CN1329729C - 微流体系统 - Google Patents

微流体系统 Download PDF

Info

Publication number
CN1329729C
CN1329729C CNB971975752A CN97197575A CN1329729C CN 1329729 C CN1329729 C CN 1329729C CN B971975752 A CNB971975752 A CN B971975752A CN 97197575 A CN97197575 A CN 97197575A CN 1329729 C CN1329729 C CN 1329729C
Authority
CN
China
Prior art keywords
pipeline
substrate
sample
test material
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB971975752A
Other languages
English (en)
Other versions
CN1228841A (zh
Inventor
J·沃雷斯·帕斯
迈克尔·R·克耐普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/671,986 external-priority patent/US5779868A/en
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Publication of CN1228841A publication Critical patent/CN1228841A/zh
Application granted granted Critical
Publication of CN1329729C publication Critical patent/CN1329729C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3021Micromixers the materials to be mixed flowing in the form of droplets the components to be mixed being combined in a single independent droplet, e.g. these droplets being divided by a non-miscible fluid or consisting of independent droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3035Micromixers using surface tension to mix, move or hold the fluids
    • B01F33/30351Micromixers using surface tension to mix, move or hold the fluids using hydrophilic/hydrophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3035Micromixers using surface tension to mix, move or hold the fluids
    • B01F33/30352Micromixers using surface tension to mix, move or hold the fluids using roughness of the surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0418Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electro-osmotic flow [EOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S366/00Agitating
    • Y10S366/02Micromixers: segmented laminar flow with boundary mixing orthogonal to the direction of fluid propagation with or without geometry influences from the pathway
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/113332Automated chemical analysis with conveyance of sample along a test line in a container or rack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Abstract

管道(140)被分成多个部分(142,144)。每个管道部分(142,144)的侧壁上有极性相反的面电荷。两个管道部分(142,144)通过诸如玻璃料或凝胶层等盐桥(133)以物理方式相连。盐桥(133)分离管道(140)中来自离子化流体储库(135)的流体。分别在A部和B部沿管道(140)产生电渗力和电泳力。另外,在储库(135)中布置第三电极(137)。

Description

微流体系统
相关申请的交叉文献
本申请是申请日为1996年12月6日的美国专利申请第08/760,446号的部分续展申请,而美国专利申请第08/760,446号是申请日为1996年6月28日的美国专利申请第08/671,986号的部分续展申请,为了所有的目的,这些申请的全部内容通过引用包括在此。
发明背景
人们对制造和运用微流体(microfluidic)系统来获得化学和生化信息的兴趣日益增大。目前,用通常与半导体电子工业相关的技术(诸如光刻法、湿式化学蚀刻等)来制造这些微流体系统。术语“微流体”是指这样的系统或装置,它们所具有的管道和小室一般在微米或亚微米标度上构造,例如,至少有一个截面尺寸在大约0.1μm到大约500μm的范围内。早期,Manz等人在1990年 Trends in Anal. Chem.10(5)第144-149页以及1993年 Avd.in Chromatog 33第1-66页中,讨论了用平面芯片技术制造微流体系统的方法,叙述了在硅和玻璃基片中构造这种流体装置,尤其是微毛细管装置。
微流体系统有多种应用。例如,国际专利申请WO 96/04547(公布于1996年2月15日)将微流体系统用于毛细管电泳、液体层析、注流分析(flow injectionanalysis)以及化学反应和合成等。1996年6月28日提交的美国专利申请第08/671,987号公开了微流体系统在快速分析大量化合物方面的广泛应用,分析其对各种化学系统,特别是生化系统的影响,该专利申请的内容通过引用包括在此。术语“生化系统”一般是指一种化学相互作用,其中涉及一般在活的生物体里发现的分子。这类相互作用包括在活体系统里发生的分解代谢和合成代谢反应的全部范围,包括酶反应、结合反应、信号反应和其它反应。特别感兴趣的生化系统例如包括受体-配体相互作用、酶-酶解物相互作用、细胞信号途径、供生物药效筛选所涉及的模型屏障系统(如细胞或膜部分)的传送反应和其它各种一般系统。
已描述了在这些微流体系统或装置中传输和导向流体(例如,样品、分析物、缓冲剂和试剂)的多种方法。一种方法是用微构造装置中的微型机械泵和阀使流体在该装置中流动。参见,已公开的英国专利申请第2248 891号(10/18/90),已公开的欧洲专利申请第568 902号(5/2/92),美国专利第5,271,724号(8/21/91)和5,277,556号(7/3/91)。还可以参见,Miyazaki等人获得的美国专利第5,171,132号(12/21/90)。另一种方法是依靠声学流的作用,用声能使流体样品在装置中流动。参见,由Northrup和White等人发明的已公开PCT申请第94/05414号。一种直接的方法是施加外压,使流体在装置中流动。参见,由Wilding等人获得的美国专利第5,304,487号。
再一种方法是运用电场使流体物料流过微流体系统的管道。例如,参见由Kovacs发明的已公开欧洲专利申请第376611号(12/30/88),Harrision等人在1992年 Anal.Chem.64第1926-1932页上发表的文章,Manz等人在1992年J.Chromatog.593第253-258页上发表的文章,以及由Soane获得的美国专利第5,126,022号。电动力具有直接控制、快速响应以及简单的优点。然而,仍存在一些缺点。
为了获得最大的效率,希望将试验物料尽可能靠在一起传输。但是,传输物料时不能与其它传输物料混杂。另外,物料在微流体系统的某一位置处于某一状态,在其移动到微流体系统的另一位置后,物料应保持相同的状态。需要时,这些条件允许控制对化合物物料的测试、分析和反应。
在用电动力移动物料的微流体系统中,试验物料区中带电分子和离子,以及用于分隔这些试验物料区的区域中的带电分子和离子受到不同的电场作用,从而影响流体的流动。
但是,当施加这些电场时,试验物料内带不同电荷的物质将呈现不同的电泳移动,即带正电荷的的移动速度与带负电荷的物质品种不同。过去,在受电场作用的样品内分离不同物质品种不被看成是一问题,而且事实上还将其看成是毛细管电泳现象的所需结果。但是,当希望进行简单的流体传输时,这些不同的移动会在试验物料中引起不希望有的改变或“电泳偏离”。
如没有避免混杂的考虑和措施,微流体系统只好大距离地分离试验物料,或者更糟的是,一次将一种物料移过系统。在任何一种情况下,这都会大大地降低微流体系统的效率。另外,如果传输中不能保持被传输物料的状态,那么就会失去要求不改变物料而达到某一位置的许多应用。
本发明解决或基本上解决了这些电动传输问题。利用本发明,微流体系统能够有效地移动物料,并且在被传输物料中没有不希望有的变化。本发明提供了一种高通过量的微流体系统,该系统可以定向、快速和直接控制材料移过微流体系统的管道,在诸如化学、生化、生物技术、分子生物学领域以及许多其它领域中具有广泛的应用。
发明内容
依照本发明的一个方面,提供了一种微流体系统。该系统包括:基片,所述基片中布置了至少一个第一管道和至少一个第二管道,所述第二管道与所述第一管道相交,并且所述第一管道比所述第二管道深,所述第一管道之宽度对深度的纵横比大于5;和电渗流导向系统。
在本发明的微流体系统中,所述至少一个第一管道的深度至少可以是所述第二管道的2倍、5倍或10倍。
依照本发明的另一方面,提供了用于上述的本发明微流体系统的微流体装置。该装置包括基片,所述基片中至少布置了第一和第二交叉的流体管道,所述第一管道的宽度对深度的纵横比大于5,并且所述第一和第二管道具有不同的深度。
在本发明的微流体装置中,所述第一管道的深度可以为所述第二管道深度的2-10倍。
依照本发明的又一方面,提供了一种微流体系统。该系统包括:第一基片;至少第一和第二管道,它们布置在所述第一基片中,所述第一和第二管道在第一交会处进行流体连通,所述第一管道的深度至少是所述第二管道的两倍,并且所述第一管道的宽度对深度的纵横比大于5;和用于移动物料以便使所述物料通过所述第一和第二管道的系统。用于移动物料的系统包括:至少第一、第二和第三电极,所述第一和第二电极在所述第一交会处的两侧与所述第一管道电接触,所述第三电极与所述第二管道电接触;和电源,用于为所述第一、第二和第三电极提供电压,以便沿所述第一和第二管道中至少一个管道的长度,有选择地产生一电压梯度。
在本发明的微流体系统中,所述第一管道的深度至少可以是所述第二管道深度的5倍或10倍。
在本发明的微流体系统中,所述第一基片具有至少一个平表面,所述第一和第二管道被制作在所述第一基片的所述至少一个平表面中;并且所述微流体系统还可以包括至少一个第二基片,所述至少一个第二基片覆盖所述第一基片的所述至少一个平表面。所述至少一个第二基片具有入口。
本发明提供了一种微流体系统,该系统通过电渗作用,使试验物料在微流体系统中以流体团(也称为“试验物料区”)的形式沿管道从第一点移动到第二点。高离子浓度的第一分隔区与每个试验物料区的至少一侧接触,而低离子浓度的第二分隔区与包含试验物料的试验物料区以及第一或高离子浓度分隔区布置在一起,致使在第一和第二点之间总是至少有一低离子浓度区,从而确保两点间的大部分压降和所得的电场施加在低离子浓度区的两端。
本发明还提供了一种电吸移管,该电吸移管与利用电渗力移动试验物料的微流体系统兼容。电吸移管具有一带管道的毛细管。电极沿毛细管的外侧长度固定,并且终止于位于毛细管末端的电极环。通过控制该电极以及目标储库中电极上的电压,在电动作用下,将物料导入管道,这里当把毛细管放入物料源中时,所述目标储库与管道流体连接。为了便于导入微流体系统,可以在管道中形成一个由试验物料区、高离子浓度缓冲分隔区以及低离子浓度缓冲分隔区组成的队列。
当电动作用使试验物料沿微流体系统的管道传输时,本发明还能对电泳偏离进行补偿。在一实施例中,微流体系统中两点间的管道具有两个部分,这两个部分的侧壁带有相反的面电荷。两部分之间放有一电极。将两点上的电压设置成基本上相等,而在这两部分之间的中间电极上设置不同的电压,由此,两部分中的电泳力沿相反的方法,而电渗力沿同一方向。当试验物料从一点传输到另一点时,电泳力得到补偿,同时电渗力将流体物料移过管道。
在另一实施例中,在微流体系统多个管道的交会处形成一小室。小室的侧壁与相交管道的侧壁相连。当试验物料区在交会处从一根管道转向另一根管道时,小室的侧壁使试验物料区漏入第二管道中。第二管道的宽度使得扩散作用可以混合当试验物料区沿第一管道传输时区域中受电泳偏离的任何试验物料。
在又一实施例中,本发明提供了一种微流体系统,以及使用该系统的方法,所述方法可以控制流体流在至少具有两根相交管道的微流体装置内传输。系统包括一基片,基片中至少安置了两根相交的管道。在该情况下,一根管道比另一根管道深。系统还包括一电渗流定向系统。当流体流至少包含两个离子浓度不同的流体区时,该系统特别有用。
本发明还提供了一种使用本发明电吸移管的采样系统。采样系统包括样品基片,基片上固定有多个不同的样品。还包括平移系统,用于相对所述样品基片移动电吸移管。
如上所述的发明可以有多种不同的用途,用途本身也有具有创造性。举例如下:
在带管道之基片的一种用途中,至少把第一试验物料沿管道从至少第一位置传输到第二位置,并且至少使用一个低离子浓度的区域,所述低离子浓度区因所加电压沿管道传输。
在上述发明的一种用途中,一个区域的离子浓度基本上低于试验物料的离子浓度。
在上述发明的一种用途中,传输由高离子浓度分隔区分开多种试验物料。
把一种带管道的基片用于补偿电泳偏离的方法,其中沿所述管道至少传输第一试验物料,管道被分成第一和第二部分,在该方法中,管道的侧壁带相反的电荷,致使第一试验物料因在第一部分中传输而受到的电泳偏离基本上可以用因在第二部分中传输而受到的电泳偏离来补偿。
在上述发明的一种用途中,第一电位于一部分的远端,第二电极位于各部分之间的交会处,而第三电极位于第二部分的远端。
在上述发明的一种用途中,基片是一微流体系统。
在上述发明的一种用途中,基片是一电吸移管。
在上述发明的一种用途中,电吸移管具有一主管道,用于传输试验物料;以及至少另一个管道,它与主管道流体连接,从主管道获得沿主管道传输的另一种物料。
在上述发明的一种用途中,另一种物料被拖入主管道,在多种分离的试验物料的每种物料之间成为一缓冲剂区。
一种把微流体系统用于优化流动条件的方法,其中微流体系统至少具有相交的第一和第二流体管道,管道具有不同的深度。
在上述发明的一种用途中,一根管道的深度是另一根管道的2至1 0倍。
一种把微流体系统用于电泳补偿的方法,微流体系统具有第一管道和与第一管道相交的第二管道,管道之间交会处的形状使得沿第一管道朝第二管道传输的流体在交会处混合,从而削除流体中的电泳偏离。
附图概述
图1是微流体系统一实施例的示意图;
图2A示出了依照本发明一实施例,在图1微流体系统的管道中传输的一种由流体区组成的结构;图2B是一比例图,示出了依照本发明在微流体系统的管道中传输的另一种由不同流体区组成的结构;
图3A示出了另一种具有高离子浓度分隔区的结构,该结构是在微流体系统的管道内传输试验物料区之前,图3B示出了一种具有高离子浓度分隔区的结构,该结构是在微流体系统的管道中传输试验物料区之后;
图4A示出了依照本发明一电吸移管实施例的示意图;图4B是依照本发明另一电吸移管的示意图;
图5是一示意图,示出了本发明微流体系统中的管道,该管道的多个部分具有带相反电荷的侧壁;
图6A-6D示出了本发明微流体系统中,漏斗侧壁在管道交会处的混合作用。
图7A示出了将样品流体三次注入充满低盐缓冲剂中的结果,其中样品流体由两种带相反电荷的化学物质组成。图7B示出了三次样品注射的结果,其中样品处于高盐缓冲剂中,将高盐缓冲流体注射在样品区的任何一端,起保护带的作用,并且样品/保护带在充满低盐缓冲剂的毛细管中运动。图7C示出了类似于图7B的三次样品注射的结果,不同之处在于降低了样品/高盐分隔区(保护带)之间的低盐分隔区的大小,允许部分分辨样品内的物质,但不允许样品单元影响后续或先前的样品。
图8是一示意图,示出了利用固定(例如,干燥)在基片或基体上的样品与采样系统一起使用的电吸移管。
图9A是荧光性对时间的曲线图,示出了依照本发明被周期性注入并移过电吸移管的样品流体的移动情况,其中样品流体由测试化学物质组成。图9B是另一曲线图,示出了不同参数下样品流体与化学物质一起移过与电吸移管相连的微流体系统的情况。图9C是一曲线图,示出了样品流体和化学物质移过一电吸移管的情况,其中电吸移管由经气蚀的基片制成。
图10是一曲线图,示出了再次示出了依照本发明,样品流体中的某一化学物质的移动情况,其中样品流体被周期性地注入电吸移管。在该实验中,物质是小分子化合物。
本发明的详细描述
I. 微流体系统的一般结构
图1例示了依照本发明的微流体系统100。如图所示,总体设备100被组装在平面基片102上。合适的基片材料根据它们与所述设备进行特定操作的条件的匹配性来选择。这类条件包括pH、温度、离子浓度和施加电场的极端值。另外,基片材料也可根据它们对由设备进行分析或合成的关键组分的惰性来选择。
有用的基片材料包括,例如玻璃、石英和硅,以及聚合基片(如塑料)。若是导体或半导体基片,通常需要在基片上包含一绝缘层。如下所述,当设备中包含电气元件(如电气流体导向系统和传感器之类),或者用电渗力使材料在系统周围移动时,这点尤为重要。对于聚合基片,基片材料可以是刚性、半刚性或非刚性,不透明、半透明或全透明,这根据它们的用处而定。例如,包括光学或肉眼检测元件的设备通常用(至少部分用)透明的材料制成,以允许(或至少有利于)检测。另一种方法是,对于这类检测元件,在设备中包含由玻璃或石英制成的透明窗。另外,聚合材料可为直链或支链(linear or branched backbone),并且可以交联或非交联。特别优选的聚合物材料例子包括,如聚二甲基硅氧烷(PDMS)、聚氨酯、聚氯乙烯(PVC)、聚苯乙烯、聚砜、聚碳酸酯等。
图1所示的装置包括一系列管道110、112、114和116,它们被制于基片的表面内。如在定义“微流体”时所讨论的,这些管道一般具有非常小的截面尺寸,最好在大约0.1微米至100微米的范围内。在下述的特殊应用中,尽管尺寸可能有偏差,但深度大约为10微米且宽度大约为60微米的管道可以有效地工作。
可以用本领域公知的任何数目的微制造技术将这些管道和其它微尺度元件制备到基片102的表面内。例如,运用半导体制造工业中公知的方法,可把石版印刷技术应用于制造玻璃、石英或硅基片。光刻掩模、等离子蚀刻或湿式蚀刻,以及其它半导体处理技术限定了基片表面中和表面上的微尺度元件。另一方面,可以使用诸如激光钻孔、微研磨等微机械方法。类似地,对于聚合基片,也可使用公知的制造技术。这些技术包括注模技术或冲压模塑方法,以及聚合物微铸造技术,其中前者通过滚动冲压生产出大张的微尺度基片,由此生产大量基片,而后者将基片聚合在微制模具内。
除了基片102之外,微流体系统还包括包括一附加的平面元件(未示出),平面元件覆盖在开有管道的基片102上,密闭和液封各种管道,从而形成导管。可以用各种手段将平面覆盖元件与基片相连,所述手段例如包括热粘结、使用粘合剂,或者在玻璃基片或半刚性和非刚性的聚合基片的情况下,在两个部件之间进行自然粘合。平面覆盖元件可另外带有入口和/或储库,用以引入特定筛选所需的各种液体组分。
图1所示的装置还包括储库104、106和108,它们分别被放置成与管道114、116和110和114的末端流体相连。如图所示,采样管道112用来将多种不同的试验物料(subject material)引入装置。这样,管道112与大量分离的试验物料源流体连接,所述试验物料被个别引入采样管道112,然后进入另一管道110。如图所示,利用电泳,可用管道110来分析试验物料。应该注意,术语“试验物料”仅仅是指诸如化学化合物或生物化合物的有关材料。试验化合物可以包括各种不同的化合物,包括化学化合物、化学化合物的混合物,如多糖类、小的有机或无机分子,生物大分子,如肽、蛋白质、核酸,或从生物物料如细菌、植物、真菌,或者动物细胞或组织中制备的提取物,天然形成或合成的组合物。
系统100通过电动力使诸材料通过管道110、112、114和116,其中电动力由一电压控制器提供,该电压控制器能够同时将可选择的电压电平施加到每个储库(包括,地)上。利用多个分压器和多个继电器可以获得可选择的电压电平,实现所述电压控制器的功能。另一种方法是,使用多个独立的电压源。电压控制器通过电极与每个储库电气连接,所述电极被定位或制作在多个储库的每一个内。例如,参见已公开的国际专利申请WO 96/04547(Ramsey),为了所有的目的,该申请的全部内容通过引用包括在此。
II. 电动传输
A. 一般情况
作用在系统100之管道内的流体物料上的电动力可以分为电渗力和电泳力。本发明系统中使用的流体控制系统使用电渗力在位于基片102之表面上的各种管道和反应室内移动、引导和混合流体。概括地说,当把合适的流体放入表面上带有官能团的管道或者其它流体导管时,这些基团会离子化。例如,当管道表面包含羟基官能团时,质子可以脱离管道表面并进入流体。在这种情况下,表面带有负的净电荷,而流体带有过量的质子或正电荷,尤其在管道表面与流体之间的界面附近。
通过沿管道长度施加电场,阳离子向负电极流动。带正电的物质在流体中移动拖着溶剂与其一同移动。流体的稳态移动速度一般由下式给出:
v = ϵξE 4 πη
其中,v是溶剂速度,ε是流体的介电常数,ξ是表面的ξ电势,E是电场强度,而η是溶剂的粘度。因此,从该式可知,溶剂速度直接与ξ电位和所加电场成正比。
除了电渗力之外,还存在电泳力,当带电分子通过系统100的管道时,电泳力会影响带电分子。试验物料在系统100中从一点传输到另一点时,通常希望试验物料的组合物在传输中不受影响,即试验物料在传输中不被电泳区分。
依照本发明,试验物料作为流体团(下文称“试验物料区”)在管道中来回移动,流体团具有较高的离子浓度,可使作用在这些特殊区域内的试验物料上的电泳力最小。为了尽量减小电泳力在试验物料区内的影响,可在流体团的每一侧安排流体分隔区(“第一分隔区”)。这些第一分隔区具有较高的离子浓度,可以使这些区域内的电场最小,如以下说明的,这使得试验物料基本上不受传输(在流体系统中从一个地点传输到另一地点)的影响。试验物料通过系统100的代表性管道110、112、114和116在具有某种离子浓度的区域以及离子浓度不同于那些运载试验物料之区域的其它区域中传输。
图2A示出了一具体的结构,该图表示,试验物料区200沿微流体系统100的一条管道从点A传输到点B。在试验物料区200的每一侧,具有由高离子浓度流体构成的第一分隔区201。另外,由低离子浓度流体构成的第二分隔区202周期性地分离由试验物料区200和第一分隔区201形成的结构。由于第二分隔区202的离子浓度较低,所以点A与点B之间的大部分压降都加在这些第二分隔区202上。将第二或低浓度分隔区202间置在试验物料区200和第一分隔区202组成的结构之间,致使当以电渗方式通过管道抽运试验物料区200和第一分隔区201时,在点A和点B之间至少存在一个第二或低离子浓度分隔区202。这保证了大部分压降都加在第二分隔区202上,而不是加在试验物料区200和第一分隔区201上。换句话说,点A和点B之间的电场集中在第二分隔区202,而试验物料区200和第一分隔区201受较小电场(和较小电泳力)的作用。因此,根据试验物料区200、第一分隔区201和第二或低离子浓度分隔区201内的相对离子浓度,可以制备由这些试验物料区200以及第一和第二分隔区201和202组成的结构。
例如,图2B示出了一种结构,该结构将第二或低离子浓度分隔区202规则地间隔在第一分隔区202/试验物料区200/第一分隔区201的每一组合之间。这种结构保证了在点A和点B之间至少存在了个第二或低离子浓度分隔区202。另外,附图画出了试验物料区200、第一或高浓度分隔区201以及第二或低浓度分隔区202的一个可能组合的相对长度。在图2B的示例中,试验物料区200在高离子浓度150mM的NaCl中含有试验物料。试验物料区200在管道中的长度为1mm。两个第一分隔区201具有离子浓度为150mM的NaCl。每个第一分隔区201的长度均为1mm。第二分隔区202为2mm长,并且具有离子浓度为5mM的硼酸盐缓冲剂。设计这种特殊的配置可以在试验物料区200和缓冲区201中保持快速电泳的化合物,同时化合物传过微流体系统的管道。例如,利用这些方法,可用72秒以上的时间使一个含有例如苯甲酸的试验物料区流过微流体系统,而不受到过度的电泳偏离。
一般地说,可以确定流体流过微流体系统之管道的速度vEoF,并且通过测量可以确定一个试验物料分子将通过管道的总长度1T。因此,试验物料分子通过总长度的渡越时间tTr为:
tTr=lT/vEoF
为了在位于试验物料区200后的第一分隔区201内包含试验物料分子x,第一分隔区201的长度1q应该大于试验物料分子x在第一分隔区201中的电泳速度vqx乘以渡越时间:
1q>(vqx)(tTr)
由于电泳速度正比于第一分隔区201中的电场,所以本发明可以控制vqx,以便通过微流体系统的管道,传输试验物料。
在图2A和2B的结构中,第一或高离子浓度分隔区201帮助把试验物料的位置保持在其试验物料区200的附近。无论试验物料的电荷极性如何,位于试验物料区200任何一侧的第一分隔区201保证脱离试验物料区200的任何试验物料仅受到一较小电场的作用,因为第一分隔区201具有相对较高的离子浓度。如果已知试验物料的极性,那么也就知道了电泳力对试验物料分子的作用方向。
图3A例示的情况是,所有试验物料区200中试验物料的电荷使得电泳力对试验物料分子的作用方向与电渗流的方向相同。因此,第一分隔区201沿流动方向推进试验物料区200。试验物料区200后面不存在第一分隔区201,因为电泳力在该方向上保持试验物料不脱离试验物料区200。通过取消一半第一分隔区201,每条管道长度可以运送更多的包含其试验物料的试验物料区200。这提高了微流体系统的传输效率。相对于试验物料区200和第一或高离子浓度分隔区201,如此安排第二或低离子浓度分隔区202,使得对第二分隔区202加较大的电场,而试验物料区200和第一分隔区201中的电场(和电泳力)保持较小。
在图3B中,第一分隔区201沿电渗流的方向跟在试验物料区200的后面。在该例中,所有试验物料区200中试验物料的电荷使得作用在试验物料分子上的电泳力与电渗流的方向相反。因此,试验物料可以脱离其试验物料区的边界,在效果上,落在其试验物料区200的后面。紧跟在试验物料区200后面的第一分隔区201保持试验物料不会离其试验物料区200太远。同样,相对于试验物料区200和第一或高离子浓度分隔区201,如此安排第二或低离子浓度分隔区202,使得较大的电场加在第二分隔区202上,而试验物料区200和第一分隔区201中的电场保持较小。
选择各种高低离子浓度的溶液,为第一和第二分隔区201和202制备具有所需电导率的溶液。赋予溶液导电率的特定离子可以从无机盐(诸如NaCl、KI、CaCl2、FeF3、(NH4)2SO4等)、有机盐(诸如苯甲酸吡啶翁盐,月桂酸苯甲烃铵),或者混合的无机盐/有机盐(诸如苯甲酸钠,脱氧硫酸钠,盐酸苄基胺)中获得。这些离子的选择还要与微流体系统中进行的化学反应、分离等兼容。除了水性溶剂之外,水性/有机溶剂的混合物(诸如DMSO浓度较低的水)可用来帮助增溶试验物料分子。例如,有机溶剂的混合物(诸如CHCl3:MeOH)还可用于加速分析磷酯酶活性。
一般,当使用水性溶剂时,用无机离子调节溶液的电导率。当使用低极性溶剂时,一般使用有机离子或混合的无机/有机离子。当两种不混合的溶剂同时存在(例如,水与癸烷之类的烃),致使电流必须从一种溶剂流入另一种溶剂时,可以通过无极溶剂用离子载体(例如,表霉素,无活菌素,各种冠醚等)及其适当的离子传导电流。
B. 对基于压力的流水进行电动控制
在本文所述的电动流系统中,由于管道中存在差动流体(例如,在特定系统中,具有不同的电动迁移率),所以在系统中,沿管道长度存在多个不同的压力。例如,这些电动流系统一般在一给定的管道中使用一系列由低离子浓度流体和高离子浓度流体形成的区域(例如第一和第二分隔区,和试验物料的试验物料区),以影响电渗流,同时防止在容纳试验物料区的试验物料内出现电泳偏离。当管道内的低离子浓度区趋向于在其长度上施加在大部分电压时,它们将把流体推过管道。相反,管道内的高离子浓度区在其长度上提供相当小的压降,从而由于粘性拖带减慢流体流动。
作为这些推拖效应的结果,一般会沿充满流体的管道的长度产生压力变化。最大压力一般在低离子浓度区的前沿(例如,第二分隔区),而最小压力一般在这些低离子浓度流体区的后沿。
尽管在直道系统,这些压差几乎不相关,但它们的作用会减弱对流体方向的控制以及对使用相交管道结构的微流体装置的操纵,即先前通过引用包含的,美国专利申请第08/671,987号所述描述的系统。例如,在把第二管道构造成与包含不同离子浓度之流体区的第一管道相交的情况下,当这些不同的流体区移过交会处时,上述压力波动会使流体流入和流出相交的第二管道。这种波动流可能会明显地干扰流体在电渗作用驱动下从第二管道定量流出,以及/或者扰乱管道内不同的流体区。
通过减小相交管道(例如第二管道)相对第一或主管道的深度,可以基本上消除流体流动中的波动。特别是,对于一给定的电压梯度,对于纵横比(宽度∶深度)大于10的管道,在电渗流推进方向上,流速一般按管道深度的倒数而变化。对于计算中一些较小的无关紧要的误差,这一通用比对于较小的纵横比(例如,纵横比>5)仍然保持正确。相反,相同管道中压力引起的流动将按管道深度倒数的三次幂来变化。因此,因同时存在离子浓度不同的流体区而在管道中增大的压力将按管道深度倒数的平方来变化。
由此,通过相对于第一或主管道的深度将相交第二管道的深度减小因子X,可以明显地减小由压力引起的流动,即减小因子X3,同时仅略微减小由电渗引起的流动,即减小因子X。例如,当相对第一管道将第二管道的深度减小一个数量级时,那么由压力引起的流动减小1000倍,而由电渗引起的流动将仅减小10倍。因此,在某些方面,本发明提供了如本文中作一般描述的微流体装置,例如这些装置中至少安置了第一和第二相交管道,但第一管道比第二管道深。一般情况下,可以改变管道的深度,为所需应用获得优化的流动条件。这样,根据应用,第一管道的深度可以大于第二管道深度的大约二倍、大于第二管道深度的大约5倍,甚至大于第二管道深度的大约10倍。
除了在减小压力效应时使用不同的管道深度外,还可用变化的管道深度使同一装置中不同管道内有流体作差动流动,例如混合来自不同源的不同比例的流体等。
III. 电吸移管
如上所述,通过微流体系统100,可以在试验物料区200中或附近有效地传输任何试验物料。当试验物料通过系统管道传输时,利用第一和第二分隔区201和202可以将试验物料限制在一区域中。为了有效地将试验物料导入微流体系统中,本发明还提供了一种电吸移管,该电吸移管可以在试验物料区200与第一和第二分隔区201和202的同一序列组合流中,将试验物料导入微流体系统。
A. 结构和操作
如图4A所示,电吸移管250由一中空毛细管251构成。毛细管251具有一管道254,该管道的尺寸与微流体系统100的管道的尺寸相同,并且与其流体接连。如图4A所示,管道254是一圆柱体,其截面直径在1-100微米的范围内,直径最好大约为30微米。电极252沿毛细管251的外壁而行,并终止一环状电极253,其中环状电极253围绕在毛细管251的末端。为了将试验物料区200中的试验物料以及缓冲区201和202吸入电吸移管的管道254,相对于与管道254流体连接的目标储库(未示出),对电极252施加电压。目标储库位于微流体系统中,从而按序列将试验物料区200和缓冲区201和202从电吸移管传输到系统100中。
从程序上讲,将电吸移管250的毛细管道末端放入试验物料源。相对于目标储库中的电极,对电极252施加一电压。环状电极253与试验物料源接触放置,对电源电气偏压,从而在试验物料源和目标储库之间产生一压降。结果,试验物料源和目标储库变成微流体系统中的点A和点B,即如图2A所示。电动作用将试验物料导入毛细管道254,产生一试验物料区200。然后,截断电极252上的电压,并放毛细管道放入高离子浓度的缓冲物料源。再次相对目标储库电极,对电极252施加一电压,致使通过电动作用将第一分隔区201导入毛细管道254内,紧接在试验物料区200之后。如果之后希望在电吸移管管道254内获得第二或低离子浓度分隔区202,那么毛细管道254的末端插入低离子浓度缓冲物料源中,并对电极252施加一电压。然后,将电吸移管250移动到另一个试验源,在管道254中产生另一个试验物料区200。
通过重复上述步骤,在电动作用下,将由第一和第二分隔区201和202分隔开的具有不同试验物料的多个试验物料区200导入毛细管道254中,从而导入微流体系100中。
注意,如果试验物料源和(低离子浓度和高离子浓度的)缓冲物料源具有其自己的电极,那么就不需要电极252。目标储库和源电极之间的电压对电吸移管起作用。另一种方法可使电极252与毛细管251成固定关系,但相互分离,以便当毛细管251的末端接收储库时,电极252也接触储库。操作过程与针对图4A的电吸移管的描述相同。
图4B示出了图4A中电吸移管250的一种变化。在该变化中,不要求将电吸移管270在试验物料源和缓冲物料源之间转移,从而在吸移管内产生第一和第二分隔区201和202。电吸移管270具有本体271和三个毛细管道264、275和276。主管道274的工作方式与上述电吸移管250的相同。但是,两个辅助毛细管道275和276的一端与缓冲源储库(未示出)流体连接,而管道275和276的另一端与主管道274流体连接。一个储库(即与辅助管道275相连的储库)含有高离子浓度的缓冲物料,而另一储库(即与管道276相连的储库)含有低离子浓度的缓冲物料。
所有储库都与电极连接,用于在操作电吸移管270时对这些储库电气偏压。电吸移管270还可以沿其本体271的壁具有电极272,该电极终止于位于主管道274末端的环状电极273。通过对电极272(和环状电极273)施加电压从而沿管道274、275和276产生压降,不仅可以把试验物料从试验物料源拖入主管道274,而且还可以把高离子浓度和低离子浓度的缓冲物料从辅助管道275和276拖入主管道274。
为利用电极272操作电吸移管270,将主毛细管道274的末端放入试验物料源280。相对于目标储库中的电极,对电极272施加一电压,从而在试验物料源280和目标储库之间产生一压降。电动作用将试验物料拖入毛细管道274。然后,将毛细管道末端移离试验物料源280,并在连接管道274的目标储库和连接管道275的储库之间产生一压降。在管道274中形成第一或高离子浓度分隔区201。当从辅助管道275拖入缓冲物料时,毛细管的作用禁止将空气导入管道274中。如果之后希望在主管道274中获得第二或低离子浓度分隔区202,那么对目标储库中的电极以及低离子浓度缓冲物料储库中的电极施加一电压。电动作用将第二分隔区202从第二辅助管道276导入毛细管道274。然后,可以将电吸移管270移到另一个试验物料源,以便在管道274中产生另一个试验物料源200。
通过重复上述步骤,在电动作用下,将由第一和第二分隔区201和202分隔开的具有不同试验物料的多个试验物料区200导入毛细管道274中,从而导入微流体系100中。
如果不希望使试验物料源经受来自环状电极273的氧化/还原反应,那么可以不用电极272操作电吸移管。由于在高离子浓度的溶液中,电渗流较慢,所以从连接管道274的储库到连接管道275的储库施加电势(-至+)将在管道274和275的交会点形成真空。该真空将来自试验物料源的采样拖入管道274。当用这种方式操作时,管道275和276中的溶液会在某种程度上冲淡试验物料。通过减小管道276和275相对于管道274的尺寸,可以减缓这种冲淡。
为了把第一和第二分隔区201和202导入毛细管道274,如上所述操作电吸移管270。将毛细管道末端移离试验物料源280,并在管道274的目标储库和连接所选管道275或276的储库之间产生一压降。
尽管根据两个辅助管道和一个主管道的情况作了一般描述,但应该理解,不可以提供另外的辅助管道,将其它流体、缓冲剂、稀释液和试剂等导入主管道。
如上所述,对于微流体装置(例如,芯片)内的相交管道,因不同吸移管管道内差动流体所产生的压差还会影响对吸移管管道内流体流动的控制。因此,如上所述,为了优化对流体的控制,还可以提供各种吸移管管道,使其彼此具有不同的管道深度。
B. 电吸移管的制造方法
电吸移管可以由一中空的毛细管制成,如图4A所述的那样。但是,对于更复杂的结构,电吸移管最好由与上述微管道系统相同的基片材料制成。用对于微流体系统之微管道的相同方式在基片上制作电吸移管管道(和储库),并且如上所述用平面覆盖元件覆盖带管道的基片。然后,对基片和覆盖元件的边界成形,按要求为吸移管形成合适的水平尺寸,特别在其末端。可以使用诸如蚀刻、气蚀(用粒子和受迫气体冲击表面)以及磨削等技术。然后,按要求在基片表面和可能的覆盖物上形成电极。另一种方法是,在把基片和覆盖元件固定在一起之前,对基片和覆盖元件的边界整形。这种制造方法特别适于多管道的电吸移管,例如刚刚就图4B所描述的以及以下将对图8描述的。
IV. 采样系统
如上所述,上述方法、系统和设备一般将在各种学科中寻找到广泛的应用。例如,如上所述,这些方法和系统特别适于药物发现应用中高通过量的化学筛选,参见1996年6月28日提交的、共同待批的美国专利申请第08/671,987号,该专利申请在前面已通过引用包括在此。
A. 样品基体
一般,就液体样品的采样数目(例如,来自多井板multi-well plate),对本发明的吸移和流体传输系统进行描述。但是,在许多情况下,需要采样的基于流体的样品的数目和种类会产生许多样品处理问题。例如,在化学筛选和药物发现应用中,筛选用的化合物库的数目可以成千上万。因此,这类库要求数量极大的样品板,即使在自动机械系统的帮助下,这也会在样品存储、处理和识别上产生各种困难。另外,在某些情况下,当以液态保存时,特殊的样品化合物会劣化、复杂化,或者具有相当短活性的半活体。当在筛选之前以液态长时间存储样品时,有可能导致不可信的结果。
因此,本发明以固定格式提供需采样的化合物,从而获得可以解决这些问题的采样系统。“固定格式(immobilized format)”是指通过结合到固定基体(即,多孔基体、带电基体、疏水或亲水基体)内,在固定位置上提供样品材料,其中固定基体将样品保留在固定位置上。另一种方式是,这类固定样品在给定的样品基体上包含被定位和干燥的样品。在较佳情况下,以干燥形式在样品基体上提供要筛选的化合物。一般,这种样品基体将包括任何数量的材料,用于材料的定位或固定,例如包括诸如纤维素、硝化纤维、PVDF、尼龙、聚砜等。一般,最好用柔性的样品基体,这可使固定有大量不同化合物的样品基体折叠或卷起,有利于存储和处理。
一般,可以用任何已知的方法对样品基体施加样品。例如,用允许对大量化合物定位的自动机械吸液系统将样品库定位在样品基体的薄片上。另一种方法是,处理样品基体,为样品定位提供预定的区域,例如,锯齿状的井,或者由疏水屏障围绕的亲水区,或者由亲水屏障围绕的疏水区(例如,样品原始处于疏水溶液中),这样将在干燥处理过程中保持被定位的材料。于是,这种处理允许使用更先进的样品施加方法,诸如在美国专利第5,474,796号中描述的,用压电泵和喷嘴系统将液体样品射到表面上。但是,一般地说,’796专利中描述的方法是关于在表示上施加液体样品,以便随后与其它液体样品反应。但是,这些方法很容易被修改成,在基片上提供干燥的定位样品。
类似地,可以使用其它的固定或定位方法。例如,当样品稳定于液态时,样品基体可以包括多孔层,凝胶或其它聚合物材料,它们保持液体样品,不允许过度扩散和蒸发,但允许按需要至少提取一部分样品材料。为了把样品拖入吸移管,吸移管将使一部分样品脱离基体,例如通过溶解基体、离子交换、稀释样品等方法。
B. 再增溶吸移管
如上所述,本发明的采样及液体传输方法和系统容易适用于筛选、分析或处理以这些样品格式固定的样品。例如,当在样品基体上以干燥形式提供样品材料时,可以把电吸移管系统施加到基体的表面。然后,如上所述,例如通过倒转施加在吸移管上的电场极性,或者通过从低离子浓度缓冲剂储库到高离子浓度缓冲剂储库施加一电位,来操作电吸移管,以排出小体积的液体,增溶先前位于基体表面上的干燥样品(溶解保留的基体,或从固定支持物中洗出样品)。一旦使样品再增溶,就按其通常的正向方式操作吸移管,如前所述将增溶的样品拖入吸移管管道中。
图8示出了对于实现该功能很有用的电吸移管的一个实施例,以及它的工作情况。概括地说,吸移管(如图所示)800的顶端802一般与分析系统(例如,微流体芯片)相连,以使对吸移管804、806和808独立施加电压。一般,管道804和808分别与包含低离子浓度流体和高离子浓度流体的缓冲剂储库流体连接。在操作过程中,吸移管810的尖端与样品基体812的表面接触,该表面上有一固定(例如,干燥的)样品814。从低离子浓度缓冲剂管道804到高离子浓度缓冲剂管道施加一电压,以便迫使缓冲剂排出吸移管的尖端,从而接触并溶解样品。如图所示,为了将排出的溶液保持在吸移管尖部和基体表面之间,吸移管816可以包括一凹陷区或“样品杯”818。在某些情况下,例如当筛选有机样品时,为了保证溶解样品,可以在低离子浓度缓冲剂中包含一种合适浓度的可接收的溶剂,例如DMSO。然后,从高离子浓度缓冲剂管道到样品管道806施加一电压,以便按样品栓的形式将样品拖入吸移管中。一旦完全将样品从样品杯提取到吸移管中,由于空气进入样品管道将产生较大的表面张力,从而停止吸入样品,并且高离子浓度的缓冲剂溶液将开始流入样品管道,在样品之后形成第一分隔区822。然后,通过从低离子浓度缓冲剂管道804到样品管道806施加电压,可以将低离子浓度缓冲溶液注入样品管道,即成为第二分隔区824。在表述基体上下一个样品位置之前或期间,通过在高离子浓度缓冲剂管道和样品管道之间施加电压,可以将第一或高离子浓度分隔区822导入样品管道。如前所述,用这种方式可以表述具有成千或上万种需筛选的不同化合物的一个或多个样品基体卷、片或板,允许在合适的设备或系统中对它们进行序列筛选。
V. 消除电泳偏离
如上所述,用电动力将试验物料传过微流体系统100。如果在溶液中使试验物料带电,那么它不仅会受到电渗力,而且会受到电泳力。因此,试验物料在沿微流体系统的管道从一点移动到另一点的过程中,可能会受到电泳的作用。因此,起点处试验物料的混合物以及带不同电荷的物质在试验物料区200中的位置可能不同于终点处的混合物或位置。另外,在终点处,试验物料甚至可能不在试验物料区200内,尽管处于第一分隔区201内。
因此,本发明的另一方面是,当把试验物料传过微流体系统100时,补偿电泳偏离。图5示出了一种补偿电泳偏离的方法。在上述微流体系统中,沿长度将每根管道110、112、114和116看作一整体结构。在图5中,例示的管道140被分成两个部分142和144。每个管道部分142和144的侧壁具有极性相反的面电荷。盐桥133(诸如玻璃料或凝胶层。)以物理方式将两个管道部分142和144连接在一起。尽管盐桥133将管道140中的流体与储库135中的离子流体(离子流体被盐桥133部分限定)分离,但盐桥133允许离子穿过。因此,储库135以电气方式而不是以流体方式与管道140联系。
为了在点A和点B之间沿管道140产生电渗力和电泳力,分别在占A和点B处安装电极132和134。另外,将第三电极137布置在位于两个部分142和144交汇处的储库135中。使电极132和134保持相同的电压,而电极137处于另一电压。在图5所示的例子中,两个电极132和134处于负电压,而电极137以及两部分142和144的交汇点处于零电压,即地电压。因此,在部分142和144中产生压降,并使两部分中的电场指向相反的方向。具体地说,电场指向彼此背离。因此,在管道部分142中,作用在特定带电分子上的电泳力沿一个方向,而在管道部分144中,电泳力沿另一方向。当通过两部分142和144后,可以补偿试验物料的任何电泳偏离。
但是,两部分142和144中的电渗力仍然沿同一方向。例如,如图5所示,假设管道部分142的侧壁具有正的面电荷,它们吸引溶液中的负离子,而管道部分1 44的侧壁具有负的面电荷,它们吸引溶液中的正离子,那么两部分142和144中的电渗力是向附图右方的。因此在电渗力的作用下,试验物料从点A传输到点B。但是电泳力在部分142中沿一个方向,而在另一部分144中沿相反的方向。
为了形成侧壁带正或负面电荷的管道,用带有面电荷的绝缘薄膜(诸如聚合物)涂覆管道的一个或两个部分。例如,在微流体系统100中,基片102和管道可以由玻璃制成。用带有相反面电荷的聚合物(例如聚赖氨酸)涂覆每根管道的一部分,或者用包含氨基官能团的硅烷化剂(例如,氨基丙基三氯三烷)对每根管道的一部分进行化学改良。另外,两个管道部分的面电荷密度和体积应该大约相同,以便补偿电泳偏离。
代替用固体的平面基片制备管道,还可以用两根毛细管制备管道,其中用盐桥将两根毛细管对接在一起,盐桥将离子流体储库与毛细管中的流体分离。还在离子流体储库中放置一个电极。一个毛细管具有负的面电荷,而另一毛细管具有正的面电荷。所行的毛细管管道如上所述工作。
图6A-6D示出了本发明的另一实施例,在该实施例中,补偿了当试验物料从点A移动到点B时,因电泳偏离引起的对试验物料的影响。在该实施例中,在点B(如图1所示在两管道之间的相交处)混合试验物料。
图6A-6D示出了小室160,它位于管道150、252、154和156的交会处。小室160具有四个侧壁162、164、166和168。侧壁162与管道152的一个侧壁以及管道150的一个侧壁相连;侧壁164与管道154的一个侧壁以及管道152的另一侧壁相连,侧壁166与管道156的一个侧壁以及管道154的另一侧壁相连,以及侧壁168与管道156的相对侧壁以及管道150的相对侧壁相连。假设材料通过管道152向管道156流动,如果材料转向管道150,那么侧壁162和168形成一漏斗。
侧壁162和168的尺寸可以容纳沿管道152传输的试验物料栓200的长度。侧壁162和168将栓200漏入管道150的宽度中。管道150的宽度致使试验物料在管道150的宽度上发生扩散,即发生混合,并消除了试验物料区200沿管道162传输时产生的试验物料的任何电泳偏离。例如,如果管道150为50微米宽,那么对于扩散常数为1×10-5cm2/sec的分子,横跨管道的扩散大约在一秒钟内发生。
在图6A中,阳离子试验物料的栓200沿管道152向管道156移动。当栓200到达小室160时,试验物料已受电泳作用,从而物料更集中于试验物料区200的前端。图6B示出了这一情况。然后,终止沿管道152和156施加的压降,并沿管道154和150产生一压降,以便将试验物料区200拖入管道150。小室160的侧壁162和168使试验物料区200与其经电泳偏离的试验物料一起漏下。图6C示出了这一情况。通过扩散,在试验物料沿管道150传输任何明显的距离之前,试验物料在管道150的宽度上展开;混合试验物料区200中的试验物料,并准备在微流体系统100中进行下一步操作。
除了可以用来校正单一样品内的电泳偏离,应该理解,图6所示的结构可用于在这些微流体装置中混合流体单元,例如两种不同的试验物料,缓冲剂,反应剂等。
举例
例1-按电吸移管的类型格式,迫使带不同电的物质同移
为了证明用来消除或减小电泳偏离的诸方法的有效性,在毛细管管道中,通过电动作用抽运两种带相反电荷的物质,并使其在单个样品栓中同移。用Beckman毛细管电泳系统模拟毛细管管道中的电泳力。
概括地说,在本实验中使用一种样品,它在低离子浓度(或“低盐”)(5mM硼酸盐)或高离子浓度(“高盐”)(500mM硼酸盐)的缓冲剂中包含苄基胺和苯甲酸。苯甲酸大约是苄基胺浓度的2倍。所有的注射时间持续0.17分钟。注射电压8或30kV决定了注射栓的长度。低盐和高盐缓冲剂如上所述。
在第一实验中,将在低盐缓冲剂中连续三次注射的样品导入充满低盐缓冲剂的毛细管中。注射在8kV的电压下进行,并在30kV的电压下通过低盐注射使它们分离。图7A示出了这些注射产生的数据。这些数据表示,第一和第二注射的苄基酸峰(识别为低峰,因其浓度较低)先于第一注射的苯甲酸峰(高峰)。另外,第三注射的苄基胺峰几乎于第一苯甲酸峰重合。因此,该实验显示了电泳偏离的作用,其中样品峰没有不按其进入管道的次序离开毛细管管道。由图可以清楚地看出,这种分离实质上会影响单一样品的特性,或更糟地是,还会央及先前或后续导入的样品。
在第二实验中,毛细管充满低盐缓冲剂。在8kV电压下,通过第一次导入/注入高盐缓冲剂将样品注射到毛细管中(第一分隔区1)。接着,在8kV电压下注射高盐缓冲剂中的样品,然后在8kV电压下第二次注射高盐缓冲剂(第一分隔区2)。用这一方式注射三种样品,并在30kV电压下通过注射低盐缓冲剂使其分离。如图7B所示,样品中所含的两种化合物被迫在同一样品栓中一同移动通过毛细管管道,并且每次注射由单个峰表示。这证明了样品是对齐的,与电泳移动无关。
通过相对于样品大小,减小样品间低盐分隔栓的大小,可以部分分辨每次样品注射的各成份。当在电动抽运期间希望对样品进行某些分离,但不影响前后注入的样品时,这是非常有用的。这可以通过在8kV而非30kV电压下注射低盐分隔栓来获得。图7C示出了该例的数据。
例2-试验物料通过电吸移管迁移到微流体系统基片中
图9A-9C示出了如上所述通过电吸移管将试验物料(即样品)导入微流体系统的实验测试结果。样品是PH值为7.4的磷酸盐缓冲盐溶液中含若丹明B。高离子浓度(“高盐”)缓冲剂也由PH值为7.4的磷酸盐缓冲盐溶液形成。低离子浓度(“低盐”)缓冲剂由PH值为8.6的5mM硼酸钠溶液形成。
在测试中,周期性地将含有荧光若丹明B注入电吸移管的毛细管管道中,其中电吸移管与微流体系统的基片相连。如前所述,还将高盐和低盐缓冲剂注射到试验物料区之间。图9A是若丹明B荧光强度对时间的曲线图,其中若丹明B的荧光强度是在毛细管道与基片管道的连接处附近,沿毛细管道的某一点上测得的。(顺便提一下,应该看出图9A-9V和图10曲线图中荧光强度轴上的数字表示相对参考值,不是绝对值。)注射周期为7秒,将试验物料区移过吸移管的电场为1000伏/厘米。用光电二极管监测来自毛细管道的光的综合时间被设置为10毫秒。由图9A可见,很容易证明光强峰以7秒的间隔出现,这与荧光若丹明B的注射周期匹配。
在另一实验中,将相同的缓冲剂与若丹明B样品一起使用。监测占在与电吸移管相连的基片管道中。注射周期设为13.1秒,包含若丹明B的源储库与基片中的目标储库之间的电压设为-3000伏。监测光电二极管的综合时间为400毫秒。如图9B所示,荧光强度峰接近于若丹明B的注射周期。
图9C示出了第三实验的测试结果。在该实验中,电吸移管由基片制成,并通过气蚀成形。监测点沿基片(和平面覆盖物)中形成的毛细管道。这里,样品材料是pH值为7.4的PBS缓冲剂中包含100μM若丹明B。高盐缓冲剂溶液仍是pH值为7.4的PBS,而低盐缓冲剂溶液仍是pH值为8.6的5mM硼酸钠。同样,周期性的荧光强度峰与若丹明B注入电吸移管的周期一致。
图10示出了依照本发明将另一种试验物料周期性地注入电吸移管的结果。在该实验中,样品是100μM的小分子化合物,pH值为7.4的磷酸盐缓冲盐溶液中含1%的DMSO。高盐缓冲剂仍是pH值为7.4的磷酸盐缓冲盐溶液,而低盐缓冲剂仍是pH值为8.6的5mM硼酸钠。将试验物料区移过电吸移管的所加电压为-4000伏,而用光电二极管监测来自毛细管道的光的综合时间设为400毫秒。如前所述,将样品周期性地注入电吸移管中。同上述结果一样,图10表明,对于小分子化合物,电吸移管以匀均的时间间隔移动样品。
尽管为了清楚和理解的目的,已详细描述了上述发明,但本领域的技术人员通过阅读该公开内容,显然可以不脱离本发明实质范围,在形式和细节上进行各种变化。例如,可以按各种组合使用上述所有技术。为了所有目的,本申请中引用的所有公开物和专利文献均通过引能包括在此,其引用程度与单独表示每个公开物或专利文献的一样。

Claims (11)

1.一种微流体系统,其特征在于,包括:
基片,所述基片中布置了至少一个第一管道和至少一个第二管道,所述第二管道与所述第一管道相交,并且所述第一管道比所述第二管道深,所述第一管道之宽度对深度的纵横比大于5;和
电渗流导向系统。
2.如权利要求1所述的微流体系统,其特征在于,所述至少一个第一管道的深度至少是所述第二管道的两倍。
3.如权利要求1所述的微流体系统,其特征在于,所述至少一个第一管道的深度至少是所述第二管道的5倍。
4.如权利要求1所述的微流体系统,其特征在于,所述至少一个第一管道的深度至少是所述第二管道的10倍。
5.一种用于如权利要求1所述的微流体系统的微流体装置,其特征在于,包括基片,所述基片中至少布置了第一和第二交叉的流体管道,所述第一管道比所述第二管道深,所述第一管道的宽度对深度的纵横比大于5。
6.如权利要求5所述的微流体装置,其特征在于,所述第一管道的深度为所述第二管道深度的2-10倍。
7.一种微流体系统,其特征在于,包括:
第一基片;
至少第一和第二管道,它们布置在所述第一基片中,所述第一和第二管道在第一交会处进行流体连通,所述第一管道的深度至少是所述第二管道的两倍,并且所述第一管道的宽度对深度的纵横比大于5;和
用于移动物料以便使所述物料通过所述第一和第二管道的系统,该系统包括:
至少第一、第二和第三电极,所述第一和第二电极在所述第一交会处的两侧与所述第一管道电接触,所述第三电极与所述第二管道电接触;和电源,用于为所述第一、第二和第三电极提供电压,以便沿所述第一和第二管道中至少一个管道的长度,有选择地产生一电压梯度。
8.如权利要求7所述的微流体系统,其特征在于,所述第一管道的深度至少是所述第二管道深度的5倍。
9.如权利要求7所述的微流体系统,其特征在于,所述第一管道的深度至少是所述第二管道深度的10倍。
10.如权利要求7所述的微流体系统,其特征在于,
所述第一基片具有至少一个平表面,所述第一和第二管道被制作在所述第一基片的所述至少一个平表面中;并且
所述微流体系统还包括至少一个第二基片,所述至少一个第二基片覆盖所述第一基片的所述至少一个平表面。
11.如权利要求10所述的微流体系统,其特征在于,所述至少一个第二基片具有入口。
CNB971975752A 1996-06-28 1997-06-25 微流体系统 Expired - Lifetime CN1329729C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/671,986 1996-06-28
US08/671,986 US5779868A (en) 1996-06-28 1996-06-28 Electropipettor and compensation means for electrophoretic bias
US08/760,446 US5880071A (en) 1996-06-28 1996-12-06 Electropipettor and compensation means for electrophoretic bias
US08/760,446 1996-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101488756A Division CN101185871A (zh) 1996-06-28 1997-06-25 电吸移管和电泳偏离补偿装置

Publications (2)

Publication Number Publication Date
CN1228841A CN1228841A (zh) 1999-09-15
CN1329729C true CN1329729C (zh) 2007-08-01

Family

ID=27100658

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB971975752A Expired - Lifetime CN1329729C (zh) 1996-06-28 1997-06-25 微流体系统

Country Status (11)

Country Link
US (8) US6547942B1 (zh)
EP (2) EP0909385B1 (zh)
JP (3) JP3361530B2 (zh)
CN (1) CN1329729C (zh)
AT (1) ATE292519T1 (zh)
AU (1) AU726987B2 (zh)
BR (1) BR9710052A (zh)
DE (1) DE69732935T2 (zh)
NZ (1) NZ333345A (zh)
TW (1) TW394843B (zh)
WO (1) WO1998000705A1 (zh)

Families Citing this family (432)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935401A (en) * 1996-09-18 1999-08-10 Aclara Biosciences Surface modified electrophoretic chambers
US5770029A (en) * 1996-07-30 1998-06-23 Soane Biosciences Integrated electrophoretic microdevices
US6569382B1 (en) * 1991-11-07 2003-05-27 Nanogen, Inc. Methods apparatus for the electronic, homogeneous assembly and fabrication of devices
US6652808B1 (en) * 1991-11-07 2003-11-25 Nanotronics, Inc. Methods for the electronic assembly and fabrication of devices
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
US6733728B1 (en) * 1996-03-11 2004-05-11 Hitachi, Ltd. Analyzer system having sample rack transfer line
US5942443A (en) * 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US5885470A (en) 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
NZ333346A (en) 1996-06-28 2000-03-27 Caliper Techn Corp High-throughput screening assay systems in microscale fluidic devices
AU726987B2 (en) * 1996-06-28 2000-11-30 Caliper Life Sciences, Inc. Electropipettor and compensation means for electrophoretic bias
DE19628928A1 (de) * 1996-07-18 1998-01-22 Basf Ag Feste Träger für analytische Meßverfahren, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung
US6074827A (en) 1996-07-30 2000-06-13 Aclara Biosciences, Inc. Microfluidic method for nucleic acid purification and processing
US6706473B1 (en) 1996-12-06 2004-03-16 Nanogen, Inc. Systems and devices for photoelectrophoretic transport and hybridization of oligonucleotides
US6391622B1 (en) 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6235471B1 (en) 1997-04-04 2001-05-22 Caliper Technologies Corp. Closed-loop biochemical analyzers
WO1998049548A1 (en) * 1997-04-25 1998-11-05 Caliper Technologies Corporation Microfluidic devices incorporating improved channel geometries
US7033474B1 (en) 1997-04-25 2006-04-25 Caliper Life Sciences, Inc. Microfluidic devices incorporating improved channel geometries
US6613512B1 (en) 1997-06-09 2003-09-02 Caliper Technologies Corp. Apparatus and method for correcting for variable velocity in microfluidic systems
US6425972B1 (en) * 1997-06-18 2002-07-30 Calipher Technologies Corp. Methods of manufacturing microfabricated substrates
US6001231A (en) 1997-07-15 1999-12-14 Caliper Technologies Corp. Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems
US6368871B1 (en) * 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
US5989402A (en) 1997-08-29 1999-11-23 Caliper Technologies Corp. Controller/detector interfaces for microfluidic systems
US6833242B2 (en) 1997-09-23 2004-12-21 California Institute Of Technology Methods for detecting and sorting polynucleotides based on size
AU758407B2 (en) 1997-12-24 2003-03-20 Cepheid Integrated fluid manipulation cartridge
US6756019B1 (en) 1998-02-24 2004-06-29 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
US7497994B2 (en) 1998-02-24 2009-03-03 Khushroo Gandhi Microfluidic devices and systems incorporating cover layers
US6251343B1 (en) 1998-02-24 2001-06-26 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
DE19817438A1 (de) * 1998-04-20 1999-10-21 Biotul Bio Instr Gmbh Flüssigkeitsvorratsbehälter für automatische Pipettiersysteme mit selbstregulierendem Flüsigkeitsstand
US6123798A (en) * 1998-05-06 2000-09-26 Caliper Technologies Corp. Methods of fabricating polymeric structures incorporating microscale fluidic elements
AU747464B2 (en) 1998-06-08 2002-05-16 Caliper Technologies Corporation Microfluidic devices, systems and methods for performing integrated reactions and separations
US6306590B1 (en) 1998-06-08 2001-10-23 Caliper Technologies Corp. Microfluidic matrix localization apparatus and methods
US6274089B1 (en) 1998-06-08 2001-08-14 Caliper Technologies Corp. Microfluidic devices, systems and methods for performing integrated reactions and separations
DE19826020C2 (de) * 1998-06-10 2000-11-02 Max Planck Gesellschaft Vorrichtung und Verfahren zur miniaturisierten, hochparallelen elektrophoretischen Trennung
EP1088229A4 (en) * 1998-06-25 2002-05-08 Caliper Techn Corp HIGH THROUGHPUT METHODS, SYSTEMS AND APPARATUS FOR CELL SCREENING TEST
US6682942B1 (en) * 1998-07-14 2004-01-27 Zyomyx, Inc. Microdevices for screening biomolecules
US6540896B1 (en) 1998-08-05 2003-04-01 Caliper Technologies Corp. Open-Field serial to parallel converter
US6132685A (en) 1998-08-10 2000-10-17 Caliper Technologies Corporation High throughput microfluidic systems and methods
CN1312474C (zh) * 1998-09-17 2007-04-25 阿德文生物科学公司 集成的化学分析系统
US6149787A (en) 1998-10-14 2000-11-21 Caliper Technologies Corp. External material accession systems and methods
US6086740A (en) * 1998-10-29 2000-07-11 Caliper Technologies Corp. Multiplexed microfluidic devices and systems
US7914994B2 (en) 1998-12-24 2011-03-29 Cepheid Method for separating an analyte from a sample
US6887693B2 (en) 1998-12-24 2005-05-03 Cepheid Device and method for lysing cells, spores, or microorganisms
US6431476B1 (en) 1999-12-21 2002-08-13 Cepheid Apparatus and method for rapid ultrasonic disruption of cells or viruses
US6150119A (en) * 1999-01-19 2000-11-21 Caliper Technologies Corp. Optimized high-throughput analytical system
US6416642B1 (en) 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US20020019059A1 (en) * 1999-01-28 2002-02-14 Calvin Y.H. Chow Devices, systems and methods for time domain multiplexing of reagents
WO2000046594A1 (en) 1999-02-02 2000-08-10 Caliper Technologies Corp. Methods, devices and systems for characterizing proteins
EP1163052B1 (en) 1999-02-23 2010-06-02 Caliper Life Sciences, Inc. Manipulation of microparticles in microfluidic systems
US6633031B1 (en) 1999-03-02 2003-10-14 Advion Biosciences, Inc. Integrated monolithic microfabricated dispensing nozzle and liquid chromatography-electrospray system and method
US6749814B1 (en) 1999-03-03 2004-06-15 Symyx Technologies, Inc. Chemical processing microsystems comprising parallel flow microreactors and methods for using same
US6326083B1 (en) 1999-03-08 2001-12-04 Calipher Technologies Corp. Surface coating for microfluidic devices that incorporate a biopolymer resistant moiety
US6148508A (en) 1999-03-12 2000-11-21 Caliper Technologies Corp. Method of making a capillary for electrokinetic transport of materials
US6500323B1 (en) 1999-03-26 2002-12-31 Caliper Technologies Corp. Methods and software for designing microfluidic devices
US7214540B2 (en) 1999-04-06 2007-05-08 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US6303343B1 (en) 1999-04-06 2001-10-16 Caliper Technologies Corp. Inefficient fast PCR
US6322683B1 (en) 1999-04-14 2001-11-27 Caliper Technologies Corp. Alignment of multicomponent microfabricated structures
US6458259B1 (en) 1999-05-11 2002-10-01 Caliper Technologies Corp. Prevention of surface adsorption in microchannels by application of electric current during pressure-induced flow
US6555389B1 (en) * 1999-05-11 2003-04-29 Aclara Biosciences, Inc. Sample evaporative control
US6592821B1 (en) 1999-05-17 2003-07-15 Caliper Technologies Corp. Focusing of microparticles in microfluidic systems
AU770678B2 (en) 1999-05-17 2004-02-26 Caliper Life Sciences, Inc. Focusing of microparticles in microfluidic systems
US6472141B2 (en) 1999-05-21 2002-10-29 Caliper Technologies Corp. Kinase assays using polycations
US6287774B1 (en) 1999-05-21 2001-09-11 Caliper Technologies Corp. Assay methods and system
US6485690B1 (en) 1999-05-27 2002-11-26 Orchid Biosciences, Inc. Multiple fluid sample processor and system
WO2000073413A2 (en) 1999-05-28 2000-12-07 Cepheid Apparatus and method for cell disruption
US9073053B2 (en) 1999-05-28 2015-07-07 Cepheid Apparatus and method for cell disruption
US8815521B2 (en) 2000-05-30 2014-08-26 Cepheid Apparatus and method for cell disruption
US20040200909A1 (en) * 1999-05-28 2004-10-14 Cepheid Apparatus and method for cell disruption
US6649358B1 (en) 1999-06-01 2003-11-18 Caliper Technologies Corp. Microscale assays and microfluidic devices for transporter, gradient induced, and binding activities
US20050161334A1 (en) * 1999-06-01 2005-07-28 Paul Phillip H. Electroosmotic flow systems
US6287440B1 (en) * 1999-06-18 2001-09-11 Sandia Corporation Method for eliminating gas blocking in electrokinetic pumping systems
US7195670B2 (en) * 2000-06-27 2007-03-27 California Institute Of Technology High throughput screening of crystallization of materials
US7052545B2 (en) * 2001-04-06 2006-05-30 California Institute Of Technology High throughput screening of crystallization of materials
US8709153B2 (en) 1999-06-28 2014-04-29 California Institute Of Technology Microfludic protein crystallography techniques
AU6068300A (en) 1999-07-06 2001-01-22 Caliper Technologies Corporation Microfluidic systems and methods for determining modulator kinetics
US6533914B1 (en) 1999-07-08 2003-03-18 Shaorong Liu Microfabricated injector and capillary array assembly for high-resolution and high throughput separation
WO2001009598A1 (en) * 1999-07-28 2001-02-08 University Of Washington Fluidic interconnect, interconnect manifold and microfluidic devices for internal delivery of gases and application of vacuum
KR20020043553A (ko) * 1999-08-12 2002-06-10 죠지 엘. 크레이그 소량 용적의 제어 조작용 마이크로 유체공학 장치
US6524456B1 (en) * 1999-08-12 2003-02-25 Ut-Battelle, Llc Microfluidic devices for the controlled manipulation of small volumes
US6495104B1 (en) 1999-08-19 2002-12-17 Caliper Technologies Corp. Indicator components for microfluidic systems
US6858185B1 (en) 1999-08-25 2005-02-22 Caliper Life Sciences, Inc. Dilutions in high throughput systems with a single vacuum source
US6613581B1 (en) 1999-08-26 2003-09-02 Caliper Technologies Corp. Microfluidic analytic detection assays, devices, and integrated systems
AU7101000A (en) 1999-09-10 2001-04-10 Caliper Technologies Corporation Microfabrication methods and devices
US6676819B1 (en) * 1999-09-14 2004-01-13 Yaoqing Diana Liu Methods and apparatus for automatic on-line multi-dimensional electrophoresis
US20030040105A1 (en) * 1999-09-30 2003-02-27 Sklar Larry A. Microfluidic micromixer
US7416903B2 (en) * 1999-09-30 2008-08-26 Stc.Unm Wavy interface mixer
DE19947496C2 (de) * 1999-10-01 2003-05-22 Agilent Technologies Inc Mikrofluidischer Mikrochip
DE19947495C2 (de) * 1999-10-01 2003-05-28 Agilent Technologies Inc Mikrofluidischer Mikrochip
AU783191B2 (en) 1999-10-08 2005-10-06 Caliper Life Sciences, Inc. Use of nernstein voltage sensitive dyes in measuring transmembrane voltage
US6386014B1 (en) 1999-11-18 2002-05-14 Eagle Research Corporation Energy measurement device for flowing gas using microminiature gas chromatograph
US6149815A (en) * 1999-11-23 2000-11-21 Sauter; Andrew D. Precise electrokinetic delivery of minute volumes of liquid(s)
WO2001050499A1 (en) 1999-12-30 2001-07-12 Advion Biosciences, Inc. Multiple electrospray device, systems and methods
US6620625B2 (en) * 2000-01-06 2003-09-16 Caliper Technologies Corp. Ultra high throughput sampling and analysis systems and methods
US6379884B2 (en) 2000-01-06 2002-04-30 Caliper Technologies Corp. Methods and systems for monitoring intracellular binding reactions
US6468761B2 (en) 2000-01-07 2002-10-22 Caliper Technologies, Corp. Microfluidic in-line labeling method for continuous-flow protease inhibition analysis
US7037416B2 (en) 2000-01-14 2006-05-02 Caliper Life Sciences, Inc. Method for monitoring flow rate using fluorescent markers
US6596988B2 (en) 2000-01-18 2003-07-22 Advion Biosciences, Inc. Separation media, multiple electrospray nozzle system and method
US6451264B1 (en) * 2000-01-28 2002-09-17 Roche Diagnostics Corporation Fluid flow control in curved capillary channels
US6720157B2 (en) * 2000-02-23 2004-04-13 Zyomyx, Inc. Chips having elevated sample surfaces
US7485454B1 (en) 2000-03-10 2009-02-03 Bioprocessors Corp. Microreactor
US6749735B1 (en) 2000-03-16 2004-06-15 David Le Febre Electromobility focusing controlled channel electrophoresis system
US7141152B2 (en) * 2000-03-16 2006-11-28 Le Febre David A Analyte species separation system
US20020012971A1 (en) 2000-03-20 2002-01-31 Mehta Tammy Burd PCR compatible nucleic acid sieving medium
US6358387B1 (en) * 2000-03-27 2002-03-19 Caliper Technologies Corporation Ultra high throughput microfluidic analytical systems and methods
AU5121801A (en) * 2000-03-31 2001-10-15 Micronics Inc Protein crystallization in microfluidic structures
DE60131735T2 (de) * 2000-04-03 2008-11-06 Parabol Technologies S.A. Vorrichtung zur abgabe von genau kontrollierten kleinen flüssigkeitsmengen
US7867763B2 (en) 2004-01-25 2011-01-11 Fluidigm Corporation Integrated chip carriers with thermocycler interfaces and methods of using the same
DE10017791A1 (de) * 2000-04-10 2001-10-11 Basf Ag Verfahren und Vorrichtung zur Mikrodosierung kleinster Flüssigkeitsmengen für Biopolymerarrays
US6733645B1 (en) 2000-04-18 2004-05-11 Caliper Technologies Corp. Total analyte quantitation
US6296452B1 (en) * 2000-04-28 2001-10-02 Agilent Technologies, Inc. Microfluidic pumping
US6534986B2 (en) 2000-05-01 2003-03-18 Schlumberger Technology Corporation Permanently emplaced electromagnetic system and method for measuring formation resistivity adjacent to and between wells
ATE503209T1 (de) 2000-05-03 2011-04-15 Caliper Life Sciences Inc Herstellungsprozesse für substrate mit mehreren tiefen
AU2001261541B2 (en) 2000-05-11 2004-10-14 Caliper Life Sciences, Inc. Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers
EP1297179B1 (en) * 2000-05-12 2008-09-24 Caliper Life Sciences, Inc. Detection of nucleic acid hybridization by fluorescence polarization
US7351376B1 (en) 2000-06-05 2008-04-01 California Institute Of Technology Integrated active flux microfluidic devices and methods
US6829753B2 (en) * 2000-06-27 2004-12-07 Fluidigm Corporation Microfluidic design automation method and system
US20070119711A1 (en) * 2000-08-02 2007-05-31 Caliper Life Sciences, Inc. High throughput separations based analysis systems and methods
AU8095101A (en) * 2000-08-02 2002-02-13 Caliper Techn Corp High throughput separations based analysis systems
CA2415055A1 (en) 2000-08-03 2002-02-14 Caliper Technologies Corporation Methods and devices for high throughput fluid delivery
US20020142618A1 (en) * 2000-08-04 2002-10-03 Caliper Technologies Corp. Control of operation conditions within fluidic systems
JP2004506189A (ja) * 2000-08-04 2004-02-26 カリパー・テクノロジーズ・コープ. 流体システム内の操作条件の制御
US6890093B2 (en) 2000-08-07 2005-05-10 Nanostream, Inc. Multi-stream microfludic mixers
AU2001281076A1 (en) * 2000-08-07 2002-02-18 Nanostream, Inc. Fluidic mixer in microfluidic system
EP1334347A1 (en) * 2000-09-15 2003-08-13 California Institute Of Technology Microfabricated crossflow devices and methods
US6536477B1 (en) * 2000-10-12 2003-03-25 Nanostream, Inc. Fluidic couplers and modular microfluidic systems
AU1189702A (en) * 2000-10-13 2002-04-22 Fluidigm Corp Microfluidic device based sample injection system for analytical devices
US20030057092A1 (en) * 2000-10-31 2003-03-27 Caliper Technologies Corp. Microfluidic methods, devices and systems for in situ material concentration
US20050011761A1 (en) * 2000-10-31 2005-01-20 Caliper Technologies Corp. Microfluidic methods, devices and systems for in situ material concentration
US7105304B1 (en) 2000-11-07 2006-09-12 Caliper Life Sciences, Inc. Pressure-based mobility shift assays
US20050221385A1 (en) * 2000-11-07 2005-10-06 Caliper Life Sciences, Inc. Pressure based mobility shift assays
US20090118139A1 (en) 2000-11-07 2009-05-07 Caliper Life Sciences, Inc. Microfluidic method and system for enzyme inhibition activity screening
DE10154601B4 (de) * 2000-11-13 2007-02-22 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto Ein Mikrobauelement mit einem integrierten hervorstehenden Elektrospray-Emitter und ein Verfahren zum Herstellen des Mikrobauelements
US6770182B1 (en) * 2000-11-14 2004-08-03 Sandia National Laboratories Method for producing a thin sample band in a microchannel device
US6770434B2 (en) * 2000-12-29 2004-08-03 The Provost, Fellows And Scholars Of The College Of The Holy & Undivided Trinity Of Queen Elizabeth Near Dublin Biological assay method
US20020108860A1 (en) * 2001-01-15 2002-08-15 Staats Sau Lan Tang Fabrication of polymeric microfluidic devices
US6918309B2 (en) * 2001-01-17 2005-07-19 Irm Llc Sample deposition method and system
US6681788B2 (en) 2001-01-29 2004-01-27 Caliper Technologies Corp. Non-mechanical valves for fluidic systems
US20020100714A1 (en) * 2001-01-31 2002-08-01 Sau Lan Tang Staats Microfluidic devices
US6692700B2 (en) * 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US7670559B2 (en) * 2001-02-15 2010-03-02 Caliper Life Sciences, Inc. Microfluidic systems with enhanced detection systems
DE60234572D1 (de) * 2001-02-15 2010-01-14 Caliper Life Sciences Inc Mikrofluidische systeme mit verbesserten detektionssystemen
US6720148B1 (en) 2001-02-22 2004-04-13 Caliper Life Sciences, Inc. Methods and systems for identifying nucleotides by primer extension
US7016560B2 (en) 2001-02-28 2006-03-21 Lightwave Microsystems Corporation Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices
WO2002068821A2 (en) * 2001-02-28 2002-09-06 Lightwave Microsystems Corporation Microfluidic control using dieletric pumping
US7867776B2 (en) * 2001-03-02 2011-01-11 Caliper Life Sciences, Inc. Priming module for microfluidic chips
US7150999B1 (en) 2001-03-09 2006-12-19 Califer Life Sciences, Inc. Process for filling microfluidic channels
KR100393131B1 (ko) * 2001-03-15 2003-07-31 케이맥(주) 단백질 나노 결정화 방법, 및 결정화 챔버 및 그를포함하는 칩
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
US6575188B2 (en) 2001-07-26 2003-06-10 Handylab, Inc. Methods and systems for fluid control in microfluidic devices
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US7010391B2 (en) * 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US6852287B2 (en) 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US7670429B2 (en) 2001-04-05 2010-03-02 The California Institute Of Technology High throughput screening of crystallization of materials
AU2002307152A1 (en) * 2001-04-06 2002-10-21 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
JP4362987B2 (ja) * 2001-04-09 2009-11-11 株式会社島津製作所 マイクロチップ電気泳動におけるサンプル導入方法
US7440684B2 (en) * 2001-04-12 2008-10-21 Spaid Michael A Method and apparatus for improved temperature control in microfluidic devices
WO2002089972A1 (en) * 2001-05-03 2002-11-14 Commissariat A L'energie Atomique Microfluidic device for analyzing nucleic acids and/or proteins, methods of preparation and uses thereof
US7723123B1 (en) 2001-06-05 2010-05-25 Caliper Life Sciences, Inc. Western blot by incorporating an affinity purification zone
US20020187564A1 (en) * 2001-06-08 2002-12-12 Caliper Technologies Corp. Microfluidic library analysis
US6977163B1 (en) 2001-06-13 2005-12-20 Caliper Life Sciences, Inc. Methods and systems for performing multiple reactions by interfacial mixing
AU2002326314A1 (en) * 2001-06-20 2003-01-08 Teragenics, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20030077570A1 (en) * 2001-09-20 2003-04-24 Coventor, Inc. Small molecule substrate based enzyme activity assays
US7534334B1 (en) * 2003-10-03 2009-05-19 Sandia Corporation Apparatus and method for concentrating and filtering particles suspended in a fluid
US20020197733A1 (en) * 2001-06-20 2002-12-26 Coventor, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US7211442B2 (en) * 2001-06-20 2007-05-01 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20030015425A1 (en) * 2001-06-20 2003-01-23 Coventor Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US7179423B2 (en) 2001-06-20 2007-02-20 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
EP1493487A1 (de) * 2001-06-28 2005-01-05 Agilent Technologies, Inc. Mikrofluid-System mit ESI-Reststromregelung
US7332127B2 (en) * 2001-07-11 2008-02-19 University Of Southern California DNA probe synthesis on chip on demand by MEMS ejector array
US20030027225A1 (en) * 2001-07-13 2003-02-06 Caliper Technologies Corp. Microfluidic devices and systems for separating components of a mixture
US6825127B2 (en) 2001-07-24 2004-11-30 Zarlink Semiconductor Inc. Micro-fluidic devices
US20060062696A1 (en) 2001-07-27 2006-03-23 Caliper Life Sciences, Inc. Optimized high throughput analytical systems
US7060171B1 (en) 2001-07-31 2006-06-13 Caliper Life Sciences, Inc. Methods and systems for reducing background signal in assays
FR2829948B1 (fr) * 2001-09-21 2004-07-09 Commissariat Energie Atomique Procede de deplacement d'un fluide d'interet dans un capillaire et microsysteme fluidique
US20030062833A1 (en) * 2001-10-03 2003-04-03 Wen-Yen Tai Mini-type decorative bulb capable of emitting light through entire circumferential face
US6755949B1 (en) 2001-10-09 2004-06-29 Roche Diagnostics Corporation Biosensor
US7220345B2 (en) * 2001-10-18 2007-05-22 The Board Of Trustees Of The University Of Illinois Hybrid microfluidic and nanofluidic system
US8440093B1 (en) 2001-10-26 2013-05-14 Fuidigm Corporation Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels
US7749439B2 (en) * 2001-10-29 2010-07-06 Arkray, Inc. Test apparatus
AU2002353997A1 (en) * 2001-11-01 2003-05-12 Rensselaer Polytechnic Institute In vitro metabolic engineering on microscale devices
US7247274B1 (en) * 2001-11-13 2007-07-24 Caliper Technologies Corp. Prevention of precipitate blockage in microfluidic channels
US20030098661A1 (en) * 2001-11-29 2003-05-29 Ken Stewart-Smith Control system for vehicle seats
EP1463796B1 (en) * 2001-11-30 2013-01-09 Fluidigm Corporation Microfluidic device and methods of using same
US7691333B2 (en) * 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
US7691244B2 (en) * 2001-12-18 2010-04-06 Massachusetts Institute Of Technology Microfluidic pumps and mixers driven by induced-charge electro-osmosis
US7081189B2 (en) * 2001-12-18 2006-07-25 Massachusetts Institute Of Technology Microfluidic pumps and mixers driven by induced-charge electro-osmosis
US6864480B2 (en) * 2001-12-19 2005-03-08 Sau Lan Tang Staats Interface members and holders for microfluidic array devices
WO2003054488A1 (en) * 2001-12-19 2003-07-03 Sau Lan Tang Staats Interface members and holders for microfluidic array devices
US6800849B2 (en) 2001-12-19 2004-10-05 Sau Lan Tang Staats Microfluidic array devices and methods of manufacture and uses thereof
US6877892B2 (en) * 2002-01-11 2005-04-12 Nanostream, Inc. Multi-stream microfluidic aperture mixers
US6581441B1 (en) * 2002-02-01 2003-06-24 Perseptive Biosystems, Inc. Capillary column chromatography process and system
US7459127B2 (en) * 2002-02-26 2008-12-02 Siemens Healthcare Diagnostics Inc. Method and apparatus for precise transfer and manipulation of fluids by centrifugal and/or capillary forces
WO2003076052A1 (en) 2002-03-05 2003-09-18 Caliper Life Sciences, Inc. Mixed mode microfluidic systems
US7101467B2 (en) * 2002-03-05 2006-09-05 Caliper Life Sciences, Inc. Mixed mode microfluidic systems
WO2003075008A1 (en) * 2002-03-05 2003-09-12 Bayer Healthcare Llc Absorbing organic reagent into diagnostic test devices by formation of amine salt complexes
US7303727B1 (en) 2002-03-06 2007-12-04 Caliper Life Sciences, Inc Microfluidic sample delivery devices, systems, and methods
US7252928B1 (en) 2002-03-12 2007-08-07 Caliper Life Sciences, Inc. Methods for prevention of surface adsorption of biological materials to capillary walls in microchannels
US7312085B2 (en) * 2002-04-01 2007-12-25 Fluidigm Corporation Microfluidic particle-analysis systems
EP1499706A4 (en) 2002-04-01 2010-11-03 Fluidigm Corp MICROFLUIDIC PARTICLE ANALYSIS SYSTEMS
CA2480200A1 (en) * 2002-04-02 2003-10-16 Caliper Life Sciences, Inc. Methods and apparatus for separation and isolation of components from a biological sample
US9943847B2 (en) 2002-04-17 2018-04-17 Cytonome/St, Llc Microfluidic system including a bubble valve for regulating fluid flow through a microchannel
US7060170B2 (en) * 2002-05-01 2006-06-13 Eksigent Technologies Llc Bridges, elements and junctions for electroosmotic flow systems
KR100523984B1 (ko) * 2002-05-02 2005-10-26 학교법인 포항공과대학교 유체 제어 장치
US7901939B2 (en) * 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
ATE479899T1 (de) 2002-05-09 2010-09-15 Univ Chicago Einrichtugn und verfahren für druckgesteuerten plug-transport und reaktion
AU2003238401A1 (en) * 2002-05-24 2003-12-12 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for transferring heterogeneous liquids in microchannels without the occurrence of mixing
US7161356B1 (en) 2002-06-05 2007-01-09 Caliper Life Sciences, Inc. Voltage/current testing equipment for microfluidic devices
US7867193B2 (en) 2004-01-29 2011-01-11 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
US20050238506A1 (en) * 2002-06-21 2005-10-27 The Charles Stark Draper Laboratory, Inc. Electromagnetically-actuated microfluidic flow regulators and related applications
US20060086309A1 (en) * 2002-06-24 2006-04-27 Fluiding Corporation Recirculating fluidic network and methods for using the same
US7517440B2 (en) * 2002-07-17 2009-04-14 Eksigent Technologies Llc Electrokinetic delivery systems, devices and methods
US7235164B2 (en) * 2002-10-18 2007-06-26 Eksigent Technologies, Llc Electrokinetic pump having capacitive electrodes
US7364647B2 (en) * 2002-07-17 2008-04-29 Eksigent Technologies Llc Laminated flow device
DE10238825A1 (de) * 2002-08-23 2004-03-11 Roche Diagnostics Gmbh Mikrofluidische Systeme mit hohem Aspektverhältnis
US6878271B2 (en) * 2002-09-09 2005-04-12 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
US7094345B2 (en) * 2002-09-09 2006-08-22 Cytonome, Inc. Implementation of microfluidic components, including molecular fractionation devices, in a microfluidic system
US7455770B2 (en) * 2002-09-09 2008-11-25 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
EP1403209A1 (en) * 2002-09-24 2004-03-31 The Technology Partnership Limited Fluid routing device
EP1551753A2 (en) 2002-09-25 2005-07-13 California Institute Of Technology Microfluidic large scale integration
TW590982B (en) * 2002-09-27 2004-06-11 Agnitio Science & Technology I Micro-fluid driving device
JP5695287B2 (ja) 2002-10-02 2015-04-01 カリフォルニア インスティテュート オブ テクノロジー 微小流体の核酸解析
US7932098B2 (en) * 2002-10-31 2011-04-26 Hewlett-Packard Development Company, L.P. Microfluidic system utilizing thin-film layers to route fluid
US20040086872A1 (en) * 2002-10-31 2004-05-06 Childers Winthrop D. Microfluidic system for analysis of nucleic acids
US6843272B2 (en) * 2002-11-25 2005-01-18 Sandia National Laboratories Conductance valve and pressure-to-conductance transducer method and apparatus
EP2096341A1 (en) * 2002-12-04 2009-09-02 Spinx, Inc, Devices and methods for programmable microscale manipulation of fluids
KR100523282B1 (ko) * 2002-12-10 2005-10-24 학교법인 포항공과대학교 나선형 전기삼투 흐름을 갖는 마이크로 채널
US7125711B2 (en) * 2002-12-19 2006-10-24 Bayer Healthcare Llc Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
US7094354B2 (en) 2002-12-19 2006-08-22 Bayer Healthcare Llc Method and apparatus for separation of particles in a microfluidic device
US8275554B2 (en) * 2002-12-20 2012-09-25 Caliper Life Sciences, Inc. System for differentiating the lengths of nucleic acids of interest in a sample
US20050042639A1 (en) * 2002-12-20 2005-02-24 Caliper Life Sciences, Inc. Single molecule amplification and detection of DNA length
JP4395133B2 (ja) * 2002-12-20 2010-01-06 カリパー・ライフ・サイエンシズ・インク. Dnaの単一分子増幅および検出
US7125727B2 (en) 2003-01-29 2006-10-24 Protedyne Corporation Sample handling tool with piezoelectric actuator
SE0300454D0 (sv) * 2003-02-19 2003-02-19 Aamic Ab Nozzles for electrospray ionization and methods of fabricating them
EP1613160A4 (en) 2003-03-27 2008-01-02 Ptc Therapeutics Inc VIEWING ENZYMES OF THE TRNA-SPLICE PATH TO IDENTIFY ANTIFUNGAL AND / OR PROLIFERATION-INHIBITING MOLECULES
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307428D0 (en) 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
US8828663B2 (en) * 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
US7476363B2 (en) * 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
US7666361B2 (en) * 2003-04-03 2010-02-23 Fluidigm Corporation Microfluidic devices and methods of using same
US20050145496A1 (en) 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
US7604965B2 (en) * 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US7007710B2 (en) * 2003-04-21 2006-03-07 Predicant Biosciences, Inc. Microfluidic devices and methods
DE10322942A1 (de) * 2003-05-19 2004-12-09 Hans-Knöll-Institut für Naturstoff-Forschung e.V. Vorrichtung zum Positionieren und Ausschleusen von in Separationsmedium eingebetteten Fluidkompartimenten
DE10322893A1 (de) * 2003-05-19 2004-12-16 Hans-Knöll-Institut für Naturstoff-Forschung e.V. Vorrichtung und Verfahren zum Zudosieren von Reaktionsflüssigkeiten zu in Separationsmedium eingebetteten Flüssigkeitskompartimenten
US7435381B2 (en) * 2003-05-29 2008-10-14 Siemens Healthcare Diagnostics Inc. Packaging of microfluidic devices
US7247487B2 (en) * 2003-06-18 2007-07-24 Ortho-Clinical Diagnostics Reducing working fluid dilution in liquid systems
US20040265172A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method and apparatus for entry and storage of specimens into a microfluidic device
US20040265171A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method for uniform application of fluid into a reactive reagent area
US20080257754A1 (en) * 2003-06-27 2008-10-23 Pugia Michael J Method and apparatus for entry of specimens into a microfluidic device
US7731906B2 (en) 2003-07-31 2010-06-08 Handylab, Inc. Processing particle-containing samples
US7413712B2 (en) * 2003-08-11 2008-08-19 California Institute Of Technology Microfluidic rotary flow reactor matrix
US7347617B2 (en) 2003-08-19 2008-03-25 Siemens Healthcare Diagnostics Inc. Mixing in microfluidic devices
DE10345028B4 (de) * 2003-09-25 2009-09-10 Microfluidic Chipshop Gmbh Vorrichtung zum Halten und Verbinden von mikrofluidischen Systemen
US7396512B2 (en) * 2003-11-04 2008-07-08 Drummond Scientific Company Automatic precision non-contact open-loop fluid dispensing
US7588671B2 (en) * 2003-11-21 2009-09-15 Ebara Corporation Microfluidic treatment method and device
WO2005072353A2 (en) * 2004-01-25 2005-08-11 Fluidigm Corporation Crystal forming devices and systems and methods for making and using the same
US8030057B2 (en) * 2004-01-26 2011-10-04 President And Fellows Of Harvard College Fluid delivery system and method
PL1776181T3 (pl) 2004-01-26 2014-03-31 Harvard College Układ i sposób doprowadzania płynów
US7867194B2 (en) 2004-01-29 2011-01-11 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
US20050221339A1 (en) 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
US7559356B2 (en) * 2004-04-19 2009-07-14 Eksident Technologies, Inc. Electrokinetic pump driven heat transfer system
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
AU2005241080B2 (en) 2004-05-03 2011-08-11 Handylab, Inc. Processing polynucleotide-containing samples
FR2871070B1 (fr) * 2004-06-02 2007-02-16 Commissariat Energie Atomique Microdispositif et procede de separation d'emulsion
FR2871150B1 (fr) * 2004-06-04 2006-09-22 Univ Lille Sciences Tech Dispositif de manipulation de gouttes destine a l'analyse biochimique, procede de fabrication du dispositif, et systeme d'analyse microfluidique
US9477233B2 (en) * 2004-07-02 2016-10-25 The University Of Chicago Microfluidic system with a plurality of sequential T-junctions for performing reactions in microdroplets
CA2575545A1 (en) 2004-07-28 2006-10-12 Toru Takahashi Methods for monitoring genomic dna of organisms
US7211184B2 (en) * 2004-08-04 2007-05-01 Ast Management Inc. Capillary electrophoresis devices
US20060070880A1 (en) * 2004-08-31 2006-04-06 Applera Corporation Methods and apparatus for manipulating separation media
US7828954B2 (en) 2004-09-21 2010-11-09 Gamida For Life B.V. Electrode based patterning of thin film self-assembled nanoparticles
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
JP4643973B2 (ja) * 2004-11-08 2011-03-02 富士フイルム株式会社 ポンプの作動状態の検査方法
KR20060058830A (ko) * 2004-11-26 2006-06-01 한국표준과학연구원 개별시료 주입구가 없는 다중채널 전기영동장치에 의한분리방법
US9260693B2 (en) 2004-12-03 2016-02-16 Cytonome/St, Llc Actuation of parallel microfluidic arrays
ATE538213T1 (de) * 2005-02-18 2012-01-15 Canon Us Life Sciences Inc Vorrichtung und verfahren zum identifizieren genomischer dna von organismen
US20060210443A1 (en) * 2005-03-14 2006-09-21 Stearns Richard G Avoidance of bouncing and splashing in droplet-based fluid transport
US7975531B2 (en) * 2005-03-18 2011-07-12 Nanyang Technological University Microfluidic sensor for interfacial tension measurement and method for measuring interfacial tension
KR100666825B1 (ko) * 2005-03-26 2007-01-11 한국표준과학연구원 전기전도성 관을 이용한 전기삼투압류 구동 극미세 피펫장치
JP5123847B2 (ja) 2005-05-25 2013-01-23 バイオ−ラド ラボラトリーズ インコーポレイテッド 流体工学装置
CN101317086B (zh) * 2005-10-04 2013-08-14 海德威技术公司 分析物的微观流体检测
EP1957794B1 (en) 2005-11-23 2014-07-02 Eksigent Technologies, LLC Electrokinetic pump designs and drug delivery systems
JP2007147456A (ja) * 2005-11-28 2007-06-14 Seiko Epson Corp マイクロ流体システム、試料分析装置、及び標的物質の検出または測定方法
EP2363205A3 (en) 2006-01-11 2014-06-04 Raindance Technologies, Inc. Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
KR100700713B1 (ko) 2006-02-27 2007-03-28 한국표준과학연구원 신규한 폴리전해질 참조전극을 포함하는 소형화된 전기화학시스템 및 이것의 박층 전기분석으로의 응용
US7815868B1 (en) 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
JP5415253B2 (ja) 2006-03-24 2014-02-12 ハンディラブ・インコーポレーテッド 微小流体サンプルを処理するための一体化システム及びその使用方法
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US8088616B2 (en) 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
EP2530168B1 (en) 2006-05-11 2015-09-16 Raindance Technologies, Inc. Microfluidic Devices
EP2636755A1 (en) 2006-05-26 2013-09-11 AltheaDx Incorporated Biochemical analysis of partitioned cells
US8252160B2 (en) * 2006-07-28 2012-08-28 Hewlett-Packard Development Company, L.P. Prevention of fluid delivered to reservoir from wicking into channels within microfluidic device
WO2008021123A1 (en) 2006-08-07 2008-02-21 President And Fellows Of Harvard College Fluorocarbon emulsion stabilizing surfactants
KR100762015B1 (ko) * 2006-08-19 2007-10-04 한국표준과학연구원 분리가능한 전기전도 결합부가 구비된 전기삼투압류로구동되는 극미세 피펫 장치
EP1895308A1 (en) * 2006-09-01 2008-03-05 Agilent Technologies, Inc. Droplet-based fluidic coupling
DE102006049607B4 (de) 2006-10-20 2009-06-10 Airbus Deutschland Gmbh Herstellverfahren einer Sensorfolie
WO2008061165A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic cartridge and method of making same
US20080160623A1 (en) * 2006-12-27 2008-07-03 Xing Su Method and device for bioanalyte quantification by on/off kinetics of binding complexes
US7867592B2 (en) 2007-01-30 2011-01-11 Eksigent Technologies, Inc. Methods, compositions and devices, including electroosmotic pumps, comprising coated porous surfaces
WO2008094672A2 (en) 2007-01-31 2008-08-07 Charles Stark Draper Laboratory, Inc. Membrane-based fluid control in microfluidic devices
WO2008097559A2 (en) 2007-02-06 2008-08-14 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US7799656B2 (en) * 2007-03-15 2010-09-21 Dalsa Semiconductor Inc. Microchannels for BioMEMS devices
WO2008130623A1 (en) 2007-04-19 2008-10-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
JP5559967B2 (ja) * 2007-04-27 2014-07-23 独立行政法人産業技術総合研究所 電気泳動チップ、電気泳動装置およびキャピラリー電気泳動法による試料の分析方法
ES2687620T3 (es) 2007-05-04 2018-10-26 Opko Diagnostics, Llc Dispositivo y método para análisis en sistemas microfluídicos
DE102007021544A1 (de) * 2007-05-08 2008-11-13 Siemens Ag Messeinheit und Verfahren zur optischen Untersuchung einer Flüssigkeit auf eine Analytkonzentration
US20090136385A1 (en) 2007-07-13 2009-05-28 Handylab, Inc. Reagent Tube
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
USD621060S1 (en) 2008-07-14 2010-08-03 Handylab, Inc. Microfluidic cartridge
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
WO2009012185A1 (en) 2007-07-13 2009-01-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
DE102007032951B4 (de) 2007-07-14 2010-09-02 Karlsruher Institut für Technologie Vorrichtung und Verfahren zur Zuführung eines Flüssigkeitsstroms aus mindestens zwei Flüssigkeitsabschnitten in eine Messzelle
US8016260B2 (en) * 2007-07-19 2011-09-13 Formulatrix, Inc. Metering assembly and method of dispensing fluid
US20100227767A1 (en) * 2007-07-26 2010-09-09 Boedicker James Q Stochastic confinement to detect, manipulate, and utilize molecules and organisms
JP5093721B2 (ja) * 2007-09-18 2012-12-12 国立大学法人 岡山大学 マイクロ分離装置
DE102007046305A1 (de) * 2007-09-27 2009-04-02 Robert Bosch Gmbh Mikrofluidisches Bauelement sowie Herstellungsverfahren
GB2453534A (en) * 2007-10-08 2009-04-15 Shaw Stewart P D Method for adding solutions to droplets in a microfluidic environment using electric potentials or ultrasound
WO2009076134A1 (en) 2007-12-11 2009-06-18 Eksigent Technologies, Llc Electrokinetic pump with fixed stroke volume
EP2285491A1 (en) 2008-04-25 2011-02-23 Claros Diagnostics, Inc. Flow control in microfluidic systems
US8622987B2 (en) * 2008-06-04 2014-01-07 The University Of Chicago Chemistrode, a plug-based microfluidic device and method for stimulation and sampling with high temporal, spatial, and chemical resolution
US20090318303A1 (en) * 2008-06-20 2009-12-24 International Business Machines Corporation Microfluidic selection of library elements
US9879360B2 (en) * 2008-06-20 2018-01-30 International Business Machines Corporation Microfluidic selection of library elements
US20090325159A1 (en) * 2008-06-30 2009-12-31 Canon U.S. Life Sciences, Inc. System and method to prevent cross-contamination in assays performed in a microfluidic channel
USD618820S1 (en) 2008-07-11 2010-06-29 Handylab, Inc. Reagent holder
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
EP4047367A1 (en) 2008-07-18 2022-08-24 Bio-Rad Laboratories, Inc. Method for detecting target analytes with droplet libraries
US9764322B2 (en) 2008-09-23 2017-09-19 Bio-Rad Laboratories, Inc. System for generating droplets with pressure monitoring
US8633015B2 (en) * 2008-09-23 2014-01-21 Bio-Rad Laboratories, Inc. Flow-based thermocycling system with thermoelectric cooler
US8709762B2 (en) 2010-03-02 2014-04-29 Bio-Rad Laboratories, Inc. System for hot-start amplification via a multiple emulsion
US9417190B2 (en) 2008-09-23 2016-08-16 Bio-Rad Laboratories, Inc. Calibrations and controls for droplet-based assays
US8663920B2 (en) 2011-07-29 2014-03-04 Bio-Rad Laboratories, Inc. Library characterization by digital assay
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
US10512910B2 (en) 2008-09-23 2019-12-24 Bio-Rad Laboratories, Inc. Droplet-based analysis method
US9132394B2 (en) 2008-09-23 2015-09-15 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
US9492797B2 (en) 2008-09-23 2016-11-15 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
US8951939B2 (en) 2011-07-12 2015-02-10 Bio-Rad Laboratories, Inc. Digital assays with multiplexed detection of two or more targets in the same optical channel
US9598725B2 (en) * 2010-03-02 2017-03-21 Bio-Rad Laboratories, Inc. Emulsion chemistry for encapsulated droplets
US11130128B2 (en) 2008-09-23 2021-09-28 Bio-Rad Laboratories, Inc. Detection method for a target nucleic acid
DK2376226T3 (en) 2008-12-18 2018-10-15 Opko Diagnostics Llc IMPROVED REAGENT STORAGE IN MICROFLUIDIC SYSTEMS AND RELATED ARTICLES AND PROCEDURES
US7927904B2 (en) 2009-01-05 2011-04-19 Dalsa Semiconductor Inc. Method of making BIOMEMS devices
US8100293B2 (en) * 2009-01-23 2012-01-24 Formulatrix, Inc. Microfluidic dispensing assembly
WO2010087999A1 (en) 2009-02-02 2010-08-05 Claros Diagnostics, Inc. Structures for controlling light interaction with microfluidic devices
EP3415235A1 (en) 2009-03-23 2018-12-19 Raindance Technologies Inc. Manipulation of microfluidic droplets
US10196700B2 (en) 2009-03-24 2019-02-05 University Of Chicago Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes
US9447461B2 (en) 2009-03-24 2016-09-20 California Institute Of Technology Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes
US9464319B2 (en) 2009-03-24 2016-10-11 California Institute Of Technology Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes
AU2010229490B2 (en) 2009-03-24 2015-02-12 University Of Chicago Slip chip device and methods
DE102009023068A1 (de) * 2009-05-28 2010-12-02 RATIONAL Technische Lösungen GmbH Dosiergerät insbesondere für analytische Aufgaben
AU2010257118B2 (en) 2009-06-04 2014-08-28 Lockheed Martin Corporation Multiple-sample microfluidic chip for DNA analysis
US8202486B2 (en) * 2009-08-12 2012-06-19 Caliper Life Sciences, Inc. Pinching channels for fractionation of fragmented samples
CA2767056C (en) * 2009-09-02 2018-12-04 Bio-Rad Laboratories, Inc. System for mixing fluids by coalescence of multiple emulsions
WO2011042564A1 (en) 2009-10-09 2011-04-14 Universite De Strasbourg Labelled silica-based nanomaterial with enhanced properties and uses thereof
DE102009049783A1 (de) * 2009-10-19 2011-04-21 Eppendorf Ag Elektrisch leitfähige Pipettenspitze
PT2504105T (pt) 2009-11-24 2021-03-31 Opko Diagnostics Llc Mistura e distribuição de fluidos em sistemas microfluídicos
EP2517025B1 (en) 2009-12-23 2019-11-27 Bio-Rad Laboratories, Inc. Methods for reducing the exchange of molecules between droplets
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
EP2534267B1 (en) 2010-02-12 2018-04-11 Raindance Technologies, Inc. Digital analyte analysis
CA2767182C (en) * 2010-03-25 2020-03-24 Bio-Rad Laboratories, Inc. Droplet generation for droplet-based assays
EP2556170A4 (en) 2010-03-25 2014-01-01 Quantalife Inc TRAPPING TRANSPORT AND DETECTION SYSTEM
CA2767113A1 (en) 2010-03-25 2011-09-29 Bio-Rad Laboratories, Inc. Detection system for droplet-based assays
EP2558203A1 (en) 2010-04-16 2013-02-20 Opko Diagnostics, LLC Systems and devices for analysis of samples
US8452037B2 (en) 2010-05-05 2013-05-28 Apple Inc. Speaker clip
USD645971S1 (en) 2010-05-11 2011-09-27 Claros Diagnostics, Inc. Sample cassette
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
GB2497501A (en) 2010-10-15 2013-06-12 Lockheed Corp Micro fluidic optic design
EP3574990B1 (en) 2010-11-01 2022-04-06 Bio-Rad Laboratories, Inc. System for forming emulsions
JP6162047B2 (ja) 2011-02-02 2017-07-12 ザ チャールズ スターク ドレイパー ラボラトリー インク 薬物送達装置
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
US9150852B2 (en) 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
CN103534360A (zh) 2011-03-18 2014-01-22 伯乐生命医学产品有限公司 借助对信号的组合使用进行的多重数字分析
CN106190806B (zh) 2011-04-15 2018-11-06 贝克顿·迪金森公司 扫描实时微流体热循环仪和用于同步的热循环和扫描光学检测的方法
JP2014512826A (ja) 2011-04-25 2014-05-29 バイオ−ラド ラボラトリーズ インコーポレイテッド 核酸分析のための方法および組成物
EP2704759A4 (en) 2011-05-05 2015-06-03 Eksigent Technologies Llc COUPLING GEL FOR ELECTROCINETIC FLUID DISTRIBUTION SYSTEMS
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
EP3709018A1 (en) 2011-06-02 2020-09-16 Bio-Rad Laboratories, Inc. Microfluidic apparatus for identifying components of a chemical reaction
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
KR102121853B1 (ko) 2011-09-30 2020-06-12 벡톤 디킨슨 앤드 컴퍼니 일체화된 시약 스트립
US9841417B2 (en) * 2011-09-30 2017-12-12 The Regents Of The University Of California Microfluidic devices and methods for assaying a fluid sample using the same
CN104040238B (zh) 2011-11-04 2017-06-27 汉迪拉布公司 多核苷酸样品制备装置
CN107881219B (zh) 2012-02-03 2021-09-10 贝克顿·迪金森公司 用于分子诊断测试分配和测试之间兼容性确定的外部文件
US9322054B2 (en) 2012-02-22 2016-04-26 Lockheed Martin Corporation Microfluidic cartridge
CN104364788B (zh) 2012-03-05 2018-02-06 阿克蒂克合伙公司 预测前列腺癌风险及前列腺腺体体积的装置
WO2013155531A2 (en) 2012-04-13 2013-10-17 Bio-Rad Laboratories, Inc. Sample holder with a well having a wicking promoter
CN108587867B (zh) * 2012-05-25 2021-12-17 北卡罗来纳-查佩尔山大学 微流体装置、用于试剂的固体支持体和相关方法
EP2864764B1 (en) * 2012-06-20 2018-03-07 The University of North Carolina At Chapel Hill Integrated sample processing for electrospray ionization devices
US9976417B2 (en) 2012-07-16 2018-05-22 Schlumberger Technology Corporation Capillary electrophoresis for reservoir fluid analysis at wellsite and laboratory
US9820033B2 (en) 2012-09-28 2017-11-14 Apple Inc. Speaker assembly
GB2506630A (en) * 2012-10-04 2014-04-09 Univ Leiden Method and apparatus for processing a liquid
WO2014062719A2 (en) 2012-10-15 2014-04-24 Nanocellect Biomedical, Inc. Systems, apparatus, and methods for sorting particles
US9518977B2 (en) * 2012-10-19 2016-12-13 University Of Washington Through Its Center For Commercialization Microfluidic assay apparatus and methods of use
CA2902903A1 (en) * 2013-02-28 2014-09-04 The University Of North Carolina At Chapel Hill Nanofluidic devices with integrated components for the controlled capture, trapping, and transport of macromolecules and related methods of analysis
ES2741001T3 (es) 2013-03-13 2020-02-07 Opko Diagnostics Llc Mezcla de fluidos en sistemas fluídicos
US10018590B2 (en) 2013-08-15 2018-07-10 Schlumberger Technology Corporation Capillary electrophoresis for subterranean applications
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
US9451354B2 (en) * 2014-05-12 2016-09-20 Apple Inc. Liquid expulsion from an orifice
WO2016044710A1 (en) * 2014-09-18 2016-03-24 Massachusetts Institute Of Technology One-step protein analysis using slanted nanofilter array
EP3229963B1 (en) 2014-12-12 2023-08-23 Opko Diagnostics, LLC Fluidic systems comprising an incubation channel, including fluidic systems formed by molding, and method
US10734216B2 (en) 2015-05-11 2020-08-04 The University Of North Carolina At Chapel Hill Pressure driven fluidic injection for chemical separations by electrophoresis
US9606082B2 (en) 2015-05-11 2017-03-28 The University Of North Carolina At Chapel Hill Pressure driven microfluidic injection for chemical separations
US9900698B2 (en) 2015-06-30 2018-02-20 Apple Inc. Graphene composite acoustic diaphragm
WO2017065854A2 (en) 2015-07-22 2017-04-20 The University Of North Carolina At Chapel Hill Fluidic devices with bead well geometries with spatially separated bead retention and signal detection segments and related methods
USD804682S1 (en) 2015-08-10 2017-12-05 Opko Diagnostics, Llc Multi-layered sample cassette
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
US9728387B2 (en) 2015-10-20 2017-08-08 The University Of North Carolina At Chapel Hill Solid phase extraction with capillary electrophoresis
CN108603828A (zh) 2015-11-30 2018-09-28 因塔生物公司 用于样品表征的装置和方法
US10852310B2 (en) 2015-12-11 2020-12-01 Opko Diagnostics, Llc Fluidic systems involving incubation of samples and/or reagents
US11307661B2 (en) 2017-09-25 2022-04-19 Apple Inc. Electronic device with actuators for producing haptic and audio output along a device housing
US10989181B1 (en) * 2017-11-14 2021-04-27 Verily Life Sciences Llc Electrowetting-based pump
US11099117B2 (en) 2017-12-28 2021-08-24 ChandlerTec Inc. Apparatus and methods for sample acquisition
KR20200115619A (ko) 2018-01-29 2020-10-07 인타바이오 인코퍼레이티드 샘플 특성화를 위한 장치, 방법 및 키트
WO2019232397A1 (en) 2018-05-31 2019-12-05 Intabio, Inc. Software for microfluidic systems interfacing with mass spectrometry
US10873798B1 (en) 2018-06-11 2020-12-22 Apple Inc. Detecting through-body inputs at a wearable audio device
US10757491B1 (en) 2018-06-11 2020-08-25 Apple Inc. Wearable interactive audio device
US11334032B2 (en) 2018-08-30 2022-05-17 Apple Inc. Electronic watch with barometric vent
CN109603928A (zh) * 2018-09-06 2019-04-12 澳门大学 基于液滴微流体控制的液滴分割装置及方法
US11561144B1 (en) 2018-09-27 2023-01-24 Apple Inc. Wearable electronic device with fluid-based pressure sensing
CN110075934B (zh) * 2019-03-25 2021-06-01 绍兴钠钇光电有限公司 一种3d打印微流控器件及其大通量制备单分散乳液的方法
CN114399015A (zh) 2019-04-17 2022-04-26 苹果公司 无线可定位标签
US11285484B2 (en) 2019-08-12 2022-03-29 Intabio, Llc Multichannel isoelectric focusing devices and high voltage power supplies

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282942A (en) * 1979-06-25 1981-08-11 Smith International Inc. Underreamer with ported cam sleeve upper extension
US4908112A (en) * 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
CN1043441A (zh) * 1988-09-22 1990-07-04 麦克尼尔-Ppc公司 有疏水性衬垫的吸收体
US5126022A (en) * 1990-02-28 1992-06-30 Soane Tecnologies, Inc. Method and device for moving molecules by the application of a plurality of electrical fields
US5358612A (en) * 1991-09-24 1994-10-25 The Dow Chemical Company Electrophoresis with chemically suppressed detection
US5415747A (en) * 1993-08-16 1995-05-16 Hewlett-Packard Company Capillary electrophoresis using zwitterion-coated capillary tubes
WO1996004547A1 (en) * 1994-08-01 1996-02-15 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
CN1120820A (zh) * 1993-04-07 1996-04-17 英国技术集团有限公司 液体传送装置

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568735A (en) * 1968-06-26 1971-03-09 Cooke Eng Co Laboratory microtitration dispensing apparatus
US3640267A (en) * 1969-12-15 1972-02-08 Damon Corp Clinical sample container
US4077845A (en) * 1977-04-20 1978-03-07 Miles Laboratories, Inc. Disposable inoculation device and process of using same
US4158035A (en) * 1978-03-15 1979-06-12 Byrd William J Multiple sample micropipette
US4459198A (en) 1981-07-27 1984-07-10 Shimadzu Corporation Electrophoretic apparatus
DK429682A (da) * 1982-09-28 1984-03-29 Inflow Aps Integrerede mikroroersystemer til kontinuerlig gennemstroemningsanalyse
US4589421A (en) * 1984-03-14 1986-05-20 Syntex (U.S.A.) Inc. Sampling device
DE3410508C2 (de) * 1984-03-22 1986-06-26 Kernforschungsanlage Jülich GmbH, 5170 Jülich Serien-Abfüllgerät zum Befüllen der Becher einer Mikrobecherplatte
US5140161A (en) 1985-08-05 1992-08-18 Biotrack Capillary flow device
US5144139A (en) 1985-08-05 1992-09-01 Biotrack, Inc. Capillary flow device
US4963498A (en) 1985-08-05 1990-10-16 Biotrack Capillary flow device
US5164598A (en) 1985-08-05 1992-11-17 Biotrack Capillary flow device
US4806316A (en) * 1987-03-17 1989-02-21 Becton, Dickinson And Company Disposable device for use in chemical, immunochemical and microorganism analysis
US4779768A (en) * 1987-07-24 1988-10-25 St. Amand Manufacturing Co., Inc. Volumetric dispensing pipette
US4868129A (en) * 1987-08-27 1989-09-19 Biotrack Inc. Apparatus and method for dilution and mixing of liquid samples
US5188963A (en) 1989-11-17 1993-02-23 Gene Tec Corporation Device for processing biological specimens for analysis of nucleic acids
US5141621A (en) * 1990-01-26 1992-08-25 The Board Of Trustees Of The Leland Stanford Junior University Capillary electrophoresis injection device and method
CH679952A5 (zh) * 1990-03-20 1992-05-15 Ciba Geigy Ag
SE470347B (sv) * 1990-05-10 1994-01-31 Pharmacia Lkb Biotech Mikrostruktur för vätskeflödessystem och förfarande för tillverkning av ett sådant system
JPH04160356A (ja) 1990-10-24 1992-06-03 Shimadzu Corp キャピラリー電気泳動装置の試料注入装置
US5089099A (en) 1990-11-30 1992-02-18 Varian Associates, Inc. Field amplified polarity switching sample injection in capillary zone electrophoresis
US5192405A (en) 1991-01-11 1993-03-09 Millipore Corporation Process for effecting high efficiency separations by capillary electrophoresis
US5270183A (en) 1991-02-08 1993-12-14 Beckman Research Institute Of The City Of Hope Device and method for the automated cycling of solutions between two or more temperatures
US5116471A (en) 1991-10-04 1992-05-26 Varian Associates, Inc. System and method for improving sample concentration in capillary electrophoresis
US5605662A (en) 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US5370842A (en) 1991-11-29 1994-12-06 Canon Kabushiki Kaisha Sample measuring device and sample measuring system
US5498392A (en) 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
US5486335A (en) 1992-05-01 1996-01-23 Trustees Of The University Of Pennsylvania Analysis based on flow restriction
US5304487A (en) 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
US5639423A (en) 1992-08-31 1997-06-17 The Regents Of The University Of Calfornia Microfabricated reactor
US5302264A (en) 1992-09-02 1994-04-12 Scientronix, Inc. Capillary eletrophoresis method and apparatus
US5571738A (en) * 1992-09-21 1996-11-05 Advanced Micro Devices, Inc. Method of making poly LDD self-aligned channel transistors
US5282942A (en) * 1993-01-22 1994-02-01 Beckman Instruments, Inc. Methods and apparatus for separating and mobilizing solutes in a solute mixture
JPH06265447A (ja) * 1993-03-16 1994-09-22 Hitachi Ltd 微量反応装置およびこれを使用する微量成分測定装置
EP0620432B1 (en) 1993-04-15 2004-08-25 Zeptosens AG Method for controlling sample introduction in microcolumn separation techniques and sampling device
FR2706354B1 (fr) * 1993-06-14 1995-09-01 Aerospatiale Procédé de réalisation d'objets creux en matériau composite par bobinage-dépose au contact sur un mandrin expansible et objets ainsi obtenus.
US5536382A (en) 1994-05-23 1996-07-16 Advanced Molecular Systems, Inc. Capillary electrophoresis assay method useful for the determination of constituents of a clinical sample
US5700695A (en) 1994-06-30 1997-12-23 Zia Yassinzadeh Sample collection and manipulation method
US5641400A (en) * 1994-10-19 1997-06-24 Hewlett-Packard Company Use of temperature control devices in miniaturized planar column devices and miniaturized total analysis systems
US5571410A (en) * 1994-10-19 1996-11-05 Hewlett Packard Company Fully integrated miniaturized planar liquid sample handling and analysis device
US5500071A (en) * 1994-10-19 1996-03-19 Hewlett-Packard Company Miniaturized planar columns in novel support media for liquid phase analysis
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
DE59600820D1 (de) 1995-02-01 1998-12-24 Rossendorf Forschzent Elektrisch steuerbare Mikro-Pipette
EP0727661B1 (en) * 1995-02-18 2003-05-07 Agilent Technologies Deutschland GmbH Mixing liquids using electroosmotic flow
US5560811A (en) 1995-03-21 1996-10-01 Seurat Analytical Systems Incorporated Capillary electrophoresis apparatus and method
US5856174A (en) * 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5630925A (en) 1995-07-13 1997-05-20 Beckman Instruments, Inc. Capillary electrophoresis using a conductive capillary tube
AU706862B2 (en) 1996-04-03 1999-06-24 Applied Biosystems, Llc Device and method for multiple analyte detection
US6001307A (en) 1996-04-26 1999-12-14 Kyoto Daiichi Kagaku Co., Ltd. Device for analyzing a sample
AU726987B2 (en) * 1996-06-28 2000-11-30 Caliper Life Sciences, Inc. Electropipettor and compensation means for electrophoretic bias
US5779868A (en) * 1996-06-28 1998-07-14 Caliper Technologies Corporation Electropipettor and compensation means for electrophoretic bias
NZ333346A (en) * 1996-06-28 2000-03-27 Caliper Techn Corp High-throughput screening assay systems in microscale fluidic devices
US5890745A (en) 1997-01-29 1999-04-06 The Board Of Trustees Of The Leland Stanford Junior University Micromachined fluidic coupler
US6149787A (en) * 1998-10-14 2000-11-21 Caliper Technologies Corp. External material accession systems and methods
US6148508A (en) * 1999-03-12 2000-11-21 Caliper Technologies Corp. Method of making a capillary for electrokinetic transport of materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282942A (en) * 1979-06-25 1981-08-11 Smith International Inc. Underreamer with ported cam sleeve upper extension
US4908112A (en) * 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
CN1043441A (zh) * 1988-09-22 1990-07-04 麦克尼尔-Ppc公司 有疏水性衬垫的吸收体
US5126022A (en) * 1990-02-28 1992-06-30 Soane Tecnologies, Inc. Method and device for moving molecules by the application of a plurality of electrical fields
US5358612A (en) * 1991-09-24 1994-10-25 The Dow Chemical Company Electrophoresis with chemically suppressed detection
CN1120820A (zh) * 1993-04-07 1996-04-17 英国技术集团有限公司 液体传送装置
US5415747A (en) * 1993-08-16 1995-05-16 Hewlett-Packard Company Capillary electrophoresis using zwitterion-coated capillary tubes
WO1996004547A1 (en) * 1994-08-01 1996-02-15 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SERUM PERUM PROTEIN FRACTIONATION BY ISOTACHOPHORESIS USING AMINOACID SPACERS KOPWILLEM ET AL,JOURNAL OF CHROMATOGRAPHY,Vol.118 No.3 1976 *

Also Published As

Publication number Publication date
EP0815940B1 (en) 2005-04-06
CN1228841A (zh) 1999-09-15
EP0909385B1 (en) 2008-09-10
JP2007108181A (ja) 2007-04-26
US20030085126A1 (en) 2003-05-08
AU726987B2 (en) 2000-11-30
EP0815940A3 (en) 1998-04-01
ATE292519T1 (de) 2005-04-15
JP3361530B2 (ja) 2003-01-07
DE69732935T2 (de) 2006-02-02
US6042709A (en) 2000-03-28
US6080295A (en) 2000-06-27
BR9710052A (pt) 2000-01-11
TW394843B (en) 2000-06-21
WO1998000705A1 (en) 1998-01-08
EP0909385A4 (en) 2005-01-19
EP0815940A2 (en) 1998-01-07
US6482364B2 (en) 2002-11-19
JP2000514184A (ja) 2000-10-24
US6287520B1 (en) 2001-09-11
DE69732935D1 (de) 2005-05-12
US20020017464A1 (en) 2002-02-14
US5958203A (en) 1999-09-28
NZ333345A (en) 2000-09-29
JP2003075407A (ja) 2003-03-12
AU3501297A (en) 1998-01-21
US6547942B1 (en) 2003-04-15
EP0909385A1 (en) 1999-04-21
JP3795823B2 (ja) 2006-07-12
US7001496B2 (en) 2006-02-21
US5972187A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
CN1329729C (zh) 微流体系统
CN101185871A (zh) 电吸移管和电泳偏离补偿装置
US6551836B1 (en) Microfluidic devices, systems and methods for performing integrated reactions and separations
US8329115B2 (en) Nanofluidic preconcentration device in an open environment
CA2258481C (en) Electropipettor and compensation means for electrophoretic bias
US20010035351A1 (en) Cross channel device for serial sample injection
KR100475239B1 (ko) 미량유체시스템및그미량유체시스템내에서유체흐름을배급하는방법
CA2537330C (en) Electropipettor and compensation means for electrophoretic bias
JP2005049357A (ja) 電子ピペッタおよび電気泳動バイアスのための補償手段
AU754363B2 (en) Microfluidic device and method
NZ504697A (en) Microfluidic transport with subject material slugs separated in channels by spacer slugs of different ionic strengths

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20070801

CX01 Expiry of patent term