CN1319954A - 具有最小延迟的对地静止通信系统 - Google Patents

具有最小延迟的对地静止通信系统 Download PDF

Info

Publication number
CN1319954A
CN1319954A CN01112092A CN01112092A CN1319954A CN 1319954 A CN1319954 A CN 1319954A CN 01112092 A CN01112092 A CN 01112092A CN 01112092 A CN01112092 A CN 01112092A CN 1319954 A CN1319954 A CN 1319954A
Authority
CN
China
Prior art keywords
user terminal
communications platform
platform
gateway
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01112092A
Other languages
English (en)
Other versions
CN1206819C (zh
Inventor
哈罗德·罗森
唐纳德·C·D·常
明·U·常(音译)
卫征·王(音译)
约翰·I·诺瓦克三世
瓦·L·林(音译)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DirecTV Group Inc
Original Assignee
Hughes Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hughes Electronics Corp filed Critical Hughes Electronics Corp
Publication of CN1319954A publication Critical patent/CN1319954A/zh
Application granted granted Critical
Publication of CN1206819C publication Critical patent/CN1206819C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform

Abstract

一种通信方法和通信系统被公布。该装置包含一个通信平台和一个网关。该通信平台位于一个同温层位置并直接和一个用户终端通信,从该用户终端接收信息以及向该用户终端发送信息。该网关与该通信平台通信并经由该通信平台使该用户终端与一个基于地面网络耦合。该方法包含从该用户终端将第一信号发送到一个基于同温层的通信平台,从该基于同温层的通信平台将第一信号传输到一个网关地面站,以及从该网关地面站将第一信号传输到该基于地面网络。

Description

具有最小延迟的对地静止通信系统
本发明通常涉及通信系统,尤其涉及具有最小延迟的对地静止通信系统。
通信人造卫星已普遍应用于多种类型的通信系统,例如数据传输,话音通信,电视点波束覆盖范围和其它数据传输应用。象这样,卫星发射和接收大量的在“弯管”配置或“点阵列”配置中被使用以便将它发射到地球表面所希望的地理位置的信号。
由于卫星应用的增加,在给定的卫星上的可利用资源已经完全被利用,而没有向所希望的地理位置提供足够的信号覆盖。象这样,地面用户在没有卫星服务的情况下必须去接收被降低的卫星服务的服务质量(QoS),或者必须和其它的用户分享卫星服务时段,没有一个对在任何给定的时间要求访问该卫星服务的用户可接受的卫星服务。而且,在将信号发送到一个地球同步卫星的延迟大约是二秒传播时间,这就会增加在一种基于卫星的通信系统中的延迟。
那么,可见,需要一种提供对英特网或其它地面网络的高速访问的通信系统的技术。还可以看出,对于大量的用户需要一种高速访问这种网络的技术。还可以看出,需要一种高速访问在该系统结构中具有最小延迟的这种网络的技术。
为了克服上述以往技术的局限性,以及克服在阅读和理解本技术要求时明显出现的局限性,本发明公开一种通信方法和通信系统装置。该装置包含一个通信平台和一个网关。该通信平台位于同温层(stratosphere)位置并直接与一个用户终端通信,从该用户终端接收信息并将信息发送到该用户终端。该网关与通信平台通信,并经由通信平台通过地面网络与用户终端耦合。
该方法包含将第一信号从用户终端发送到一个基于同温层的通信平台,然后将第一信号从基于同温层的通信平台发射到一个网关地面站,再从网关地面站发射到基于地面网络。
本发明提供一种能高速访问英特网和其它地面网络的通信系统。对于大量的用户本发明还提供对这种网络的高速访问。本发明还提供对在该系统结构中具有最小延迟的这种网络的高速访问。
现在参照附图,在该附图中相同的参考号码自始至终表示对应的部件:
图1说明本发明的一个实施例的系统图;
图2说明一个使用本发明的典型的有效负载方框图;
图3说明一种使用本发明的典型的平台配置图;以及
图4是一个说明用于实行本发明的实例步骤的流程图。
在优先实施例的以下说明中,形成对构成在本文中的一部分的附图的参考,并在附图中该参考通过说明一种在其中本发明可以被实施的特殊实施例被示出。显然,其它实施例可以被利用,并且在不脱离本发明范围的情况下可以作结构的改变。
通过卫星通信链路的利用使通信系统被增强。通信系统通常用在一种“弯管”情况下,在那里,数据从地面站向上被发射(“通过上行线路”)到卫星上,然后,该卫星将上行链路数据向下(“通过下行连路”)传输到另一个地理上的远距离地面站。通信系统也能够以一种类似于蜂窝电话系统的方式运行,在那里通信卫星向特定的、不同的地理位置提供点波束。如果需要的话,它将允许每个位置接收不同的信息,例如,一个位置能够接收该地区的本地事件,而同时,另一个位置也能够接收该地区的本地事件。
然而,通信卫星通常位于将它发射到在地球表面上面35788千米(km)距离的地球周围的地球同步轨道上。尽管电磁信号以光速传播,但这些信号必须从地面站经过上行链路通过卫星处理,然后经过下行链路传输到另一个地面站和/或用户天线。由于在最初传输和最后目的地之间的距离是35788km的二倍(71576km),加上在卫星上的处理事件,因此在该系统转接时间中造成明显的延迟。这种延迟在双工通信系统中应特别值得注意。
当在两个远距离地理位置之间发射更多的数据时,卫星数据通过量变得紧张。而且,由于数据必须传播更大的距离,因此,随着数据在卫星上的处理时间的增加,在传输这数据中的延迟将降低卫星传输设计方案的效率。
本发明通过在“卫星”和地面站之间提供一个较短的距离以及减少经过每个“卫星”的传送数据量将尽量减小该系统中的延迟。本发明使用一种“对地静止”的航空平台,该平台适用于微波和其它用于类似通信系统的有效负载平台。由于地面站和平台之间只有20千米的距离,因此在发射和接收之间的延迟减少到与地球同步卫星通信系统的延迟的0.06%以下。
象需要英特网和多媒体应用那样,从系统的开始直接向末端用户的终端提供高的带宽连通性是困难的。地球同步(GEO)卫星受带宽效率的限制并服务于人口稠密区。中等地球轨道(MEO)和低地球轨道(LEO)卫星实际上是复杂的,并且需要用户终端跟踪卫星。而且,MEO/LEO系统通过地理服务区时,卫星之间需要数据管理和数据转换技术。地面系统受基本设施配置等级和成本的限制。
能快速发展的本发明系统根据市场和市场大小可以按比例调节,并可以用新的技术进行服务和升级。本发明还可以被开发服务于可运输的和/或移动的用户。
图1说明本发明的一种实施例的系统图。
图1说明系统100,该系统具有一个将地球表面的地理位置分组的蜂窝模型102。小区104的边缘不是蜂窝模型102的实际界限;每个小区104表示可接收具有预定信号强度的信号或在从平台106获得并提供的点波束模型中接收天线辐射点。
平台106与网关天线108,用户终端110-114,以及控制站116通信。象以下所说明那样在平台106和网关天线108,用户终端110-114,以及控制站116之间的每个通信链路将信息提供给平台106和/或网关天线108,用户终端110-114,或控制站116。
平台106是一个相对于地球上的一个地理位置保持基本稳定的基于同温层的平台。该平台106被控制站116控制以便在地球上给定的点范围内以小的飞行航线118飞行,该航线通常是一个圆,但也可以是一个椭圆或其它形状。每个平台106被用作指定在平台方向的网关天线108和用户终端110-114的一个通信节点。指向该平台的每个网关天线108和用户终端110-114天线具有一个宽的波束宽度足以在全部飞行航线118中与平台106维持通信链路。
网关108也被耦合到地面网络120,该地面网络被连接到与英特网互连以及具有与其它网络互连的能力的基于陆地线路。这将让用户终端110-114访问该网络120而不经由服务器进行直接连接,以及避免实际上可能位于用户终端110-114和地面网络120之间的多重服务器,路由器等。
在整个系统100中地面站116起着用于平台106以及其它平台106的控制站的作用。在整个系统100中,地面站116提供控制功能,例如姿态控制,高度管理,以及替换零件和或平台106。通过监视系统100中的一个或多个平台106的状态,地面站116决定什么时候以及是否一个特定的平台106需要修理,替换或维修被执行的功能。
由平台106使用的天线和用户终端天线110-114以及网关108允许本发明中的大量数据通过量。由于在用户终端110-114和数据源,例如其它用户终端110-114数据库等之间的物理距离较短,因此系统100允许用户以大的速率访问大量数据,因为用户现在可以直接向平台106使用更高频率通信链路,而不考虑其它地理区域的用户可能想同时使用同样的数据。
例如,用户终端110可以从经由平台106和网关108被连接到网络120的数据库访问数据,而不必经过可能延迟经由网络120向用户终端110的数据传送的本地服务器,本地路由器以及其它物理硬件。而且,这将允许用户终端110访问网络120,以及被连接到网络120的其它数据源,而不考虑其它本地和/或在地理上的远距离的用户,因为用户终端110与平台106具有直接连接。
平台106使用位于该平台106上的由混合太阳能和氢燃料电池所产生的电能通过空气动力被维持在所希望的轨道上。平台106上的有效负载模块维持姿态并使用万向接头或其它去耦技术与平台106运动隔离。有效负载106和用户终端110-114天线都被设计用于调节平台106的位置以保持动态特性。
用户数据经由网关108被处理。平台106位于20千米的额定海拔高度。与地球同步卫星的35788千米轨道比较,由于该平台106位于这样低的海拔高度的轨道,因此通信系统100具有相当于或优于相同地理区域的地面网络的延迟等待时间。
系统100还能够使用频率,极化和/或空间发散性使高达222MHz/千米2的带宽密度有效地进入人口稠密的市区。紧密封装的空间发散性类似于地球同步卫星的轨道插槽而被应用于二维(平面)中,从而也允许竞争系统存在。
平台106的位置保持要求是在所有环境条件下该平台106应停留在600米回转半径和+/-30米垂直高度范围内。这将允许地面上的用户终端110-114使用具有宽带宽的天线,该天线带宽足以维持与平台106接触而不用跟踪平台106,象在低地球轨道(LEO)和中等地球轨道(MEO)卫星星座中应该要求的那样。指挥中心116控制平台106,并且在需要时提供备用平台106以确保通常为99.9%的总的系统工作效率的高速率。
平台106上的通信有效负载可以是一种将用户终端110-114连接到网关108的简易的转发器设计,并且也可以是一种更复杂的通信系统设计。网关108天线相互自动跟踪地面站116天线。为了达到在用户终端110-114链路上的带宽密度,多波束被安排在一种普通的四小区重新使用用配置中,但其它重新使用配置能够利用本发明。
小区104大小可以与编码方案设计结合,例如码分多址(CDMA),时分多址(TDMA),频分多址(FDMA)或这些方案设计的结合,以便克服在最恶劣情况下由平台运动所引起的干扰。而且,用户终端110-114链路可以设计用于任何频段,包括Ka-和Ku-频段。满足图1所示的GEO-静态要求的平台106是在这里通过而参考具体化的U.S.专利No.5810284的变型。
图2说明一种使用本发明的典型的有效负载方框图。
方框图表示用作平台106的发送和接收天线的网关天线200A-200D。每个天线200A-200D被耦合到天线共用器202和放大器204。由天线200A-200D所接收的信号使用下变频器206被下变频,被下变频的信号通过放大器208被放大。然后每个信号被分离成副带210,并且副带210进一步被分成用户信号212。然后用户信号212经由放大器214和天线共用器216发送到用于向用户终端110-114传输的用户天线218A-218B。
从用户终端110-114的返回链路信号在用户天线218A-218B被接收,然后经由天线共用器216被重新使用到上变频器220。每个信号在组合器222中被组合,当它们被分离成副带210时在那里十二个用户信号以大致相同的方式被组合。在上变频器224中该信号再次被上变频,然后经由天线200A-200D送还到网关108。
由用户天线218A-218B所接收的信号频率可以和GEO卫星的信号频率不同,例如,在那里典型的GEO卫星使用29.30-30GHz信号作为上行链路信号,到平台106的信号可以是19.7-20.2GHz信号,以避免现存的GEO卫星的干扰。而且,由用户天线218A-218B发送的信号可能是不同于现存的GEO卫星下行链路信号频率,例如该信号可以是29-5-30GHz,代替由GEO卫星使用的典型的19.7-20.2GHz,再次避免干扰。
由网关天线200A-200D所接收的信号的可利用的带宽通常是500MHz,它由天线共用器202A和202B分成二个250MHz副带。每个250MHz副带支持十二个用户信号212,并且共有八个副带,因此,平台106有效负载可以支持96个用户信号212。如果对应的小区104大小是8km六角形,那么这种配置可以达到6MHz/km2带宽。
网关108使用高频通信链路,通常向平台106发送92-95GHz上行链路信号并从平台106接收81-84GHz下行链路信号。在上行链路信号和下行链路信号范围内的频段是重新用于在系统100中的每个网关108的极化频段。因此,每个平台能和一个或多个网关108通信。网关108在空间上被隔离并可以使用自动跟踪天线以便使向平台106传输的数据通过量达到最大。通过使用频率/极化重新使用方案,可以达到八个重新使用因素,从而每平台106产生24GHz的带宽通过量。网关108在外面经由地面网络120或其它网络如卫星网络处理和路由选择用户数据,或者可以将传输到平台106的数据直接路由选择给在覆盖区域102范围内的用户终端110-114。网关108链路还可以使用交叉极化抵消技术以便在最坏天气情况下例如下雨天维持链路特性。
用户终端110-114天线应具有足够的带宽以便调节平台106飞行航线118,例如用于位置保持。同时,用户终端110-114的带宽必需足够窄以便在整个相同的覆盖区域102允许多个平台106工作,从而如果需要,将进一步增加带宽密度。与图2有效负载相对应,对于直接在平台106下面的小区104可以使用30cm直径天线,而对于在该覆盖区域的边缘的小区104要求45cm直径天线以便维持额定的E1(2.048MBPS)数据速率的通信链路。
对于那些在Ka-频段的用户终端110-114天线的旁瓣电平允许如图3中所示具有最小相互干扰的37个六角形封装平台106。每个平台在具有距离D的半径300的飞行航线118上飞行。在平台之间的距离302是D的8.6倍。这种配置将交叠区域中的带宽密度增加到222MHz/km2。由于有空间隔离将使在GEO Ka-频段终端和本发明的系统之间的干扰可以大为减轻。
当在各种市场推广应用时,本发明的系统可以用很多方式按比例调节和优化。有效负载可以被设计增加相当于单个网关108的6GHz通过量。天线波束可以有选择地增加以便覆盖必要的小区104。当平台106为了维修而收回时,该有效负载可以升级并重新配置。该平台106可以被优化以便用更小的有效负载实行更严密的位置保持。该小区104大小相应地可以减小以便获得更高的带宽密度。同样,整个系统100容量在一个覆盖区域102中可以用多个平台106维持。
图4是说明用来实施本发明的实例步骤的流程图。
方框400说明执行将第一信号从用户终端发送到基于同温层的通信平台的步骤。
方框402说明执行将该第一信号从基于同温层的通信平台传输到网关地面站的步骤。
方框404说明执行将该第一信号从网关地面站传输到基于地面网络的步骤。
以上包括本发明的优先实施例的说明。下面章节将说明若干达到相同目的替代方法。本发明虽然说明了关于RF和电系统,但也可以使用光系统达到相同目的。而且,该平台可以配置在不同高度,并具有不同的封装密度,或使用不同的有效负载以便基本上达到象在本文中所说明的相同目的。
总括地说,本发明公布了一种通信方法和一种通信系统装置。该装置包含一个通信平台和一个网关。该通信平台位于一个同温层位置并且直接与一个用户终端通信,从用户终端接收信息以及向用户终端传输信息。该网关与该通信平台通信,并经由该通信平台使用户终端和一个基于地面网络耦合。
该方法包含将第一信号从用户终端发送到基于同温层的通信平台,并将该第一信号从基于该同温层的通信平台传输到一个网关地面站,然后将第一信号从该网关地面站传输到基于地面网络。
本发明的优先实施例的上述说明被介绍用于说明的目的。不打算详尽地说明或将本发明限制于被公开的精确形式。根据以上讲授可能有很多修改和变更。人们打算使本发明的范围不受这种详细说明的限制,而是受附加在这种说明上的权利要求书的限制。

Claims (10)

1.一个通信系统包含:
一个通信平台,该通信平台位于一个同温层位置,并直接与一个用户终端通信,以便从该用户终端接收信息并向该用户终端传输信息;以及
一个网关,该网关与该通信平台通信,以便经由该通信平台使用户终端与基于地面网络耦合。
2.根据权利要求1的通信系统,其中,通信平台在同温层位置基本上是对地静止的。
3.根据权利要求1的通信系统,其中,该系统包含一个以上的通信平台。
4.根据权利要求3的通信系统,其中,该网关与一个以上的通信平台通信。
5.根据权利要求4的通信系统,其中,用户终端只与一个通信平台通信。
6.根据权利要求1的通信系统,其中,用户终端在第一频段与通信平台通信,而该通信平台在第二频段与该网关通信。
7.根据权利要求1的通信系统,其中,通信平台的同温层位置位于用户终端的预定距离范围内以便维持该通信平台和该用户终端之间的通信。
8.一个通信信号通过执行以下步骤产生,这些步骤是:
从该用户终端将第一信号发送到基于同温层的通信平台;
从基于该同温层的通信平台将第一信号传输到一个网关地面站;以及
从该网关地面站将第一信号传输到基于地面网络。
9.一种在一个用户终端和一个基于地面网络之间的通信方法包含:
从该用户终端将第一信号发送到一个基于同温层的通信平台;
从基于该同温层的通信平台将第一信号传输到一个网关地面站;以及
从该网关地面站将第一信号传输到该基于地面网络。
10.一种通信系统包含:
一个用于经由一个基于地面网络传输和接收数据的用户终端,其中,该用户终端直接与位于一个同温层位置的一个通信平台通信;以及
一个网关,它与该通信平台通信,以便经由该通信平台在通信上将该基于地面网络耦合到该用户终端。
CNB011120924A 2000-03-31 2001-03-30 具有最小延迟的对地静止通信系统 Expired - Lifetime CN1206819C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53996400A 2000-03-31 2000-03-31
US09/539,964 2000-03-31

Publications (2)

Publication Number Publication Date
CN1319954A true CN1319954A (zh) 2001-10-31
CN1206819C CN1206819C (zh) 2005-06-15

Family

ID=24153387

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011120924A Expired - Lifetime CN1206819C (zh) 2000-03-31 2001-03-30 具有最小延迟的对地静止通信系统

Country Status (5)

Country Link
US (1) US7027769B1 (zh)
EP (1) EP1139583B1 (zh)
JP (1) JP2001308770A (zh)
CN (1) CN1206819C (zh)
DE (1) DE60121846T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796187A (zh) * 2014-01-16 2015-07-22 中国人民解放军总参谋部第六十一研究所 基于平流层准静态卫星基站的增强传输方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785553B2 (en) 1998-12-10 2004-08-31 The Directv Group, Inc. Position location of multiple transponding platforms and users using two-way ranging as a calibration reference for GPS
US6337980B1 (en) 1999-03-18 2002-01-08 Hughes Electronics Corporation Multiple satellite mobile communications method and apparatus for hand-held terminals
US7027769B1 (en) 2000-03-31 2006-04-11 The Directv Group, Inc. GEO stationary communications system with minimal delay
US6756937B1 (en) 2000-06-06 2004-06-29 The Directv Group, Inc. Stratospheric platforms based mobile communications architecture
US7200360B1 (en) 2000-06-15 2007-04-03 The Directv Group, Inc. Communication system as a secondary platform with frequency reuse
US6829479B1 (en) * 2000-07-14 2004-12-07 The Directv Group. Inc. Fixed wireless back haul for mobile communications using stratospheric platforms
US7317916B1 (en) 2000-09-14 2008-01-08 The Directv Group, Inc. Stratospheric-based communication system for mobile users using additional phased array elements for interference rejection
US6763242B1 (en) 2000-09-14 2004-07-13 The Directv Group, Inc. Resource assignment system and method for determining the same
US7400857B2 (en) * 2000-12-12 2008-07-15 The Directv Group, Inc. Communication system using multiple link terminals
US8396513B2 (en) 2001-01-19 2013-03-12 The Directv Group, Inc. Communication system for mobile users using adaptive antenna
US7187949B2 (en) * 2001-01-19 2007-03-06 The Directv Group, Inc. Multiple basestation communication system having adaptive antennas
US7809403B2 (en) 2001-01-19 2010-10-05 The Directv Group, Inc. Stratospheric platforms communication system using adaptive antennas
US8280309B2 (en) * 2005-04-08 2012-10-02 The Boeing Company Soft handoff method and apparatus for mobile vehicles using directional antennas
US9306657B2 (en) * 2005-04-08 2016-04-05 The Boeing Company Soft handoff method and apparatus for mobile vehicles using directional antennas
AU2006280065B2 (en) * 2005-08-09 2010-09-30 Atc Technologies, Llc Satellite communications systems and methods using substantially co-located feeder link antennas
US8116763B1 (en) 2009-09-02 2012-02-14 The United States Of America As Represented By The Secretary Of The Navy Airborne basestation
US8218474B2 (en) * 2008-11-18 2012-07-10 Socovar S.E.C. Bandwidth allocation in satellite communication networks
WO2016137525A1 (en) * 2015-02-27 2016-09-01 Ocean Lab, Llc A reconfigurable drift measurement tool
EP4024727A1 (en) 2017-11-02 2022-07-06 Intelsat US LLC Methods and systems for increasing bandwidth efficiency in satellite communications
JP6760982B2 (ja) * 2018-02-05 2020-09-23 ソフトバンク株式会社 無線中継装置及び通信システム
JP6832896B6 (ja) 2018-08-27 2021-03-24 Hapsモバイル株式会社 空中滞在型の通信中継装置におけるフィーダリンクの通信を行うシステム
JP7244302B2 (ja) * 2019-03-01 2023-03-22 Hapsモバイル株式会社 Hapsマルチフィーダリンクにおける干渉キャンセリング
CN111711479B (zh) * 2020-06-15 2022-02-11 重庆邮电大学 一种低轨卫星系统资源调度方法

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2598064A (en) * 1942-01-07 1952-05-27 Rca Corp Air-borne radio relaying system
US2748266A (en) * 1952-12-18 1956-05-29 Bell Telephone Labor Inc Radiant energy relay system
US3993997A (en) * 1969-03-28 1976-11-23 Navsat Corporation Communication system and method
US4797677A (en) * 1982-10-29 1989-01-10 Istac, Incorporated Method and apparatus for deriving pseudo range from earth-orbiting satellites
US4635063A (en) 1983-05-06 1987-01-06 Hughes Aircraft Company Adaptive antenna
JPS63253278A (ja) 1987-04-10 1988-10-20 Sony Corp 衛星を用いた測位方法
US5017927A (en) 1990-02-20 1991-05-21 General Electric Company Monopulse phased array antenna with plural transmit-receive module phase shifters
US5218619A (en) 1990-12-17 1993-06-08 Ericsson Ge Mobile Communications Holding, Inc. CDMA subtractive demodulation
US5077562A (en) 1990-12-24 1991-12-31 Hughes Aircraft Company Digital beam-forming technique using temporary noise injection
US6067442A (en) 1991-10-10 2000-05-23 Globalstar L.P. Satellite communications system having distributed user assignment and resource assignment with terrestrial gateways
DE69232442T2 (de) 1991-12-16 2002-08-22 Xircom Wireless Inc Spreizspektrum-datenveröffentlichungssystem
US6408180B1 (en) 1992-03-06 2002-06-18 Aircell, Inc. Ubiquitous mobile subscriber station
US5550809A (en) 1992-04-10 1996-08-27 Ericsson Ge Mobile Communications, Inc. Multiple access coding using bent sequences for mobile radio communications
CA2168353C (en) 1993-07-30 2008-01-08 Sherwin I. Seligsohn Sub-orbital, high altitude communications system
US5572216A (en) 1993-11-19 1996-11-05 Stanford Telecommunications, Inc. System for increasing the utility of satellite communication systems
US6020845A (en) 1993-11-19 2000-02-01 Stanford Telecommunications, Inc. Satellite for increasing the utility of satellite communication systems
US5619503A (en) 1994-01-11 1997-04-08 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US6195555B1 (en) 1994-01-11 2001-02-27 Ericsson Inc. Method of directing a call to a mobile telephone in a dual mode cellular satellite communication network
US5589834A (en) 1994-04-22 1996-12-31 Stanford Telecommunications, Inc. Cost effective geosynchronous mobile satellite communication system
EP0765560A1 (en) 1994-06-08 1997-04-02 Hughes Aircraft Company Apparatus and method for hybrid network access
US5691974A (en) 1995-01-04 1997-11-25 Qualcomm Incorporated Method and apparatus for using full spectrum transmitted power in a spread spectrum communication system for tracking individual recipient phase, time and energy
US5810284A (en) 1995-03-15 1998-09-22 Hibbs; Bart D. Aircraft
US5584047A (en) 1995-05-25 1996-12-10 Tuck; Edward F. Methods and apparatus for augmenting satellite broadcast system
BR9608410A (pt) 1995-06-06 1998-12-29 Globalstar Lp Sistema de administração de recursos de diversidade de satélites repetidores
WO1997007609A2 (en) 1995-08-11 1997-02-27 Ramot University Authority For Applied Research & Industrial Development Ltd. High altitude cellular communication system platform
US5612701A (en) 1995-09-18 1997-03-18 Motorola, Inc. Adaptive beam pointing method and apparatus for a communication system
US6085078A (en) 1995-10-30 2000-07-04 Stamegna; Ivano Vehicular audio system incorporating detachable cellular telephone
US6047165A (en) 1995-11-14 2000-04-04 Harris Corporation Wireless, frequency-agile spread spectrum ground link-based aircraft data communication system
US5926745A (en) 1995-11-30 1999-07-20 Amsc Subsidiary Corporation Network operations center for mobile earth terminal satellite communications system
US5909460A (en) 1995-12-07 1999-06-01 Ericsson, Inc. Efficient apparatus for simultaneous modulation and digital beamforming for an antenna array
CA2165875C (en) 1995-12-21 2001-03-13 Gary Beauchamp Intersatellite communications systems
US5862480A (en) 1995-12-26 1999-01-19 Motorola, Inc. Method and apparatus for managing service accessibility between differing radio telecommunication networks
US6324398B1 (en) 1996-02-26 2001-11-27 Lucent Technologies Inc. Wireless telecommunications system having airborne base station
US5878034A (en) 1996-05-29 1999-03-02 Lockheed Martin Corporation Spacecraft TDMA communications system with synchronization by spread spectrum overlay channel
US5917447A (en) 1996-05-29 1999-06-29 Motorola, Inc. Method and system for digital beam forming
US5864579A (en) 1996-07-25 1999-01-26 Cd Radio Inc. Digital radio satellite and terrestrial ubiquitous broadcasting system using spread spectrum modulation
US5946625A (en) 1996-10-10 1999-08-31 Ericsson, Inc. Method for improving co-channel interference in a cellular system
US5963862A (en) 1996-10-25 1999-10-05 Pt Pasifik Satelit Nusantara Integrated telecommunications system providing fixed and mobile satellite-based services
US6067453A (en) 1996-10-25 2000-05-23 Pt Pasifik Satelit Nusantara Satellite-based direct access telecommunications systems
US5856804A (en) 1996-10-30 1999-01-05 Motorola, Inc. Method and intelligent digital beam forming system with improved signal quality communications
US5974317A (en) 1996-11-08 1999-10-26 Lucent Technologies, Inc. Cell-clustering arrangements and corresponding antenna patterns for wireless communication networks employing high-altitude aeronautical antenna platforms
US5896558A (en) 1996-12-19 1999-04-20 Globalstar L.P. Interactive fixed and mobile satellite network
US5949766A (en) 1996-12-30 1999-09-07 Motorola, Inc. Ground device for communicating with an elevated communication hub and method of operation thereof
US6151308A (en) 1996-12-30 2000-11-21 Motorola, Inc. Elevated communication hub and method of operation therefor
US5903549A (en) 1997-02-21 1999-05-11 Hughes Electronics Corporation Ground based beam forming utilizing synchronized code division multiplexing
US5918157A (en) 1997-03-18 1999-06-29 Globalstar L.P. Satellite communications system having distributed user assignment and resource assignment with terrestrial gateways
US5790070A (en) 1997-05-05 1998-08-04 Motorola, Inc. Network and method for controlling steerable beams
AU7575498A (en) 1997-05-16 1998-12-08 Spherecore, Inc. Aerial communications network
US6032041A (en) 1997-06-02 2000-02-29 Hughes Electronics Corporation Method and system for providing wideband communications to mobile users in a satellite-based network
AU9380298A (en) 1997-09-08 1999-03-29 Angel Technologies Corporation Wireless communication using atmospheric platform
US5973647A (en) 1997-09-17 1999-10-26 Aerosat Corporation Low-height, low-cost, high-gain antenna and system for mobile platforms
US6215776B1 (en) 1997-10-08 2001-04-10 Lockheed Martin Missiles & Space Company Satellite communication system
JP4050460B2 (ja) 1997-10-14 2008-02-20 クゥアルコム・インコーポレイテッド 通信システムにおける非線形効果を測定し、その結果に基づいてチャンネルを選択する方法および装置
US6061562A (en) 1997-10-30 2000-05-09 Raytheon Company Wireless communication using an airborne switching node
US6104911A (en) 1997-11-14 2000-08-15 Motorola, Inc. Communication system with satellite diversity and method of operation thereof
US6201797B1 (en) 1997-12-12 2001-03-13 At&T Wireless Services Inc. High bandwidth delivery and internet access for airborne passengers
US6111542A (en) 1998-04-06 2000-08-29 Motorola, Inc. Rotating electronically steerable antenna system and method of operation thereof
JP3316561B2 (ja) 1998-07-06 2002-08-19 株式会社村田製作所 アレーアンテナ装置および無線装置
US6205320B1 (en) 1998-09-04 2001-03-20 Richard Coleman System for satellite to airship to gateway/customer premise equipment, and airship to airship, high data rate relay
AU5805299A (en) 1998-09-08 2000-03-27 Angel Technologies Corporation Network for providing wireless communications using an atmospheric platform
US6176451B1 (en) 1998-09-21 2001-01-23 Lockheed Martin Corporation Utilizing high altitude long endurance unmanned airborne vehicle technology for airborne space lift range support
US6400925B1 (en) 1999-02-25 2002-06-04 Trw Inc. Packet switch control with layered software
US6438379B1 (en) 1999-05-28 2002-08-20 Lucent Technologies, Inc. Power control and cell site location technique for CDMA systems with hierarchical architecture
WO2000079705A1 (fr) 1999-06-17 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Systeme de communications mobiles
US6628941B2 (en) 1999-06-29 2003-09-30 Space Data Corporation Airborne constellation of communications platforms and method
US6397078B1 (en) 1999-08-27 2002-05-28 Young S. Kim Combined mobile telephone and personal digital assistant
US7027769B1 (en) 2000-03-31 2006-04-11 The Directv Group, Inc. GEO stationary communications system with minimal delay
US6963548B1 (en) 2000-04-17 2005-11-08 The Directv Group, Inc. Coherent synchronization of code division multiple access signals
EP1152552A3 (en) 2000-05-05 2004-05-06 Hughes Electronics Corporation System and method for two-way communications using a high altitude communication device
US6933857B2 (en) 2000-05-05 2005-08-23 Charles A. Foote Method and system for airborne meter communication
ES2283353T3 (es) 2000-05-22 2007-11-01 Hughes Electronics Corporation Un sistema de comunicaciones inalambricas de plataformas multiples para una variedad de diferentes tipos de usuario.
EP1232579B1 (en) 2000-05-30 2007-02-21 Hughes Electronics Corporation Multi-node wireless communication system with multiple transponding platforms
US6388615B1 (en) 2000-06-06 2002-05-14 Hughes Electronics Corporation Micro cell architecture for mobile user tracking communication system
US6756937B1 (en) 2000-06-06 2004-06-29 The Directv Group, Inc. Stratospheric platforms based mobile communications architecture
US6507739B1 (en) 2000-06-26 2003-01-14 Motorola, Inc. Apparatus and methods for controlling a cellular communications network having airborne transceivers
US7149526B2 (en) 2000-08-02 2006-12-12 Atc Technologies, Llc Coordinated satellite-terrestrial frequency reuse
US6380893B1 (en) 2000-09-05 2002-04-30 Hughes Electronics Corporation Ground-based, wavefront-projection beamformer for a stratospheric communications platform
US6567052B1 (en) 2000-11-21 2003-05-20 Hughes Electronics Corporation Stratospheric platform system architecture with adjustment of antenna boresight angles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796187A (zh) * 2014-01-16 2015-07-22 中国人民解放军总参谋部第六十一研究所 基于平流层准静态卫星基站的增强传输方法
CN104796187B (zh) * 2014-01-16 2018-08-28 中国人民解放军总参谋部第六十一研究所 基于平流层准静态卫星基站的增强传输方法

Also Published As

Publication number Publication date
US7027769B1 (en) 2006-04-11
DE60121846T2 (de) 2007-07-26
EP1139583A2 (en) 2001-10-04
JP2001308770A (ja) 2001-11-02
EP1139583B1 (en) 2006-08-02
CN1206819C (zh) 2005-06-15
EP1139583A3 (en) 2002-05-02
DE60121846D1 (de) 2006-09-14

Similar Documents

Publication Publication Date Title
CN1206819C (zh) 具有最小延迟的对地静止通信系统
US6339707B1 (en) Method and system for providing wideband communications to mobile users in a satellite-based network
Zhou et al. Overview of development and regulatory aspects of high altitude platform system
JP3990111B2 (ja) メディアおよび低軌道衛星を使用して広帯域サービスを提供する方法および装置
KR100878646B1 (ko) 통신 시스템
CN101263670B (zh) 使用不对称前向和返回链路频率再用的卫星通信装置和方法
US6850732B2 (en) Scalable satellite data communication system that provides incremental global broadband service using earth-fixed cells
CN107431519B (zh) 一种用于改进数据传送的过程和装置
Bem et al. Broadband satellite systems
CN1269078A (zh) 容量共享的固定的移动卫星无线电电话系统和方法
ES2322025T3 (es) Reutilizacion de frecuencia en un sistema de comunicacion de satelite geosincrono.
US6490448B1 (en) Snap to grid variable beam size digital beamforming system
Tuck et al. The CallingSM Network: a global wireless communication system
Massaro et al. QV-LIFT project: Using the Q/V band Aldo Paraboni demonstration payload for validating future satellite systems
US6829479B1 (en) Fixed wireless back haul for mobile communications using stratospheric platforms
Tuck et al. The Calling Network: a global telephone utility
Tuck et al. The Calling^ S^ M Network: a global telephone utility
Sturza The teledesic satellitesystem: Overview and design trades
Kozhemyako et al. Energy calculation of a satellite communication system
Ostovarzadeh et al. A proposed multibeam Ka-band satellite for providing high-speed internet service for Iranian universities and educational institutions
Irani et al. An advanced Canadian demonstration satellite system for enhanced personal and business communications
Narayanan et al. INSAT-mobile satellite communication services
WO2007084165A2 (en) Satellite scanning maritime beam for two-way broadband services
Benedicto et al. AK/Ka-band satellite system providing personal and mobile multimedia telecommunication services
Evans et al. Session 5 Current and Planned Systems

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20050615

CX01 Expiry of patent term