CN1293885A - 有功率因数校正功能的灯用电子镇流器 - Google Patents

有功率因数校正功能的灯用电子镇流器 Download PDF

Info

Publication number
CN1293885A
CN1293885A CN00800116A CN00800116A CN1293885A CN 1293885 A CN1293885 A CN 1293885A CN 00800116 A CN00800116 A CN 00800116A CN 00800116 A CN00800116 A CN 00800116A CN 1293885 A CN1293885 A CN 1293885A
Authority
CN
China
Prior art keywords
high frequency
circuit
voltage
transducer
side terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00800116A
Other languages
English (en)
Inventor
钱金荣
G·W·布鲁宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1293885A publication Critical patent/CN1293885A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/425Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a high frequency AC output voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Abstract

通过把来自电压源的高频电流直接馈送给交流侧整流器端子中的一个来改善功率因数和减小线电流THD。低频电源对交流侧整流器端子呈现出低值电容性电源阻抗。谐振负载灯电路连接在逆变器输出节点和输入整流器电路直流输出端中的一个之间。高频电容连接在输入整流器电路的交流侧端子和诸如灯端子之一或逆变器输出端的电压源之间。若该连接是连接到逆变器输出端;则最好把第二高频电容从交流侧端子中的另一个直接连接到逆变器输出端。

Description

有功率因数校正功能的灯用电子镇流器
本发明涉及用来驱动诸如荧光灯的放电灯的电子镇流器,更详细地说,涉及有源部件数目最小的这种镇流器。
为了在高度竞争的市场上销售,人们大量制造主要是磁耦合的自振逆变器。半桥逆变器得到广泛应用,因为它们具有比较少的零件数。这样的逆变器可以分类为两组:利用具有饱和铁心的电流变压器并一般带有功率BJT(双极结型晶体管)的;和利用具有线性铁心的电流变压器并一般带有MOSFET(金属氧化物半导体场效应晶体管)的。正如普通的技术人员都会意识到的,在这种情况下,线性铁心工作在具有曲线形B-H特性的区域,而不是急剧变化的B-H特性的区域上的;就是说,任何时候光通量水平都是这样的,使得励磁电流的明显增加总是伴随着光通量水平的明显增加。
美国专利5,608,295公开了一种具有在逆变器输出和信号地之间的串联负载电路中的线性铁心谐振电感的镇流器电路。该电感具有连接到开关晶体管的控制电极上的次级绕组。负载电路包括调谐电容C8和匹配变压器的初级绕组。荧光灯连接到次级绕组或匹配变压器的绕组,而一个或两个附加的调谐电容连接在灯的两端。反馈导体连接在匹配变压器初级绕组一个抽头和两个串联在全波桥式整流电路的AC输入端两端的47nf(毫微法拉)反馈电容之间的节点之间。这个专利传授低频(电源线)输入电流对起载波作用的高频反馈电流进行调幅,以便在低频周期的大部分通过桥式整流器传输低频输入电流。因而,很清楚,线电流仍旧是不连续的。
本发明的一个目的是为电子镇流器中的功率因数校正提供一种效能价格合算的解决方案。
按照本发明,在低频至高频的功率变换器中包括:
低频线电压的电容性电源阻抗源,它具有电源连接点,在所述连接点之间维持低频线电压,
直流电源电路,它具有至少两个二极管和4个端子以及蓄能电容,这些端子中的两个是连接到电源连接点的交流侧端子,这些端子中的两个是直流侧端子,所述二极管中的一个连接在一个交流侧端子和一个直流侧端子之间。
半桥逆变器,它连接成从直流侧端子接收直流电压,所述逆变器包括两个串联的开关晶体管,并在所述晶体管之间具有输出节点,用来提供高频输出电压,和
负载电路,用来传输高频电流,它连接在输出节点和一个直流侧端子之间,所述负载电路包括多个负载电路元件,后者包括:谐振电感;和所述谐振电感构成谐振电路的一部分的至少一个谐振电容;和用于非线性负载的两个负载连接点,所述非线性负载在工作状态下至少基本上是电阻性的,
高频电容,用来为第二高频电流提供通路,所述高频电容连接在一个交流侧端子和沿着负载电路的有高频电压的位置之间,所述高频电容具有这样选择的数值,使得高频电容在高频电压每一个周期的第一部分期间从所述交流侧端子接收能量,而在高频电压每一个周期的不同部分期间高频电容把所述能量传输给蓄能电容。
在第一最佳实施例中,非线性负载是放电灯。给灯供电的连接线之一直接或通过匹配变压器处于信号地,而电压反馈电容连接到另一根连接线。在这个实施例中,在正常工作期间,直流电源电路从不直接从交流侧端子向蓄能电容传输能量。
在另一个实施例中,反馈电容直接连接到逆变器输出端。从该点起最好有两个反馈电容,各有一个连接到电磁干扰(EMI)滤波器和整流器输入端之间交流线路的每一侧。在这个实施例中,在由一个开关晶体管和另一个晶体管引起的导通之间的时间间隔过程中,这些电容向交流侧提供电流反馈,而这些电容中的一个在开关晶体管另一次导通之前放电。另外,在每一个正常操作的高频周期的一部分期间中,线路输入端直接向负载电路提供能量。
直流电源电路最好是全波桥式整流器,它具有与每一根桥路直流连接线串联的快速恢复二极管。
以下将利用附图讨论按照本发明的转换器的实施例。
图1是按照本发明的第一种灯用镇流器的简化电路图;
图2是基于图1实施例的概念电路,表示向交流侧的电压反馈;
图3是定时图,表示图2的电路的电压和电流的波形;
图4是图2电路用的线电压和线电流的模拟;
图5是具有直接来自逆变器的电压反馈的图1的电路的变型的简化电路图;
图6是图5的实施例的较简单的电路变型的简化电路图;
图7是图5的电路的线电流的模拟。
图1的转换器包括逆变器,后者由串联在正的和负的直流母线之间的开关晶体管S1,S2形成,具有存储在大容量电解电容CB中的高压直流。由慢速二极管D1-D4和两个快速恢复二极管Da,Db形成的全波桥式整流器向直流母线提供功率。线路功率通过由串联电感Lf和并联电容Cf形成的EMI滤波器提供给桥式整流器,并提供给桥式整流器的两个交流端子。快速恢复二极管Da连接在正的直流母线和慢速二极管D1和D2的阴极之间,快速恢复二极管Db连接在负的直流母线和慢速二极管D3和D4的阳极之间。于是正的和负的直流母线形成整流电路的直流侧端子。这种安排减少了电路的零件成本,因为快速恢复二极管比正常的慢速二极管贵的多。正如本专业普通的技术人员都清楚的,若4个桥路二极管都是快速恢复型的,则二极管Da,Db可以不用。
负载电路连接在作为信号地的负直流母线和两个开关之间的逆变器输出节点之间。负载电路包括线性铁心谐振电感Lr、隔直流电容Cd和谐振电容Cr,而荧光灯FL1与所述谐振电容并联。高频电容C1连接在交流侧第一端子与灯端子和隔直流电容之间的连接点之间,在每一个高频周期期间提供能量传输脉冲。镇流器行业的普通技术人员都知道,应该优化电路,以便使流过灯的电流呈正弦形,而且使灯两端的电压恒定。因而通过电容C1的功率反馈基本上是从恒定的交流电压源的反馈的。
通过分析图2所示的概念电路的行为,即可理解图1的电路的工作情况。高频电压源Vf是图1的负载电路的理想化等效电路。所示这个电压是图3的第一条线,它与线电压vin、二极管D1-D4和高频电容C1一起起作用,形成一个周期工作的4个不同阶段。
在时刻t0,电压Va=VB,而Vb=VB-vin。在从t0到t1的时间间隔内,电压Uf从其峰值降低,结果电压va和vb都降低。二极管D1截止,因为电压va<VB(大型蓄能电容CB两端的电压),所以没有电流流过电容C1。当电压va降低到数值vin而vb=0时,便达到时刻t1
从t1到t2二极管D4导通,电流向C1充电。当Vf达到负的峰值,而二极管D4停止导通时,便达到时刻t2。电容C1的最大电压是
max=Vf+vin
从t2到t3Vf上升,而同时二极管D1被反向偏置,因为Va<Vb。在这个时间间隔中没有线电流,也没有电流流过电容C1,于是Va和Vb都增大。当Va=Vb而二极管D1开始导通时,便达到时刻t3
从t3到t4二极管D1导通,而在Vf继续上升时电容C1通过D1放电。电容C1的放电向大型电容CB传输能量。没有线电流,因为二极管D2和D3截止。当电压Va=Vb,而Vf达到其峰值时,便达到时刻t4。电容C1的最小电压Vcmin=Vb-Vf。然后重复这个周期。
从以上分析很清楚,线电流只有在向电容C1传输能量时才流动,并且只有在不同的时间才从高频电容C1向大型电容CB传输能量。
在整个开关周期中,平均输入线电流由下式给出
iin,avg=C1.fs(vin+2Vf-Vb)
为了达到1的功率因数,电源的峰-峰电压Vf必需等于直流母线电压,于是VB=2Vf。只要把电路设计得满足这个条件,输入线电流才与线电压成正比,于是该电路便具有1的功率因数。
对这个电路进行了模拟,模拟的线电流波形示于图4。该图表示达到功率因数1。谐波失真的来源在曲线上看不出来。但是,图3清楚表明,线电流iin具有大量的高频分量,这是因为线电压源阻抗有限使得某些对应的高频电压叠加在线电压Vin上。由图1的Lf和Cf形成的输入电路滤波器将在很大程度上旁路这种电压而不是使其沿着电源线传输,但是这些电路数值对电路平衡有某种影响。所述模拟忽略了这一点,但并不影响所述模拟作为理解电路行为的工具的有效性。
图1的电路提供与灯两端电压成正比的功率反馈。但是,电容C1与谐振电容Cr并联,同时或者D1或者D4都导通,而且这些二极管的导通时间与瞬间线电压有关。因此,每个逆变器操作周期出现两次的负载电路谐振频率的变化使简单的分析复杂化了。但是很清楚,灯电流中的纹波是输入线电压频率的两倍。这可以利用简化电路中没有示出的已知类型的开关驱动电路、通过对逆变器频率进行频率调制而得到改善。可以像授予Hemandez和Bruning的美国专利5,404,082中所传授的那样、或通过选择栅极驱动电路中的频率与相移的适当的特性曲线,对逆变器的频率进行频率调制。
把电压源反馈用于功率因数校正的另一种安排示于图5中。这里,不是来自正弦电压源的反馈,而是来自逆变器输出的反馈,除了两个开关都截止的时间外,逆变器输出是方波。不像先有技术的逆变器那样,那里最好在一个开关截止与另一个开关导通之间经历的时间最少,足于保证电路缺陷或其他过渡过程永远不会导致两者同时导通就行,而在图5的电路中,开关晶体管S1在电容C15完全放电完毕之前必需不得导通;类似地,S2在电容C25完全放电完毕之前必需不得导通。结果,在每一个逆变器周期内,当负载电流流过电容C15和C25之间的节点时,有两个静寂时间间隔。在这些时间间隔中,电路的行为类似于电流源功率反馈电路。
最好大致上C15刚完全放电S1就导通;而且大致上C25刚完全放电S2就导通。所述静寂时间由C15和C25的数值、切换瞬间的负载电流和线电压确定。为了在任何输入线电压下C15或C25完全放电时维持开关导通,该电路必需设计成接近线峰值电压,其中将需要最长的时间来给C15和C25充、放电。最小静寂时间由下式确定
td=(C15+C25)*Vp/ILr
式中Vp是线峰值电压,而ILr是S2断开瞬间的负载电流。只要所述静寂时间长于该式给定的时间,就能保证C15和C25完全放电。
通过识别每一个逆变器周期的一系列阶段中电流流动,可以最充分地理解图5的电路的操作。
首先,任何时候
Va=Vb+Vin
把所述电路作为具有理想部件的电路来估算,正好在S1开始导通之前,
Va=Vn,式中Vn是半桥式逆变器输出节点上的电压。
而当开关S2导通时,
Vn=VB
通过与针对图1给出的类似的分析,并考虑线电压Vin为正的时间,于是刚好在S1开始导通之前,线输入直接通过C25提供能量,同时大型电容CB通过C15和D1两者充电,而C25则通过线路输入和D1充电。当负载电流iLr已经通过线路输入将C25充电,并且将C15放电直至C15完全放电时,最优切换瞬间到来。例如,这个瞬间可以通过检测逆变器输出节点电压刚好等于正母线电压来确定。为了达到无损失切换,现在S1切换到导通。
当S1导通时,负载电流仍旧为负,但急剧降低,通过S1的体二极管流动,并进一步给CB充电。如图5所示,在S1仍旧导通时,负载电流翻转并变正。控制S1的截止时间,使得逆变器频率维持高于负载电路谐振频率。
当开关S1截止时,电压Vn不再由该开关控制,但负载电流iLr将继续流动。反馈电容C25将通过二极管D4和负载电路放电。随着C25两端的电压降低,C15两端的电压由于线电流流过C25、负载电路和二极管D4而上升。在这个时间间隔过程中,线路输入通过C15直接向灯提供能量,而C25通过负载电流iLr放电。
C25完全放电之后,S2导通。负载电流iLr继续流动,但逆变器节点不能变负,因为负载电流通过S2的体二极管流动,尽管以急速降低的速率流动。当负载电流反向并再次为负时,Cd通过S2和负载放电。在这个时间间隔过程中,C15和C25两者两端的电压都不变化。
紧接在S2截止之后,负载电流继续在负方向流动。一部分负的负载电流将C15放电,通过D1和Da流动,将CB充电,而它的其余部分将C25充电,通过线路、D1和Da流动,并将CB充电。当C15完全放电时,S1于是导通。负的负载电流通过S1的体二极管流动,并将立刻翻转方向,通过S1流动。
从以上描述可以清楚看出,在只有谐振电容起作用时;就是说,在开关晶体管之一已经截止之后一会儿又导通时,谐振电路具有一个谐振频率,而在负载电流还通过C15和C25流动时,谐振电路具有较高的谐振频率。在这后一个时间间隔中,等效谐振电容由下式给出
Ceq=Cr≌C15≌C25/(Cr≌C15+Cr≌C25+C15≌C25)
一般说来,图6的电路的操作与图5的相似,只是电容C16处理所有的电荷传输,使得来自线路并进入大型电容的脉中电流携带两倍的能量。
以上的分析忽略EMI滤波器的电路数值。这是正确的,因为Cf的数值应该是足够大,使得在逆变器频率下Cf的阻抗非常小,而Lf的阻抗非常高。结果,在一个切换周期中Cf两端的电压变化与有关的其他电压变化相比是微不足道的,使得Cf起电压缓冲电容的作用。
图7的模拟线电流表示高频纹波,因为模拟EMI滤波器电感的中等尺寸。总的谐波失真小于5%。可以通过增大EMI滤波器的电感和/或电容将这些纹波最小化。
普通技术人员将会意识到,在本发明的精神范围内,对所公开的实施例可以做出许多变化。例如,如所示,全波桥式整流器可以全部使用非常便宜的一般恢复速度二极管和两个快速恢复二极管,或者正和负直流母线可以分别连接到传统的4个二极管桥,其中所有的二极管都具有足够快的恢复速度。功率反馈原理还可以应用于具有倍压型整流器电路的转换器。负载电路可以具有其他配置,只要它基本上是串联谐振电路就行。例如,负载可以连接到匹配变压器。谐振电容或者可以与灯并联,或者可以使用串联电容(通常在升压变压器的情况下),以便允许多盏灯在没有任何特殊的灯启动电路的情况下工作。EMI滤波器电感可以连接在任一根输入导线或者连接在两根输入导线,而且只要求它满足政府的或动力公司的要求。

Claims (10)

1.一种低频至高频的功率转换器,它包括:
电源连接点,用来连接到低频线电压;
直流电源电路,它具有至少两个二极管(D1-D4)和4个端子,以及蓄能电容(CB),所述端子中的两个是连接到所述电源连接点并且通过电容性阻抗(Cf)彼此连接的交流侧端子,所述端子中的两个是直流侧端子,所述二极管中的一个连接在所述交流侧端子之一和所述直流侧端子之一之间;
半桥逆变器,它连接成从所述直流侧端子接收直流电压,所述逆变器包括两个串联的开关晶体管(S1,S2)并具有在所述晶体管之间的用来提供高频输出电压的输出节点;
负载电路,用来传输第一高频电流,它连接在所述输出节点和所述直流侧端子之一之间,所述负载电路包括多个负载电路元件,其中包括谐振电感(Lr)、和所述谐振电感构成谐振电路一部分的至少一个谐振电容(Cr),和两个供非线性负载(FL1)用的连接点,所述非线性负载在工作状态下至少基本上是电阻性的;和
高频电容(C1,C15,C16),用来为第二高频电流提供通路,所述高频电容连接在所述交流侧端子之一和沿着所述负载电路有所述高频电压的位置之间,所述高频基本上与线电压的瞬间幅度无关,所述高频电容(C1,C15,C16)具有这样选择的数值,使得所述高频电容在所述高频电压每一个周期的第一部分期间从所述交流侧端子接收能量,而在所述高频电压每一个周期的不同部分期间所述高频电容把能量传输给所述蓄能电容。
2.权利要求1的转换器,其特征在于:沿着所述负载电路的所述位置是所述负载连节点之一,所述负载连接点中的另一个是所述直流侧端子中的所述一个。
3.权利要求2的转换器,其特征在于:所述非线性负载是放电灯(FL1)。
4.权利要求3的转换器,其特征在于:所述直流电源电路包括全波桥式整流器,后者具有4个慢速二极管(D1-D4)和两个快速恢复二极管(Da,Db),所述两个快速恢复二极管中的一个(Da)连接在所述直流端子中的一个和两个慢速二极管(D1,D2)之间,而另一个快速恢复二极管(Db)连接在所述直流端子中的另一个和其余两个慢速二极管(D3,D4)之间。
5.权利要求3的转换器,其特征在于:在正常工作期间,所述直流电源电路从不直接从所述交流侧端子向所述蓄能电容(CB)传输能量。
6.权利要求3的转换器,其特征在于:所述转换器的部件数值和逆变器工作频率是这样选择的,使得VB=2Vf,其中VB是蓄能电容(CB)两端的电压,而Vf是低频线电压的峰值电压。
7.权利要求1-4中一个或多个的转换器,其特征在于:沿着所述负载电路的所述位置是所述半桥逆变器的所述输出节点。
8.权利要求7的转换器,其特征在于:所述转换器包括连接在所述交流侧端子中的另一个和所述位置之间的第二高频电容(C25)。
9.权利要求7的转换器,其特征在于:在正常工作的每一个高频周期的一部分期间,所述线路输入直接向所述负载电路提供能量。
10.权利要求1的转换器,其特征在于:所述非线性负载是放电灯(FL1),以及所述直流电源电路是具有4个二极管(D1-D4)的全波桥式整流器。
CN00800116A 1999-02-08 2000-01-10 有功率因数校正功能的灯用电子镇流器 Pending CN1293885A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/245,757 US6184630B1 (en) 1999-02-08 1999-02-08 Electronic lamp ballast with voltage source power feedback to AC-side
US09/245,757 1999-02-08

Publications (1)

Publication Number Publication Date
CN1293885A true CN1293885A (zh) 2001-05-02

Family

ID=22927960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00800116A Pending CN1293885A (zh) 1999-02-08 2000-01-10 有功率因数校正功能的灯用电子镇流器

Country Status (5)

Country Link
US (1) US6184630B1 (zh)
EP (1) EP1070440A1 (zh)
JP (1) JP2002537751A (zh)
CN (1) CN1293885A (zh)
WO (1) WO2000048433A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316724C (zh) * 2003-07-03 2007-05-16 南京航空航天大学 电流控制型半桥变换器的分压电容电压偏差前馈控制电路
CN1942038B (zh) * 2005-09-28 2010-05-05 北方工业大学 一种电子镇流器及高强度气体放电灯控制装置与方法
CN102754320A (zh) * 2009-08-10 2012-10-24 艾默生环境优化技术有限公司 用于功率因数校正的系统和方法
US9088232B2 (en) 2009-08-10 2015-07-21 Emerson Climate Technologies, Inc. Power factor correction with variable bus voltage
US9154061B2 (en) 2009-08-10 2015-10-06 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US9240749B2 (en) 2012-08-10 2016-01-19 Emerson Climate Technologies, Inc. Motor drive control using pulse-width modulation pulse skipping
US9634593B2 (en) 2012-04-26 2017-04-25 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486615B2 (en) 1998-10-13 2002-11-26 City University Of Hong Kong Dimming control of electronic ballasts
CN1265538C (zh) * 2000-10-24 2006-07-19 皇家菲利浦电子有限公司 具有降低的功耗的便携式装置
EP1209954A1 (en) * 2000-11-24 2002-05-29 City University of Hong Kong Dimming control of electronic ballasts
US6417631B1 (en) * 2001-02-07 2002-07-09 General Electric Company Integrated bridge inverter circuit for discharge lighting
US6841951B2 (en) * 2002-06-04 2005-01-11 General Electric Company Single stage HID electronic ballast
US6677718B2 (en) * 2002-06-04 2004-01-13 General Electric Company HID electronic ballast with glow to arc and warm-up control
US6813168B2 (en) * 2002-11-18 2004-11-02 Power Integrations, Inc. Method and apparatus for providing input EMI filtering in power supplies
KR100541450B1 (ko) * 2003-08-08 2006-01-10 삼성전자주식회사 전원공급장치 및 그 제어방법
US6936970B2 (en) * 2003-09-30 2005-08-30 General Electric Company Method and apparatus for a unidirectional switching, current limited cutoff circuit for an electronic ballast
US7050287B2 (en) * 2004-09-10 2006-05-23 American Shizuki Corporation (Asc Capacitors) Sign ballast capacitor assembly
US7420336B2 (en) * 2004-12-30 2008-09-02 General Electric Company Method of controlling cathode voltage with low lamp's arc current
CN101442867B (zh) * 2007-11-19 2012-11-07 上海亚明灯泡厂有限公司 一种无源高功率因素电路
US7923941B2 (en) * 2008-10-16 2011-04-12 General Electric Company Low cost compact size single stage high power factor circuit for discharge lamps
US8503199B1 (en) * 2010-01-29 2013-08-06 Power-One, Inc. AC/DC power converter with active rectification and input current shaping
CN103270684B (zh) * 2010-12-22 2016-04-27 皇家飞利浦电子股份有限公司 用于驱动固态照明负载的功率转换器设备
CN103891120B (zh) * 2011-10-21 2016-08-24 株式会社村田制作所 开关电源装置
CN103918170B (zh) * 2011-10-21 2017-03-08 株式会社村田制作所 开关式电源装置
US8947020B1 (en) * 2011-11-17 2015-02-03 Universal Lighting Technologies, Inc. End of life control for parallel lamp ballast
US8654553B1 (en) * 2013-03-15 2014-02-18 Flextronics Ap, Llc Adaptive digital control of power factor correction front end
CN108432116B (zh) 2015-12-04 2020-05-29 株式会社村田制作所 电力变换装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234822A (en) * 1978-05-03 1980-11-18 Gte Products Corporation Control circuit providing constant power source
CA2056010C (en) * 1990-11-27 1997-05-27 Minoru Maehara Inverter device for stable, high power-factor input current supply
US5223767A (en) * 1991-11-22 1993-06-29 U.S. Philips Corporation Low harmonic compact fluorescent lamp ballast
US5387848A (en) * 1992-03-05 1995-02-07 Philips Electronics North America Corporation Fluorescent lamp ballast with regulated feedback signal for improved power factor
EP0599405B1 (en) * 1992-11-26 1998-02-11 Koninklijke Philips Electronics N.V. Low harmonic power supply for a discharge lamp
EP0606664B1 (en) * 1993-01-12 1997-08-20 Koninklijke Philips Electronics N.V. Ballast circuit
US6118225A (en) * 1994-08-22 2000-09-12 U.S. Philips Corporation High frequency discharge lamp operating circuit with resonant power factor correction circuit
US5608295A (en) 1994-09-02 1997-03-04 Valmont Industries, Inc. Cost effective high performance circuit for driving a gas discharge lamp load
US5898278A (en) * 1995-08-09 1999-04-27 Pinbeam Ag Series resonant lamp circuit having direct electrode connection between rectifier and AC source
US5828185A (en) * 1996-05-09 1998-10-27 Philips Electronics North America Corporation High frequency HID lamp system with lamp driven at a frequency above the audible and below the lowest lamp resonant frequency

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316724C (zh) * 2003-07-03 2007-05-16 南京航空航天大学 电流控制型半桥变换器的分压电容电压偏差前馈控制电路
CN1942038B (zh) * 2005-09-28 2010-05-05 北方工业大学 一种电子镇流器及高强度气体放电灯控制装置与方法
US9705433B2 (en) 2009-08-10 2017-07-11 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
CN102754320B (zh) * 2009-08-10 2015-05-27 艾默生环境优化技术有限公司 用于功率因数校正的系统和方法
US9088232B2 (en) 2009-08-10 2015-07-21 Emerson Climate Technologies, Inc. Power factor correction with variable bus voltage
US9154061B2 (en) 2009-08-10 2015-10-06 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US9564846B2 (en) 2009-08-10 2017-02-07 Emerson Climate Technologies, Inc. Power factor correction with variable bus voltage
CN102754320A (zh) * 2009-08-10 2012-10-24 艾默生环境优化技术有限公司 用于功率因数校正的系统和方法
US9912263B2 (en) 2009-08-10 2018-03-06 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US9634593B2 (en) 2012-04-26 2017-04-25 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
US9991834B2 (en) 2012-04-26 2018-06-05 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
US10075116B2 (en) 2012-04-26 2018-09-11 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
US9240749B2 (en) 2012-08-10 2016-01-19 Emerson Climate Technologies, Inc. Motor drive control using pulse-width modulation pulse skipping
US9853588B2 (en) 2012-08-10 2017-12-26 Emerson Climate Technologies, Inc. Motor drive control using pulse-width modulation pulse skipping

Also Published As

Publication number Publication date
WO2000048433A1 (en) 2000-08-17
US6184630B1 (en) 2001-02-06
JP2002537751A (ja) 2002-11-05
EP1070440A1 (en) 2001-01-24

Similar Documents

Publication Publication Date Title
CN1293885A (zh) 有功率因数校正功能的灯用电子镇流器
US20020011801A1 (en) Power feedback power factor correction scheme for multiple lamp operation
CN1855658A (zh) 无桥路升压pfc电路的、使用单变流器的电流检测方法
CN1356859A (zh) 可调光式电子镇流器
CN1207601A (zh) 功率因子校正变换器
CN1149732C (zh) 具有电流和电压反馈通路的电子镇流器
CN1234142A (zh) Ac/dc转换器
CN1061208C (zh) 气体放电灯的单晶体管镇流器
CN1731910A (zh) 照明用光源的点亮装置
CN1753595A (zh) 用于驱动至少一个光源的电路装置
Vilela et al. An electronic ballast with high power factor and low voltage stress
CN1381157A (zh) 电子镇流器
CN1169406C (zh) 电子镇流器
CN1120561C (zh) 零电压零电流开关混合型全桥三电平直流变换器
Lin et al. A novel single-stage push-pull electronic ballast with high input power factor
CN101883464B (zh) 一种逐流无源因数校正电路及电子镇流器启动电路
CN211046756U (zh) 一种pfc电路
CN103546026A (zh) 一种单相高增益无桥功率因数校正变换器
CN1379540A (zh) 增强型全桥移相软开关方法及变换器
CN1883107A (zh) 具有电阻性输入和低电磁干扰的可调光镇流器
CN211183825U (zh) 一种对称充电泵高功率因数ac/dc变换器
JPH02202365A (ja) 電源装置
CN2513274Y (zh) 改良的被动式功率因数校正电路
CN2514619Y (zh) 一种荧光灯电子镇流器
CN218888415U (zh) 一种宽电压输出范围的低开关损耗三相整流器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication