CN1284473A - 用于制氢的压力回转吸附方法 - Google Patents

用于制氢的压力回转吸附方法 Download PDF

Info

Publication number
CN1284473A
CN1284473A CN00122638A CN00122638A CN1284473A CN 1284473 A CN1284473 A CN 1284473A CN 00122638 A CN00122638 A CN 00122638A CN 00122638 A CN00122638 A CN 00122638A CN 1284473 A CN1284473 A CN 1284473A
Authority
CN
China
Prior art keywords
zeolite
bed
hydrogen
adsorbent
psa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00122638A
Other languages
English (en)
Other versions
CN100360394C (zh
Inventor
M·S·A·巴克斯
M·W·阿克利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23473711&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1284473(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1284473A publication Critical patent/CN1284473A/zh
Application granted granted Critical
Publication of CN100360394C publication Critical patent/CN100360394C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40013Pressurization
    • B01D2259/40015Pressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/4002Production
    • B01D2259/40024Production with three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • B01D2259/4003Depressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • B01D2259/40041Equalization with more than three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40075More than ten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4146Contiguous multilayered adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • Y02P20/156Methane [CH4]

Abstract

本发明提供一种压力回转吸附方法,它用于纯化含60~90%。(摩尔)氢和杂质,如CO2、CH4、N2和CO的合成气物流。本发明的PSA方法还提供一种从进料气体物流中吸附基本上全部氮和其它杂质的方法;其中进料物流在超大气压下通过多个吸附剂床,每个吸附剂床至少含CaX,LiA、Lix或含钙的混合阳离子沸石,其SiO2/Al2 O3比为2.0-2.5。这种方法包括顺序加压、减压,吹洗和再加压含产品氢的吸附剂床,以回收氢的纯度为99.9%以上的产品氢。

Description

用于制氢的压力回转吸附方法
本发明涉及一种纯化不纯气流的压力回转吸附方法(PSA),该气流中氢的摩尔含量大于50%,更具体而言,涉及从各种含氢进料混合物,诸如合成气制备高纯氢气的方法。这种改进型方法与先前已知的用于制氢的PSA方法相比,氢的回收率较高,吸附剂装料量较低。
化学工艺工业对高纯(>99.9%)氢的需求日益增长,例如钢的热处理、硅的制造、脂肪和油脂的氢化、玻璃的制造,氢化裂解,甲醇的制造,羰基合成醇类的制造和异构化过程。这种增长的需求要求开发高效分离方法从各种进料混合物制备氢。为了获得高效的PSA分离方法,PSA系统的基建投资和运行费用两者都应降低。
降低PSA系统费用的一条途径是降低PSA过程的吸附剂装料量和吸附床数。此外,进一步的在PSA过程中采用先进的循环和吸附剂也可进一步改进。但是,1-12工序的进料气体含多种杂质,例如CO2(20%-25%)以及少量H2O(<0.5%)、CH4(<3%)、CO(<1%)和N2(<1%)。这种组成变化很宽的各种各样的被吸附物加上对氢的高纯(>99.9%)要求对获得一种高效的PSA过程在每个床层吸附剂的有效选择、结构和量方面均构成巨大的挑战。
存在多种已知的制氢方法,例如,附图1所示的天然气或石脑油的蒸汽重整,其中进料,例如天然气物流11经压缩并送入纯化装置12以去除硫的化合物。经脱硫的进料物流然后与过热蒸汽混合并送入重整器13以产生初级H2和CO。重整器的流出物流送入热回收装置14,然后送入变换炉15以得附加的H2。来自变换炉的流出物在装置16中冷却并回收。流出物即合成气流17的组成约为74.03%的H2、22.54%的CO2、0.36%的CO、2.16%的CH4和0.91%的N2(以干气计),然后进入PSA纯化系统18,以制备高纯氢产品物流19。
用于纯化氢的有代表性的现有PSA方法包括下列专利:(1)Wagner,美国专利No.3,430,418,(2)Batta,美国专利No.3,564,816,(3)Sircar等人,美国专利No.4,077,779,(4)Fudever等人,美国专利No.4,553,981,(5)Fong等人,美国专利No.5,152,975和(6)Kapoor等人,美国专利No.5,538,706。
用于氢的PSA过程中的吸附器依据串联区内要被去除的具体杂质从概念上分成多个区。例如,Wagner(美国专利No.3,430,418)组合使用两种类型的吸附剂,例如以活性碳去除H2O和CO2,以及以钙沸石A去除CO和CH4(参见例1)。Wagner的专利叙述了一种八工序的纯化氢的PSA循环。过程中至少采用四个床;其后为床到床的均衡工序,每个床在逆流排空之前经同流减压以回收空隙空间气体用于吹洗另一床。
Batta(美国专利No.3,564,816)叙述了一种十二工序的PSA循环,采用了至少四个吸附剂床和两个压力平衡工序以分离天然气蒸汽重整产生的含杂质H2O、CO2、CH4和CO的含氢气体混合物。在Batta流程中,同流减压工序接着第一床到床的均衡工序以回收空隙空间气体用于吹洗另一床。第二床到床的均衡工序在PSA循环逆流排气工序之前使用。
Sircar(美国专利No.4,171,206)公开了一种PSA流程,其中粗氢物流(诸如碳氢重整车间变换炉的气体流出物)流经活性碳的第一床(对去除CO2有效),然后再经过5A沸石的第二床(对去除稀释杂质如CH4和/或CO有效),以得到高纯(>99.9%)氢。
Golden等人,(美国专利No.4,957,514)公开了利用钡-交换的X型沸石去除CO、CH4和N2杂质的氢纯化流程。按照Golden方法,优选的BaX沸石是一种NaX沸石的60-100%钠阳离子被钡阳离子取代的沸石。Golden比较了氢纯化过程中的BaX(96%Ba、4%Na),CaX(98%Ca、2%Na),Ca/SrX(50%Ca、50%Sr)和市售5A沸石的吸附剂需求量。对于给定的进料流量和H2纯度。在采用BaX的情况下,氢纯化过程所需沸石量最小。Golden对用于CO或CH4的吸附剂排列如下:BaX>Ba/SrX>5A>SrX>Ca/SrX>CaX。具体而言,对于除去CO和CH4杂质,CaX排到最后。
Scharpf等人,(美国专利No.5,294,247)公开了从来自炼油厂的含<60%氢的烯尾气中回收氢的真空PSA流程。该专利采用六个吸附剂床,每床含一层活性碳、一层13X沸石、一层5A沸石和一层CaA沸石或钙交换X沸石。这种四层排列被认为能有效去除进料浓度大(>1%)的CO和CO2
最近,Bomard等人在国际专利申请WO 97/45363中公开了从含CO以及其它诸如CO2和烃类杂质的气体混合物中分离氢的方法。在Bomard的申请中,进料混合物通入第一选择吸附剂(例如活性碳)以去除CO2和烃类。然后与第二吸附剂即含至少80%锂交换的八面沸石接触,以去除主要杂质CO,得到高纯氢。此外,第三吸附剂(5A沸石)可置于第一和第二吸附剂之间,以去除也存在于进料混合物中的N2
同样已知利用PSA流程从空气中选择吸附N2,制备富氧气体的流程。Berlin,(美国专利No.3,313,091)叙述了锶取代X型沸石在这种流程中的应用,并且规定Ca2+,Sr2+和Ag+是优选交换的阳离子,而且Sr2+是最有希望的。在A型沸石的情况下,Ca2+,Mg2+和Ag+是优选离子。
Coe等人,(美国专利No.4,481,018),公开了包括N2和O2分离PSA空分流程,该流程采用钙-交换形式的X沸石,并表明随钙含量的增加PSA流程性能提高。但是,Chao(美国专利Nos,5,698,013和5,454,857)指出了钙交换形式的X沸石在空分中低于最大钙含量的峰值性能。具体而言,峰值性能出现在钙交换程度为60-89当量百分数处,以及SiO2/Al2O3摩尔比在2.0-2.4的范围内。
H2PSA流程的操作条件明显区别于从空气制氧的PSA流程。在VPSA空分中的典型吸附压力低于2.5bar,而在H2PSA中的吸附压力为5-20bar。
这两个流程的进料物流中N2的重有明显的差别,例如,N2在空气中的份额约78%;而在氢的纯中,N2在进料物流中的典型份额低于1-3%(摩尔)。因此,上述参考文献中所公开的用于空分的N2选择吸附剂应在不同于H2PSA流程纯化功能所要求的等温线的N2分压区内操作。此外,N2在O2VPSA和H2PSA流程中的差分负荷对给定的N2选择吸附剂(例如沸石)完全不同。设计H2PSA流程的其它复杂性来自混合物中每个被吸附物的竞争吸附和扩散速率。在选择改进型吸附剂和设计H2PSA流程时,对上述的全部问题应作适当的考虑。
迄今H2PSA流程所用的典型吸附剂为5A沸石,这种沸石由钙(约75%)与4A沸石中存在的钠离子进行碱交换制取。
本发明的目的之一在于提供一种从含50%(摩尔)以上氢的不纯气流中制氢的改进型PSA方法,这种改进表现在氢的收率提高、吸附剂减少和基建和运行费用降低。本发明的其它目的和优点将用下面的叙述加上附图予以表述。
本发明提出了一种改进型PSA方法,以纯化含氢大于50%(摩尔)的气流,该方法包括使气流在超大气压下通过含CaX、LiA或LiX型沸石吸附剂的吸附床,吸附这股物流中几乎全部的N2,该吸附剂中SiO2/Al2O3摩尔比在2.0-2.5范围内,并从吸附剂床回收纯化的氢作为产品。用提供辅助吸附剂层在CaX、LiA或LiX沸石吸附剂的上游去除其它杂质,诸如,H2O、CO2、CH4、和CO,从而回收高纯(≥99.9%)氢产品。
根据本发明的另一特征,几乎全部的CO2首先被去除,即留下小于0.15%(摩尔),优选小于0.10%(摩尔)CO2接着通过沸石层,使残余CO2同N2一道被去除。按照这种去除杂质的对策所设计的吸附剂床与现有的制氢PSA方法相比可增加H2的回收和减少除N2所需沸石的量。
本发明的方法优先采用的吸附剂为CaX沸石,最有前景的为CaX(2.0),这是一种八面沸石型沸石,其中至少90%以钙交换,SiO2/Al2O3的摩尔比为2.0。CaX(2.0)与其它N2-选择吸附剂相比,在给定的P/F(吹洗:进料)比下单位重量的吸附剂能处理更多的进料气体。因此,采用CaX(2.0)可使除N2所需的吸附剂量明显降低,即减少床尺寸因子。此外,床尺寸因子的减小可降低吸附床再生过程中的H2损失。这反过来又会使氢的回收高于其它N2选择吸附剂。
附图中:
图1表示以天然气蒸汽重整制氢的现有技术流程;
图2表示300°K下CaX(2.0)和其它选择沸石吸附剂对N2的吸附等温线的比较;
图3表示CaX(2.0)和其它吸附剂的差分N2荷负的比较;
图4表示300°K下CaX(2.0)和其它N2选择吸附剂的CO2吸附等温线的比较;
图5表示本发明的PSA吸附床;
图6表示实现本发明PSA方法的四床系统;
图7表示本发明的优选实施方案中一个完整的PSA循环过程的代表性床压分布图;
图8表示所述实施方案中一个吸附床在高压吸附工序终结时的代表性气体组分的摩尔分数;
图9表示图5所示系统的N2选择层分别采用CaX(2.0)、5A、LiX和VSA6等沸石吸附剂的计算机模拟PSA流程性能的比较;
图10表示例证的四床PSA方法所需的CaX(2.0)、5A、LiX和VSA6沸石量的比较;以及
图11表示CaX(2.0)、5A、LiX和VSA6沸石上N2的差分负荷比较。
如上所述,本发明的PSA方法提供从含50%(摩尔)以上H2,优选含60-90%(摩尔)氢的气体物流中回收高纯(大于99.9%)氢的改进回收。该方法特别适用于从图1所示的重整过程中回收的进料物流中产生的合成气的纯化。这种物流可含60-90%(摩尔)氢及包括CO2、H2O、CH4、N2和CO等杂质。
人们希望使该物流在超大气压下通过多个吸附剂床实现纯化,每个床至少包括一个吸附剂层,以吸附气流中几乎全部的N2,该吸附剂层含CaX、LiA或LiX沸石,其SiO2/Al2O3比例在2.0-2.5范围内。过程包括顺序有产品氢的吸附剂床的加压、减压、吹洗和再加压等工序,预期制取的氢产品的纯度在99.9%以上,呈未吸附的流出物从床流出。
如上所示,本发明实施中所采用的优选CaX沸石吸附剂是CaX(2.0),曾经发现,这种吸附剂与其它N2-选择吸附剂相比具有优良的氮吸附能力,其它有效的Ca-交换沸石可由天然存在的结晶沸石分子筛如菱沸石、毛沸石、斜发沸石和八面沸石制备。另外,有效的CaX沸石包括混合阳离子(例如Ca2+和Na+)沸石,诸如由Des Plaines的UOP,IL开发的VSA-6,其中含74%的Ca2+,SiO2/Al2O3比例为2.3。一般说来,“混合阳离子”系指至少含两种不同阳离子的吸附剂。这种吸附剂还包括例如LiSrXCaLiXCaNaX等等。
SiO2/Al2O3比例在2.0-2.5范围内的LiA和LiX沸石对上面所述的过程是有效的。其它一些显示改进性能的吸附剂包括混合的锂/碱土金属A型和X型沸石,其SiO2/Al2O3摩尔比在2.0-2.5范围内,诸如CaLiX(2.3),其钙含量为15-30%(参见Chao等人,美国专利Nos 5,413,625;5,174,979;5,698,013;5,454,857和4,859,217)。先前专利所公开的沸石引为本文参考。
CaX(2.0)作为氮吸附剂的优越性可用图2和图3说明。图2比较了300°K下CaX(2.0)和其它沸石的氮吸附等温线,图3比较了几种吸附剂上的N2差分负荷。图3中对各吸附剂的差分负荷是作为循环中吸附和脱附工序终点之间N2在吸附剂上负荷差来测定的。计算中所采用的吸附和脱附工序终点的压力、温度和N2成分分别为(11.7bar,306°K,YN2=0.008)以及(1.36bar,306°K,YN2=0.025)。采用纯组分等温线数据加上多组分等温线模型以确定上述条件下的负荷。
图2表明,CaX(2.0)在较大的吸附分压范围内表现出的N2吸附比5A和VSA6大得多。从图3还可看出,CaX(2.0)、LiX(2.3)、VAS6、LiX(2.0)、CaLiX(2.3)和CaX(2.0)/13X混合物与13X、5A、NaY、活性氧化铝(A 201)和活性碳相比表现出优异的差分N2负荷。
图4说明,300°K下不同沸石吸附CO2量的比较。在CO2分压超过大约2大气压时,CO2强烈地吸附在CaX(2.0)上,在这个方面只有LiX超过CaX。在大量CO2吸附在这些N2选择沸石上的情况下,用压力回转吸附再生极为困难,即在H2PSA过程的典型操作条件下极为困难。在CO2同N2共吸附时,对N2和其它痕量杂质的吸附能力降低,其结果将损害PSA的过程性能和氢的纯度。因此,如上所述,希望在进料气流通过CaX、LiA或LiX沸石层之前从其中吸附其它杂质,例如CO2、H2O、CH4和CO。具体而言,重要的是要在气体物流到达沸石之前将气流中的CO2含量降到O.15%(摩尔)以下,优选降至0.05-0.10%(摩尔)以下。
在本发明的实施中,优选具有多层的一个或多个吸附剂床以去除上述杂质。一种优选的层结构示于图5,它表示实施方案的吸附剂床20。床20包括第一氧化铝层21以从进料气流中去除H2O,该气流即是图1所示重整技术的合成气流17。接着层21的是活性碳层22以从进料气流中去除CO2,使其浓度降至约0.15%(摩尔)。最后CaX、LiA或LiX吸附剂层23置于床的产品端以去除N2,由此产生预期的高纯H2产品物流19。本领域专业技术人员理解,其它吸附剂可以取代21层的氧化铝以吸附H2O,例如沸石、硅胶,其它CO2选择吸附剂可取代床20的22层的活性碳。
本发明的H2PSA方法适于在现有技术所采用的条件下操作,例如美国专利No.3,564,816所述的条件,其过程参数引为本文参考。这样,N2在CaX、LiA或LiX吸附剂层上的吸附可在250-350°K的温度和5-20bar的总压下进行。吸附剂层然后可以减压,并在250-350°K温度和0.50-1.70bars总压下进行吹洗。采用CaX、LiA或LiX吸附剂的H2PSA系统的具体温度、压力和其它操作条件,根据本发明将取决于具体PSA系统的设计。操作条件的选择同样取决于床的其它层所选的吸附剂、料气组成和流量以及与PSA单元示于图1的其它单元操作所组成的整体相关的其它参数。
实施例
本发明将用下面的计算机模拟实施方案作更全面的描述,实施方案采用图6所示的四床系统,每床采用按下列顺序排列的氧化铝、活性碳和N2选择吸附剂。床压和轴向气相浓度分布分别示于图7和图8。阀门开关逻辑、时间间隔、PSA循环的工序顺序列于下面的表1。
例证性循环的12个工序的顺序如下:
工序1(AD1):床1(B1)处于压为11.72bar的第一吸附工序(AD1),同时床2(B2)正在进行逆流排空(BD),床3(B3)正在进行第一均衡下降工序(EQ1DN),床4(B4)正在进行第二压力均衡升高工序(EQ2UP)。
工序2(AD2):B1处于第二吸附工序(AD2),同时向床4供应产品气体,床4正在进行第一产品加压工序(PP1)。同一时间内,床2、3和4正在分别进行吹洗、同流减压和第一产品加压。
工序3(AD3):床1处于第3吸附工序(AD3),同时向床4供应产品气体,床4正在进行第二产品加压工序(PP2)。在同一时间周期内,床2、3和4正在分别进行第一均衡上升工序(EQ1UP),第二均衡下降工序(EQ2DN)和第二产品加压工序(PP2)。
工序4(EQ1DN):床1正在进行第一均衡下降工序(EQ1DN),同时床2从床1接收气体,并正在进行第二均衡上升工序(EQ2UP)。床3和4这时正在分别进行排空(BD)和第一吸附工序(AD1)。
工序5(PPG):床1正在进行同流减压工序,以为床2提供吹洗气(PPG),同时床2和4正在分别进行第一产品加压(PP1)和第二吸附工序(AD2)。
工序6(EQ2DN):床1以向床3送去低压均衡气而进行第二均衡下降工序(EQ2DN),床3正在进行第一平衡上升工序(EQ1UP)。床2和4正在分别进行第二产品加压(PP2)第三吸附工序。
工序7(BD):床1和2分别进行逆流排空(BD)和第一吸附工序(AD1)。在这段时间内床3和4正在分别进行床到床的均衡,即床3和4正在分别进行第二均衡上升(EQ2UP)和第一均衡下降(EQ1DN)工序。
工序8(PG):床1这时正在接收从床4来的吹洗气体(PG),而床2和3正在分别进行第二吸附工序和第一产品加压工序(PP1)。
工序9(EQ1UP):床1以从床4接收低压均衡气体而正在进行第一平衡上升工序(EQ1UP),床4则正在进行第二均衡下降工序(EQ2DN)。在同一时间内床2和3正在分别进行第三吸附工序(AD3)和第二产品加压工序(PP2)。
工序10(EQ2UP):床1以接收来自床2的高压均衡气正在进行第二均衡上升工序(EQ2UP),而床2则正在进行第一均衡下降工序(EQ1DN)。在同一时间内、床3和4正在分别进行第一吸附工序(AD1)和逆流排空工序(BD)。
工序11(PP1):床1正在接收来自床3的第一产品加压(PP1)气体,而床3同时处于第二吸附工序(AD2),同时床2正在进行同流减压工序,以向床4提供吹洗气体(PPG)。
工序12(PP2):床1正在接收从床来自的第二产品加压(PP2)气体,床3同时处于第三吸附工序(AD3)。在同一时间内,床2以将低压均衡气体送至床4进行第二均衡下降工序(EQ2DN),而床4正在进行第一均衡上升工序(EQ1UP)。
上述12工序的PSA过程综合列于下表1。具体而言,表1综合了示于图6的四床PSA系统的一个完整循环内的阀门顺序。表1指出,四床PSA过程平行操作,在整个循环的1/4时间内,一个床处于吸附工序,同时其它床或者正在进行压力均衡、吹洗、排空或产品加压。表1:四床H2PSA阀门开关(0=开,C=关)
工序  1  2  3  4  5  6  7  8  9  10  11  12
时间(Sec)  40  85  25  40  85  25  40  85  25  40  85  25
床1(BD1I)  AD1  AD2  AD3  EQ1DN  PPG  EQ2  BD  PG  EQ1UP  EQ2UP  PP1  PP2
床2(BD2)  BD  PG  EQ1UP  EQ2UP  PPI  PP2  AD1  AD2  AD3  EQ1DN  PPG  EQ2DN
床3(BB3)  EQ1DN  PPG  EQ2DN  BD  PG  EQ1UP  EQ2UP  PP1  PP2  ADI  AD2  AD3
床4  EQ2UP  PP1  PP2  AD1  AD2  AD3  EQ1DN  PPG  DN  BD  PG  EQ1UP
阀门No.
31  O  O  O  C  C  C  C  C  C  C  C  C
32  C  C  C  C  C  C  O  O  O  C  C  C
33  C  C  C  C  C  C  C  C  C  O  O  O
34  C  C  C  O  O  O  C  C  C  C  C  C
35  O  O  C  O  O  C  O  O  C  O  O  C
36  C  C  C  C  C  C  O  O  C  C  C  C
37  O  O  C  C  C  C  C  C  C  C  C  C
38  C  C  C  O  O  C  C  C  C  C  C  C
39  C  C  C  C  C  C  C  C  C  O  O  C
40  C  O  O  C  O  O  C  O  O  C  O  O
41  O  O  O  C  C  C  C  C  C  C  C  C
42  C  C  C  C  C  C  O  O  O  C  C  C
43  C  C  C  C  C  C  C  C  C  O  O  O
44  C  C  C  O  O  O  C  C  C  C  C  C
45  C  C  C  C  O  O  C  O  O  C  C  C
46  C  O  O  C  C  C  C  C  C  C  O  O
47  C  O  O  C  O  O  C  C  C  C  C  C
 48  C  C  C  C  C  C  C  O  O  C  O  O
 49  C  C  C  O  C  C  C  C  C  O  O  O
 50  C  C  C  O  O  O  C  C  C  O  C  C
 51  O  C  C  C  C  C  O  O  O  C  C  C
 52  O  O  O  C  C  C  O  C  C  C  C  C
应该指出,12工序的PSA循环只是示例性的,其目的在于展示,在示于图6的吸附剂床的上层吸附剂用CaX取代5A提高了PSA过程性能。其它根据本发明而不偏离其范围的PSA循环同样可用于提高PSA过程的性能。
一种基于参加过程的主要物料和能量平衡的详细吸附模型已用于模拟上述的PSA过程。一种可忽略轴向弥散的活塞式流动被用于全部PSA模拟中。模型的另一些特点包括:床压降、多组分等温度(用负荷比率关联确定)、绝热能量平衡和吸附速率(用线性推动力确定)。可以看出,模拟结果与中试规模试验所得过程性能结果符合甚好。
下列实例1-4所示结果系PSA模拟所得结果,模拟采用下列进料混合物(以干气计):74.03%H2、22.54%CO2、0.36%CO、2.16%CH4和0.91%N2。同时,总床尺寸因子为1-12工序每天每吨生成的吸附剂总量。
实例1-CaX(2.0)吸附剂的应用
下面的表2列出了一种流程的操作条件和PSA性能,该流程采用CaX(2.0)吸附剂作为图6所示的系统中吸附剂床B1-B4的每个床的顶层。过程进行的方式按表1和图7,图8所示。表2-5中的符号表示:TPD=吨/日氢;s=时间,单位为秒;吨为2000磅。表2-实例1
循环时间s 600
床第一层的吸附剂 氧化铝
氧化铝量(1b/TPD H2) 1.0385×103
床第二层的吸附剂: 活性碳
活性碳量(1b/TPD H2) 4.9170×103
床第三层的吸附剂: CaX(2.0)沸石
CaX(2.0)沸石量(1b/TPD H2) 1.5102×103
高压:kPa 1.171×103
低压:kPa 1.327×102
进料通量:kmol/sm2 1.392×10-2
氢的纯度: 99.993%
氢回收率: 81.6%
总床尺寸因子(1b/TPD H2): 7.4657×103
温度:K 311
实例2-LiX吸附剂的应用
下面的表3列出了一种流程的操作条件和PSA性能,该流程采用liX沸石吸附剂作为吸附剂层B1-B4各床的顶层,过程的进行方式与实例1相同。表3-实例2,LiX沸石
循环时间s 600
床第一层的吸附剂 氧化铝
氧化铝量(1b/TPD H2): 1.0645×103
床第二层的吸附剂: 活性碳
活性碳量(1b/TPD H2): 5.0400×103
床第三层的吸附剂: LiX沸石
LiX沸石量(1b/TPD H2) 2.5801×103
高压:kPa 1.171×103
低压:kPa 1.327×102
进料通量:kmol/sm2 1.392×10-2
氢的纯度: 99.993%
氢回收率: 79.61%
总床尺寸因子(1b/TPD H2): 8.6845×103
温度:K 311
实例3-VSA6吸附剂的应用
下面的表4列出了一种流程的操作条件和PSA性能,该流程采用VSA6沸石吸附剂作为吸附剂床B1-B4各床的顶层,过程进行的方式仍与实例1相同。
表4-实例3,VSA6沸石
循环时间s 600
床第一层的吸附剂 氧化铝
氧化铝量(1b/TPD H2) 1.0568×103
床第二层的吸附剂: 活性碳
活性碳量(1b/TPD H2) 5.0035×103
床第三层的吸附剂: VSA6沸石
VSA6沸石量(1b/TPD H2) 2.3906×103
高压kPa 1.171×103
低压:kPa 1.327×102
进料通量:kmol/sm2 1.392×10-2
氢的纯度: 99.984%
氢回收率: 80.19%
总床尺寸因子(1b/TPD H2): 8.4509×103
温度:K 311
实例4对比例-采用5A沸石的对比流程
下面的表5列出了一种流程的操作条件和PSA性能,该流程采用5A沸石吸附剂作为吸附剂床B1-B4各床顶层,过程进行的方式与实例1相同。表5:参照,5A沸石
循环时间s 640
床第一层的吸附剂 氧化铝
氧化铝量(1b/TPD H2) 1.2108×103
床第二层的吸附剂: 活性碳
活性碳量(1b/TPD H2) 5.7326×103
床第三层的吸附剂: 5A沸石
5A沸石量(1b/TPD H2) 7.0511×103
高压kPa 1.171×103
低压:kPa 1.327×102
进料通量:kmol/sm2 1.392×10-2
氢的纯度: 99.991%
氢回收率: 70.0%
总床尺寸因子(1b/TPD H2): 1.3995×104
温度:K 311
如下表6和图9和图10所示,采用CaX(2.0)沸石吸附剂与采用LiX、VSA6和5A沸石相比,提供了远为优良的结果。另一方面,采用LiX和VSA6沸石,其结果在明显减少吸附剂的情况下明显提高H2的回收率,并且其床尺寸因子亦大大小于5A沸石。
表6-CaX(2.0)沸石和其它N2-选择沸石吸附剂的性能对比
例1 例2 例3 对比
N2吸附剂 CaX(2.0) LiX VSA6 5A
N2吸附剂量(1b./TPD H2) 1.5102×103 2.5801×103 2.3906×103 7.0511×103
H2纯度 99.993% 99.993% 99.984% 99.991%
H2回收率 81.6% 79.61% 80.19% 70.0%
总床尺寸因子(1b./TPD H2) 7.4657×103 8.6845×103 8.4509×103 1.3995×104
表6和图9的结果表明,在氢纯度(99.99%)相同的情况下,5A沸石的H2回收率约为70%,其余吸附剂的H2回收率为80%。CaX(2.0)在给定的P/F比下与其余吸附剂相比,单位重量吸附剂能容许更多的进料气体,即是说,CaX(2.0)的床尺寸因子(BSF)最低。
如图10所示,与5A沸石相比,采用CaX(2.0)沸石,其沸石用量少78%。同时,采用LiX或VSA6取代5A沸石,在氢纯度(99.99%)和回收率(>78%)相同的情况下其沸石量可减少65%。由于采用CaX能使床尺寸因子较小,从而使总的空隙体积减小,这样可减小床再生过程中的氢损失,即是说,使氢回收率提高。从图8还可看出,N2基本上在床的CaX沸石层去除(节点32-49),同时其它杂质(例如,CO2、CH4和CO)在沸石层上游的氧化铝层(节点1-17)和活性碳层(节点17-32)中去除。
CaX(2.0)沸石优良的吸附特性进一步在图11中得到说明,图11表明N2在CaX(2.0)上的差分负荷或生产能力及其与5A、LiX和VAS6沸石的比较。N2在CaX(2.0)的差分负荷比5A沸石多5倍,N2在LiX和VAS6上的差分负荷比5A沸石多3倍。图11中各吸附剂上N2差分负荷是用与上面的图3相同的条计算的。如对比试验和上述图所示,按照本发明,CaX(2.0)是选择用于本发明的H2PSA过程的吸附剂。
虽然上述PSA流程针对H2的制备,但本发明的关键特征都可扩展到其它分离过程,例如,从合成气和其它含CO2的气源中制取CO2,或在其它PSA过程中生产H2和CO。例如CaX(2.0)可取代其它一些要求去除痕量或低浓N2的分离过程中的5A或LiX沸石,以便提高PSA流程性能和获得高纯产品。
此外,每个吸附剂床的沸石层/区可用多层不同的吸附剂取代。例如,均相沸石层可用置于各单独区内含有不同吸附剂材料的复合吸附剂层代替,同时在每个区内可应用的处理条件下使用有利于特定吸附剂材料的吸附性能的温度条件。
应该理解,在不偏离本发明的前提下,这里的PSA方法的优选参数可作这样或那样的变化。因此,本文试图人附录的权利要求确定本
发明的范围。

Claims (10)

1.一种用于纯化含氢在50%(摩尔)以上的进料流的压力回转吸附方法(PSA),该方法包括使进料物流在高于大气压的压力下通过多层吸附床,其中来自H2O、CO2、CH4和CO中的至少一种杂质在气体物流通过一层天然存在的沸石或一层其SiO2/Al2O3比为2.0-2.5的合成沸石之前从气流中被吸附,该天然沸石选自菱沸石、毛沸石、斜发沸石和八面沸石,该合成沸石吸附剂选从CaX、LiA、LiX和VSA6,该沸石吸附剂吸附此物流中的基本上全部的氮,并从多层吸附剂床回收纯(>99.9%)的氢作为产品。
2.权利要求1的压力回转吸附方法,其中进料物流含氮小于3%,优选小于1.5%N2
3.权利要求1的压力回转吸附方法,其中气体物流在直接通过沸石吸附剂之前平均含小于0.15%(摩尔)的CO2
4.权利要求1的压力回转吸附方法,其中待处理的进料气体物流是含氢60-90%(摩尔)的合成气。
5.权利要求1的压力回转吸附方法,其中沸石为X型,Ca离子交换>90%。
6.权利要求1的压力回转吸附方法,其中进料气体物流首先通过含氧化铝层的吸附剂床吸附H2O,其次通过活性碳层吸附CO、CH4和CO2,然后通过沸石层以吸附氮。
7.权利要求1的压力回转吸附方法,其中H2O、CO2、CH4和CO在气体物流通过天然存在的沸石吸附剂或合成的沸石吸附剂之前基本上从气体物流中被吸附。
8.权利要求1的压力回转吸附方法,该方法包括使该物流在5-20bar的压力下按表1所列的12工序的PSA工序顺序通过四个吸附剂床,每个床包括一层该天然存在的或合成的沸石以从气体物流中吸附氮。
9.权利要求1的压力回转吸附方法,其中总床尺寸因子小于9,000 1b/TPD的氢,氢回收率为80%以上。
10.一种用于纯化进料气体物流的PSA系统,其中每个吸附剂床包括:
a.用于去除H2O的吸附剂层;
b.用于去除二氧化碳的吸附剂层;
c.用于N2去除的CaX、LiA、LiX或VSA6沸石吸附剂层,该沸石吸附剂的SiO2/Al2O3比在2.0-2.5范围内。
CNB00122638XA 1999-08-13 2000-08-11 用于制氢的变压吸附方法 Expired - Lifetime CN100360394C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/373,749 1999-08-13
US09/373,749 US6340382B1 (en) 1999-08-13 1999-08-13 Pressure swing adsorption process for the production of hydrogen

Publications (2)

Publication Number Publication Date
CN1284473A true CN1284473A (zh) 2001-02-21
CN100360394C CN100360394C (zh) 2008-01-09

Family

ID=23473711

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00122638XA Expired - Lifetime CN100360394C (zh) 1999-08-13 2000-08-11 用于制氢的变压吸附方法

Country Status (9)

Country Link
US (1) US6340382B1 (zh)
EP (1) EP1076035B2 (zh)
JP (1) JP2001070727A (zh)
KR (1) KR100481496B1 (zh)
CN (1) CN100360394C (zh)
BR (1) BR0004131B1 (zh)
CA (1) CA2315484C (zh)
DE (1) DE60043328D1 (zh)
ES (1) ES2336070T5 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302835C (zh) * 2002-02-15 2007-03-07 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 在再生高压下在吸附剂上处理氢/烃混合物
CN1309455C (zh) * 2003-02-18 2007-04-11 株式会社Jej 气体浓缩方法及其装置
CN101041419B (zh) * 2006-01-25 2010-10-27 气体产品与化学公司 再生循环制氢方法
CN101676016B (zh) * 2008-08-13 2013-03-13 赫多特普索化工设备公司 用于从气体流中减少杂质的工艺和系统
CN103221336A (zh) * 2011-10-11 2013-07-24 宏仁化学株式会社 制造高纯度氯化氢的方法和系统
CN107930344A (zh) * 2018-01-11 2018-04-20 山东赛克赛斯氢能源有限公司 一种内循环变压吸附式氢气净化器
CN109745827A (zh) * 2017-11-03 2019-05-14 中国科学院大连化学物理研究所 一种用于甲烷高效脱氮的吸附剂模块
CN109748242A (zh) * 2017-11-03 2019-05-14 中国科学院大连化学物理研究所 一种用于氢气高效提纯的吸附剂
CN109745828A (zh) * 2017-11-03 2019-05-14 中国科学院大连化学物理研究所 一种从空气中吸附制氧的整体式吸附剂
CN109794136A (zh) * 2017-11-17 2019-05-24 韩国能量技术研究院 压力循环吸附工程及压力循环吸附装置

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2800995B1 (fr) * 1999-10-05 2002-01-04 Ceca Sa Adsorbants zeolitiques, leur procede d'obtention et leur utilisation pour la decarbonation de flux gazeux
FR2804042B1 (fr) * 2000-01-25 2002-07-12 Air Liquide Procede de purification d'un gaz par adsorption des impuretes sur plusieurs charbons actifs
EP1142622B1 (en) * 2000-04-04 2006-06-21 Tosoh Corporation Method of adsorptive separation of carbon dioxide
EP1148025B1 (en) * 2000-04-20 2007-08-01 Tosoh Corporation Method for purifying hydrogen-based gas mixture
FR2811241B1 (fr) * 2000-07-07 2002-12-13 Ceca Sa Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x au calcium
US6790260B2 (en) * 2000-12-20 2004-09-14 Praxair Technology, Inc. Enhanced rate PSA process
US6483001B2 (en) * 2000-12-22 2002-11-19 Air Products And Chemicals, Inc. Layered adsorption zone for hydrogen production swing adsorption
US6913638B2 (en) * 2000-12-25 2005-07-05 Sumitomo Seika Chemicals Co., Ltd. Method for separating hydrogen gas
FR2832077B1 (fr) * 2001-11-12 2004-08-27 Air Liquide Adsorbant zeolitique au baryum et calcium pour la purification de gaz, en particulier de l'air
US6660064B2 (en) * 2002-03-08 2003-12-09 Air Products And Chemicals, Inc. Activated carbon as sole absorbent in rapid cycle hydrogen PSA
FR2837722B1 (fr) * 2002-03-26 2004-05-28 Air Liquide Procede psa de purification par adsorption d'un gaz pauvre en hydrogene
CA2511660A1 (en) * 2002-12-24 2004-07-15 Praxair Technology, Inc. Process and apparatus for hydrogen purification
JP4301452B2 (ja) * 2003-02-18 2009-07-22 サンビオー2 カンパニー,リミティド 気体濃縮方法およびその装置
US20050098034A1 (en) * 2003-11-12 2005-05-12 Gittleman Craig S. Hydrogen purification process using pressure swing adsorption for fuel cell applications
US20050137443A1 (en) * 2003-12-19 2005-06-23 Gorawara Jayant K. Regenerative removal of trace carbon monoxide
US7276107B2 (en) * 2003-12-23 2007-10-02 Praxair Technology, Inc. Indexing rotary dual valve for pressure swing adsorption systems
US7179324B2 (en) * 2004-05-19 2007-02-20 Praxair Technology, Inc. Continuous feed three-bed pressure swing adsorption system
US7189280B2 (en) * 2004-06-29 2007-03-13 Questair Technologies Inc. Adsorptive separation of gas streams
KR100603008B1 (ko) * 2004-09-07 2006-07-24 (주)네오포텍 광촉매층이 내부에 코팅되고 전극이 일체형으로 형성된디젤엔진 배출가스 정화장치 및 그 제조방법
US7404846B2 (en) * 2005-04-26 2008-07-29 Air Products And Chemicals, Inc. Adsorbents for rapid cycle pressure swing adsorption processes
US7399341B2 (en) * 2005-04-26 2008-07-15 Uop Llc Gas purification process
US7396387B2 (en) * 2005-11-01 2008-07-08 Praxair Technology, Inc. Pressure swing adsorption process for large capacity oxygen production
US7550030B2 (en) * 2006-04-03 2009-06-23 Praxair Technology, Inc. Process and apparatus to recover high purity carbon dioxide
US7717985B2 (en) * 2006-07-26 2010-05-18 Donaldson Company Sorption systems with naturally occurring zeolite, and methods
US20100000408A1 (en) * 2006-11-08 2010-01-07 Sumitomo Seika Chemicals Co., Ltd. Hydrogen gas separation method and separation apparatus
US7713333B2 (en) * 2006-12-20 2010-05-11 Praxair Technology, Inc. Adsorbents for pressure swing adsorption systems and methods of use therefor
US20080148937A1 (en) * 2006-12-20 2008-06-26 Salil Uday Rege Adsorbents for pressure swing adsorption systems and methods of use therefor
US7695545B2 (en) 2007-03-14 2010-04-13 Air Products And Chemicals, Inc. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration
US8573831B2 (en) * 2007-05-01 2013-11-05 Praxair Technology, Inc. Methods and systems for mixing materials
KR100896455B1 (ko) 2007-07-09 2009-05-14 한국에너지기술연구원 압력변동흡착장치 및 이를 이용한 수소 정제 방법
US8535417B2 (en) * 2008-07-29 2013-09-17 Praxair Technology, Inc. Recovery of carbon dioxide from flue gas
US7927573B2 (en) * 2008-09-26 2011-04-19 Praxair Technology, Inc. Multi-stage process for purifying carbon dioxide and producing acid
WO2010102036A1 (en) * 2009-03-04 2010-09-10 Xerox Corporation Structured organic films having an added functionality
US8016914B2 (en) * 2009-03-25 2011-09-13 Praxair Technology, Inc. Adsorption control method and controller
US8052777B2 (en) * 2009-06-29 2011-11-08 Uop Llc Vessel, system, and process for minimizing unequal flow distribution
US9567425B2 (en) 2010-06-15 2017-02-14 Xerox Corporation Periodic structured organic films
EP2404869A1 (en) * 2010-07-06 2012-01-11 Ammonia Casale S.A. Process for producing ammonia synthesis gas
US8752390B2 (en) 2010-07-13 2014-06-17 Air Products And Chemicals, Inc. Method and apparatus for producing power and hydrogen
US8697322B2 (en) 2010-07-28 2014-04-15 Xerox Corporation Imaging members comprising structured organic films
US8318892B2 (en) 2010-07-28 2012-11-27 Xerox Corporation Capped structured organic film compositions
US8257889B2 (en) 2010-07-28 2012-09-04 Xerox Corporation Imaging members comprising capped structured organic film compositions
US8119315B1 (en) 2010-08-12 2012-02-21 Xerox Corporation Imaging members for ink-based digital printing comprising structured organic films
US8119314B1 (en) 2010-08-12 2012-02-21 Xerox Corporation Imaging devices comprising structured organic films
US8435328B2 (en) 2011-01-11 2013-05-07 Praxair Technology, Inc. Ten bed pressure swing adsorption process operating in normal and turndown modes
US8496733B2 (en) 2011-01-11 2013-07-30 Praxair Technology, Inc. Large scale pressure swing adsorption systems having process cycles operating in normal and turndown modes
US8551217B2 (en) 2011-01-11 2013-10-08 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
US8491704B2 (en) 2011-01-11 2013-07-23 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
US9676681B2 (en) * 2011-01-19 2017-06-13 Exxonmobil Chemical Patents Inc. Method and apparatus for managing hydrogen content through the conversion of hydrocarbons into olefins
US9708232B2 (en) * 2011-01-19 2017-07-18 Exxonmobil Chemical Patents Inc. Method and apparatus for converting hydrocarbons into olefins
US8759473B2 (en) 2011-03-08 2014-06-24 Xerox Corporation High mobility periodic structured organic films
US8247142B1 (en) 2011-06-30 2012-08-21 Xerox Corporation Fluorinated structured organic film compositions
US8353574B1 (en) 2011-06-30 2013-01-15 Xerox Corporation Ink jet faceplate coatings comprising structured organic films
US8410016B2 (en) 2011-07-13 2013-04-02 Xerox Corporation Application of porous structured organic films for gas storage
US8313560B1 (en) 2011-07-13 2012-11-20 Xerox Corporation Application of porous structured organic films for gas separation
US8377999B2 (en) 2011-07-13 2013-02-19 Xerox Corporation Porous structured organic film compositions
US8460844B2 (en) 2011-09-27 2013-06-11 Xerox Corporation Robust photoreceptor surface layer
US8372566B1 (en) 2011-09-27 2013-02-12 Xerox Corporation Fluorinated structured organic film photoreceptor layers
US8529997B2 (en) 2012-01-17 2013-09-10 Xerox Corporation Methods for preparing structured organic film micro-features by inkjet printing
WO2013177679A1 (en) * 2012-06-01 2013-12-05 University Of Manitoba Cationic zeolite compositions for recovery and purification of hydrogen gas
US8765340B2 (en) 2012-08-10 2014-07-01 Xerox Corporation Fluorinated structured organic film photoreceptor layers containing fluorinated secondary components
EP2900591A4 (en) * 2012-09-26 2016-05-25 Enerkem Inc SYNTHESIS GRINDING AND REFORMING PROCESS
US8906462B2 (en) 2013-03-14 2014-12-09 Xerox Corporation Melt formulation process for preparing structured organic films
FR3005873B1 (fr) * 2013-05-27 2015-05-15 Air Liquide Unite de purification avec adsorbeur multi-lits
ES2769830T3 (es) * 2014-07-03 2020-06-29 Nuvera Fuel Cells Llc Sistema y método para regenerar el lecho absorbedor para secar hidrógeno humidificado comprimido
WO2017048742A1 (en) * 2015-09-16 2017-03-23 Uop Llc Pressure swing adsorption process and apparatus for purifying a hydrogen-containing gas stream
KR102382274B1 (ko) * 2016-09-26 2022-04-01 스미토모 세이카 가부시키가이샤 수소 또는 헬륨의 정제방법 및 수소 또는 헬륨의 정제장치
KR101933548B1 (ko) * 2016-11-22 2018-12-28 (주)선바이오투 가스 발생기용 흡착 베드
WO2022265651A1 (en) * 2021-06-18 2022-12-22 Air Products And Chemicals, Inc. Ammonia cracking for green hydrogen
US11571652B2 (en) 2021-06-22 2023-02-07 Praxair Technology, Inc. Method of purifying hydrogen supplied from a storage cavern

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882244A (en) 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US3150942A (en) 1959-10-19 1964-09-29 Chemical Construction Corp Method of purifying a hydrogen gas stream by passing said gas in series through 13x and 4a or 5a molecular sieves
US3313091A (en) 1963-11-04 1967-04-11 Exxon Research Engineering Co Vacuum cycle adsorption
US3430418A (en) 1967-08-09 1969-03-04 Union Carbide Corp Selective adsorption process
US3564816A (en) 1968-12-30 1971-02-23 Union Carbide Corp Selective adsorption process
FR2097633A5 (zh) * 1970-07-16 1972-03-03 Air Liquide
FR2135388B1 (zh) * 1971-05-03 1973-05-11 Air Liquide
US4171206A (en) 1978-08-21 1979-10-16 Air Products And Chemicals, Inc. Separation of multicomponent gas mixtures
DE3143993A1 (de) 1981-11-05 1983-05-11 Bayer Ag, 5090 Leverkusen Molekularsieb-zeolith fuer die gewinnung von wasserstoff mit der druckwechsel-adsorptions-technik
US4481018A (en) * 1982-11-15 1984-11-06 Air Products And Chemicals, Inc. Polyvalent ion exchanged adsorbent for air separation
US4477264A (en) * 1983-03-30 1984-10-16 Air Products And Chemicals, Inc. Pressure swing adsorption process for a medical oxygen generator for home use
JPS60191002A (ja) * 1984-03-07 1985-09-28 Osaka Oxgen Ind Ltd 吸着法を使用して少なくとも水素を含む混合ガス中の水素を濃縮する方法
US4859217A (en) * 1987-06-30 1989-08-22 Uop Process for separating nitrogen from mixtures thereof with less polar substances
US4892565A (en) * 1987-12-29 1990-01-09 Air Products And Chemicals, Inc. Adsorptive separation utilizing multiple adsorption beds
US4957514A (en) 1989-02-07 1990-09-18 Air Products And Chemicals, Inc. Hydrogen purification
US5174979A (en) * 1989-10-06 1992-12-29 Uop Mixed ion-exchanged zeolites and processes for the use thereof in gas separations
US5294247A (en) 1993-02-26 1994-03-15 Air Products And Chemicals, Inc. Adsorption process to recover hydrogen from low pressure feeds
US5529610A (en) * 1993-09-07 1996-06-25 Air Products And Chemicals, Inc. Multiple zeolite adsorbent layers in oxygen separation
US5464467A (en) * 1994-02-14 1995-11-07 The Boc Group, Inc. Adsorptive separation of nitrogen from other gases
US5698013A (en) 1994-03-18 1997-12-16 Uop Nitrogen-selective zeolitic adsorbent for use in air separation process
US5454857A (en) * 1994-03-18 1995-10-03 Uop Air separation process
FR2718979B1 (fr) * 1994-04-20 1996-06-07 Air Liquide Procédé de redémarrage d'un récipient de purification d'hydrogène par adsorption, et son application au traitement de certains gaz contenant de l'hydrogène.
FR2722426B1 (fr) * 1994-07-18 1996-08-23 Air Liquide Procede de separation d'azote d'un melange gazeux par adsorption
US5531808A (en) * 1994-12-23 1996-07-02 The Boc Group, Inc. Removal of carbon dioxide from gas streams
GB2296712B (en) * 1995-01-05 1999-02-24 British Gas Plc Absorbents for separating nitrogen from a feed gas
DE19528188C1 (de) * 1995-08-01 1996-12-05 Bayer Ag Verfahren zur Adsorption von Stickstoff aus Gasgemischen mittels Druckwechseladsorption mit Zeolithen
US5674311A (en) * 1995-10-20 1997-10-07 Praxair Technology, Inc. Adsorption process and system using multilayer adsorbent beds
FR2749004B1 (fr) * 1996-05-24 1998-07-10 Air Liquide Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolithe x echangee au lithium
FR2753108B1 (fr) * 1996-09-06 1998-10-16 Air Liquide Procede pour la separation de melanges gazeux contenant de l'oxygene et de l'azote
US6113869A (en) 1996-09-30 2000-09-05 The Boc Group, Inc. Process for argon purification
US5753010A (en) 1996-10-28 1998-05-19 Air Products And Chemicals, Inc. Hydrogen recovery by pressure swing adsorption integrated with adsorbent membranes
US6007606A (en) * 1997-12-09 1999-12-28 Praxair Technology, Inc. PSA process and system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302835C (zh) * 2002-02-15 2007-03-07 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 在再生高压下在吸附剂上处理氢/烃混合物
CN1309455C (zh) * 2003-02-18 2007-04-11 株式会社Jej 气体浓缩方法及其装置
CN101041419B (zh) * 2006-01-25 2010-10-27 气体产品与化学公司 再生循环制氢方法
CN101676016B (zh) * 2008-08-13 2013-03-13 赫多特普索化工设备公司 用于从气体流中减少杂质的工艺和系统
CN103221336A (zh) * 2011-10-11 2013-07-24 宏仁化学株式会社 制造高纯度氯化氢的方法和系统
CN109745827A (zh) * 2017-11-03 2019-05-14 中国科学院大连化学物理研究所 一种用于甲烷高效脱氮的吸附剂模块
CN109748242A (zh) * 2017-11-03 2019-05-14 中国科学院大连化学物理研究所 一种用于氢气高效提纯的吸附剂
CN109745828A (zh) * 2017-11-03 2019-05-14 中国科学院大连化学物理研究所 一种从空气中吸附制氧的整体式吸附剂
CN109745827B (zh) * 2017-11-03 2021-10-15 中国科学院大连化学物理研究所 一种用于甲烷高效脱氮的吸附剂模块
CN109745828B (zh) * 2017-11-03 2021-10-15 中国科学院大连化学物理研究所 一种从空气中吸附制氧的整体式吸附剂
CN109748242B (zh) * 2017-11-03 2022-09-16 中国科学院大连化学物理研究所 一种用于氢气高效提纯的吸附剂
CN109794136A (zh) * 2017-11-17 2019-05-24 韩国能量技术研究院 压力循环吸附工程及压力循环吸附装置
CN115138173A (zh) * 2017-11-17 2022-10-04 韩国能量技术研究院 压力循环吸附工程及压力循环吸附装置
CN107930344A (zh) * 2018-01-11 2018-04-20 山东赛克赛斯氢能源有限公司 一种内循环变压吸附式氢气净化器
CN107930344B (zh) * 2018-01-11 2024-03-19 山东赛克赛斯氢能源有限公司 一种内循环变压吸附式氢气净化器

Also Published As

Publication number Publication date
JP2001070727A (ja) 2001-03-21
EP1076035A2 (en) 2001-02-14
BR0004131A (pt) 2001-04-03
BR0004131B1 (pt) 2010-11-30
CN100360394C (zh) 2008-01-09
ES2336070T5 (es) 2017-11-08
DE60043328D1 (de) 2009-12-31
KR100481496B1 (ko) 2005-04-07
CA2315484C (en) 2004-04-06
KR20010076171A (ko) 2001-08-11
EP1076035A3 (en) 2003-06-04
US6340382B1 (en) 2002-01-22
CA2315484A1 (en) 2001-02-13
EP1076035B1 (en) 2009-11-18
EP1076035B2 (en) 2017-06-21
ES2336070T3 (es) 2010-04-08

Similar Documents

Publication Publication Date Title
CN100360394C (zh) 用于制氢的变压吸附方法
US7537742B2 (en) Process and adsorbent for hydrogen purification
CN1984705B (zh) 连续送进三床变压吸附系统
CN1090517C (zh) 使用多层吸附床的改进的吸附方法和系统
US7309378B2 (en) Syngas purification process
US6503299B2 (en) Pressure swing adsorption process for the production of hydrogen
KR100417434B1 (ko) 압력순환흡착(psa)공정을이용한가스분리에사용되는다중층흡착제베드
US6849106B2 (en) Method for purifying hydrogen-based gas mixtures using a calcium x-zeolite
KR100970359B1 (ko) 응집형 제올라이트 흡착제 상의 흡착에 의해, 이산화탄소,그리고 일 이상의 탄화수소 및/또는 질소 산화물로 오염된가스 스트림을 정화하는 방법
US6402813B2 (en) Process for purifying a gas by adsorption of the impurities on several active carbons
KR100896455B1 (ko) 압력변동흡착장치 및 이를 이용한 수소 정제 방법
JPH0794004B2 (ja) 改良された空気分離圧力変動式吸着法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: PLEX TECHNOLOGIES CORP.

Free format text: FORMER OWNER: PLACER TECHNOLOGY CO., LTD.

Effective date: 20010824

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20010824

Applicant after: Praxair Technology, Inc.

Applicant before: Praxair Technology Inc.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080109