CN1260786C - 形成硅化钴的方法和装置组 - Google Patents

形成硅化钴的方法和装置组 Download PDF

Info

Publication number
CN1260786C
CN1260786C CNB031423760A CN03142376A CN1260786C CN 1260786 C CN1260786 C CN 1260786C CN B031423760 A CNB031423760 A CN B031423760A CN 03142376 A CN03142376 A CN 03142376A CN 1260786 C CN1260786 C CN 1260786C
Authority
CN
China
Prior art keywords
cobalt
cobalt silicide
wafer
metal
silication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031423760A
Other languages
English (en)
Other versions
CN1471145A (zh
Inventor
卢火铁
李大为
王光志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Publication of CN1471145A publication Critical patent/CN1471145A/zh
Application granted granted Critical
Publication of CN1260786C publication Critical patent/CN1260786C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Abstract

本发明提供了一种形成硅化钴的方法和装置组及具有该硅化钴的半导体元件。此方法先于硅层上形成钴/钴钛合金复合层,再加热引发金属硅化反应。所形成的硅化钴层具有极低的电阻,且品质不随工艺线宽而变,所以特别适合使用在半导体元件中。进行该方法的装置组由合适的溅镀室及加热组件所构成,以进行金属硅化反应所需的各种操作步骤,而能够提高经济效益与生产力。

Description

形成硅化钴的方法和装置组
技术领域
本发明涉及一种半导体工艺和实行此工艺的装置、以及所形成的半导体元件,且特别涉及一种形成硅化钴的方法和实行此方法的装置、以及所形成的半导体元件,其适用于半导体工艺中。
背景技术
现今的深亚微米(deep sub-micron)互补式金属氧化物半导体(CMOS)电路使用高密度的内连线及接触窗,故后者必须具有尺寸可调性(scalability),以使工艺顺利转换至较小的尺寸。各CMOS场效应晶体管(Field EffctTransistor,FET)元件之间或与其他构件之间以所谓的金属硅化物(silicide)接触层进行电连接,其中源/漏极区有部分的硅会在热处理过程中与金属反应,而形成低电阻区。现有技艺已提及数种金属硅化反应,而现今主流的0.18μm工艺基本上使用硅化钛(TiSi2)作为栅极与有源区的电接触层。然而,因为硅化钛的片电阻颇受线宽的影响,热稳定性低,且钛金属在硅化反应中所消耗的硅原子数量又不易控制,所以在使用上有不少限制。因此,硅化钛并不适合使用在下一世代的工艺中。
为解决此问题,现有许多方法使用硅化钴(CoSi2)来取代硅化钛。
举例来说,Goto等人于1994年Symposium on VLSI Technology Digest ofTechnical Papers第119页“Optimization of Salicide Process for sub 0.1μmCMOS Devices一文中,即揭露硅化钴的制造方法与使用。不过,钴金属也有其使用上的问题与限制。举例来说,钴对氧及水气非常敏感,所以即使在热处理工艺中使用纯度极高的惰性气体,所形成的硅化钴仍常受到氧的污染,致使其片电阻增加。为了防止钴金属层氧化,Goto等人在其自对准硅化钴工艺(Cobalt Salicide Process)中使用钛或氮化钛顶盖层作为钴金属层的保护层。亦即,该方法先在晶片顶面上沉积一层钴,此顶面由数种不同性质的表面所构成,其包括电介质表面(如侧壁与隔离区的表面)及硅质表面(如栅极与源/漏极区的表面)。接着在钴金属层上形成钛或氮化钛顶盖层,以免钴金属层接触到空气,然后进行第一次回火,以使晶片上和钴金层接触的硅质表面与钴产生反应。在第一次回火之后,依序以NH4OH/H2O2/H2O溶液与HCl/H2O2/H2O溶液进行蚀刻,以除去任何未硅化的金属材料,即钴、钛、氮化钛及其混合物,再进行第二次回火。在此工艺的第一次回火步骤中,可以使用半导体工艺等级的氮气作为环境气体,以免环境气体中残留的氧与钴反应。如此,所产生的自对准硅化钴层即不会被氧污染,而能防止片电阻上升。
如上所述,为防止金属硅化反应受到氧的污染,自对准硅化钴工艺可使用钛或氮化钛层作为钴金属层的顶盖层。钛与氮化钛这两种材料各有其优缺点,举例来说,氮化钛比较稳定,且与钴的反应性甚低。然而,此种工艺中钛金属却是优选的选择,主要是因为纯钛与氧的反应性较高,而较能发挥顶盖的效用以防止钴被氧化。再者,前人的研究亦显示,使用钛顶盖层也可以形成热稳定性优选的自对准金属硅化物薄膜,如Sohn等人于“Effects of Ti-capping on formation and stability of Co silicide”(Journal ofThe Electrochemical Society,147(1),373~380,2000)一文中所述的。
然而,在钴金属上形成钛顶盖层后,却会使金属硅化反应机制更为复杂。如Sohn等人于上文中所指出的,在第一回火步骤中,不但硅会与钴反应生成主要由CoSi与Co2Si所构成的硅化钴层,而且钛原子还会在钴与硅反应时扩散到钴金属层中,并形成金属混合物层;同时,钛金属层也会略为氮化。上述各反应皆可用图14简单表示。由于该些反应同时发生,所以工艺的控制甚为复杂。
此外,如硅化钴工艺使用钛顶盖层,则其第一回火步骤的温度须高于使用氮化钛顶盖层的工艺,这是因为扩散进入钴金属层的钛原子将会减慢硅化反应。换句话说,在有钛原子参与的钴的硅化过程中,由于钛原子会减慢钴与硅的反应,所以需要较高的温度以完成整个反应。另外,根据Sohn等人的说法,钛原子会扩散到硅的界面与硅化钴的晶粒边界中,而可以使最后的CoSi2薄膜稳定化。然而,由于部分钴原子会与钛反应生成钴钛金属混合物层,所以不是所有的钴原子都会与硅反应生成硅化钴。一般而言,此种工艺中钛顶盖层的厚度为钴金属层的1~2倍,如此大量的钛金属将会显著降低可与硅反应的钴金属的量。由于上述各种效应皆难以预期与控制,致使硅化钴工艺的设计规划成为一项十分复杂的工作。举例来说,在更先进世代的工艺中,最后形成的硅化钴层的厚度即须作精确的控制,以因应日益减小的源/漏极区接面深度。
由此可见,虽然现有的自对准硅化钴工艺可满足现今0.1μm以下先进工艺的需求,但为使此工艺能用于更先进的世代中,其仍有改善的必要。亦即,业界亟需一种可以形成极小的图形尺寸及线宽的金属硅化物工艺,其不但能减小硅化钴层的厚度,同时还可以使硅化钴层具有良好的热稳定定性,以耐受800~900℃的回火温度而不会产生结块现象。再者,此工艺也必须具有优选的工艺裕度,特别是对硅化钴薄膜的厚度及片电阻而言。最后,可用以形成自对准硅化钴的基本制造流程与制造工具,同样也是现今的半导体制造业所急需的。
发明内容
本发明的主要目的是为前述各项硅化钴工艺的问题提出解决的方案。
本发明目的之一即是提出一种效能高、工艺容易的电接触材料,其可适用于各种半导体工艺,如自对准金属硅化物工艺等。
本发明另一目的即是提出一种改良型的整合式沉积装置,其可沉积并处理多种半导体材料层,包括高导电效能的金属硅化物层(如硅化钴层)。
本发明再一目的即是提出一种成本较低却可靠的硅化钴工艺,其适用于下一代集成电路技术的量产化,但却可于习用的半导体制造设备中进行。
为达本发明的目的,本发明提出一种在以硅为主材质的衬底(以下简称硅衬底)上形成硅化物的方法,其同时使用钴金属与钴钛合金,一般步骤如下:(a)于硅衬底上沉积含钴的第一金属层;(b)至少于第一金属层的多个选取部分上沉积第二金属层,其含有钴与一耐热金属的合金;(c)进行第一热处理,以至少使部分第一金属层与硅衬底反应,而形成含有一或多种硅化钴相的第一硅化组成物,其具有第一电阻率;以及(d)进行第二热处理,以使含有一或多种硅化钴相的第一硅化组成物转变成第二硅化组成物,其具有一低电阻硅化钴相,且此低电阻硅化钴相的电阻率低于第一电阻率。
在上述方法的优选型态中,所用的合金为含有20~80mol%(摩尔%)的钛元素的组成物。另外,在步骤(c)之后通常可进行除去硅化物以外的所有金属的步骤。再者,在步骤(a)之前可先清洗硅衬底的表面,以除去任何原生氧化层。此外,含钴合金优选为三成分的组成物,包含钴、钛,以及另一耐热金属或碳。
另外,在上述方法的优选型态中,步骤(a)至(c)优选在同一个半导体晶片加工装置组中进行,以免晶片在工艺转换之间暴露在外界环境中。如此元件的可靠性、生产性及产能皆可以增加。
为达成本发明的另一目的,本发明提出一种使用装置组在硅衬底上形成硅化钴的方法,其步骤如下:(a)在一半导体晶片加工装置组的第一处理室中,至少于硅衬底的选取部分上沉积第一金属层,其含有钴与一耐热金属(优选为钛)的合金,且耐热金属的含量为1~10%;(b)在半导体晶片加工装置组中进行第一热处理,以至少使部分的第一金属层与硅衬底反应,而形成含有一或多种硅化钴相的第一硅化组成物,其具有第一电阻率;以及(c)进行第二热处理,以使含有一或多种硅化钴相的第一硅化组成物转变成第二硅化组成物,其主要具有一低电阻硅化钴相,且此低电阻硅化钴相的电阻率实质上低于第一电阻率。在方法中,更可在步骤(a)与/或步骤(b)之前于群集进行装置中进行气体清洗处理(purge treatment),其使用钝气以除去各种污染物及反应气体。
在上述方法的优选型态中,第一热处理可为一原位(in-situ)回火处理,其是在沉积第一金属层的原处进行。由于靶材中含有少量的钛,所以生成的金属硅化物中也含有微量的钛。
在本发明提出的另一种相关的硅化物形成方法中,是同时进行溅镀及加热动作,即以高温溅镀的方式于硅衬底上形成钴与一耐热金属的合金层,其中钴的含量足以在衬底上形成一低电阻接触层。在进行溅镀时,硅衬底同时(以加热灯管)加热至一特定温度,并持续一段时间,以至少使硅衬底与合金层产生部分的金属硅化反应。接着,在较高温度下进行一后续加热步骤,以彻底完成此金属硅化反应,其亦可以原位(in-situ)的方式,在同一装置组的同一处理室中进行。
为达成本发明的再一目的,本发明提出一种在硅衬底上形成硅化物材料的方法,其使用两层不同的钴金属层,且一般步骤如下:(a).在硅衬底上沉积第一金属层,其包含钴与一耐热金属的合金;(b).在第一金属层上沉积第二金属层,其中钴的含量高于第一金属层;(c).在进行步骤(b)的同时进行第一加热处理,以至少使部分的第一金属层、第二金属层与硅衬底反应,而形成含有一或多种硅化钴相的第一硅化组成物,其具有第一电阻率;以及(d).进行第二热处理,以使含有一或多种硅化钴相的第一硅化组成物转变成第二硅化组成物,其具有一低电阻硅化钴相,且此低电阻硅化钴相的电阻率低于第一电阻率
在上述方法的优选型态中,合金层优选含有20~80mol%的钛,且第二金属层包含钴与一耐热金属的合金。如前所述,步骤(a)、(b)及(c)优选在同一半导体晶片加工装置组中进行。
本发明又提出一种操作装置组以完成前述硅化钴工艺与反应的方法,其代表性范例的步骤如下:(a).清洗以硅为主要材质的晶片(以下简称硅晶片),以除去其上的原生氧化层与/或污染物;(b).加热除去硅晶片上的液体,使得硅晶片上不致留下水痕(watermark);(c).使用含有钴与至少一种耐热金属的合金靶,在硅质晶片上溅镀第一金属层;以及(d).对硅晶片进行第一回火处理,以使钴与硅晶片上的硅反应。在此方法中,为提高产品的可靠度及生产性,步骤(b)~(d)皆可在同一半导体晶片加工装置组中进行。
由于许多装置组并不含湿蚀刻的部分,所以湿蚀刻步骤可以在与半导体晶片加工装置组分离的处理站中进行,以除去硅化物以外的金属。再者,加热除去液体的步骤亦可在半导体晶片加工装置组的载入室中进行。
接下来,本发明的装置组用以对晶片进行半导体加工操作程序,其具有:(a).用以载入晶片的载入室;(b).配备钴合金材质的第一溅镀靶的第一溅镀室,用以将该第一溅镀靶的靶材溅镀至晶片上;(c)配备钴合金材质的第二溅镀靶的第二溅镀室,用以将该第二溅镀靶的靶材溅镀至该晶片上,其中第二溅镀靶的钴含量与第一溅镀靶不同;以及(d).加热回火装置,用以加热该晶片,以使晶片与镀上的靶材产生金属硅化反应。
上述的载入室优选可用来加热除去晶片上的液体,且溅镀室与加热回火装置优选整合在单一的处理站中,而以原位(in-situ)的方式进行高温溅镀操作。另外,此装置更可包含配备第二含钴溅镀靶的第二溅镀室,用以将第二溅镀靶的材料溅镀至晶片上;又可包含一清洗站,以在任何溅镀操作前先清洗晶片。再者,此装置亦可稍作变化,在溅镀室中采用可抽换的靶材,如此在先后沉积两种不同的靶材时即不必移动晶片。
本发明的其他方面,则是有关于利用前述硅化钴反应与工艺所得的半导体结构、硅化组成物及半导体元件,以及前述的装置组的使用方法。
附图说明
为让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下,图中:
图1~6示出本发明第一实施例的硅化钴层的完整工艺及具有此硅化钴层的元件的剖面图;
图7~9示出本发明第二实施例的硅化钴层的完整工艺及具有此硅化钴层的元件的剖面图;
图10~13示出本发明第三实施例的硅化钴层的完整工艺及具有此硅化钴层的元件的剖面图;
图14示出现有硅化钴工艺的剖面图,包括因回火步骤所引发的中间反应的结果;
图15示出本发明的硅化钴工艺中,因回火步骤所引发的中间反应的部分结果;以及
图16示出本发明优选实施例的用以形成硅化物材料的沉积/反应装置组(cluster tool)。
附图中的附图标记说明如下:
100:半导体晶片                  101:衬底
105:半导体元件                  110:栅极
115:栅绝缘层                    120、121:侧壁间隙壁
130、131:浅掺杂源/漏极区        135、136:深掺杂源/漏极区
138:隔离区                      140:钴金属层
150:钴钛顶盖层                  151:钴钛合金层
160:钴金属层与衬底的界面        170:硅化钴层
1000:装置组                     1010、1020:载入室
1030、1060~1080:各种处理室
1040、1050(或1060、1070):溅镀室
1045:预清洗站                   1055:冷却站
1100、1200:晶片处理站
具体实施方式
以下的详细说明仅用以解释本发明的数个特定实施例,而本领域技术人员应当可由以下的说明推知本发明其他的实施例及已揭露的实施例的变化型态。
第一实施例
本发明第一实施例的优选方法示于图1~6中。请参照图1,其示出半导体晶片100的剖面图,图中有一习用的半导体元件105形成在轻度掺杂的N或P型衬底101上,此元件基本上包括由N或P掺杂的多晶硅所构成的栅极110、栅绝缘层115、介电材质(SiN)的侧壁间隙壁120与121、浅N或P掺杂源/漏极区130/131,以及深N或P掺杂源/漏极区135/136。此元件100基本上以一或多个隔离区138作为边界,其可由各种绝缘薄膜所构成,如二氧化硅薄膜。由于此等隔离结构的材质及制作方法皆为周知者,故在此不予赘述。另外,虽然本发明优选使用主要由多晶硅构成的栅极110及主要由硅构成的源/漏极区135/136,但本领域技术人员应当可由本发明所教示的内容推知,任何衬底材料只要能与钴反应,且其反应易于控制,即可适用于本发明中。
在整个晶片100上,暴露出的硅质表面部分基本上包括N型及P型掺杂区,其为多晶硅及衬底材料所构成的区域,如栅极110及源/漏极区135/136等。硅衬底区域的源/漏极区135/136与多晶硅栅极110一般以磷(P)、砷(As)、硼(B)及锗(Ge)离子掺杂,且其表面常会产生很薄的原生氧化层(未显示),如前所述。此原生氧化层必须在金属硅化反应之前去除,以免影响电接触层的品质。
为减少或除去原生氧化层,晶片100可先以一或多种现有技术加以处理。优选的方式是将其浸泡在氢氟酸(HF)的去氧水溶液中,再以异丙醇干燥晶片,以免留下水痕,其中氢氟酸浸泡与异丙醇干燥的步骤可以批次及单晶片处理的方式进行。另一种方法是使用气态氟化氢(HF vapor)处理晶片100,以除去原生氧化层;而再一种方法则是对晶片100进行物理溅镀。上述的后两种方法可以很容易地并入装置组系统中,其先在一处理室中去除氧化物,再将晶片100移至另一处理室中进行金属溅镀,其工艺步骤转换间并不会接触到外界空气。
此外,在某些应用中更可进行加热除气(out-gassing)的步骤,如此整个原生氧化层去除工艺即包括下列步骤:氢氟酸浸泡、异丙醇干燥及加热除气步骤。另外,虽然加热除气步骤通常在装置组的特定处理室中进行,但其在某些应用中亦可直接在装置组的载入室中进行。
不过,无论采用何种方式,原生氧化层去除后的晶片100的剖面皆如图1所示。接着,如图2所示,将晶片100置于第一溅镀沉积室中,并以钝气等离子体将纯钴靶的材料溅镀到整个晶片上,而形成厚约10nm的钴金属层140。在优选的作法中,此第一溅镀沉积室为一装置组的一部分,而此种装置组将于稍后依图16作详细说明。
如图3所示,接着将晶片移到第二溅镀沉积室中,并同样以钝气等离子体将钴钛合金靶的材料溅镀到晶片上,以沉积厚度约15nm的钴钛合金顶盖层150。其中钴钛合金靶中钛含量约为20~80mol%,且优选约为50mol%。另外,若第一溅镀室的溅镀靶是可以抽换的,此步骤即不必将晶片100移出第一溅镀室,如此钴金属层与钴钛合金顶盖层即可在同一处理室中形成。
再者,虽然此优选实施例使用钛金属作为合金层的成分,但本领域技术人员应能明了,为得到所需的薄膜品质,并顾及与后续沉积的材料的相容性,本发明亦可使用其他的元素,只要该元素具有相同的防止氧化效果即可。举例来说,某种特定的应用可能适合使用一或任意多种的耐热金属,如钽(Ta)、钨(W)、钼(Mo)、锆(Zr)、铪(Hf)、铌(Nb)等,其皆可如钛一般减慢钴的硅化反应,以形成高品质的硅化钴薄膜。由此观点而言,本文中“耐热金属”一词并非用以限定本发明可用的金属元素的范围,而本领域技术人员应可明了,在周期表上位置靠近该些耐热金属的其他金属亦皆可能适用于本发明中。
在形成钴钛顶盖层150后,接着将晶片100传送至一回火室,此回火室亦可整合至前述内含第一第二溅镀室的装置组中。不过,因为钴钛顶盖层150已有保护的作用,所以此回火室也可以置于他处。但是,如果此回火室并未整合至同一装置组中,则钴钛顶盖层150优选为一非晶态薄膜,其非晶态可以现有的方法达成,亦即在沉积钴钛顶盖层150时控制晶片100的温度。为作进一步的改良,亦可使用含三种成分的靶材,其中除钴与钛外更包括第二耐热金属或碳之类的轻元素,以改善顶盖层150的性质。
请参照图4,接着在氮气或氩气环境下进行第一次回火,其温度为500~650℃,回火时间较短(约60秒),且使用一般的加热灯具。当然,实际上所用回火时间与温度依加热器的性能而定,也很容易针对材料的种类及厚度作适当调整,以达最佳的效果。此第一回火操作会引发数种反应,包括钴钛顶盖层150及钴金属层140中的反应,以及下方硅层界面处的反应。例如,钴金属层140会与下方含硅区(即栅极110与源/漏极区135/136)中的硅反应,而在钴金属层140中或其界面160处形成一些化合物,包括CoSi及Co2Si等,其为高电阻的硅化物相态。
另外,虽然在某些环境或特定的工艺中,钴钛合金层150中的钛原子也可能因氮的作用而到达表面,并反应生成钛/氮化钛层(未显示),但因钴-钛的硅化反应为其竞争反应,此钛/氮化钛层的形成应不致对本发明造成太大的影响。
请参照图5,接着选择性地蚀刻晶片100,以去除硅化物以外的金属及其混合物。同样地,此步骤所需的各种化学品及蚀刻程序皆为业界所熟知,故本发明并不对其作特别限制。
请参照图6,接着在750~900℃下,以同样方式对晶片100进行第二回火步骤,其时间足以使硅化反应完成,即将高电阻的Co2Si/CoSi相转变成低电阻的CoSi2相,而完成硅化钴层170的工艺。当然,如之前所述的,实际上所用的时间及温度,依照沉积薄膜的材质及厚度等特性而定。于此之后,即可对晶片100进行一些现有工艺步骤,如形成元件105的介电层、接触窗及内连线等,而完成此元件的工艺。
上述第一回火处理的结果的剖面图绘示于图15中,其可与图14所绘的现有方法在同阶段的结果作对照。如图15所示,本发明的中间反应产物与现有的相似,但本发明的优点在于一开始即沉积现有方法的最后产物(即钴钛合金)。此即表示本发明的结果较可预测,使工艺工程师能更为准确地估算一定量的钴金属将会产生多少的中间产物(即CoSi与Co2Si)。
再者,虽然钴钛合金对N2的反应性低于钛,但其对氧及水气还是有足够的反应性,而得以防止各种可能的污染,进而防止所形成的硅化钴层的导电性能下降。另外,如同现有方法所用的钛顶盖层,本发明的钴钛顶盖层150亦可提供钛原子扩散至下方钴金属层140中。虽然钛原子会减慢硅化反应,而使转换至低电阻CoSi2相态所需的温度升高,但其却可以提高所形成的硅化钴层170的品质。同时,钴钛顶盖层150与下方钴金属的反应性亦低于钛顶盖层,所以钴钛顶盖层150与钴金属层的交互作用较少,而不会影响到可参与硅化反应的钴金属的量。此即表示所形成的硅化钴薄膜的厚度更容易控制,而能改善工艺的可控制性。
除此之外,由于参与整个反应过程的钛量较少,所以与现有方法相比,本方法的钴金属层可以做得很薄,如此将具有增加生产力及缩短工艺时间等优点。举例来说,本方法只要形成厚80~100的钴金属层,即足以与厚350的硅层反应,而在硅化反应后形成厚度约330的致密硅化钴层。
第二实施例
本发明第二实施例的优选方法绘示于图7~9中,其中以相同的附图标记标示曾出现在第一实施例说明中的相同结构,除非其另有所指。
如同第一实施例,此处亦先准备具有电介质表面与硅质表面的晶片100。如前所述,此时可先使用一或多种现有技术去除或减少晶片100上的原生氧化层。
如图7所示,接着将晶片100移到溅镀室中,并使用钝气等离子体及钴钛合金靶沉积钴钛合金层150,其中钝气等离子体优选为氩气等离子体,且钴钛合金靶中钛的含量约为1~50mol%,优选为1~10mol%。
此实施例的第一回火步骤在500~650℃下进行,且优选直接在沉积处(即原位(in-situ))进行。为达到在原位回火的目的,可将加热板或加热灯管之类的加热器整合至溅镀室中,如此即可以在溅镀的同时进行硅化反应,其可视为一种高温溅镀操作。
此外,第一回火步骤也可以在装置组的另一处理室中,以相同的加热器(即加热板或加热灯管)来进行。由于硅层表面并无氧化层,且加热环境中也没有氮气,所以本实施例中钛原子较不易移动到表面。
本实施例与第一实施例不同之处,在于其并未先沉积钴金属层。这是因为钴金属层并不是绝对必要的,只要小心控制钴钛合金靶中钛的含量,即可沉积适用的钴钛混合层,其不但具有足够的钴以有效地与下方硅层反应,同时还具有足够的钛,以防止钴受到氧及其他反应物的污染。
为减轻上述第二种效应,本实施例的装置组使用氩气之类的钝气进行溅镀,并在沉积操作等重要操作之前,使用钝气清除所有真空系统中的原有气体。此处之所以使用钝气作为清除气体,乃是因为其可在溅镀操作之前驱除微量的反应性气体,如氧气、水气及氮气等。也就是说,使用钝气可大幅减少将影响下方钴金属层的反应产物的数目,所以本方法只需要较低的钛含量,即可控制氧气与水气的污染。因此,本实施例中溅镀靶的优选钛含量为1~10mol%。
另外,由于所形成的钴钛合金层150含有足够的钴原子,所以可有效地与下方硅质区域反应而形成硅化钴。同时,低钛含量的钴钛合金层150亦可提供足量的钛原子以形成钛调节的硅化钴层,且不会形成钴钛金属混合物而消耗过多的钴金属。另外,由于各反应期间钛原子会迁移,所以在形成的硅化钴薄膜中可发现少量的钛。
最后,由于钴钛合金层150并非由纯钴所构成,所以其与可能残留在晶片100上的氧化物或稍后的其他污染物的反应性较低,此即表示整个工艺的良率可以提升,或表示其操作环境及起始条件可以不必如现有技术一般严苛。
在第一回火步骤之后,将晶片100取出装置组,再以之前所述的方法进行选择性蚀刻,以除去硅化物以外的金属。然后以之前所述的方法清洗并干燥晶片,再进行第二回火步骤,以使高电阻的Co2Si/CoSi相转变成低电阻的CoSi2相,而形成图9所示的结构,其与图6所示的结构完全相同。
本发明第二实施例的优点在于工艺步骤的减少及流程的简化,而可增加装置组的生产力。如采用图16所示的装置组,即可在不接触空气的情况下,对晶片100进行许多步骤,如除去原生氧化层、溅镀钴钛合金及第一回火等步骤。另外,由于本例采用钴钛合金层150,所以可形成钛调节的硅化钴层170,其具有良好的热稳定性,而不易在高温下产生结块。此外,采用钴钛合金层150亦可提高工艺的裕度,所以原生氧化层的去除程度及处理室的环境要求皆不必太高。
此外,因为上述实施例可以原位的方式,即高温溅镀的方式(本例是在溅镀时以灯管加热)进行硅化反应,所以在降低极浅源/漏极接面漏电流的方面很有潜力,而可应用到下一世代的工艺中。
第三实施例
本发明第三实施例的优选方法示于图10~13中,其中以相同的附图标记标示曾出现在第一实施例的说明中的相同结构,除非其另有所指。
如前所述,首先使用一或多种现有技术去除或减少晶片100上的原生氧化层。接着如图10所示,将晶片100移到溅镀室中,并使用钴钛合金靶沉积厚约5~15nm的钴钛合金层150,其中钴钛合金靶中钛的含量约为20~80mol%。
参照图11,接着将晶片100移到第二溅镀室中,以沉积纯钴金属层151,或钴含量比钴钛合金层150高的钴钛合金层151,其中第二溅镀室优选与第一溅镀室位于同一装置组中。此二金属层150与151皆是在钝气等离子体环境下形成,而在第二沉积步骤中晶片可加热至约500~600℃,以在溅镀室中直接进行原位(in-situ)回火。第一沉积步骤所用的第一钴钛合金靶的钛含量优选是接近或超过50mol%,以减少第二溅镀室的加热过程中钴钛合金层150内可参与硅化反应的钴金属的量;而第二溅镀步骤则可提供额外的钴原子到晶片表面上,且因同时进行加热,而可直接在工艺中形成Co2Si及CoSi。如此,该二金属层150与151的最终厚度即可得优选的控制。
如前所述,接着选择性地蚀刻晶片100,以除去硅化物以外的金属。然后清洗并干燥晶片100,并进行第二次回火,以使Co2Si/CoSi相转变成阻值较低的CoSi2相,如图12所示,而图13中绘示的硅化钴层170基本上与第6、9图中所示的相同。
装置组的实施例
请参照图16,其大体上示出经改良的半导体处理装置1000的结构,此装置基本上是由习用的装置组(如Applied Materials生产的EnduraHP PVDSystem)改良而得。如图所示,装置1000包括一组载入室1010与1020,其用来接收/预处理送入的晶片,以及/或是送出完成的晶片。举例来说,加热除气(out-gassing)操作基本上即可在载入室1010与1020中进行。此装置1000并包含数种处理室1030~1080,以及晶片处理站1100与1200。具体地,为能进行本发明的各项工艺,此装置1000包括一或多个改变设计的溅镀室1040,其使用钴钛合金靶以取代习用的溅镀靶,或是包含分别配置钴金属靶及钴钛合金靶的两组溅镀室,以分别沉积钴金属层与钴钛合金层。
另外,Endura装置原本即已包含一预清洗站1045,以进行一或多种前述的晶片清洗操作。此外,装置1000中的一或多个溅镀室1050(或1060、1070)亦具有某种型态的加热组件及冷却站1055,所以可以直接进行晶片100的加热操作(包括原位回火操作)及冷却操作,而不必移出装置组1000。再者,当配备合金靶的溅镀室1040中亦整合有加热灯管时,其例如可以进行高温溅镀操作,以在原位进行金属硅化反应。最后,晶片处理站1100与1200用以确保晶片可在站与站之间顺利移动而不会破坏真空状态,以避免可能的污染。
虽然本发明已以优选实施例公开如上,但是其并非用以限定本发明,本领域技术人员在不脱离本发明的精神和范围的情况下,当可作各种的更动与润饰,因此本发明的保护范围当以所附的权利要求所确定的为准。

Claims (15)

1.一种形成硅化钴的方法,应用于一硅衬底上,包括;
a.在该硅衬底上沉积含钴的一第一金属层;
b.至少在该第一金属层的多个选取部分上形成一第二金属层,该第二金属层含有钴与一耐热金属的合金;
c.进行一第一热处理,以至少使部分的该第一金属层与该硅衬底反应,而形成含有一或多种硅化钴相的一第一硅化组成物,该第一硅化组成物具有一第一电阻率;以及
d.进行一第二热处理,以使含有一或多种硅化钴相的该第一硅化组成物转变成一第二硅化组成物,该第二硅化组成物具有一低电阻率硅化钴相,且该低电阻率硅化钴相的电阻率低于该第一电阻率。
2.如权利要求1所述的形成硅化钴的方法,其中该合金含有20~80摩尔%的钛。
3.如权利要求1所述的形成硅化钴的方法,更包括在步骤c之后除去硅化物以外的金属。
4.如权利要求1所述的形成硅化钴的方法,更包括在步骤a之前清洗该硅衬底,以除去原生氧化层。
5.如权利要求1所述的形成硅化钴的方法,其中该合金为三成分组成物,包括钴、钛,以及另一耐热金属或碳。
6.如权利要求1所述的形成硅化钴的方法,其中步骤a~c皆在同一半导体晶片加工装置组中进行,使得该硅衬底不致在步骤转换间暴露于外界环境中。
7.一种形成硅化钴的方法,应用于一硅衬底上,包括;
a.在硅衬底上沉积一第一金属层,该第一金属层包含钴与一第一耐热金属的一第一合金;
b.在该第一金属层上沉积一第二金属层,该第二金属层中钴的浓度高于该第一金属层;
c.在进行步骤b的同时进行一第一加热处理,以至少使部分的该第一金属层、该第二金属层与该硅衬底反应,而形成含有一或多种硅化钴相的一第一硅化组成物,该第一硅化组成物具有一第一电阻率;以及
d.进行一第二热处理,以使含有一或多种硅化钴相的该第一硅化组成物转变成一第二硅化组成物,该第二硅化组成物具有一低电阻率硅化钴相,且该低电阻率硅化钴相的电阻率低于该第一电阻率。
8.如权利要求7所述的形成硅化钴的方法,其中该第一合金中含有20~80摩尔%的钛。
9.如权利要求7所述的形成硅化钴的方法,其中该第二金属层包含钴与一第二耐热金属的一第二合金。
10.如权利要求7所述的形成硅化钴的方法,其中步骤a、b与c于同一半导体晶片加工装置组中进行。
11.一种装置组,其用以进行半导体工艺,包括:
用以载入晶片的一载入室;
配备钴合金材质的第一溅镀靶的第一溅镀室,用以将该第一溅镀靶的靶材溅镀至该晶片上;
配备钴合金材质的第二溅镀靶的第二溅镀室,用以将该第二溅镀靶的靶材溅镀至该晶片上,其中第二溅镀靶的钴含量与第一溅镀靶不同;以及
一加热回火装置,用以加热该晶片,以使该晶片与镀上的该靶材产生金属硅化反应。
12.如权利要求11所述的装置组,其中该载入室也用来对该晶片进行加热除气的操作。
13.如权利要求11所述的装置组,其中该溅镀室与该加热回火装置整合在同一处理站中。
14.如权利要求11所述的装置组,还包括一清洗站,其用来在各溅镀操作之前对该晶片进行一清洗操作。
15.如权利要求11所述的装置组,其中该溅镀室所配备的溅镀靶可于原位抽换,以在不移动该晶片的状态下先后沉积两种不同的靶材。
CNB031423760A 2002-06-10 2003-06-10 形成硅化钴的方法和装置组 Expired - Fee Related CN1260786C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/166,307 2002-06-10
US10/166,307 US6743721B2 (en) 2002-06-10 2002-06-10 Method and system for making cobalt silicide

Publications (2)

Publication Number Publication Date
CN1471145A CN1471145A (zh) 2004-01-28
CN1260786C true CN1260786C (zh) 2006-06-21

Family

ID=29710637

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031423760A Expired - Fee Related CN1260786C (zh) 2002-06-10 2003-06-10 形成硅化钴的方法和装置组

Country Status (3)

Country Link
US (6) US6743721B2 (zh)
CN (1) CN1260786C (zh)
TW (2) TW200620422A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206998B (zh) * 2006-12-22 2010-10-06 上海宏力半导体制造有限公司 监控低温快速热工艺的方法
US11152371B2 (en) 2019-08-13 2021-10-19 Micron Technology, Inc. Apparatus comprising monocrystalline semiconductor materials and monocrystalline metal silicide materials, and related methods, electronic devices, and electronic systems

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440851B1 (en) * 1999-10-12 2002-08-27 International Business Machines Corporation Method and structure for controlling the interface roughness of cobalt disilicide
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US20090004850A1 (en) 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US8110489B2 (en) 2001-07-25 2012-02-07 Applied Materials, Inc. Process for forming cobalt-containing materials
US20040162637A1 (en) 2002-07-25 2004-08-19 Yulun Wang Medical tele-robotic system with a master remote station with an arbitrator
US7153772B2 (en) * 2003-06-12 2006-12-26 Asm International N.V. Methods of forming silicide films in semiconductor devices
KR100555515B1 (ko) * 2003-08-27 2006-03-03 삼성전자주식회사 코발트층 캡핑막을 갖는 반도체 소자 및 그 제조방법
US7813836B2 (en) 2003-12-09 2010-10-12 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
US7129169B2 (en) * 2004-05-12 2006-10-31 International Business Machines Corporation Method for controlling voiding and bridging in silicide formation
US20050251936A1 (en) * 2004-05-14 2005-11-17 International Business Machines Corporation Apparatus and method for cleaning electronic articles
KR100653689B1 (ko) * 2004-06-09 2006-12-04 삼성전자주식회사 이중금속층을 이용한 샐리사이드 공정 및 이를 사용하여반도체 소자를 제조하는 방법
KR100683852B1 (ko) * 2004-07-02 2007-02-15 삼성전자주식회사 반도체 소자의 마스크롬 소자 및 그 형성 방법
US8077963B2 (en) 2004-07-13 2011-12-13 Yulun Wang Mobile robot with a head-based movement mapping scheme
US7448395B2 (en) * 2004-07-19 2008-11-11 Texas Instruments Incorporated Process method to facilitate silicidation
DE102004047767B3 (de) * 2004-09-30 2006-08-10 Infineon Technologies Ag Verfahren zur Silizierung von Siliziumgrenzflächen mit PVD-Anlagen
US20080132045A1 (en) * 2004-11-05 2008-06-05 Woo Sik Yoo Laser-based photo-enhanced treatment of dielectric, semiconductor and conductive films
US20060099827A1 (en) * 2004-11-05 2006-05-11 Yoo Woo S Photo-enhanced UV treatment of dielectric films
US20070026690A1 (en) * 2004-11-05 2007-02-01 Yoo Woo S Selective frequency UV heating of films
CN100334686C (zh) * 2004-12-09 2007-08-29 上海交通大学 提高CoSi2薄膜热稳定性的方法
JP4974880B2 (ja) * 2005-01-27 2012-07-11 スパンション エルエルシー 半導体装置及びその製造方法
JP4812502B2 (ja) * 2005-04-25 2011-11-09 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US7892905B2 (en) * 2005-08-02 2011-02-22 Globalfoundries Singapore Pte. Ltd. Formation of strained Si channel and Si1-xGex source/drain structures using laser annealing
US9198728B2 (en) 2005-09-30 2015-12-01 Intouch Technologies, Inc. Multi-camera mobile teleconferencing platform
US20090078580A1 (en) * 2005-12-02 2009-03-26 Ulvac, Inc. Method for Forming Cu Film
DE102006004396B3 (de) * 2006-01-31 2007-03-08 Infineon Technologies Ag Verfahren zum Entfernen von Refraktärmetallschichten und zur Silizierung von Kontaktflächen
TW200746268A (en) * 2006-04-11 2007-12-16 Applied Materials Inc Process for forming cobalt-containing materials
US8278176B2 (en) 2006-06-07 2012-10-02 Asm America, Inc. Selective epitaxial formation of semiconductor films
US8849679B2 (en) 2006-06-15 2014-09-30 Intouch Technologies, Inc. Remote controlled robot system that provides medical images
US7485572B2 (en) * 2006-09-25 2009-02-03 International Business Machines Corporation Method for improved formation of cobalt silicide contacts in semiconductor devices
US7622386B2 (en) * 2006-12-06 2009-11-24 International Business Machines Corporation Method for improved formation of nickel silicide contacts in semiconductor devices
US7730516B2 (en) 2007-02-27 2010-06-01 Sony Corporation TV-centric system
US8367548B2 (en) 2007-03-16 2013-02-05 Asm America, Inc. Stable silicide films and methods for making the same
US20080233703A1 (en) * 2007-03-21 2008-09-25 Atmel Corporation Polysilicon conductivity improvement in a salicide process technology
US9160783B2 (en) 2007-05-09 2015-10-13 Intouch Technologies, Inc. Robot system that operates through a network firewall
US10875182B2 (en) 2008-03-20 2020-12-29 Teladoc Health, Inc. Remote presence system mounted to operating room hardware
US8179418B2 (en) 2008-04-14 2012-05-15 Intouch Technologies, Inc. Robotic based health care system
US8170241B2 (en) 2008-04-17 2012-05-01 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
US8340819B2 (en) 2008-09-18 2012-12-25 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
CN101740334B (zh) * 2008-11-13 2012-10-03 中芯国际集成电路制造(北京)有限公司 光刻预处理方法及光刻方法
US8463435B2 (en) 2008-11-25 2013-06-11 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US9138891B2 (en) 2008-11-25 2015-09-22 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US9379011B2 (en) 2008-12-19 2016-06-28 Asm International N.V. Methods for depositing nickel films and for making nickel silicide and nickel germanide
US7927942B2 (en) * 2008-12-19 2011-04-19 Asm International N.V. Selective silicide process
US8849680B2 (en) 2009-01-29 2014-09-30 Intouch Technologies, Inc. Documentation through a remote presence robot
US8897920B2 (en) 2009-04-17 2014-11-25 Intouch Technologies, Inc. Tele-presence robot system with software modularity, projector and laser pointer
US8384755B2 (en) 2009-08-26 2013-02-26 Intouch Technologies, Inc. Portable remote presence robot
US11399153B2 (en) 2009-08-26 2022-07-26 Teladoc Health, Inc. Portable telepresence apparatus
CN102484183B (zh) * 2009-09-07 2015-01-14 崇高种子公司 半导体发光元件及其制造方法
US8367528B2 (en) 2009-11-17 2013-02-05 Asm America, Inc. Cyclical epitaxial deposition and etch
US11154981B2 (en) 2010-02-04 2021-10-26 Teladoc Health, Inc. Robot user interface for telepresence robot system
US8670017B2 (en) 2010-03-04 2014-03-11 Intouch Technologies, Inc. Remote presence system including a cart that supports a robot face and an overhead camera
US10343283B2 (en) 2010-05-24 2019-07-09 Intouch Technologies, Inc. Telepresence robot system that can be accessed by a cellular phone
US10808882B2 (en) 2010-05-26 2020-10-20 Intouch Technologies, Inc. Tele-robotic system with a robot face placed on a chair
US9264664B2 (en) 2010-12-03 2016-02-16 Intouch Technologies, Inc. Systems and methods for dynamic bandwidth allocation
US9323250B2 (en) 2011-01-28 2016-04-26 Intouch Technologies, Inc. Time-dependent navigation of telepresence robots
CN104898652B (zh) 2011-01-28 2018-03-13 英塔茨科技公司 与一个可移动的远程机器人相互交流
US8871617B2 (en) 2011-04-22 2014-10-28 Asm Ip Holding B.V. Deposition and reduction of mixed metal oxide thin films
US10769739B2 (en) 2011-04-25 2020-09-08 Intouch Technologies, Inc. Systems and methods for management of information among medical providers and facilities
US9098611B2 (en) 2012-11-26 2015-08-04 Intouch Technologies, Inc. Enhanced video interaction for a user interface of a telepresence network
US20140139616A1 (en) 2012-01-27 2014-05-22 Intouch Technologies, Inc. Enhanced Diagnostics for a Telepresence Robot
US8809170B2 (en) 2011-05-19 2014-08-19 Asm America Inc. High throughput cyclical epitaxial deposition and etch process
US8836751B2 (en) 2011-11-08 2014-09-16 Intouch Technologies, Inc. Tele-presence system with a user interface that displays different communication links
US9251313B2 (en) 2012-04-11 2016-02-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US8902278B2 (en) 2012-04-11 2014-12-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
WO2013176758A1 (en) 2012-05-22 2013-11-28 Intouch Technologies, Inc. Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices
US9361021B2 (en) 2012-05-22 2016-06-07 Irobot Corporation Graphical user interfaces including touchpad driving interfaces for telemedicine devices
US9607842B1 (en) 2015-10-02 2017-03-28 Asm Ip Holding B.V. Methods of forming metal silicides
JP2018078212A (ja) * 2016-11-10 2018-05-17 三重富士通セミコンダクター株式会社 半導体装置の製造方法
US11862302B2 (en) 2017-04-24 2024-01-02 Teladoc Health, Inc. Automated transcription and documentation of tele-health encounters
US10483007B2 (en) 2017-07-25 2019-11-19 Intouch Technologies, Inc. Modular telehealth cart with thermal imaging and touch screen user interface
US11636944B2 (en) 2017-08-25 2023-04-25 Teladoc Health, Inc. Connectivity infrastructure for a telehealth platform
US10617299B2 (en) 2018-04-27 2020-04-14 Intouch Technologies, Inc. Telehealth cart that supports a removable tablet with seamless audio/video switching
RU2698540C1 (ru) * 2018-10-17 2019-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ изготовления контактно-барьерной металлизации
CN112222782A (zh) * 2020-10-12 2021-01-15 永胜机械工业(昆山)有限公司 一种钛及钛合金封头加工工艺
CN112701036B (zh) * 2021-03-23 2021-06-08 晶芯成(北京)科技有限公司 一种半导体元件的制造方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359490A (en) * 1981-07-13 1982-11-16 Fairchild Camera & Instrument Corp. Method for LPCVD co-deposition of metal and silicon to form metal silicide
US4685134A (en) * 1985-07-19 1987-08-04 Rca Corporation Multichannel computer generated sound synthesis system
US5047387A (en) * 1988-01-19 1991-09-10 The United States Of America As Represented By The Secretary Of The Navy Method for the selecting superconducting powders
US4885134A (en) 1988-08-22 1989-12-05 Eastman Kodak Company Sputtering target and method of preparing the same
US4920073A (en) 1989-05-11 1990-04-24 Texas Instruments, Incorporated Selective silicidation process using a titanium nitride protective layer
US5047367A (en) 1990-06-08 1991-09-10 Intel Corporation Process for formation of a self aligned titanium nitride/cobalt silicide bilayer
NL9100334A (nl) 1991-02-26 1992-09-16 Philips Nv Werkwijze voor het vervaardigen van een halfgeleiderinrichting waarbij een zelfregistrerend kobalt- of nikkel-silicide gevormd wordt.
US5282946A (en) 1991-08-30 1994-02-01 Mitsubishi Materials Corporation Platinum-cobalt alloy sputtering target and method for manufacturing same
US5587851A (en) * 1991-12-24 1996-12-24 Sharp Kabushiki Kaisha Magnetic head driving device with prerecording energization
TW209308B (en) 1992-03-02 1993-07-11 Digital Equipment Corp Self-aligned cobalt silicide on MOS integrated circuits
US5282648A (en) * 1992-06-01 1994-02-01 Simula Inc. Inflatable body and head restraint system
US5365111A (en) 1992-12-23 1994-11-15 Advanced Micro Devices, Inc. Stable local interconnect/active area silicide structure for VLSI applications
US5344793A (en) 1993-03-05 1994-09-06 Siemens Aktiengesellschaft Formation of silicided junctions in deep sub-micron MOSFETs by defect enhanced CoSi2 formation
US5356837A (en) 1993-10-29 1994-10-18 International Business Machines Corporation Method of making epitaxial cobalt silicide using a thin metal underlayer
EP0659901B1 (de) 1993-12-20 1998-04-15 LEYBOLD MATERIALS GmbH Target für Magnetron-Kathodenzerstäubungsanlage aus einer Kobalt-Basislegierung
US5413957A (en) * 1994-01-24 1995-05-09 Goldstar Electron Co., Ltd. Method for fabricating MOS transistor having source/drain region of shallow junction and silicide film
US5849634A (en) * 1994-04-15 1998-12-15 Sharp Kk Method of forming silicide film on silicon with oxygen concentration below 1018 /cm3
US5536684A (en) 1994-06-30 1996-07-16 Intel Corporation Process for formation of epitaxial cobalt silicide and shallow junction of silicon
US5587651A (en) * 1994-11-21 1996-12-24 General Electric Company Alternating current sensor based on parallel-plate geometry and having a conductor for providing separate self-powering
EP0724287A3 (en) * 1995-01-30 1999-04-07 Nec Corporation Method for fabricating semiconductor device having titanium silicide film
US6096638A (en) * 1995-10-28 2000-08-01 Nec Corporation Method for forming a refractory metal silicide layer
US20020151170A1 (en) * 1996-06-04 2002-10-17 Karen Maex Method of forming polycrystalline CoSi2 salicide and products obtained thereof
US5780362A (en) 1996-06-04 1998-07-14 Wang; Qingfeng CoSi2 salicide method
TW301032B (en) 1996-06-27 1997-03-21 Winbond Electronics Corp Structure of self-aligned salicide device with double sidewall spacers and fabrication method thereof
US5747373A (en) 1996-09-24 1998-05-05 Taiwan Semiconductor Manufacturing Company Ltd. Nitride-oxide sidewall spacer for salicide formation
US5744395A (en) * 1996-10-16 1998-04-28 Taiwan Semiconductor Manufacturing Company, Ltd. Low resistance, self-aligned, titanium silicide structures, using a single rapid thermal anneal procedure
KR100220253B1 (ko) 1996-12-27 1999-09-15 김영환 Mosfet 제조 방법
US5731239A (en) * 1997-01-22 1998-03-24 Chartered Semiconductor Manufacturing Pte Ltd. Method of making self-aligned silicide narrow gate electrodes for field effect transistors having low sheet resistance
US5902129A (en) * 1997-04-07 1999-05-11 Lsi Logic Corporation Process for forming improved cobalt silicide layer on integrated circuit structure using two capping layers
US6022795A (en) * 1998-05-07 2000-02-08 United Microelectronics Corp. Salicide formation process
US5874342A (en) * 1997-07-09 1999-02-23 Lsi Logic Corporation Process for forming MOS device in integrated circuit structure using cobalt silicide contacts as implantation media
JPH11204791A (ja) 1997-11-17 1999-07-30 Toshiba Corp 半導体装置及びその製造方法
TW403963B (en) 1997-12-24 2000-09-01 United Microelectronics Corp The manufacture method of cobalt silicide
US6110821A (en) * 1998-01-27 2000-08-29 Applied Materials, Inc. Method for forming titanium silicide in situ
US6100191A (en) 1998-04-14 2000-08-08 United Microelectronics Corp. Method for forming self-aligned silicide layers on sub-quarter micron VLSI circuits
US5970370A (en) 1998-12-08 1999-10-19 Advanced Micro Devices Manufacturing capping layer for the fabrication of cobalt salicide structures
US6025274A (en) 1999-01-11 2000-02-15 United Microelectronics Corp. Method of fabricating salicide
JP3400737B2 (ja) * 1999-03-18 2003-04-28 松下電器産業株式会社 半導体装置の製造方法
US6083817A (en) 1999-06-02 2000-07-04 Advanced Micro Devices, Inc. Cobalt silicidation using tungsten nitride capping layer
KR100396692B1 (ko) 1999-06-16 2003-09-02 주식회사 하이닉스반도체 반도체 소자의 제조방법
US6190516B1 (en) 1999-10-06 2001-02-20 Praxair S.T. Technology, Inc. High magnetic flux sputter targets with varied magnetic permeability in selected regions
US6440851B1 (en) * 1999-10-12 2002-08-27 International Business Machines Corporation Method and structure for controlling the interface roughness of cobalt disilicide
US6323130B1 (en) * 2000-03-06 2001-11-27 International Business Machines Corporation Method for self-aligned formation of silicide contacts using metal silicon alloys for limited silicon consumption and for reduction of bridging
US6413859B1 (en) * 2000-03-06 2002-07-02 International Business Machines Corporation Method and structure for retarding high temperature agglomeration of silicides using alloys
US6444576B1 (en) * 2000-06-16 2002-09-03 Chartered Semiconductor Manufacturing, Ltd. Three dimensional IC package module
US6444578B1 (en) * 2001-02-21 2002-09-03 International Business Machines Corporation Self-aligned silicide process for reduction of Si consumption in shallow junction and thin SOI electronic devices
US20030029715A1 (en) * 2001-07-25 2003-02-13 Applied Materials, Inc. An Apparatus For Annealing Substrates In Physical Vapor Deposition Systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206998B (zh) * 2006-12-22 2010-10-06 上海宏力半导体制造有限公司 监控低温快速热工艺的方法
US11152371B2 (en) 2019-08-13 2021-10-19 Micron Technology, Inc. Apparatus comprising monocrystalline semiconductor materials and monocrystalline metal silicide materials, and related methods, electronic devices, and electronic systems

Also Published As

Publication number Publication date
US6878627B1 (en) 2005-04-12
US20050176248A1 (en) 2005-08-11
TW200402777A (en) 2004-02-16
CN1471145A (zh) 2004-01-28
TW200620422A (en) 2006-06-16
US6943110B1 (en) 2005-09-13
US20030228745A1 (en) 2003-12-11
US20050179139A1 (en) 2005-08-18
US6743721B2 (en) 2004-06-01
US20060014388A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
CN1260786C (zh) 形成硅化钴的方法和装置组
CN100336186C (zh) 形成硅化镍层以及半导体器件的方法
CN1118864C (zh) 利用相变来制造半导体器件的方法
CN1187813C (zh) 半导体集成电路器件的制造方法
CN1107344C (zh) 利用有选择的外延生长方法的半导体器件制造方法
CN1649112A (zh) 镍-自对准硅化物工艺和利用该工艺制造半导体器件的方法
CN1922717A (zh) 用于半导体制造的栅极掺杂物激活方法
CN1097298C (zh) 制造结晶硅半导体和薄膜晶体管的方法
CN1750234A (zh) 形成半导体器件精细图形的方法及用其形成接触的方法
CN107408600A (zh) 用于太阳能电池的发射极层的沉积方法
CN1842919A (zh) 薄膜晶体管及其制造方法
CN100345261C (zh) 半导体集成电路器件的制造方法
US20150179743A1 (en) Graphene as a Ge Surface Passivation Layer to Control Metal-Semiconductor Junction Resistivity
CN1819267A (zh) 半导体器件及其制造方法
JP2006310372A (ja) 半導体装置および、その製造方法
CN1967790A (zh) 移除栅极上的金属硅化物层的方法及蚀刻方法
JP2010267678A (ja) 半導体装置の製造方法
CN1494119A (zh) 半导体装置的制造方法
TW408359B (en) Semiconductor device and manufacture thereof
CN101393855B (zh) 金属化工艺
CN1195319C (zh) 形成在源漏极上具有金属硅化物的晶体管的方法
CN1862779A (zh) 金属硅化物的制造方法
CN1285102C (zh) 金属硅化双层结构及其形成方法
CN1758446A (zh) 薄膜晶体管及其轻掺杂漏极区的制造方法
CN1238888C (zh) 垫高源/漏极区的半导体组件制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee