparatus for drying carboxylic acid
US7462736B2 (en) * 2006-03-01 2008-12-09 Eastman Chemical Company Methods and apparatus for isolating carboxylic acid
US20070208199A1 (en) * 2006-03-01 2007-09-06 Kenny Randolph Parker Methods and apparatus for isolating carboxylic acid
US8080685B2 (en) * 2007-06-27 2011-12-20 H R D Corporation System and process for production of benzoic acids and phthalic acids
US9205388B2 (en) * 2007-06-27 2015-12-08 H R D Corporation High shear system and method for the production of acids
US8455680B2 (en) 2008-01-15 2013-06-04 Eastman Chemical Company Carboxylic acid production process employing solvent from esterification of lignocellulosic material
US8614350B2 (en) 2008-01-15 2013-12-24 Eastman Chemical Company Carboxylic acid production process employing solvent from esterification of lignocellulosic material
CN101531588B (zh) * 2008-03-13 2016-02-24 周向进 一种新的精对苯二甲酸的制造方法
EP2165757A1 (en) * 2008-09-16 2010-03-24 Ahmed Mohammed Diaa Khafagy Method and appliance for exothermal chemical processes with heat recovery
US8946472B2 (en) 2008-12-31 2015-02-03 Sabic Innovative Plastics Ip B.V. Bio-based terephthalate polyesters
KR101041218B1 (ko) * 2008-12-30 2011-06-13 호남석유화학 주식회사 벤젠디카르복시산의 제조 방법
WO2010148049A2 (en) 2009-06-16 2010-12-23 Draths Corporation Preparation of trans, trans muconic acid and trans, trans muconates
US8415496B2 (en) 2009-06-16 2013-04-09 Amyris, Inc. Biobased polyesters
AU2010260112A1 (en) 2009-06-16 2012-02-02 Amyris, Inc. Cyclohexene 1,4-carboxylates
WO2010148080A2 (en) 2009-06-16 2010-12-23 Draths Corporation Cyclohexane 1,4 carboxylates
CN102985537B (zh) 2010-01-08 2015-11-25 阿迈瑞斯公司 生产粘康酸和粘康酸盐的异构体的方法
JP5853955B2 (ja) 2010-10-26 2016-02-09 三菱瓦斯化学株式会社 セラミックフィルターを用いるクロスフロー方式による濾過運転方法
JP5915534B2 (ja) * 2010-10-26 2016-05-11 三菱瓦斯化学株式会社 セラミックフィルターを用いるクロスフロー方式による濾過運転方法
WO2014165094A1 (en) * 2013-03-13 2014-10-09 Honeywell International Inc. Staged fluorination process and reactor system
JP6255649B2 (ja) * 2013-12-25 2018-01-10 月島機械株式会社 連続反応晶析装置及び無機粒子の連続反応晶析方法
SG11201701878TA (en) * 2014-09-17 2017-04-27 Vito Nv Reaction process with membrane separation
CN104907008B (zh) * 2015-06-04 2017-10-27 河北科技大学 一种甲苯直接氧化制备苯甲酸和苯甲醛的反应装置和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507913A (en) * 1966-02-14 1970-04-21 Mitsui Petrochemical Ind Method of manufacture of terephthalic acid
US3665033A (en) 1970-07-01 1972-05-23 Atlantic Richfield Co Method for cooling the reactor effluent from the oxidation of meta-or para-xylene
NL170133C (nl) 1976-02-24 1982-10-01 Matsuyama Petrochemicals Inc Werkwijze voor de bereiding van een aromatisch dicarbonzuur.
EP0041784A1 (en) 1980-06-10 1981-12-16 Imperial Chemical Industries Plc Oxidation of substituted aromatic compounds to aromatic carboxylic acids
US4892970A (en) * 1985-12-30 1990-01-09 Amoco Corporation Staged aromatics oxidation in aqueous systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522610A (zh) * 2006-03-01 2017-12-29 奇派特石化有限公司 用于氧化蒸煮的具有提高的停留时间分布的多元羧酸生产系统
CN107522610B (zh) * 2006-03-01 2022-10-14 奇派特石化有限公司 用于氧化蒸煮的具有提高的停留时间分布的多元羧酸生产系统
CN102199082A (zh) * 2010-03-26 2011-09-28 英威达技术有限公司 芳香羧酸和氧化催化剂的回收
CN102199082B (zh) * 2010-03-26 2016-08-17 英威达技术有限公司 芳香羧酸和氧化催化剂的回收

Also Published As

Publication number Publication date
US6307099B1 (en) 2001-10-23
BR9807459A (pt) 2000-05-09
EP0971870B1 (en) 2003-10-01
DE69818651D1 (de) 2003-11-06
AU6109198A (en) 1998-09-18
ID23502A (id) 2000-04-27
TR199902058T2 (xx) 2000-09-21
EP0971870A1 (en) 2000-01-19
CA2279510A1 (en) 1998-09-03
ES2206894T3 (es) 2004-05-16
BR9807459B1 (pt) 2010-05-18
WO1998038150A1 (en) 1998-09-03
DE69818651T2 (de) 2004-07-29
CA2279510C (en) 2008-01-08
CN1095822C (zh) 2002-12-11
KR20000075766A (ko) 2000-12-26
JP2001513102A (ja) 2001-08-28

Similar Documents

Publication Publication Date Title
CN1095822C (zh) 对苯二酸的生产
KR101432517B1 (ko) 순수 형태를 포함하는 방향족 카르복실산의 제조 방법 및제조 장치
CN1213015C (zh) 芳族羧酸的制备
CN1253424C (zh) 利用改进的脱水技术制备芳香羧酸的方法
CN1257146C (zh) 对苯二甲酸的生产方法与装置
CN1572769A (zh) 生产丙烯酸的方法
CN1036755A (zh) 制备甲醛及其衍生物的方法
JPS6383046A (ja) 芳香族カルボン酸の製造方法
CN1616392A (zh) 多段逆流氧化
CN1213982C (zh) 生产纯羧酸的改进方法
CN1077875C (zh) 制备芳族羧酸的方法和设备
RU2678993C2 (ru) Рецикл конденсата высокого давления при производстве очищенных ароматических карбоновых кислот
CN1022237C (zh) 含异丁烯酸反应物气体的骤冷方法及骤冷液的处理方法
CN1233975A (zh) 催化剂的回收
KR102592022B1 (ko) 산화에 의해 방향족 디카복실산을 제조하기 위한 에너지 및 환경적으로 통합된 방법
CN2791044Y (zh) 对苯二甲酸的生产装置
CN1285814A (zh) 由含有二元酸的氧化混合物中分离催化剂的方法和设备
CN1097577C (zh) 一种生产芳香族羧酸的方法和装置
CN1226267C (zh) 共沸蒸馏方法
EP3562573B1 (en) Purified terephthalic acid (pta) vent dryer vapor effluent treatment
CN1090170C (zh) 生产芳族羧酸的方法
JP2022511741A (ja) グリコール-水混合物のための分離法及び反応器システム
CN1276776A (zh) 在烃氧化过程中循环催化剂的方法
CN1143947A (zh) 在高压下处理结晶的对苯二甲酸的方法
CN1231450C (zh) 马来酸酐的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: INVISTA TECH SARL

Free format text: FORMER OWNER: E. I. DU PONT DE NEMOURS AND CO.

Effective date: 20060106

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20060106

Address after: Zurich Switzerland

Patentee after: INVISTA TECHNOLOGIES S.A.R.L.

Address before: Wilmington, Delaware, USA

Patentee before: E. I. du Pont de Nemours and Co.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20021211

Termination date: 20100219