CN1267109A - 晶片键合的铝镓铟氮结构 - Google Patents

晶片键合的铝镓铟氮结构 Download PDF

Info

Publication number
CN1267109A
CN1267109A CN99126434A CN99126434A CN1267109A CN 1267109 A CN1267109 A CN 1267109A CN 99126434 A CN99126434 A CN 99126434A CN 99126434 A CN99126434 A CN 99126434A CN 1267109 A CN1267109 A CN 1267109A
Authority
CN
China
Prior art keywords
layer
substrate
speculum
bonding
wafer bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN99126434A
Other languages
English (en)
Inventor
C·C·科曼
R·S·克恩
小F·A·基希
M·R·克拉梅斯
A·V·努米克科
宋允圭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Publication of CN1267109A publication Critical patent/CN1267109A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • H01L33/105Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector with a resonant cavity structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • H01L33/465Reflective coating, e.g. dielectric Bragg reflector with a resonant cavity structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0215Bonding to the substrate
    • H01S5/0216Bonding to the substrate using an intermediate compound, e.g. a glue or solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0217Removal of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/1838Reflector bonded by wafer fusion or by an intermediate compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/977Thinning or removal of substrate

Abstract

利用晶片键合或金属焊接技术可以制备具有垂直光学路径,例如垂直腔面发射激光器或谐振腔光发射或探测器件,并具有高质量反射镜的光发射器件。光发射区域介于一个或两个包含介质分布式布拉格反射器(DBR)的反射器叠层之间。介质DBR可以淀积或粘合在光发射器件上。GaP、GaAs、InP或Si材料的主衬底粘合到其中的一个介质DBR。电接触添加到光发射器件。

Description

晶片键合的铝镓铟氮结构
本发明是按照与Defense Advanced Research Projects Agency(DARPA)签订的合同MDA972-96-3-0014,在政府的支持下完成的。联邦政府对本发明具有一定的权利。
本发明涉及光发射领域,特别是涉及为AlxGayInzN器件的两面制备高质量反射面。
垂直腔光电结构包括有源区,它由置于掺杂、未掺杂或包含p-n结的限制层之间的光发射层构成。该结构还至少包含一个在垂直于光发射层的方向上形成F-P腔的反射镜。在GaN/AlxGayInzN/AlxGa1-xN(在AlxGayInzN中x+y+z=1,在AlxGa1-xN中x≤1)材料系中制备垂直腔光电结构提出了与其它III-V族材料系不同的挑战。困难的是生长具有高光学品质的AlxGayInzN结构。电流扩展是AlxGayInzN器件的主要问题。电流在p型材料中的横向扩展比n型材料小30倍。此外,许多衬底的低热导率增加了器件设计的复杂性,这是因为为了获得最佳的散热,器件应当结面向下安装。
一种垂直腔光电结构,例如垂直腔面发射激光器(VCSEL),需要高质量的反射镜,例如99.5%的反射率。一种获得高质量反射镜的方法是利用半导体生长技术。为了达到适用于VCSEL的分布式布拉格反射器(DBR)所需的高反射率(>99%),对于半导体AlxGayInzN DBR的生长存在一些非常关键的材料问题,包括裂纹和电导率。这些反射镜需要多个组份交替改变的铟铝镓氮(AlxGayInzN/AlxGayInzN)的周期/层面。与半导体DBR相比,介质DBR(D-DBR)在AlxGayInzN材料系所覆盖的光谱范围内相对容易实现超过99%的反射率。这些反射镜通常是通过蒸发或溅射技术淀积的,但也可以使用MBE(分子束外延)和MOCVD(金属有机物化学气相淀积)。然而,除非去除生长衬底,否则有源区只有一面能够接触D-DBR淀积层。如果可以将D-DBR键合和/或淀积在AlxGayInzN有源区的两面上,那么制备AlxGayInzN垂直腔光电结构将变得很容易。
晶片键合分为两种基本类型:直接晶片键合和金属晶片键合。在直接晶片键合中,两个晶片通过键合界面上的物质交换键合在一起。直接晶片键合可以在半导体、氧化物和绝缘材料的任意组合之间进行。键合通常是在高温(>400℃)和单轴压力下进行的。Kish等人在美国专利5,502,316中描述了一种合适的直接晶片键合技术。在金属晶片键合中,金属层淀积在两个键合衬底之间使之粘结。Yablonovitch等人在Applied Physicis Letters,vol.56,pp.2419-2421,1990中公开的一个金属键合实例是倒装键合,这是一种在微电子和光电子工业中用来将器件倒装在衬底上的技术。因为倒装键合改善了器件的散热性能,所以衬底的去除取决于器件的结构,传统上对金属键合层的唯一要求是导电和机械加固。
在“Low threshold,wafer fused long wavelength verticalcavity lasers”中,Applied Physics Letters,vol.64,no.12,1994,pp1463-1465,Dudley等人讲述了将AlAs/GaAs半导体DBR直接晶片键合到垂直腔结构的一面,而在“Room-Temperature Continuous-WaveOperation of 1.430μm Vertical-Cavity Lasers”中,IEEE PhotnoicsTechnolory Letters,vol.7,no.11,November 1995,Babic等人讲述了将半导体DBR直接晶片键合到InGaAsP VCSEL的两面,以利用在AlAs/GaAs之间的大折射率变化。如将要描述的,将D-DBR晶片键合到AlxGayInzN比半导体之间的晶片键合更复杂,在现有技术中还没有出现过。
在“Dielectrically-Bonded Long Wavelength Vertical CavityLaser on GaAs Substrates Using Strain-Compensated MultipleQuantum Wells”,IEEE Photnoics Technology Letters,vol.5,no.12,December 1994,Chua等人公开了利用旋涂(spin-on)玻璃层将AlAs/GaAs半导体DBR连接到InGaAsP激光器。旋涂玻璃并不适合于在VCSEL中的有源层和DBR之间进行键合,因为很难精确地控制旋涂玻璃的厚度,因此,将无法精确地进行VCSEL腔所需的层控制。此外,旋涂玻璃的性质是非均匀的,这将导致腔中的散射和其它损耗。
利用AlxGa1-xN/GaN材料对生长具有适合于VCSEL的反射率,例如大于99%的半导体DBR反射镜是困难的。参照图1,反射率的理论计算表明,为了实现所需的高反射率,需要高折射率对比,这只有通过提高低折射率AlxGa1-xN层中的Al组份和/或包含更多的层周期(材料特性来自于Ambacher等人,MRS Internet Journal of Nitride Semiconductorresearch,2(22)1997)来实现。这两种方法均具有极强的挑战性。如果有电流流过DBR层,那么DBR具有导电性是很重要的。为了充分地导电,AlxGa1-xN层必需是充分掺杂的。除非Al组份对于Si(n型)掺杂降低到大约低于50%,对于Mg(p型)掺杂降低到大约低于20%,否则导电率不会很高。然而,如图1所示,利用Al组份较低的层来实现足够高的反射率所需的层周期数需要总厚度较大的AlxGa1-xN材料,这加大了外延层破裂的危险性(由于AlN和GaN之间具有较大的晶格失配),降低了组份控制力。实际上,图1所示的Al.30Ga.70N/GaN叠层已达2.5μm厚,但远远不能满足VCSEL所需的反射率。这样,基于这种层对的高反射率DBR需要的总厚度远大于2.5μm,并且对于给定的AlN和GaN的生长条件和材料特性之间的失配,难以可靠地生长。尽管在层是未掺杂的条件下破裂不是一个主要问题,但是组份控制和AlN/GaN的生长温度仍将是生长高反射率DBR的巨大挑战。因此,即使在不需要DBR导电的应用中,也还没有出现利用AlxGayInzN材料系制备的反射率大于99%的半导体反射镜叠层。因此,介质DBR反射镜是优选的。
至少一个反射镜叠层,例如介质分布式布拉格反射器(DBR)或复合D-DBR/半导体DBR置于AlxGayInzN有源区和主衬底之间。晶片键合界面位于主衬底和有源区之间的某处。任选的过渡键合层位于晶片键合界面附近,以吸收晶片键合界面处的应力和热系数失配。任选的反射镜叠层位于AlxGayInzN有源区附近。考虑到柔量,或者选择主衬底,或者选择过渡键合层。
前述发明的一个实施方案包括具有位于AlxGayInzN有源区附近的晶片键合界面的器件,AlxGayInzN有源区制备在牺牲衬底上,例如Al2O3。与主衬底粘合的反射镜叠层直接晶片键合到AlxGayInzN有源区。然后,去除牺牲衬底。粘合技术包括键合、淀积和生长。向n型和p型层添加电接触。
对于具有位于主衬底附近的晶片键合界面的另一个实施方案,反射镜叠层粘合在AlxGayInzN有源区的顶部。如果利用直接晶片键合,那么就将具有适当材料特性的主衬底晶片键合到反射镜叠层。或者,使用金属键合将主衬底键合到反射镜叠层上。去除牺牲衬底。任选的反射镜叠层粘合到AlxGayInzN有源区的顶部。向n型和p型层添加电接触。在直接晶片键合过程中,为获得预期的特性,主衬底的选择是一项关键技术。其它实施方案包括将晶片键合界面置于DBR之内。
图1示出对于AlN/GaN和Al.30Ga.70N/GaN DBR,理论反射率和波长的关系。
图2示出本发明的优选实施方案。
图3A-F示出本发明的流程图。
图4A-F示出本发明的又一流程图。
图5示出了淀积在GaN/Al2O3结构上的D-DBR和GaP主衬底之间的直接晶片键合界面的扫描电子显微镜(SEM)剖面图。
图6示出具有金属键合到主衬底的淀积D-DBR的有源区的SEM剖面图。衬底已经去除,第二D-DBR淀积在AlxGayInzN有源区的、与第一D-DBR相对的面上。
图7示出图6描述的器件发射的400-500nm的光发射谱。模态峰描述了垂直腔结构。
介质分布式布拉格反射器(D-DBR)包括多个叠在一起的低损耗介质对,其中材料对中的一种材料具有较低的折射率,另一种材料具有较高的折射率。一些可能的介质DBR反射镜基于二氧化硅(SiO2)和氧化钛(TiO2)、氧化锆(ZrO2)、氧化钽(Ta2O5)或氧化铪(HfO2)层对,可以实现蓝垂直腔面发射激光器(VCSEL)所需的高反射率,例如>99.5%,和谐振腔光发射器件(RCLED)所需的高反射率,例如60%或更高。SiO2/HfO2叠层对最令人感兴趣,因为它们可以用来在350-500nm的波长范围内制备反射率高于99%的反射镜叠层。利用交替的SiO2和HfO2层制备的D-DBR在高达1050℃的温度下仍能保持机械稳定,为后续工艺提供了便利。
图2示出了优选实施方案。在图2中,第一反射镜叠层14,例如高反射率的DBR粘合在适当的衬底上。反射镜叠层14包括下述材料中的一种或多种:绝缘体、半导体和金属。第一反射镜叠层14晶片键合到生长在牺牲衬底上的AlxGayInzN有源区18的p型顶层18b。AlxGayInzN垂直腔光电结构18在期望的波长范围内具有高增益。晶片键合界面16必需具有散射非常低的、极佳的光学质量。晶片键合界面16可以包括任选的过渡键合层(未示出)。任选的第二反射镜叠层20,例如D-DBR(图2所示)在与第一反射镜叠层14相对的面上粘合到AlxGayInzN垂直腔光电结构18。对任选的第二反射镜叠层20和AlxGayInzN有源区18的n型层18a、p型层18b进行图形化,并通过刻蚀产生欧姆接触所需的区域。对于VCSEL,反射镜的反射率必需非常高,>99%。对于RCLED,可以放松对反射镜反射率的要求(>60%)。
对于反射镜叠层14,另一种方法是粘合到AlxGayInzN有源区。然后,晶片键合界面16位于反射镜叠层14和主衬底12之间。这种结构也可以具有任选的第二反射镜叠层20。与前两种方法相关的另一种方法必需在两个反射镜叠层中的一个或两个之中形成直接晶片键合。图2示出了几个晶片键合界面16的可能位置。
通过插入经刻蚀和/或氧化可以提高电流限制和光限制的AlxGayInzN层可以在n型或p型有源区材料中实现电流限制,由此降低了激射阈值或提高了器件效率。当使用D-DBR和/或未掺杂的半导体DBR时,引入该层是很重要的,因为没有电流流过该层。根据所需的接触层的厚度,腔可以是单波长或多波长腔,以便获得适当的低正偏电压。可以对上述结构进行多种修改。交换p型和n型材料也可以制备类似的结构。
图3A-F示出本发明实施方案的流程图。在图3A中,AlxGayInzN有源区制备在牺牲衬底上,例如Al2O3。在图3B中,第一反射镜叠层粘合到主衬底。粘合技术包括键合、淀积和生长。在图3C中,第一反射镜叠层通过晶片键合粘合到AlxGayInzN有源区。对于VCSEL,应当使用直接晶片键合,因为低光学损耗是非常关键的。在图3D中,去除牺牲衬底。在图3E中,任选的第二反射镜叠层粘合到AlxGayInzN有源区的顶部。在图3F中,电接触添加到任选的第二反射镜叠层或AlxGayInzN有源区。在工艺流程中可以进行图形化,以便界定器件区域,暴露出接触层。
图4A-F示出另一工艺流程图。在图4A中,AlxGayInzN有源区制备在牺牲衬底上,例如Al2O3。在图4B中,第一反射镜叠层粘合到AlxGayInzN有源区。在图4C中,主衬底通过直接晶片键合或金属键合粘合到第一反射镜叠层。因为晶片键合位于光学腔之外,所以由晶片键合引起的损耗并不重要。在图4D中,去除牺牲衬底。在图4E中,任选的第二反射镜叠层粘合到AlxGayInzN有源区。在图4F中,电接触添加到任选的第二反射镜叠层或AlxGayInzN有源区。在工艺流程中可以进行图形化,以便界定器件区域,暴露出接触层。
选择用于直接晶片键合的主衬底很关键,并且受到几个特性的影响:物质输运、柔顺性和压应力/张应力释放。主衬底可以由磷化镓(GaP)、砷化镓(GaAs)、磷化铟(InP)或硅(Si)材料构成的材料组中选择。对于Si,优选的衬底厚度在1000和50μm之间。
物质输运在直接晶片键合过程中具有重要作用。在标准的III-V族与III-V族的直接晶片键合中,或者III-V族与绝缘体的键合中,至少有一个表面在低得足以保持层质量的温度下具有显著的物质输运效应。与此相反,AlxGayInzN和大多数绝缘材料在保持含In量很高的AlxGayInzN有源层的完整性所需的温度下(<1000℃)没有显著的物质输运效应。一种或两种键合材料缺乏物质输运效应将阻碍晶片粘合。这种效应的模型是当两种材料在键合温度下均具有显著的物质输运效应时,两种材料的键能够越过界面重新形成更强的键。当只有一种材料具有显著的物质输运效应时,只有这种材料的键能够与另一种材料的表面键匹配。在这种情况下,很难形成机械强度很高的晶片键合。
匹配性是材料在原子或宏观尺度改变其形状以吸收张力和应力的能力。对于本发明,柔顺性定义为材料具有低于键合温度的熔点,或者是材料在低于键合温度时由可塑性向脆性转变的时刻,或者是衬底厚度小于50μm的时刻。
GaP、GaAs和InP衬底的标准III-V族晶片键合通常在温度400-1000℃之间进行,在这种温度下两种衬底是柔顺性的。键合材料中至少有一种具有柔顺性对于晶片键合是很重要的,因为材料不论在微观尺度还是在宏观尺度都具有固有的表面粗糙度和/或缺乏完整性。在1000℃下,AlxGayInzN结构在N2气氛中淬火20分钟可以使PL密度降低大约20%。因此,期望将键合温度保持在1000℃以下。生长在A1203衬底上的GaN基材料在键合温度低于1000℃时没有柔顺性。用于为宽禁带半导体产生高反射率D-DBR的绝缘材料通常在1000℃以下没有柔顺性。因此,重要的是保证键合/支撑衬底和/或过渡键合在某些温度下是柔顺性的。
熔点是一个确定材料柔顺性的特征。例如,对于下述材料,GaAs(Tm=1510K)、GaP(Tm=1750K)和InP(Tm=1330K),可以看出,柔顺性的相对顺序是InP、GaAs和GaP,其中InP最具柔顺性。材料在熔点以下的温度经历由可塑性向脆性的转变这些材料在高温下的柔顺性必需与元素之一的解吸附作用平衡。尽管InP在1000℃是柔顺性的,但是材料在该温度下由于磷的解吸附作用而严重地分解。在键合过程的压力气氛中,与这种材料的键合必需限制在大约低于分解温度两倍的温度下。因此,选择的材料必需满足所需的柔顺性和键合温度。
非常薄的衬底也是柔顺性的。薄硅,例如<50μm是柔顺性的,因为即使曲率很高,如果衬底很薄,那么压力也是很小的。这项技术对于断裂硬度高的材料工作得很好,例如硅(11270N/mm2)或AlxGayInzN。然而,断裂硬度低的材料,例如GaAs(2500 N/mm2)在处理过程中容易断裂。对于厚度>50μm的硅,即使曲率很小也会在材料中产生高应力,导致材料断裂。同样的道理也适用于其它可以用作衬底候选材料的材料。
在生长在Al2O3上的GaN内部的高失配应力,以及AlxGayInzN和其它绝大多数适于用作支撑衬底的材料之间的热膨胀(CTE)失配系数加剧了压应力和张应力释放。与其它晶片键合的半导体材料不同,AlxGayInzN和其它半导体材料之间的CTE失配更大;压应力由沿着纤锌矿材料的a面和c面形成的不同的CTE失配构成。与不同衬底(GaAs CTE=5.8,GaP=6.8,InP=4.5×10-6/C)晶片键合的GaN(CTE=5.59,a面/3.17×10-6。c面/℃)中的压应力迫使局部压应力释放,因为主衬底的CTE失配与GaN面完全匹配。这种压应力可以在匹配材料中被吸收掉,可以在柔软的过渡键合层中或在键合温度下位于键合界面处的液体中被吸收掉,或者通过局部应力释放,例如将至少一个键合界面图形化来吸收应力。过渡键合层由绝缘体,包含卤化物(例如CaF2)、ZnO、铟(In)、锡(Sn)、铬(Cr)、金(Au)、镍(Ni)、铜(Cu)的合金和II-VI族材料中选择。
电流扩展是Ga-N基器件的另一个主要问题。P型材料中的横向电流扩展比n型材料小30倍。在有源层两面制备高反射率的反射镜对于优良的光学腔是必需的,p型层的电流扩展问题由于D-DBR的绝缘特性而加剧了。一种改善p型层中的电流扩展的方法是制备由导电透明半导体和绝缘体叠层构成的复合DBR。叠层的半导体部分通过增加p型层的厚度来改善电流扩展,而绝缘体叠层改善了半导体的低反射率,使总反射镜反射率高于99%。这一过程可以应用于n型反射镜,尽管这样做由于n型层具有更高的导电率而变得不重要了。
增加电流限制层将进一步通过将电流只导入光学腔而改善电流扩展,这对于VCSEL是必需的。这可以应用于具有或没有复合半导体/介质DBR的垂直腔光电结构。尽管电流限制层可以包含在限制层的p型层和n型层中,但是,因为其导电率很低,将电流限制层包含在p型限制层中更有效。
如果D-DBR粘合到有源区的两面,那么支撑衬底是必须的,因为原始主衬底必须除去。存在几种去除蓝宝石衬底的方法,其中的蓝宝石通常用作生长衬底。下面列出的方法只是可以用于去除生长衬底的众多技术的一个子集,其中的生长衬底还可以是除蓝宝石之外的其它材料。
在激光熔化中,Wong等人和Kelley等人公开的技术使用激光器照射结构的背面(蓝宝石面),该技术中使用的激光器的波长对于蓝宝石衬底是透明的,但对于紧邻衬底的半导体层却不是。激光能量不会穿透紧邻的半导体层。如果激光能量足够强,那么紧邻蓝宝石衬底的半导体层将被加热到使其分解的温度点。对于GaN层紧邻蓝宝石衬底的情况,界面处的GaN分解为Ga和N,Ga保留在界面的后面。然后,Ga材料熔化,蓝宝石衬底与层结构的其余部分分离。紧邻蓝宝石衬底的层的分解决定于激光器的能量、波长、材料分解温度和材料的吸收。利用这种技术可以去除蓝宝石衬底,以便使D-DBR粘合到有源区的另一面。然而,使VCSEL界面的损耗最小(<0.5%)、并且十分光滑以便最大限度地提高腔的谐振特性是十分重要的。这种激光熔化技术具有许多可能使激光界面缺乏VCSEL所需的平坦度的设计变量。另外,VCSEL具有非常严格的厚度限制。存在几种使用激光熔化技术解决这些问题的方法。
紧邻牺牲生长衬底的层定义为牺牲层,如果层的厚度保证激光器可以使其完全分解。在文献(wong等人)中公布的结果表明可以完全分解的层厚大约为500,但是该值依赖于激光器的能量、波长和材料分解温度以及紧邻衬底的层的吸收。紧邻牺牲层(与衬底相对)的层,即截止层在激光波长处应具有比牺牲层更高的分解温度或更低的吸收。截止层将不会受到激光能量的显著影响,因为它具有更高的分解温度或更低的吸收。在该结构中,牺牲层由激光器分解,在分解温度更高或吸收更低的截止层上留下支离破碎的表面。然后,顺序地刻蚀、氧化、再刻蚀截止层,或者利用能量和波长均不同的激光器分解截止层。
优选的层组合是GaN/AlxGa1-xN,InGaN/AlxGa1-xN和InGaN/GaN。在GaN/AlxGa1-xN组合中,GaN牺牲层将由激光器分解,而A1xGa1-xN截止层不受影响。然后,利用选择湿法化学刻蚀技术刻蚀掉AlxGa1-xN,并且刻蚀在光滑的AlxGayInzN表面上截止。另外,如果上述的GaN层没有完全分解,那么剩余的GaN也可以刻蚀掉。因为在开始生长GaN时需要厚缓冲层,VCSEL层界面需要可控的厚度和相当的光滑度,所以这项技术特别有价值。
可以利用一个或多个牺牲层和截止层修正特定层或腔的厚度。利用激光熔化和选择湿法化学刻蚀技术可以按照顺序分解和刻蚀各层对,直到获得所需的厚度。优选的层组合是GaN/AlxGa1-xN,其中GaN是牺牲层,AlxGa1-xN截止层可以利用选择湿法化学刻蚀技术刻蚀掉。
还存在去除生长衬底的其它方法。一种方法是使用可以通过湿法化学刻蚀技术选择性地刻蚀掉的AlN。AlN可以用作牺牲层,利用选择刻蚀AlN以底割结构,从而使AlxGa1-xN层与主衬底分离。另外,可以在高温下利用温法氧化工艺氧化AlN层。然后利用刻蚀液,例如HF刻蚀掉AlN氧化物。在另一种方法中,可以剥离衬底,例如通过向材料中注入轻离子。这将在特定深度上产生缺陷。当衬底受到加热时,材料选择性地沿位错裂开,由此衬底与有源层分离。利用化学刻蚀液底割ZnO或其它介质缓冲层还可以用来分离衬底和AlxGayInzN层。这种技术可以应用于2-D或3-D生长技术(例如ELOG中使用的SiO2或其它绝缘材料),其中AlxGayInzN层只有在越过衬底或在图形化区域时是连续的。
介质DBR淀积在生长在蓝宝石衬底上的AlxGayInzN有源区之上。然后,将DBR/AlxGayInzN有源区结构晶片键合到主衬底。在情况1中,DBR/AlxGayInzN有源区结构直接晶片键合到GaP主衬底(见图3)。在情况2中,DBR/AlxGayInzN有源区结构通过CaF2过渡层晶片键合到GaP主衬底(图3,其中未示出过渡层)。在情况3中,D-DBR淀积在主衬底(GaP)上,并直接晶片键合到AlxGayInzN有源区(图4)。对于情况1和3,键合区面积远小于情况2,因为没有使用过渡层。图5示出情况1结构的键合界面的扫描电子显微镜(SEM)剖面图像。界面很光滑,并且在这种放大倍率下见不到空隙。在情况4中,DBR/AlxGayInzN有源区结构通过CrAuNiCu合金构成的金属过渡层键合到主衬底。图6示出情况4的SEM剖面,蓝宝石衬底已去除,第二D-DBR淀积在与第一D-DBR相对的、AlxGayInzN有源区的面上。对于所有的器件,D-DBR叠层是SiO2/HfO2,蓝宝石衬底是利用激光熔化技术去除的。图7示出图6所述的器件产生的400-500nm的光发射谱。模态峰是垂直腔结构的特征。

Claims (23)

1.一种器件,包括:
衬底;
包含n型层、p型层和有源层、且紧邻衬底的AlxGayInzN结构(18);
第一反射镜叠层(14),位于衬底和AlxGayInzN结构的底面之间;
晶片键合界面(16),位于第一反射镜叠层和在衬底与AlxGayInzN结构中选择的一个之间,具有键合温度;和
p型接触和n型接触(22a,22b),p型接触与p型层电连接,n型接触与n型层电连接。
2.权利要求1的器件,还包括:
至少一个紧邻晶片键合界面的过渡键合层;和
过渡键合层和衬底中有一个是柔顺性的(compliant)。
3.权利要求2的器件,其中AlxGayInzN器件(18)是垂直腔光电结构。
4.权利要求3的器件,其中AlxGayInzN器件(18)还包括位于p型成内部的电流限制层。
5.权利要求2的器件,其中衬底是柔顺性的,并且由磷化镓(GaP)、砷化镓(GaAs)、磷化铟(InP)和硅(Si)构成的材料组中选择。
6.权利要求2的器件,其中过渡键合层是柔顺性的,并且由绝缘体,包含卤化物、ZnO、铟、锡、铬(Cr)、金、镍和铜的合金,以及II-VI材料构成的材料组中选择。
7.权利要求2的器件,还包括紧邻AlxGayInzN结构的顶面的第二反射镜叠层(20)。
8.权利要求7的器件,其中第一和第二反射镜叠层(14,20)中至少有一个是从包括介质分布式布拉格反射器和复合分布式布拉格反射器的组中选择的。
9.权利要求1的器件,还包括紧邻AlxGayInzN结构的顶面的第二反射镜叠层(20)。
10.权利要求9的器件,其中第一和第二反射镜叠层(14,20)中至少有一个是从包括介质分布式布拉格反射器和复合布拉格反射器的组中选择的。
11.权利要求1的器件,其中AlxGayInzN器件(18)还包括位于p型成内部的电流限制层。
12.权利要求1的器件,其中衬底是柔顺性的,并且由磷化镓(GaP)、砷化镓(GaAs)、磷化铟(InP)和硅(Si)构成的材料组中选择。
13.权利要求1的器件,其中A1xGayInzN器件是垂直腔光电结构。
14.一种制备AlxGayInzN结构的方法,包括以下步骤:
将主衬底与第一反射镜叠层粘合;
在牺牲生长衬底上制备AlxGayInzN结构;
生成晶片键合界面;
去除牺牲生长衬底;和
在AlxGayInzN结构上淀积电接触。
15.权利要求14的制备AlxGayInzN结构的方法,其中去除牺牲生长衬底的步骤包括激光熔化步骤。
16.权利要求14的制备AlxGayInzN结构的方法,还包括在晶片键合界面上粘合过渡键合层的步骤。
17.权利要求16的制备AlxGayInzN结构的方法,其中主衬底和过渡键合层中的一个是柔顺性的。
18.权利要求14的制备AlxGayInzN结构的方法,还包括在AlxGayInzN结构的顶部粘合第二反射镜叠层的步骤。
19.一种制备AlxGayInzN结构的方法,包括以下步骤:
在牺牲生长衬底上制备AlxGayInzN结构;
将第一反射镜叠层粘合在AlxGayInzN结构的顶部;
将主衬底与第一反射镜叠层晶片键合,以生成晶片键合界面;
去除牺牲生长衬底;和
在AlxGayInzN结构上淀积电接触。
20.权利要求19的制备AlxGayInzN结构的方法,其中去除牺牲生长衬底的步骤包括激光熔化步骤。
21.权利要求19的制备AlxGayInzN结构的方法,还包括在晶片键合界面上粘合过渡键合层的步骤。
22.权利要求19的制备AlxGayInzN结构的方法,其中主衬底和过渡键合层中的一个是柔顺性的。
23.权利要求19的制备AlxGayInzN结构的方法,还包括在AlxGayInzN结构的顶部粘合第二反射镜叠层的步骤。
CN99126434A 1999-02-05 1999-12-16 晶片键合的铝镓铟氮结构 Pending CN1267109A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/245435 1999-02-05
US09/245,435 US6320206B1 (en) 1999-02-05 1999-02-05 Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks

Publications (1)

Publication Number Publication Date
CN1267109A true CN1267109A (zh) 2000-09-20

Family

ID=22926642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99126434A Pending CN1267109A (zh) 1999-02-05 1999-12-16 晶片键合的铝镓铟氮结构

Country Status (7)

Country Link
US (2) US6320206B1 (zh)
JP (1) JP4834210B2 (zh)
KR (1) KR100641925B1 (zh)
CN (1) CN1267109A (zh)
DE (1) DE19953588C2 (zh)
GB (1) GB2346480A (zh)
TW (1) TW447183B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361355C (zh) * 2002-11-19 2008-01-09 Jds尤尼弗思公司 低压多结垂直腔表面发射激光器
CN100377456C (zh) * 2006-05-17 2008-03-26 中微光电子(潍坊)有限公司 垂直腔面发射半导体激光二极管的外延结构
CN102088163A (zh) * 2009-12-07 2011-06-08 S.O.I.Tec绝缘体上硅技术公司 具有InGaN层的半导体器件
CN102593291A (zh) * 2011-01-07 2012-07-18 山东华光光电子有限公司 一种氮化物分布式布拉格反射镜及制备方法与应用
CN101874308B (zh) * 2007-11-26 2012-09-05 Lg伊诺特有限公司 半导体发光器件
CN102820398A (zh) * 2012-08-31 2012-12-12 厦门大学 分布式布拉格反射与小面积金属接触复合三维电极
CN103117349A (zh) * 2011-11-17 2013-05-22 大连美明外延片科技有限公司 一种高亮度AlGaInP发光二极管及其制造方法
CN103227265A (zh) * 2013-04-12 2013-07-31 厦门大学 用于制作氮化镓基发光器件的非平面键合方法
CN105206716A (zh) * 2015-09-18 2015-12-30 华灿光电(苏州)有限公司 一种垂直结构发光二极管的制作方法
CN105609602A (zh) * 2015-12-29 2016-05-25 中国科学院半导体研究所 可见光通信用倒装rcled及其制备方法
CN109830596A (zh) * 2018-12-14 2019-05-31 苏州矩阵光电有限公司 一种半导体器件及其制备方法
CN110768106A (zh) * 2018-07-26 2020-02-07 山东华光光电子股份有限公司 一种激光二极管制备方法
CN112436380A (zh) * 2020-11-19 2021-03-02 清华大学 基于范德华外延的垂直腔面发射激光器及其制作方法
WO2022109990A1 (zh) * 2020-11-27 2022-06-02 苏州晶湛半导体有限公司 半导体发光器件及其制备方法

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9807692D0 (en) * 1998-04-14 1998-06-10 Univ Strathclyde Optival devices
US20010042866A1 (en) * 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
JP2000323797A (ja) * 1999-05-10 2000-11-24 Pioneer Electronic Corp 窒化物半導体レーザ及びその製造方法
CN1292494C (zh) * 2000-04-26 2006-12-27 奥斯兰姆奥普托半导体有限责任公司 发光半导体元件及其制造方法
EP1277241B1 (de) * 2000-04-26 2017-12-13 OSRAM Opto Semiconductors GmbH Lumineszenzdiodenchip auf der basis von gan
DE10051465A1 (de) * 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis
TWI292227B (en) * 2000-05-26 2008-01-01 Osram Opto Semiconductors Gmbh Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
US6643304B1 (en) * 2000-07-26 2003-11-04 Axt, Inc. Transparent substrate light emitting diode
US6625367B2 (en) * 2000-08-21 2003-09-23 Triquint Technology Holding Co. Optoelectronic device having a P-contact and an N-contact located over a same side of a substrate and a method of manufacture therefor
US6628685B1 (en) * 2000-08-21 2003-09-30 Chan-Long Shieh Method of fabricating long-wavelength VCSEL and apparatus
KR100754156B1 (ko) * 2000-08-23 2007-09-03 삼성전자주식회사 다중 파장 표면광 레이저 및 그 제조방법
US6562648B1 (en) * 2000-08-23 2003-05-13 Xerox Corporation Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials
US6998281B2 (en) * 2000-10-12 2006-02-14 General Electric Company Solid state lighting device with reduced form factor including LED with directional emission and package with microoptics
US6525335B1 (en) * 2000-11-06 2003-02-25 Lumileds Lighting, U.S., Llc Light emitting semiconductor devices including wafer bonded heterostructures
JP3729065B2 (ja) * 2000-12-05 2005-12-21 日立電線株式会社 窒化物半導体エピタキシャルウェハの製造方法及び窒化物半導体エピタキシャルウェハ
FR2818263B1 (fr) * 2000-12-14 2004-02-20 Commissariat Energie Atomique Substrat pour materiau a insoler
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
JP4853677B2 (ja) * 2001-03-09 2012-01-11 セイコーエプソン株式会社 発光装置、表示装置ならびに電子機器
JP4131114B2 (ja) * 2001-03-09 2008-08-13 セイコーエプソン株式会社 発光装置、表示装置ならびに電子機器
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US6740906B2 (en) 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
TW523939B (en) * 2001-11-07 2003-03-11 Nat Univ Chung Hsing High-efficient light emitting diode and its manufacturing method
US6656761B2 (en) * 2001-11-21 2003-12-02 Motorola, Inc. Method for forming a semiconductor device for detecting light
US6455340B1 (en) * 2001-12-21 2002-09-24 Xerox Corporation Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff
US6635503B2 (en) 2002-01-28 2003-10-21 Cree, Inc. Cluster packaging of light emitting diodes
TWI226139B (en) 2002-01-31 2005-01-01 Osram Opto Semiconductors Gmbh Method to manufacture a semiconductor-component
US6658041B2 (en) 2002-03-20 2003-12-02 Agilent Technologies, Inc. Wafer bonded vertical cavity surface emitting laser systems
US8294172B2 (en) 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
US20030189215A1 (en) 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
WO2003096387A2 (en) 2002-05-08 2003-11-20 Phoseon Technology, Inc. High efficiency solid-state light source and methods of use and manufacture
US6967981B2 (en) * 2002-05-30 2005-11-22 Xerox Corporation Nitride based semiconductor structures with highly reflective mirrors
JP3846367B2 (ja) * 2002-05-30 2006-11-15 セイコーエプソン株式会社 半導体素子部材及び半導体装置並びにそれらの製造方法、電気光学装置、電子機器
US20040140474A1 (en) * 2002-06-25 2004-07-22 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device, method for fabricating the same and method for bonding the same
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
US6750071B2 (en) * 2002-07-06 2004-06-15 Optical Communication Products, Inc. Method of self-aligning an oxide aperture with an annular intra-cavity contact in a long wavelength VCSEL
TW567618B (en) * 2002-07-15 2003-12-21 Epistar Corp Light emitting diode with adhesive reflection layer and manufacturing method thereof
US7928455B2 (en) * 2002-07-15 2011-04-19 Epistar Corporation Semiconductor light-emitting device and method for forming the same
DE10253908B4 (de) * 2002-09-24 2010-04-22 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement
AU2003291052A1 (en) * 2002-11-19 2004-06-15 Julian Cheng Low voltage multi-junction vertical cavity surface emitting laser
JP3795007B2 (ja) 2002-11-27 2006-07-12 松下電器産業株式会社 半導体発光素子及びその製造方法
TW571449B (en) * 2002-12-23 2004-01-11 Epistar Corp Light-emitting device having micro-reflective structure
KR101247727B1 (ko) 2003-01-31 2013-03-26 오스람 옵토 세미컨덕터스 게엠베하 반도체 소자 제조 방법
US20040161006A1 (en) * 2003-02-18 2004-08-19 Ying-Lan Chang Method and apparatus for improving wavelength stability for InGaAsN devices
US7033858B2 (en) * 2003-03-18 2006-04-25 Crystal Photonics, Incorporated Method for making Group III nitride devices and devices produced thereby
US20040259279A1 (en) 2003-04-15 2004-12-23 Erchak Alexei A. Light emitting device methods
US6884645B2 (en) * 2003-04-18 2005-04-26 Raytheon Company Method for preparing a device structure having a wafer structure deposited on a composite substrate having a matched coefficient of thermal expansion
JP2004327581A (ja) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp 半導体レーザ装置
EP1620903B1 (en) * 2003-04-30 2017-08-16 Cree, Inc. High-power solid state light emitter package
JP4130158B2 (ja) * 2003-06-09 2008-08-06 三洋電機株式会社 半導体装置の製造方法、半導体装置
US7172909B2 (en) * 2003-07-04 2007-02-06 Epistar Corporation Light emitting diode having an adhesive layer and a reflective layer and manufacturing method thereof
US8999736B2 (en) * 2003-07-04 2015-04-07 Epistar Corporation Optoelectronic system
DE102004036295A1 (de) * 2003-07-29 2005-03-03 GELcore, LLC (n.d.Ges.d. Staates Delaware), Valley View Flip-Chip-Leuchtdioden-Bauelemente mit Substraten, deren Dicke verringert wurde oder die entfernt wurden
US7119372B2 (en) * 2003-10-24 2006-10-10 Gelcore, Llc Flip-chip light emitting diode
US7009215B2 (en) * 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
US7524085B2 (en) * 2003-10-31 2009-04-28 Phoseon Technology, Inc. Series wiring of highly reliable light sources
WO2005041632A2 (en) * 2003-10-31 2005-05-12 Phoseon Technology, Inc. Collection optics for led array with offset hemispherical or faceted surfaces
US7151284B2 (en) * 2003-11-10 2006-12-19 Shangjr Gwo Structures for light emitting devices with integrated multilayer mirrors
WO2005062905A2 (en) * 2003-12-24 2005-07-14 Gelcore Llc Laser lift-off of sapphire from a nitride flip-chip
EP1569263B1 (de) * 2004-02-27 2011-11-23 OSRAM Opto Semiconductors GmbH Verfahren zum Verbinden zweier Wafer
TWI312583B (en) 2004-03-18 2009-07-21 Phoseon Technology Inc Micro-reflectors on a substrate for high-density led array
WO2005089477A2 (en) 2004-03-18 2005-09-29 Phoseon Technology, Inc. Direct cooling of leds
US7808011B2 (en) * 2004-03-19 2010-10-05 Koninklijke Philips Electronics N.V. Semiconductor light emitting devices including in-plane light emitting layers
WO2005094390A2 (en) * 2004-03-30 2005-10-13 Phoseon Technology, Inc. Led array having array-based led detectors
US7285801B2 (en) * 2004-04-02 2007-10-23 Lumination, Llc LED with series-connected monolithically integrated mesas
ES2363435T3 (es) * 2004-04-12 2011-08-04 Phoseon Technology, Inc. Matriz led de alta densidad.
TWI302756B (en) * 2004-04-19 2008-11-01 Phoseon Technology Inc Imaging semiconductor structures using solid state illumination
US7825006B2 (en) * 2004-05-06 2010-11-02 Cree, Inc. Lift-off process for GaN films formed on SiC substrates and devices fabricated using the method
US7791061B2 (en) 2004-05-18 2010-09-07 Cree, Inc. External extraction light emitting diode based upon crystallographic faceted surfaces
US7332365B2 (en) * 2004-05-18 2008-02-19 Cree, Inc. Method for fabricating group-III nitride devices and devices fabricated using method
US7196835B2 (en) * 2004-06-01 2007-03-27 The Trustees Of Princeton University Aperiodic dielectric multilayer stack
US7344958B2 (en) * 2004-07-06 2008-03-18 The Regents Of The University Of California Method for wafer bonding (A1, In, Ga)N and Zn(S, Se) for optoelectronic applications
US6956246B1 (en) * 2004-06-03 2005-10-18 Lumileds Lighting U.S., Llc Resonant cavity III-nitride light emitting devices fabricated by growth substrate removal
US7148075B2 (en) * 2004-06-05 2006-12-12 Hui Peng Vertical semiconductor devices or chips and method of mass production of the same
US20050274970A1 (en) * 2004-06-14 2005-12-15 Lumileds Lighting U.S., Llc Light emitting device with transparent substrate having backside vias
CN101032034A (zh) * 2004-06-30 2007-09-05 克里公司 用于封装发光器件的芯片级方法和芯片级封装的发光器件
US7534633B2 (en) * 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
TWI266435B (en) * 2004-07-08 2006-11-11 Sharp Kk Nitride-based compound semiconductor light emitting device and fabricating method thereof
US20060054919A1 (en) * 2004-08-27 2006-03-16 Kyocera Corporation Light-emitting element, method for manufacturing the same and lighting equipment using the same
JP2006073619A (ja) * 2004-08-31 2006-03-16 Sharp Corp 窒化物系化合物半導体発光素子
JP4371956B2 (ja) * 2004-09-02 2009-11-25 シャープ株式会社 窒化物系化合物半導体発光素子およびその製造方法
US8174037B2 (en) 2004-09-22 2012-05-08 Cree, Inc. High efficiency group III nitride LED with lenticular surface
US7737459B2 (en) * 2004-09-22 2010-06-15 Cree, Inc. High output group III nitride light emitting diodes
US8513686B2 (en) * 2004-09-22 2013-08-20 Cree, Inc. High output small area group III nitride LEDs
US7259402B2 (en) * 2004-09-22 2007-08-21 Cree, Inc. High efficiency group III nitride-silicon carbide light emitting diode
US20060081858A1 (en) * 2004-10-14 2006-04-20 Chung-Hsiang Lin Light emitting device with omnidirectional reflectors
US7256483B2 (en) * 2004-10-28 2007-08-14 Philips Lumileds Lighting Company, Llc Package-integrated thin film LED
DE102004057802B4 (de) * 2004-11-30 2011-03-24 Osram Opto Semiconductors Gmbh Strahlungemittierendes Halbleiterbauelement mit Zwischenschicht
US8288942B2 (en) * 2004-12-28 2012-10-16 Cree, Inc. High efficacy white LED
EP1866954B1 (en) 2004-12-30 2016-04-20 Phoseon Technology, Inc. Methods and systems relating to light sources for use in industrial processes
TWI352437B (en) 2007-08-27 2011-11-11 Epistar Corp Optoelectronic semiconductor device
US7932111B2 (en) * 2005-02-23 2011-04-26 Cree, Inc. Substrate removal process for high light extraction LEDs
US7125734B2 (en) * 2005-03-09 2006-10-24 Gelcore, Llc Increased light extraction from a nitride LED
US8748923B2 (en) * 2005-03-14 2014-06-10 Philips Lumileds Lighting Company Llc Wavelength-converted semiconductor light emitting device
US7341878B2 (en) * 2005-03-14 2008-03-11 Philips Lumileds Lighting Company, Llc Wavelength-converted semiconductor light emitting device
US7804100B2 (en) * 2005-03-14 2010-09-28 Philips Lumileds Lighting Company, Llc Polarization-reversed III-nitride light emitting device
JP4767035B2 (ja) * 2005-04-12 2011-09-07 シャープ株式会社 窒化物系半導体発光素子およびその製造方法
US8901699B2 (en) 2005-05-11 2014-12-02 Cree, Inc. Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
TWI422044B (zh) * 2005-06-30 2014-01-01 Cree Inc 封裝發光裝置之晶片尺度方法及經晶片尺度封裝之發光裝置
EP1739213B1 (de) * 2005-07-01 2011-04-13 Freiberger Compound Materials GmbH Vorrichtung und Verfahren zum Tempern von III-V-Wafern sowie getemperte III-V-Halbleitereinkristallwafer
US7384808B2 (en) * 2005-07-12 2008-06-10 Visual Photonics Epitaxy Co., Ltd. Fabrication method of high-brightness light emitting diode having reflective layer
US8674375B2 (en) * 2005-07-21 2014-03-18 Cree, Inc. Roughened high refractive index layer/LED for high light extraction
US7638810B2 (en) * 2005-09-09 2009-12-29 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. GaN laser with refractory metal ELOG masks for intracavity contact
JP2009514209A (ja) * 2005-10-29 2009-04-02 サムスン エレクトロニクス カンパニー リミテッド 半導体装置及びその製造方法
CN100418241C (zh) * 2005-12-10 2008-09-10 金芃 垂直结构的半导体芯片或器件的批量生产方法
US7642527B2 (en) * 2005-12-30 2010-01-05 Phoseon Technology, Inc. Multi-attribute light effects for use in curing and other applications involving photoreactions and processing
US8441179B2 (en) 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
WO2007084640A2 (en) * 2006-01-20 2007-07-26 Cree Led Lighting Solutions, Inc. Shifting spectral content in solid state light emitters by spatially separating lumiphor films
DE102006061167A1 (de) * 2006-04-25 2007-12-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
WO2007139894A2 (en) 2006-05-26 2007-12-06 Cree Led Lighting Solutions, Inc. Solid state light emitting device and method of making same
KR20140116536A (ko) 2006-05-31 2014-10-02 크리, 인코포레이티드 조명 장치 및 조명 방법
US8698184B2 (en) 2011-01-21 2014-04-15 Cree, Inc. Light emitting diodes with low junction temperature and solid state backlight components including light emitting diodes with low junction temperature
US7910945B2 (en) * 2006-06-30 2011-03-22 Cree, Inc. Nickel tin bonding system with barrier layer for semiconductor wafers and devices
US8643195B2 (en) * 2006-06-30 2014-02-04 Cree, Inc. Nickel tin bonding system for semiconductor wafers and devices
US7915624B2 (en) * 2006-08-06 2011-03-29 Lightwave Photonics, Inc. III-nitride light-emitting devices with one or more resonance reflectors and reflective engineered growth templates for such devices, and methods
US8310143B2 (en) * 2006-08-23 2012-11-13 Cree, Inc. Lighting device and lighting method
JP2008091862A (ja) * 2006-09-08 2008-04-17 Sharp Corp 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
US20100224890A1 (en) * 2006-09-18 2010-09-09 Cree, Inc. Light emitting diode chip with electrical insulation element
JP4172515B2 (ja) * 2006-10-18 2008-10-29 ソニー株式会社 発光素子の製造方法
US7847306B2 (en) * 2006-10-23 2010-12-07 Hong Kong Applied Science and Technology Research Insitute Company, Ltd. Light emitting diode device, method of fabrication and use thereof
JP5171016B2 (ja) 2006-10-27 2013-03-27 キヤノン株式会社 半導体部材、半導体物品の製造方法、その製造方法を用いたledアレイ
US20080101062A1 (en) * 2006-10-27 2008-05-01 Hong Kong Applied Science and Technology Research Institute Company Limited Lighting device for projecting a beam of light
JP2008117824A (ja) * 2006-11-01 2008-05-22 Sharp Corp 窒化物系半導体素子の製造方法
CN101622493A (zh) * 2006-12-04 2010-01-06 科锐Led照明科技公司 照明装置和照明方法
EP2095011A1 (en) 2006-12-04 2009-09-02 Cree Led Lighting Solutions, Inc. Lighting assembly and lighting method
CN101652861B (zh) 2007-01-22 2013-01-23 科锐公司 容错发光体、包含容错发光体的系统以及制造容错发光体的方法
JP2010517274A (ja) 2007-01-22 2010-05-20 クリー レッド ライティング ソリューションズ、インコーポレイテッド 外部で相互接続された発光素子のアレイを用いる照明デバイスとその製造方法
US20090038678A1 (en) * 2007-07-03 2009-02-12 Microlink Devices, Inc. Thin film iii-v compound solar cell
EP2171502B1 (en) 2007-07-17 2016-09-14 Cree, Inc. Optical elements with internal optical features and methods of fabricating same
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US8617997B2 (en) * 2007-08-21 2013-12-31 Cree, Inc. Selective wet etching of gold-tin based solder
US11114594B2 (en) 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size
EP2203938A1 (en) * 2007-10-26 2010-07-07 Cree Led Lighting Solutions, Inc. Illumination device having one or more lumiphors, and methods of fabricating same
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
KR20090072980A (ko) * 2007-12-28 2009-07-02 서울옵토디바이스주식회사 발광 다이오드 및 그 제조방법
DE102008006988A1 (de) 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
CN102017156B (zh) 2008-02-25 2013-03-13 光波光电技术公司 电流注入/隧穿发光器件和方法
DE102008019268A1 (de) * 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
KR101428719B1 (ko) * 2008-05-22 2014-08-12 삼성전자 주식회사 발광 소자 및 발광 장치의 제조 방법, 상기 방법을이용하여 제조한 발광 소자 및 발광 장치
TWI495141B (zh) * 2008-08-01 2015-08-01 Epistar Corp 晶圓發光結構之形成方法及光源產生裝置
US7919780B2 (en) * 2008-08-05 2011-04-05 Dicon Fiberoptics, Inc. System for high efficiency solid-state light emissions and method of manufacture
JP5521478B2 (ja) * 2008-10-22 2014-06-11 日亜化学工業株式会社 窒化物半導体発光素子の製造方法及び窒化物半導体発光素子
JP5152520B2 (ja) * 2009-01-28 2013-02-27 国立大学法人北海道大学 半導体発光素子
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
JP5961557B2 (ja) 2010-01-27 2016-08-02 イェイル ユニヴァーシティ GaNデバイスのための導電率ベースの選択的エッチング及びその用途
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
EP2369696A1 (en) * 2010-03-23 2011-09-28 ETH Zurich Surface-Emitting semiconductor laser and method of manufacture thereof
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
KR101230619B1 (ko) 2010-05-18 2013-02-06 서울반도체 주식회사 파장변환층을 갖는 발광 다이오드 칩, 그것을 제조하는 방법 및 그것을 갖는 패키지
WO2011145794A1 (ko) 2010-05-18 2011-11-24 서울반도체 주식회사 파장변환층을 갖는 발광 다이오드 칩과 그 제조 방법, 및 그것을 포함하는 패키지 및 그 제조 방법
CN103003966B (zh) * 2010-05-18 2016-08-10 首尔半导体株式会社 具有波长变换层的发光二级管芯片及其制造方法,以及包括其的封装件及其制造方法
CA2802539A1 (en) 2010-06-18 2011-12-22 Glo Ab Nanowire led structure and method for manufacturing the same
CN102386200B (zh) 2010-08-27 2014-12-31 财团法人工业技术研究院 发光单元阵列与投影系统
KR101769075B1 (ko) * 2010-12-24 2017-08-18 서울바이오시스 주식회사 발광 다이오드 칩 및 그것을 제조하는 방법
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
US8350251B1 (en) 2011-09-26 2013-01-08 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
KR101272833B1 (ko) * 2012-02-03 2013-06-11 광주과학기술원 실리콘 dbr 구조가 집적된 광 소자 및 그 제조방법
WO2013138676A1 (en) 2012-03-14 2013-09-19 Robbie Jorgenson Materials, structures, and methods for optical and electrical iii-nitride semiconductor devices
US9583353B2 (en) * 2012-06-28 2017-02-28 Yale University Lateral electrochemical etching of III-nitride materials for microfabrication
US8735219B2 (en) 2012-08-30 2014-05-27 Ziptronix, Inc. Heterogeneous annealing method and device
US9052535B1 (en) * 2012-12-14 2015-06-09 Sandia Corporation Electro-refractive photonic device
US8896008B2 (en) 2013-04-23 2014-11-25 Cree, Inc. Light emitting diodes having group III nitride surface features defined by a mask and crystal planes
DE102013105035A1 (de) * 2013-05-16 2014-11-20 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines optoelektronischen Halbleiterchips
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
US10141721B2 (en) 2014-06-17 2018-11-27 Sony Corporation Light-emitting element and manufacturing method thereof
WO2016054232A1 (en) 2014-09-30 2016-04-07 Yale University A METHOD FOR GaN VERTICAL MICROCAVITY SURFACE EMITTING LASER (VCSEL)
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
WO2016187421A1 (en) 2015-05-19 2016-11-24 Yale University A method and device concerning iii-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
DE102015108876B3 (de) * 2015-06-04 2016-03-03 Otto-Von-Guericke-Universität Magdeburg, Ttz Patentwesen Lichtemittierendes Gruppe-III-Nitrid basiertes Bauelement
US10263144B2 (en) 2015-10-16 2019-04-16 Robbie J. Jorgenson System and method for light-emitting devices on lattice-matched metal substrates
JP6575299B2 (ja) * 2015-10-27 2019-09-18 セイコーエプソン株式会社 原子発振器
US10644114B1 (en) * 2015-11-18 2020-05-05 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Reticulated shallow etch mesa isolation
EP3219832B1 (en) * 2016-03-16 2020-06-24 Thorlabs Inc. Method for manufacturing direct-bonded optical coatings
CA3132525A1 (en) 2016-05-26 2017-11-30 Robbie Jorgenson Group iiia nitride growth method and system
WO2017205707A1 (en) * 2016-05-27 2017-11-30 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Resonant-cavity infrared photodetectors with fully-depleted absorbers
US10297699B2 (en) 2016-05-27 2019-05-21 The United States Of America, As Represented By The Secretary Of The Navy In-plane resonant-cavity infrared photodetectors with fully-depleted absorbers
DE102016113002B4 (de) 2016-07-14 2022-09-29 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Bauelemente mit verbesserter Effizienz und Verfahren zur Herstellung von Bauelementen
DE102017122325A1 (de) 2017-09-26 2019-03-28 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement und Verfahren zur Herstellung von strahlungsemittierenden Halbleiterbauelementen
CN108550666A (zh) * 2018-05-02 2018-09-18 天津三安光电有限公司 倒装四元系发光二极管外延结构、倒装四元系发光二极管及其生长方法
WO2020010056A1 (en) 2018-07-03 2020-01-09 Invensas Bonding Technologies, Inc. Techniques for joining dissimilar materials in microelectronics
US11365492B2 (en) 2018-09-11 2022-06-21 Thorlabs, Inc. Substrate-transferred stacked optical coatings
JP7237536B2 (ja) * 2018-11-12 2023-03-13 株式会社ジャパンディスプレイ 表示装置
TW202147636A (zh) * 2020-01-25 2021-12-16 中國大陸商上海顯耀顯示科技有限公司 具有高光萃取效率之微型發光二極體
CN112670391A (zh) * 2020-12-31 2021-04-16 深圳第三代半导体研究院 一种发光二极管及其制造方法
CN115085006B (zh) * 2022-08-22 2023-02-28 福建慧芯激光科技有限公司 一种两端带有组合反射镜的长波长vcsel及其制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217564A (en) 1980-04-10 1993-06-08 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5376580A (en) 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
JPH06342958A (ja) * 1993-06-02 1994-12-13 Nippon Telegr & Teleph Corp <Ntt> 面発光半導体レーザ
JP3194822B2 (ja) * 1993-09-14 2001-08-06 松下電器産業株式会社 複合基板材料の製造方法
US5846844A (en) 1993-11-29 1998-12-08 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor substrates using ZnO release layers
JPH07202265A (ja) 1993-12-27 1995-08-04 Toyoda Gosei Co Ltd Iii族窒化物半導体の製造方法
US5679152A (en) 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
JP3974667B2 (ja) * 1994-08-22 2007-09-12 ローム株式会社 半導体発光素子の製法
IT1268123B1 (it) * 1994-10-13 1997-02-20 Sgs Thomson Microelectronics Fetta di materiale semiconduttore per la fabbricazione di dispositivi integrati e procedimento per la sua fabbricazione.
US5804834A (en) 1994-10-28 1998-09-08 Mitsubishi Chemical Corporation Semiconductor device having contact resistance reducing layer
US5641381A (en) 1995-03-27 1997-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Preferentially etched epitaxial liftoff of InP material
US5724376A (en) 1995-11-30 1998-03-03 Hewlett-Packard Company Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
JP3409958B2 (ja) * 1995-12-15 2003-05-26 株式会社東芝 半導体発光素子
EP0784363B1 (en) * 1995-12-26 2000-10-11 Nippon Telegraph and Telephone Corporation Vertical-cavity surface-emitting laser and method for manufacturing the same
JP3440977B2 (ja) * 1995-12-26 2003-08-25 日本電信電話株式会社 面発光半導体レーザおよびその製造方法
FR2753577B1 (fr) * 1996-09-13 1999-01-08 Alsthom Cge Alcatel Procede de fabrication d'un composant optoelectronique a semiconducteur et composant et matrice de composants fabriques selon ce procede
US5835521A (en) 1997-02-10 1998-11-10 Motorola, Inc. Long wavelength light emitting vertical cavity surface emitting laser and method of fabrication
JPH10233558A (ja) * 1997-02-19 1998-09-02 Canon Inc ダイヤモンド層を含む多層膜構造、それを有する光デバイス、およびその作製方法
JP3220977B2 (ja) * 1997-05-07 2001-10-22 日亜化学工業株式会社 窒化物半導体レーザ素子及び窒化物半導体レーザ素子の製造方法。
JP3148154B2 (ja) * 1997-07-08 2001-03-19 日本電気株式会社 面発光レーザの製造方法及び該方法により製造された面発光レーザ
JPH11154774A (ja) 1997-08-05 1999-06-08 Canon Inc 面発光半導体デバイスの製造方法、この方法によって製造された面発光半導体デバイス及びこのデバイスを用いた表示装置
GB2333895B (en) 1998-01-31 2003-02-26 Mitel Semiconductor Ab Pre-fusion oxidized and wafer-bonded vertical cavity laser
US6046465A (en) * 1998-04-17 2000-04-04 Hewlett-Packard Company Buried reflectors for light emitters in epitaxial material and method for producing same
US6133589A (en) * 1999-06-08 2000-10-17 Lumileds Lighting, U.S., Llc AlGaInN-based LED having thick epitaxial layer for improved light extraction

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361355C (zh) * 2002-11-19 2008-01-09 Jds尤尼弗思公司 低压多结垂直腔表面发射激光器
CN100377456C (zh) * 2006-05-17 2008-03-26 中微光电子(潍坊)有限公司 垂直腔面发射半导体激光二极管的外延结构
CN101874308B (zh) * 2007-11-26 2012-09-05 Lg伊诺特有限公司 半导体发光器件
CN102088163A (zh) * 2009-12-07 2011-06-08 S.O.I.Tec绝缘体上硅技术公司 具有InGaN层的半导体器件
CN102593291A (zh) * 2011-01-07 2012-07-18 山东华光光电子有限公司 一种氮化物分布式布拉格反射镜及制备方法与应用
CN103117349A (zh) * 2011-11-17 2013-05-22 大连美明外延片科技有限公司 一种高亮度AlGaInP发光二极管及其制造方法
CN102820398A (zh) * 2012-08-31 2012-12-12 厦门大学 分布式布拉格反射与小面积金属接触复合三维电极
CN103227265B (zh) * 2013-04-12 2015-08-19 厦门大学 一种氮化镓基垂直腔面发射激光器的制作方法
CN103227265A (zh) * 2013-04-12 2013-07-31 厦门大学 用于制作氮化镓基发光器件的非平面键合方法
CN105206716A (zh) * 2015-09-18 2015-12-30 华灿光电(苏州)有限公司 一种垂直结构发光二极管的制作方法
CN105609602A (zh) * 2015-12-29 2016-05-25 中国科学院半导体研究所 可见光通信用倒装rcled及其制备方法
CN105609602B (zh) * 2015-12-29 2017-10-31 中国科学院半导体研究所 可见光通信用倒装rcled及其制备方法
CN110768106A (zh) * 2018-07-26 2020-02-07 山东华光光电子股份有限公司 一种激光二极管制备方法
CN109830596A (zh) * 2018-12-14 2019-05-31 苏州矩阵光电有限公司 一种半导体器件及其制备方法
CN112436380A (zh) * 2020-11-19 2021-03-02 清华大学 基于范德华外延的垂直腔面发射激光器及其制作方法
WO2022109990A1 (zh) * 2020-11-27 2022-06-02 苏州晶湛半导体有限公司 半导体发光器件及其制备方法

Also Published As

Publication number Publication date
DE19953588A1 (de) 2000-08-17
GB2346480A (en) 2000-08-09
TW447183B (en) 2001-07-21
GB0002759D0 (en) 2000-03-29
DE19953588C2 (de) 2003-08-14
KR20000076604A (ko) 2000-12-26
US6420199B1 (en) 2002-07-16
US6320206B1 (en) 2001-11-20
US20020030198A1 (en) 2002-03-14
KR100641925B1 (ko) 2006-11-02
JP2000228563A (ja) 2000-08-15
JP4834210B2 (ja) 2011-12-14

Similar Documents

Publication Publication Date Title
CN1267109A (zh) 晶片键合的铝镓铟氮结构
JP4975204B2 (ja) AlxGayInzN構造の組立方法
US6177359B1 (en) Method for detaching an epitaxial layer from one substrate and transferring it to another substrate
JP4860024B2 (ja) InXAlYGaZN発光素子及びその製造方法
TWI426674B (zh) 光電組件及光電組件之製造方法
KR20050009271A (ko) 멀티 빔형 반도체 레이저, 반도체 발광 소자 및 반도체 장치
US7008810B2 (en) Method for fabricating at least one mesa or ridge structure or at least one electrically pumped region in a layer or layer sequence
JPH10321910A (ja) 半導体発光素子
US6797532B2 (en) Semiconductor device and method for manufacturing the same
JPH10270802A (ja) 窒化物系iii−v族化合物半導体装置及びその製造方法
CN105789338B (zh) 光电子半导体本体和用于制造光电子半导体本体的方法
KR20000035669A (ko) 반도체 레이저, 반도체 장치 및 이들의 제조 방법
JPH11204882A (ja) 窒化物半導体レーザ素子及びその製造方法
KR20050042715A (ko) 전극 구조체, 이를 구비하는 반도체 발광 소자 및 그제조방법
WO2001054173A1 (en) A method for manufacturing an opto-electronic quantum well component, and an opto-electronic quantum well component

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication