CN1335823A - 不含局部立方类尖晶石结构相的层状锂金属氧化物及其制备方法 - Google Patents

不含局部立方类尖晶石结构相的层状锂金属氧化物及其制备方法 Download PDF

Info

Publication number
CN1335823A
CN1335823A CN99814394A CN99814394A CN1335823A CN 1335823 A CN1335823 A CN 1335823A CN 99814394 A CN99814394 A CN 99814394A CN 99814394 A CN99814394 A CN 99814394A CN 1335823 A CN1335823 A CN 1335823A
Authority
CN
China
Prior art keywords
compound
lithium
diffraction peak
miller index
integrated intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99814394A
Other languages
English (en)
Other versions
CN1185167C (zh
Inventor
Y·高
M·亚克勒瓦
H·H·瓦格
J·F·恩格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore NV SA
Original Assignee
FMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22321762&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1335823(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by FMC Corp filed Critical FMC Corp
Publication of CN1335823A publication Critical patent/CN1335823A/zh
Application granted granted Critical
Publication of CN1185167C publication Critical patent/CN1185167C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明包含基本上单相的锂金属氧化物化合物,其具有基本上不含局部立方类尖晶石结构相的六方层状晶体结构。本发明的锂金属氧化物具有式LiαMβAγO2,其中M是一种或多种过渡金属,A是一种或多种具有平均氧化态N的掺杂剂,其中+2.5≤N≤+3.5,0.90≤α≤1.10,以及β+γ=1。本发明还包含这些化合物的去锂化形式,使用这些氧化物做正极材料的锂和锂离子二次电池,及这些化合物的制备方法。

Description

不含局部立方类尖晶石结构相的层状 锂金属氧化物及其制备方法
发明领域
本发明涉及在锂和锂离子二次电池中用做正极材料的锂金属氧化物及其制备方法。
发明背景
式为LiMO2的锂金属氧化物,其中M是过渡金属,是可充电锂电池和锂离子电池的重要阴极(正极)材料。LiMO2化合物的实例包括LiCoO2,LiNiO2和LiMnO2。目前LiCoO2作为阴极材料用于大多数市售锂和锂离子电池。
即使在相同的化合物中,LiMO2化合物可具有不同的晶体结构和相。例如,在高于700℃合成的LiCoO2具有类似于α-NaFeO2的六方层状结构。然而,在大约400℃左右合成的LiCoO2,具有类似于Li2Ti2O4的立方类尖晶石结构。但除层状结构在与层垂直的方向上有小畸变外,这两种结构基本上是相同的氧的FCC(面心立方)密堆排列。此外,这两种结构在阳离子排列上不同。
已确定当加热到700℃以上时立方类尖晶石的LiCoO2转变成六方层状LiCoO2。因此,两种结构之间的相转变是可能的且层状结构仅在高温时是能量有利的。在电化学充电过程中50%的锂离子从LiCoO2中移走时,层状LiCoO2仍然具有转变为尖晶石LiCo2O4的能量有利倾向。参见A.van der Ven等,物理评论B58,2975(1998);和H.Wang等,J.Electrochem.Soc.,146,473(1999)。类尖晶石LiCoO2和尖晶石LiCo2O4还基本上具有相同的原子排列,但不同的是锂在类尖晶石LiCoO2中在八面体的16c位,在尖晶石LiCo2O4中四面体的8a位。
从六方层状LiMO2向立方类尖晶石LiMO2的相变倾向不是LiCoO2独有的。层状LiMnO2仅在电化学电池中少量循环之后也可转变为类尖晶石LiMnO2。虽然立方类尖晶石LiNiO2未在试验中观察到,但Li0.5NiO2(50%去锂化的LiNiO2)实际上将转变成LiNi2O4尖晶石。
具有立方类尖晶石结构的LiMO2化合物的电化学特性已发现特别差,尤其与层状结构相比,再有,已发现在层状相内部或其表面仅仅存在立方类尖晶石结构相即对电池特性有害。特别地,存在于层状晶体结构内部的立方类尖晶石相阻碍可充电锂或锂离子电池充放电循环中的锂离子扩散。还有,因为立方类尖晶石相在能量上有利且仅仅动力学上的限制阻止大范围相转变,在LiMO2化合物中局部立方类尖晶石结构的存在可以充当相转变易于发生的晶种。因此,甚至较少的立方类尖晶石相的存在,甚至在通过本体技术象粉末x-射线衍射(XRD)不能检测到的水平,也可以引起电池循环问题。
发明概述
本发明提供锂金属氧化物,其是基本上不含局部立方类尖晶石结构相的基本上单相的具有六方层状晶体结构的化合物。因此本发明的锂金属氧化物比现有技术的化合物具有更均一的电化学特性。另外,本发明的锂金属氧化物化合物具有良好的结构稳定性,以及在循环过程中维持其结构。因此,本发明的锂金属氧化物可应用于可充放电锂电池和锂离子二次电池。
本发明的锂金属氧化物具有通式LiαMβAγO2,其中M是一种或多种过渡金属,A是一种或多种具有平均氧化态N的掺杂剂,其中+2.5≤N≤+3.5,0.90≤α≤1.10,以及β+γ=1。使用粉末x-射线衍射检测,按照本发明的LiαMβAγO2化合物优选在比相应于Miller指数(003)衍射峰更小的散射角处无衍射峰。另外,使用粉末x-射线衍射检测的相应于Miller指数(110)的衍射峰的累积强度与相应于Miller指数(108)的衍射峰的累积强度的比率优选大于或等于0.7,更优选大于或等于0.8。使用粉末X-射线衍射检测的相应于Miller指数(102)的衍射峰的累积强度与相应于Miller指数(006)的衍射峰的累积强度的比率优选大于或等于1.0,更优选大于或等于1.2。掺杂剂的平均氧化态N优选约+3。
在本发明的一个优选实施例中,LiαMβAγO2化合物是LiCoO2。使用电子顺磁共振检测,本发明的LiCoO2化合物从大约g=12的峰值到大约g=3的谷之间有典型的大于1个标准弱间距单位(standard weakpitch unit)的强度变化,更典型地大于2个标准弱间距单位。
除了上述LiαMβAγO2化合物以外,本发明还涉及由这些化合物电化学循环导致的去锂化(dilithiated)的这些化合物。特别地,本发明包含Liα-xMβAγO2化合物,其中,0≤x≤α,由具有式LiαMβAγO2的化合物电化学移去每式单位(formula unit)x个锂而得,其中,M是一种或多种过渡金属,A是一种或多种具有平均氧化态N的掺杂剂,使得+2.5≤N≤+3.5,0.90≤α≤1.10,以及β+γ=1。Liα-xMβAγO2化合物基本上是单相的具有基本上不含局部立方类尖晶石结构相的六方层状晶体结构的锂金属氧化物化合物。
本发明进一步包含锂和锂离子二次电池,其包括含具有式LiαMβAγO2的化合物的正极,其中,M是一种或多种过渡金属,A是一种或多种具有平均氧化态N的掺杂剂,其中+2.5≤N≤+3.5,0.90≤α≤1.10,以及β+γ=1。正极材料使用的LiαMβAγO2化合物基本上是单相,六方层状晶体结构以及基本上不含局部立方类尖晶石结构相。
本发明还包含具有基本单相的、六方层状晶体结构的基本上不含局部立方类尖晶石结构相的化合物的制备方法。具有式LiαMβAγO2的锂金属氧化物,其中,M是一种或多种过渡金属,A是一种或多种具有平均氧化态N的掺杂剂,其中+2.5≤N≤+3.5,0.90≤α≤1.10,以及β+γ=1,在至少大约600℃,优选高于800℃的温度制备。锂金属氧化物随后以高于8℃/分钟、优选8℃/分钟~140℃/分钟、更优选10℃/分钟~100℃/分钟的速度冷却。该锂金属氧化物可以在至少约600℃、优选高于800℃的温度下合成,然后以所述速度冷却,或者可预先合成该锂金属氧化物,加热到至少约600℃、优选高于800℃,然后以所述速度冷却。优选均匀地冷却锂金属氧化物以提供制备的材料的整体均匀性。
在本发明方法的一个优选实施方案中,LiαMβAγO2化合物是LiCoO2并通过使用Li源化合物和Co源化合物按本发明的方法制备。特别地,优选的Li源化合物选自Li2CO3和LiOH,以及优选的Co源化合物选自Co3O4和Co(OH)2。更优选,LiCoO2由Li2CO3和Co3O4制备。
本发明的这些和其它的特征和优点可以通过本领域熟练人员对下述详细描述和附图的参考变得更明显,其描述了本发明的优选和替代性的实施例。
附图简述
图1是对比化合物(试样1)和本发明的化合物(试样2)之间的循环特性对比图。
图2是说明修正系数为1.14的弱标准间距(weakpitchstandard)试样的电子顺磁共振(EPR)图。
图3是说明对比化合物(试样1)的EPR图。
图4是说明本发明化合物(试样2)的EPR图。
图5是说明对比化合物(试样1)和本发明化合物(试样2)的热重量分析(TGA)曲线图。
图6是本发明化合物使用Cu Kα射线的粉末x-射线衍射花样。
图7是对比化合物(试样3)和本发明化合物(试样4)的循环特性对比图。
本发明优选实施方案的详细描述
在附图和随后的详细描述中,详细地描述了优选实施例以实现本发明。虽然本发明通过参考这些特殊的优选实施例进行了描述,但是,应理解为本发明不受这些优选实施例的限制。恰恰相反,本发明包含通过参考下述详细描述和附图而变得明显的各种替代方案、变化和等价形式。
本发明还涉及是单相的具有在晶体表面或晶体内部基本上不含局部立方类尖晶石结构相的六方层状晶体结构的锂金属氧化物化合物。本发明的锂金属氧化物具有式LiαMβAγO2,其中,M是一种或多种过渡金属,A是一种或多种具有平均氧化态N的掺杂剂,其中+2.5≤N≤+3.5,O.90≤α≤1.10,β>0,γ≥0且β+γ=1。优选,过渡金属M是Ni,Co,Mn或其组合。
掺杂剂A是选择的非M的元素以生成氧化状态N,其中,+2.5≤N≤+3.5,优选N为约3。本领域熟练人员容易理解的是,平均氧化态N是基于使用的掺杂剂的摩尔量和使用的掺杂剂的化合价。例如,如果掺杂剂是40%Ti4+和60%Mg2+,以摩尔计,平均氧化态N为(0.4)(+4)+(0.6)(+2)=+2.8。
如上定义,掺杂剂A在锂金属氧化物中用来代替过渡金属M而不代替锂离子,即,β=1-γ。因此,本发明的嵌入化合物的可逆容量最大化。本发明使用的掺杂剂实例包含金属和非金属如Li,Zr,Mg,Ca,Sr,Ba,Al,Ga,Si,Ge,Sn及其组合。例如,A可以包含等量的掺杂剂Li4+和Mg2+。典型地,在本发明的化合物中,γ大于或等于0和小于约0.5。
本发明化合物的基本上单相、六方层状结构可以用例如通过其粉末x-射线衍射花样进行表征。典型地,如使用粉末x-射线衍射检测,按照本发明的LiαMβAγO2化合物优选在比相应于Miller指数(003)衍射峰更小的衍射角处无衍射峰,因此证明本发明的化合物基本上是单相。另外,使用粉末x-射线衍射检测的相应于Miller指数(110)的衍射峰的累积强度与相应于Miller指数(108)的衍射峰的累积强度的比率优选大于等于0.7,更优选大于等于0.8。使用粉末x-射线衍射检测的相应于Miller指数(102)的衍射峰的累积强度与相应于Miller指数(006)的衍射峰的累积强度的比率优选大于等于1.0,更优选大于等于1.2。这些测量的累积强度是基于各个峰下的测量面积。或者,峰高可以用于累积强度的粗略对比,因为峰宽相对均匀一致,对比的两峰峰高的比率近似地等于累积强度的比率。
在本发明的一个优选实施例中,LiαMβAγO2是LiCoO2。使用电子顺磁共振检测,本发明的LiCoO2化合物从大约g=12的峰值到大约g=3的谷之间有典型的大于1个标准弱间距单位的强度变化,更典型地大于2个标准弱间距单位。特别地,实施例中更详细地讨论的图4,说明EPR图该区域强度的变化。
此外,虽然描述LiCoO2是优选的,但本发明适用于非LiCoO2的式LiαMβAγO2化合物。特别地,本领域熟练的人员容易理解的是,上述式(如,其中M是Ni或Mn)的其它锂金属氧化物具有类似于LiCoO2的层状晶体结构。因此,本发明一般适用于这些LiMO2化合物,并抑制立方类尖晶石相在晶体内部或晶体表面的形成或转变,因此提高锂或锂离子二次电池中的材料特性。
本发明进一步包含具有基本上是单相、六方层状晶体结构的基本上不含局部立方类尖晶石结构相的化合物的制备方法。按照此方法,具有式LiαMβAγO2,其中,M是一种或多种过渡金属,A是一种或多种具有平均氧化态N的掺杂剂,其中+2.5≤N≤+3.5,0.90≤α≤1.10,以及β+γ=1的锂金属氧化物可以在至少约600℃、优选高于800℃的温度下制备。该锂金属氧化物可以通过或者在这些温度下合成或者加热预先合成的材料在这些温度下制备。
本发明的锂金属氧化物化合物可以通过混合含锂、M和A的化学计量数量的各源化合物以给出上述式LiαMβAγO2期望的摩尔比率而制备或合成。源化合物(原材料)可以是纯元素(单质),但典型的是所述元素的化合物如氧化物或盐。例如,源化合物可以是典型的水合的或无水的氧化物,氢氧化物,碳酸盐,硝酸盐,硫酸盐,氯化物或氟化物,但还可以是在所得锂金属氧化物化合物中不引起元素缺陷的任何其它合适的源化合物。锂金属氧化物化合物中的元素可以以单个源化合物分别供应,或者由相同源化合物提供至少两种元素。此外,源化合物可以以任何期望的顺序混合。
虽然锂金属氧化物化合物优选通过固态反应制备,单独使用湿化学技术如溶胶-凝胶类型反应或喷雾干燥技术,或与固态反应联合使原料发生反应也是有利的。例如,含M和A的源化合物可以制成在溶剂如水中的溶液,并且M和A从溶液中以紧密混合的化合物如氢氧化物形式析出。混合的化合物随后与锂源化合物混合。反应混合物还可以通过在其它源化合物的溶液中悬浮源化合物以及喷雾干燥所得浆液以获得紧密混合物而制备。典型地,反应方法的选择依赖于使用的原材料和期望的最终产物而变化。
在本发明的一个优选实施方案中,其中M是Co,锂金属氧化物(例如LiCoO2)使用Li源化合物和Co源化合物制备。特别地,优选的Li源化合物选自Li2CO3和LiOH,以及优选的Co源化合物选自Co3O4和Co(OH)2。更优选,LiCoO2由Li2CO3和Co3O4制备。
混合物一旦制备后可发生反应生成锂金属氧化物。优选地,通过在600℃~1000℃的温度加热混合物保持足够长时间以生成单相锂金属氧化物化合物而制备。通常在一步或多步中加热混合物总时间为大约4~48小时。可以使用任何合适的加热设备以煅烧混合物,如旋转煅烧炉,  固定炉或隧道窑均匀地加热源化合物以生成锂金属氧化物。
一旦锂金属氧化物达到其最后制备温度或预先合成的锂金属氧化物再加热以后,该锂金属氧化物以高于8℃/分钟、优选8℃/分钟~140℃/分钟、更优选10℃/分钟~100℃/分钟的速度冷却。已发现以高于140℃/分钟的速度冷却导致具有高结晶应力和应变的结构,其不具有以8℃/分钟~140℃/分钟的速度冷却的锂金属氧化物的强度。再有,已发现以低于8℃/分钟的速度冷却导致在晶体的表面或晶体的内部形成局部立方类尖晶石结构相从而降低电化学特性。对于本发明的锂金属氧化物,晶体内部和晶体表面不含局部非均质结构相即立方类尖晶石相将不引起阻碍充放电过程中Li+扩散的其它相转变。这样,本发明的六方层状化合物具有比以较低冷却速度冷却的现有技术的化合物更好的和更一致的电化学特性。
按照本发明锂金属氧化物优选均匀地冷却(快冷)。特别地,锂金属氧化物优选以几乎相同的速度冷却。例如,平均冷却速度和材料任何具体部分的冷却速度的变化应小于约10%。在本发明的一个优选实施方案中,一致的冷却速度可以通过使用旋转煅烧炉,固定炉或具有较小料层厚度的隧道窑实现。按照本发明制备的均匀采用冷却的材料与采用非均匀冷却的材料相比在材料特性方面具有更大均质性和较少变化。
本发明还涉及包含使用本发明的锂金属氧化物的正极的锂和锂离子二次电池。典型地,本发明的锂金属氧化物化合物与碳质材料和聚合物粘合剂结合以形成阴极。锂电池的负极可以是锂金属或合金,或任何相对于锂金属电化学电势在约0.0V~0.7V之间的能够可逆地锂化和去锂化的材料。  负极材料的例子包括含H,B,Si和Sn的碳质材料;锡氧化物;锡-硅氧化物;和复合锡合金。在电池中用电子分隔隔板隔开负极与正极材料。电化学电池还包括电解质。该电解质可以是非水液体,凝胶或固体,并优选含锂盐即LiPF6。使用本发明锂金属氧化物化合物做正极材料的电化学电池可以结合用于便携电子设备如蜂窝电话,摄录一体机,和膝上计算机,以及大功率应用场合如电动交通工具和混合动力交通工具。
本发明的锂金属氧化物化合物允许锂离子在电池充放电过程中容易地扩散。特别地,在这些锂金属氧化物的放电过程中每式单位x个Li被电化学移去,该锂金属氧化物具有式Liα-xMβAγO2,其中0≤x≤α。
本发明的锂金属氧化物化合物具有本领域所期望的良好初始比容量和循环性能。例如,本发明的LiCoO2的初始比容量高于140mAh/克,优选高于150mAh/克。此外,当以C/3(3小时完全充放电)的恒定电流在相对锂3.0V和4.3V之间进行循环时,本发明的锂金属氧化物100个周期后的容量损失少于25%,优选少于20%。
本发明可以通过下面的非限制实施例进一步展示。
实施例1
工业LiCoO2试样(试样1)加热到950℃保持1小时,随后通过直接从热区取出试样并平铺试样于室温下的不锈钢平盘上快速冷却。从950℃到室温的冷却时间估计约10分钟。试样1和快冷试样(试样2)用作不同电化学电池的正极材料,每一个电池使用锂金属做负极的币形电池结构。使用NRC2325币形电池构件和Celgard 3501隔板。电解质是含1M LiPE6的50∶50的碳酸亚乙酯和碳酸二甲酯的混合溶液。正极含85%活性材料(以重量计),10%super STM碳黑和5%作为聚合物粘合剂的聚偏氟乙烯(PVDF),涂于铝箔上。循环试验在3.0V~4.3V之间进行,充放电过程中均采用C/3(3小时完全充放电)的恒定电流进行。
图1对比了试样1和试样2的循环特性。如图1所示,试样2在循环中比试样1保持较高的容量以及大大改进的循环特性。
此外,试样1和试样2的电子顺磁共振(EPR)谱使用Bruker仪器EMX系统检测。磁场扫描为从100到5100高斯(Gauss),微波频率固定在9.85GHz。Bruker仪器的弱间距标准(KCl中0.0035%间距)(带修正系数1.14)用来校正强度。图2表示此标准的EPR谱。此标准的碳特征强度,如图2所示,定义为1.14标准弱间距单位。
为了测量,LiCoO2试样(试样1和试样2)直接装于EPR管中而不经过稀释。试样1和试样2的EPR谱分别示于图3和图4。图3和图4中约g=2.14处的尖峰特征是由于Ni杂质所致。图4中从大约g=14到大约g=2.5的宽特征是由于高自旋Co所致,这是本发明制备的LiCoO2的特征。
还进行了试样1和试样2的热重分析(TGA)。如图5所示,试样1和试样2在650℃~900℃之间均没有任何的重量损失。
按照本发明制备的试样2进一步使用Cu Kα射线粉末x-射线衍射测试以确定材料是否是基本上单相、六方层状结构。如图6所示,试样2中使用粉末x-射线衍射检测的相应于Miller指数(110)的衍射峰的累积强度与相应于Miller指数(108)的衍射峰的累积强度的比率大于等于0.7,使用粉末x-射线衍射检测的相应于Miller指数(102)的衍射峰的累积强度与相应于Miller指数(006)的衍射峰的累积强度的比率大于等于1.0,以及在使用粉末x-射线衍射在比相应于Miller指数(003)衍射峰更小的衍射角处无衍射峰,正如本发明所期望的。
实施例2
混合化学计量的Li2CO3和Co3O4,然后以3.75℃/分钟的速度从室温加热到950℃,保持在950℃的温度5小时,然后以约3.7℃/分钟的速度冷却至室温(整个冷却时间略长于4小时)。所得化合物为试样3。
混合化学计量的Li2CO3和Co3O4,然后以3.75℃/分钟的速度从室温加热到950℃,保持在950℃的温度5小时,然后以约8℃/分钟的速度冷却至室温(整个冷却时间仅少于2小时)。所得化合物为试样4。
试样3和试样4按照实施例1的方法进行循环检测。图7对比了试样3和试样4的循环特性。如图7所示,按照本发明制备的试样4循环特性好于试样3。
可以理解,通过阅读本发明的上述描述和参见附图,本领域熟练人员可以在此基础上进行改进和变化。这些改进和变化包含在下述权利要求的精神和范围内。

Claims (20)

1.一种具有通式LiαMβAγO2的化合物,其中M是一种或多种过渡金属,A是一种或多种具有平均氧化态N的掺杂剂,其中+2.5≤N≤+3.5,0.90≤α≤1.10,以及β+γ=1,所述化合物具有基本上是单相的、六方层状晶体结构并基本上不含局部立方类尖晶石结构相。
2.一种具有通式Liα-xMβAγO2的化合物,其中,0≤x≤α,该化合物得的由具有式LiαMβAγO2的化合物电化学移去每式单位x个锂,其中,M是一种或多种过渡金属,A是一种或多种具有平均氧化态N的掺杂剂,其中+2.5≤N≤+3.5,0.90≤α≤1.10,以及β+γ=1,所述化合物具有基本上是单相的、六方层状晶体结构,并基本上不含局部立方类尖晶石结构相。
3.根据权利要求1或2的化合物,其中,粉末x-射线衍射花样中,在比相应于Miller指数(003)衍射峰小的散射角时不存在衍射峰。
4.根据上述任一项权利要求的化合物,其中,采用粉末x-射线衍射,相应于Miller指数(110)的衍射峰的累积强度与相应于Miller指数(108)的衍射峰的累积强度的比率大于或等于0.7。
5.根据上述任一项权利要求的化合物,其中,采用粉末x-射线衍射,相应于Miller指数(110)的衍射峰的累积强度与相应于Miller指数(108)的衍射峰的累积强度的比率大于或等于0.8。
6.根据上述任一项权利要求的化合物,其中,采用粉末x-射线衍射,相应于Miller指数(102)的衍射峰的累积强度与相应于Miller指数(006)的衍射峰的累积强度的比率大于或等于1.0。
7.根据上述任一项权利要求的化合物,其中,使用粉末x-射线衍射,相应于Miller指数(102)的衍射峰的累积强度与相应于Miller指数(006)的衍射峰的累积强度的比率大于或等于1.2。
8.根据上述任一项权利要求的化合物,具有式LiCoO2
9.根据权利要求8的化合物,其中使用电子顺磁共振分析,在从大约g=12的峰值到大约g=3的谷之间的强度变化大于1个标准弱间距单位。
10.根据权利要求8的化合物,其中使用电子顺磁共振分析,在从大约g=12的峰值到大约g=3的谷之间的强度变化大于2个标准弱间距单位。
11.根据上述任何权利要求的化合物,其中掺杂剂的平均氧化态N为约+3。
12.  包括含根据上述任何权利要求的化合物的正极的锂或锂离子二次电池。
13.一种制备化合物的方法,该化合物具有基本上单相的、六方层状晶体结构,并基本上不含局部立方类尖晶石结构相,该方法包括以下步骤:在至少约600℃的温度提供具有式LiαMβAγO2的锂金属氧化物,其中M是一种或多种过渡金属,A是一种或多种具有平均氧化态N的掺杂剂,其中+2.5≤N≤+3.5,0.90≤α≤1.10,并且β+γ=1;和以高于8℃/分钟的速度冷却该化合物。
14.根据权利要求13的方法,其中所述冷却步骤包括以高于10℃/分钟的速度冷却所述化合物。
15.根据权利要求13的方法,其中所述冷却步骤包括以8℃/分钟~140℃/分钟的速度冷却所述化合物。
16.根据权利要求13的方法,其中所述冷却步骤包括以10℃/分钟~90℃/分钟的速度冷却所述化合物。
17.根据任何权利要求13-16的方法,其中所述提供步骤包括在至少约800℃的温度以LiαMβAγO2化合物提供。
18.根据任何权利要求13-17的方法,其中所述冷却步骤包括均匀冷却所述LiαMβAγO2化合物。
19.根据任何权利要求13-18的方法,其中所述提供步骤包括在至少约600℃的温度合成所述LiαMβAγO2化合物。
20.根据任何权利要求13-18的方法,其中所述提供步骤包括加热预先合成的LiαMβAγO2化合物到至少约600℃。
CNB998143944A 1998-11-13 1999-11-12 不含局部立方炎夏尖晶石结构相的层状含锂、过渡金属和氧的化合物及其制备方法 Expired - Lifetime CN1185167C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10836098P 1998-11-13 1998-11-13
US60/108,360 1998-11-13

Publications (2)

Publication Number Publication Date
CN1335823A true CN1335823A (zh) 2002-02-13
CN1185167C CN1185167C (zh) 2005-01-19

Family

ID=22321762

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998143944A Expired - Lifetime CN1185167C (zh) 1998-11-13 1999-11-12 不含局部立方炎夏尖晶石结构相的层状含锂、过渡金属和氧的化合物及其制备方法

Country Status (12)

Country Link
US (3) US6589499B2 (zh)
EP (1) EP1137598B2 (zh)
JP (1) JP4106186B2 (zh)
KR (1) KR100473413B1 (zh)
CN (1) CN1185167C (zh)
AT (1) ATE238241T1 (zh)
AU (1) AU1720000A (zh)
CA (1) CA2350710C (zh)
DE (1) DE69907261T3 (zh)
DK (1) DK1137598T3 (zh)
TW (1) TW515778B (zh)
WO (1) WO2000029331A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386900C (zh) * 2002-04-09 2008-05-07 松下电器产业株式会社 热电变换材料及其制造方法
CN100429811C (zh) * 2003-04-28 2008-10-29 深圳市振华新材料股份有限公司 锂离子电池正极材料的制备方法
CN103825020A (zh) * 2013-12-17 2014-05-28 中国科学院宁波材料技术与工程研究所 全固态锂二次电池用钴基正极材料及其制备方法
CN106463658A (zh) * 2014-06-23 2017-02-22 肖特股份有限公司 包括片状不连续元件的蓄电系统、片状不连续元件及其制造方法和应用
CN107799733B (zh) * 2016-09-01 2021-05-18 株式会社Lg 化学 二次电池用正极活性材料、其制备方法及包含其的正极和锂二次电池
WO2021109676A1 (zh) * 2019-12-02 2021-06-10 华为技术有限公司 锂离子电池的正极材料及制备方法

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2350710C (en) * 1998-11-13 2005-09-13 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
AU1951601A (en) * 1999-12-10 2001-06-18 Fmc Corporation Lithium cobalt oxides and methods of making same
US20020192549A1 (en) * 2000-12-07 2002-12-19 Tdk Corporation Electrode composition, and lithium secondary battery
JP2002175808A (ja) * 2000-12-08 2002-06-21 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
GB0117235D0 (en) * 2001-07-14 2001-09-05 Univ St Andrews Improvements in or relating to electrochemical cells
WO2003015198A2 (en) * 2001-08-07 2003-02-20 3M Innovative Properties Company Cathode compositions for lithium ion batteries
JP3873717B2 (ja) * 2001-11-09 2007-01-24 ソニー株式会社 正極材料およびそれを用いた電池
US7393476B2 (en) * 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
KR100453555B1 (ko) * 2002-06-03 2004-10-20 한국지질자원연구원 화염분무열분해를 이용한 리튬코발트 산화물 나노입자의제조방법
US20040121234A1 (en) * 2002-12-23 2004-06-24 3M Innovative Properties Company Cathode composition for rechargeable lithium battery
US7211237B2 (en) * 2003-11-26 2007-05-01 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
US7238450B2 (en) 2003-12-23 2007-07-03 Tronox Llc High voltage laminar cathode materials for lithium rechargeable batteries, and process for making the same
CN1315206C (zh) * 2004-06-15 2007-05-09 中国科学技术大学 锂离子二次电池正极材料的液相合成方法
JP2006092820A (ja) * 2004-09-22 2006-04-06 Sanyo Electric Co Ltd 非水電解液二次電池用正極活物質及び正極並びに非水電解液二次電池
KR100932256B1 (ko) * 2006-03-20 2009-12-16 주식회사 엘지화학 성능이 우수한 리튬 이차전지용 양극 재료
EP1994587B1 (en) 2006-03-20 2018-07-11 LG Chem, Ltd. Stoichiometric lithium cobalt oxide and method for preparation of the same
EP2067198A2 (en) 2006-09-25 2009-06-10 Board of Regents, The University of Texas System Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
US8916294B2 (en) * 2008-09-30 2014-12-23 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US8389160B2 (en) * 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
CN102239586B (zh) * 2009-02-05 2013-12-04 Agc清美化学股份有限公司 锂离子二次电池的正极活性物质用表面修饰含锂复合氧化物及其制造方法
TWI437753B (zh) * 2009-08-27 2014-05-11 Envia Systems Inc 鋰基電池之經金屬氧化物塗佈之正電極材料
JP6162402B2 (ja) 2009-08-27 2017-07-12 エンビア・システムズ・インコーポレイテッドEnvia Systems, Inc. 高い比容量および優れたサイクルを有する積層リチウムリッチ錯体金属酸化物
US9843041B2 (en) * 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US8741484B2 (en) 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
JP5958926B2 (ja) * 2011-11-08 2016-08-02 国立研究開発法人産業技術総合研究所 リチウムマンガン系複合酸化物およびその製造方法
JP5920872B2 (ja) * 2011-11-25 2016-05-18 株式会社田中化学研究所 リチウム金属複合酸化物及びその製造方法
WO2013090263A1 (en) 2011-12-12 2013-06-20 Envia Systems, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
JP2014123529A (ja) * 2012-12-21 2014-07-03 Jfe Mineral Co Ltd リチウム二次電池用正極材料
JP6156078B2 (ja) 2013-11-12 2017-07-05 日亜化学工業株式会社 非水電解液二次電池用正極活物質の製造方法、非水電解液二次電池用正極及び非水電解液二次電池
JP6524651B2 (ja) 2013-12-13 2019-06-05 日亜化学工業株式会社 非水電解液二次電池用正極活物質及びその製造方法
KR101758992B1 (ko) * 2014-10-02 2017-07-17 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR102314046B1 (ko) 2014-11-28 2021-10-18 삼성에스디아이 주식회사 양극 활물질, 이를 포함하는 양극 및 상기 양극을 채용한 리튬 이차 전지
JP2018505515A (ja) 2014-12-01 2018-02-22 ショット アクチエンゲゼルシャフトSchott AG シート状の独立した部材を有する蓄電システム、独立したシート状の部材、その製造方法、およびその使用
CN107810570B (zh) 2015-07-02 2021-07-02 尤米科尔公司 基于钴的锂金属氧化物阴极材料
US10483541B2 (en) 2016-05-09 2019-11-19 Nichia Corporation Method of producing nickel-cobalt composite hydroxide and method of producing positive electrode active material for non-aqueous electrolyte secondary battery
KR102538830B1 (ko) 2016-07-05 2023-05-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
KR102091214B1 (ko) 2016-09-12 2020-03-19 주식회사 엘지화학 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
DE202017007645U1 (de) 2016-10-12 2023-12-19 Semiconductor Energy Laboratory Co., Ltd. Positivelektrodenaktivmaterialteilchen
KR101918719B1 (ko) 2016-12-12 2018-11-14 주식회사 포스코 리튬 이차전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지
KR20240046314A (ko) 2017-05-12 2024-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 입자
CN111900358A (zh) 2017-05-19 2020-11-06 株式会社半导体能源研究所 正极活性物质以及二次电池
KR102223712B1 (ko) 2017-06-26 2021-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법 및 이차 전지
CN110998931B (zh) 2017-08-30 2023-04-04 株式会社村田制作所 正极活性物质、正极、电池、电池包、电子设备、电动车辆、蓄电装置以及电力系统
KR102165118B1 (ko) 2017-10-26 2020-10-14 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019112279A2 (ko) 2017-12-04 2019-06-13 삼성에스디아이 주식회사 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11522189B2 (en) * 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE45117C (de) sächs. kardätschen-, bürsten- und pinsel-fabrik ED. flemming & CO. in Schoenheide i. Sachs Bürstenholzhobelmaschine
EP0017400B1 (en) * 1979-04-05 1984-05-30 United Kingdom Atomic Energy Authority Electrochemical cell and method of making ion conductors for said cell
AU532635B2 (en) 1979-11-06 1983-10-06 South African Inventions Development Corporation Metal oxide cathode
US4507371A (en) 1982-06-02 1985-03-26 South African Inventions Development Corporation Solid state cell wherein an anode, solid electrolyte and cathode each comprise a cubic-close-packed framework structure
US4567031A (en) 1983-12-27 1986-01-28 Combustion Engineering, Inc. Process for preparing mixed metal oxides
DE3680249D1 (de) 1985-05-10 1991-08-22 Asahi Chemical Ind Sekundaerbatterie.
US4770960A (en) 1986-04-30 1988-09-13 Sony Corporation Organic electrolyte cell
JPH01258359A (ja) 1988-04-07 1989-10-16 Bridgestone Corp 非水電解質二次電池
US5084366A (en) 1989-03-30 1992-01-28 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JPH0732017B2 (ja) 1989-10-06 1995-04-10 松下電器産業株式会社 非水電解質二次電池
GB2242898B (en) 1990-04-12 1993-12-01 Technology Finance Corp Lithium transition metal oxide
US5264201A (en) 1990-07-23 1993-11-23 Her Majesty The Queen In Right Of The Province Of British Columbia Lithiated nickel dioxide and secondary cells prepared therefrom
US5180574A (en) 1990-07-23 1993-01-19 Moli Energy (1990) Limited Hydrides of lithiated nickel dioxide and secondary cells prepared therefrom
DE4025208A1 (de) 1990-08-09 1992-02-13 Varta Batterie Elektrochemisches sekundaerelement
NL9001916A (nl) 1990-08-30 1992-03-16 Stichting Energie Tape geschikt voor toepassing in brandstofcellen, elektrode geschikt voor toepassing in een brandstofcel, werkwijze voor het sinteren van een dergelijke elektrode, alsmede een brandstofcel voorzien van een dergelijke elektrode.
JP3162437B2 (ja) 1990-11-02 2001-04-25 セイコーインスツルメンツ株式会社 非水電解質二次電池
JP3077218B2 (ja) 1991-03-13 2000-08-14 ソニー株式会社 非水電解液二次電池
JPH04329263A (ja) 1991-04-30 1992-11-18 Yuasa Corp リチウム二次電池
JP3086297B2 (ja) 1991-05-21 2000-09-11 東芝電池株式会社 非水溶媒二次電池
US5478671A (en) 1992-04-24 1995-12-26 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
DE69325552T2 (de) 1992-07-29 2000-03-23 Tosoh Corp Manganoxide, ihre Herstellung und ihre Anwendung
ZA936168B (en) 1992-08-28 1994-03-22 Technology Finance Corp Electrochemical cell
CA2123489A1 (en) 1992-09-22 1994-03-31 Hiromitsu Mishima Lithium secondary battery
JPH06124707A (ja) 1992-10-14 1994-05-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池
US5478673A (en) 1992-10-29 1995-12-26 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
WO1994021560A1 (en) 1993-03-17 1994-09-29 Ultralife Batteries (Uk) Limited Lithiated manganese oxide
JP2729176B2 (ja) 1993-04-01 1998-03-18 富士化学工業株式会社 LiM3+O2 またはLiMn2 O4 の製造方法及び2次電池正極材用LiNi3+O2
DE69411637T2 (de) 1993-04-28 1998-11-05 Fuji Photo Film Co Ltd Akkumulator mit nicht-wässrigem Elektrolyt
US5506077A (en) 1993-06-14 1996-04-09 Koksbang; Rene Manganese oxide cathode active material
US5370949A (en) 1993-07-09 1994-12-06 National Research Council Of Canada Materials for use as cathodes in lithium electrochemical cells
US5591543A (en) 1993-09-16 1997-01-07 Ramot University Authority For Applied Research And Industrial Development Ltd. Secondary electrochemical cell
JPH07112929A (ja) 1993-10-14 1995-05-02 Tokyo Tanabe Co Ltd パップ剤セット
JPH07114915A (ja) 1993-10-15 1995-05-02 Fuji Photo Film Co Ltd 非水二次電池
US5618640A (en) 1993-10-22 1997-04-08 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
CA2102738C (en) 1993-11-09 1999-01-12 George T. Fey Inverse spinel compounds as cathodes for lithium batteries
JP3197763B2 (ja) 1993-11-18 2001-08-13 三洋電機株式会社 非水系電池
US5478675A (en) 1993-12-27 1995-12-26 Hival Ltd. Secondary battery
US5429890A (en) 1994-02-09 1995-07-04 Valence Technology, Inc. Cathode-active material blends of Lix Mn2 O4
US5503930A (en) * 1994-03-07 1996-04-02 Tdk Corporation Layer structure oxide
JP3307510B2 (ja) * 1994-03-07 2002-07-24 ティーディーケイ株式会社 層状構造酸化物および二次電池
JP3396076B2 (ja) 1994-03-17 2003-04-14 日本化学工業株式会社 リチウム二次電池用コバルト酸リチウム系正極活物質の製造方法
JP3274016B2 (ja) 1994-03-17 2002-04-15 日本化学工業株式会社 リチウム二次電池用コバルト酸リチウム系正極活物質の製造方法
JPH07307150A (ja) 1994-05-12 1995-11-21 Fuji Photo Film Co Ltd 非水二次電池
US5609975A (en) 1994-05-13 1997-03-11 Matsushita Electric Industrial Co., Ltd. Positive electrode for non-aqueous electrolyte lithium secondary battery and method of manufacturing the same
JPH08213052A (ja) 1994-08-04 1996-08-20 Seiko Instr Inc 非水電解質二次電池
JPH0878004A (ja) 1994-09-05 1996-03-22 Hitachi Ltd リチウム二次電池
DE4435117C1 (de) 1994-09-30 1996-05-15 Zsw Ternäre Lithium-Mischoxide, Verfahren zu deren Herstellung sowie deren Verwendung
JPH08138669A (ja) 1994-11-02 1996-05-31 Toray Ind Inc 正極活物質、その製造方法およびそれを用いた非水溶媒系二次電池
CA2162456C (en) 1994-11-09 2008-07-08 Keijiro Takanishi Cathode material, method of preparing it and nonaqueous solvent type secondary battery having a cathode comprising it
JPH08138649A (ja) 1994-11-09 1996-05-31 Toray Ind Inc 非水系二次電池
US5686203A (en) 1994-12-01 1997-11-11 Fuji Photo Film Co., Ltd. Non-aqueous secondary battery
DE19520874A1 (de) 1994-12-15 1996-06-20 Basf Magnetics Gmbh Lithium und Mangan-(III/IV) enthaltende Spinelle
US5626635A (en) 1994-12-16 1997-05-06 Matsushita Electric Industrial Co., Ltd. Processes for making positive active material for lithium secondary batteries and secondary batteries therefor
JP3232943B2 (ja) 1994-12-16 2001-11-26 松下電器産業株式会社 リチウム二次電池用正極活物質の製造法
JPH08250120A (ja) 1995-03-08 1996-09-27 Sanyo Electric Co Ltd リチウム二次電池
JP3197779B2 (ja) 1995-03-27 2001-08-13 三洋電機株式会社 リチウム電池
DE19511355A1 (de) 1995-03-28 1996-10-02 Merck Patent Gmbh Verfahren zur Herstellung von Lithium-Interkalationsverbindungen
JPH08287914A (ja) 1995-04-18 1996-11-01 Nippon Telegr & Teleph Corp <Ntt> リチウム電池
JP3606289B2 (ja) 1995-04-26 2005-01-05 日本電池株式会社 リチウム電池用正極活物質およびその製造法
DE19519044A1 (de) 1995-05-24 1996-11-28 Basf Magnetics Gmbh Lithium und Mangan-(III/IV) enthaltende Spinelle
US5631105A (en) 1995-05-26 1997-05-20 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte lithium secondary battery
JP3260282B2 (ja) 1995-05-26 2002-02-25 松下電器産業株式会社 非水電解質リチウム二次電池
JPH097638A (ja) 1995-06-22 1997-01-10 Seiko Instr Inc 非水電解質二次電池
US5693435A (en) * 1995-08-16 1997-12-02 Bell Communications Research, Inc. Lix CoO2 electrode for high-capacity cycle-stable secondary lithium battery
US5750288A (en) 1995-10-03 1998-05-12 Rayovac Corporation Modified lithium nickel oxide compounds for electrochemical cathodes and cells
US5718989A (en) 1995-12-29 1998-02-17 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium secondary battery
US5672446A (en) 1996-01-29 1997-09-30 Valence Technology, Inc. Lithium ion electrochemical cell
EP0797263A2 (en) 1996-03-19 1997-09-24 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary cell
AU2606897A (en) 1996-04-05 1997-10-29 Fmc Corporation Method for preparing spinel li1+xmn2-xo4+y intercalation compounds
JPH101316A (ja) 1996-06-10 1998-01-06 Sakai Chem Ind Co Ltd リチウムコバルト複合酸化物及びその製造方法並びにリチウムイオン二次電池
US5718877A (en) 1996-06-18 1998-02-17 Fmc Corporation Highly homogeneous spinal Li1+x Mn2-x O4+y intercalation compounds and method for preparing same
US5700598A (en) 1996-07-11 1997-12-23 Bell Communications Research, Inc. Method for preparing mixed amorphous vanadium oxides and their use as electrodes in reachargeable lithium cells
FR2751135A1 (fr) 1996-07-12 1998-01-16 Accumulateurs Fixes Electrode de generateur electrochimique rechargeable au lithium
JP3290355B2 (ja) 1996-07-12 2002-06-10 株式会社田中化学研究所 リチウムイオン二次電池用のリチウム含有複合酸化物及びその製造法
TW363940B (en) 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
US5674645A (en) 1996-09-06 1997-10-07 Bell Communications Research, Inc. Lithium manganese oxy-fluorides for li-ion rechargeable battery electrodes
US5783333A (en) 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
JP3609229B2 (ja) 1997-01-29 2005-01-12 株式会社田中化学研究所 非水系二次電池用正極活物質の製造方法及びそれを使用したリチウム二次電池
DE69805886D1 (de) 1997-03-10 2002-07-18 Toda Kogyo Corp Verfahren zur Herstellung von Lithium-Kobalt Oxid
US5858324A (en) 1997-04-17 1999-01-12 Minnesota Mining And Manufacturing Company Lithium based compounds useful as electrodes and method for preparing same
JP3045998B2 (ja) 1997-05-15 2000-05-29 エフエムシー・コーポレイション 層間化合物およびその作製方法
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
US6117410A (en) 1997-05-29 2000-09-12 Showa Denko Kabushiki Kaisha Process for producing lithiated manganese oxides by a quenching method
CA2240805C (en) 1997-06-19 2005-07-26 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
JPH1116573A (ja) * 1997-06-26 1999-01-22 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用リチウムコバルト複酸化物およびその製造方法
US6017654A (en) 1997-08-04 2000-01-25 Carnegie Mellon University Cathode materials for lithium-ion secondary cells
US5900385A (en) 1997-10-15 1999-05-04 Minnesota Mining And Manufacturing Company Nickel--containing compounds useful as electrodes and method for preparing same
US5958624A (en) 1997-12-18 1999-09-28 Research Corporation Technologies, Inc. Mesostructural metal oxide materials useful as an intercalation cathode or anode
CA2350710C (en) * 1998-11-13 2005-09-13 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
US6878490B2 (en) * 2001-08-20 2005-04-12 Fmc Corporation Positive electrode active materials for secondary batteries and methods of preparing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386900C (zh) * 2002-04-09 2008-05-07 松下电器产业株式会社 热电变换材料及其制造方法
CN100429811C (zh) * 2003-04-28 2008-10-29 深圳市振华新材料股份有限公司 锂离子电池正极材料的制备方法
CN103825020A (zh) * 2013-12-17 2014-05-28 中国科学院宁波材料技术与工程研究所 全固态锂二次电池用钴基正极材料及其制备方法
CN106463658A (zh) * 2014-06-23 2017-02-22 肖特股份有限公司 包括片状不连续元件的蓄电系统、片状不连续元件及其制造方法和应用
CN107799733B (zh) * 2016-09-01 2021-05-18 株式会社Lg 化学 二次电池用正极活性材料、其制备方法及包含其的正极和锂二次电池
WO2021109676A1 (zh) * 2019-12-02 2021-06-10 华为技术有限公司 锂离子电池的正极材料及制备方法

Also Published As

Publication number Publication date
DE69907261D1 (de) 2003-05-28
CA2350710C (en) 2005-09-13
WO2000029331A1 (en) 2000-05-25
US20020015887A1 (en) 2002-02-07
EP1137598B1 (en) 2003-04-23
US6620400B2 (en) 2003-09-16
TW515778B (en) 2003-01-01
EP1137598B2 (en) 2016-03-16
US7074382B2 (en) 2006-07-11
AU1720000A (en) 2000-06-05
JP4106186B2 (ja) 2008-06-25
KR20010081002A (ko) 2001-08-25
DE69907261T2 (de) 2004-04-08
DK1137598T3 (da) 2003-08-18
EP1137598A1 (en) 2001-10-04
JP2002529361A (ja) 2002-09-10
US6589499B2 (en) 2003-07-08
CN1185167C (zh) 2005-01-19
US20020150530A1 (en) 2002-10-17
US20020018746A1 (en) 2002-02-14
ATE238241T1 (de) 2003-05-15
KR100473413B1 (ko) 2005-03-08
DE69907261T3 (de) 2016-07-21
CA2350710A1 (en) 2000-05-25

Similar Documents

Publication Publication Date Title
CN1185167C (zh) 不含局部立方炎夏尖晶石结构相的层状含锂、过渡金属和氧的化合物及其制备方法
EP1751809B1 (en) Lithium metal oxide materials and methods of synthesis and use
Fey et al. Synthesis, characterization and cell performance of inverse spinel electrode materials for lithium secondary batteries
US8492030B2 (en) Cathode material for lithium batteries
CN1741308B (zh) 含有锂的复合氧化物和使用它的非水二次电池、及其制法
KR100430938B1 (ko) 리튬 2차 전지용 정극(正極) 재료 및 그 제조 방법
US6787232B1 (en) Intercalation compounds and electrodes for batteries
Yao et al. Synthesis and electrochemical performance of phosphate-coated porous LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries
Kim et al. A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi1− xMxO2 (M= Cu2+, Al3+ and Ti4+)
Kim et al. Electrochemical properties of Li (Li (1− x)/3CoxMn (2− 2x)/3) O2 (0⩽ x⩽ 1) solid solutions prepared by poly-vinyl alcohol (PVA) method
CN102306767A (zh) 锂离子动力电池正极材料尖晶石锰酸锂的制备方法
US20090117471A1 (en) Lithium ion battery electrode and method for manufacture of same
Ding et al. Synthesis, structure, and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 prepared by thermal polymerization
Yoshio et al. A review of positive electrode materials for lithium-ion batteries
Yang et al. Suppressing the H2–H3 phase transition of LiNi0. 90Co0. 04Mn0. 03Al0. 03O2 cathodes via Ta doping towards improved electrochemical performance upon 4.5 V
Wang et al. Electrochemical performance and structural stability of layered Li–Ni–Co–Mn oxide cathode materials in different voltage ranges
CN109860586A (zh) 改性二氧化锰、高温型锰酸锂材料及其制备方法
Yi et al. Effect of in-situ Zr doping on the crystallization behavior and electrochemical properties of cobalt-free layered LiNi0. 8Mn0. 2O2 cathode materials
Wang et al. Structural, electrochemical and cycling properties of Nb5+ doped LiNi0. 8Co0. 1Mn0. 1O2 cathode materials at different calcination temperatures for lithium-ion batteries
CN116636040A (zh) 正极活性材料及包含该正极活性材料的锂二次电池
Kalpana et al. Influence of magnetic properties on electrochemical activity of LiNi0. 5Fe0. 5O2
Ma Layered lithium manganese (0.4) nickel (0.4) cobalt (0.2) oxide (2) as cathode for lithium batteries

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Assignee: Tianjin B & M Science and Technology Joint-Stock Co., Ltd.

Assignor: FMC Corp.

Contract fulfillment period: 2006.1.1 to 2020.12.31

Contract record no.: 2009990000964

Denomination of invention: Layered lithium containing, transition metal and oxygen free compounds containing a cubic cubic spinel structure phase and methods of making the same

Granted publication date: 20050119

License type: exclusive license

Record date: 2009.8.26

LIC Patent licence contract for exploitation submitted for record

Free format text: EXCLUSIVE LICENSE; TIME LIMIT OF IMPLEMENTING CONTACT: 2006.1.1 TO 2020.12.31; CHANGE OF CONTRACT

Name of requester: TIANJIN BAMO TECHNOLOGY CO.

Effective date: 20090826

ASS Succession or assignment of patent right

Owner name: UMICORE COMPANY

Free format text: FORMER OWNER: FMC CORP.

Effective date: 20110719

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: PENNSYLVANIA, THE USA TO: BRUSSELS, BELGIUM

TR01 Transfer of patent right

Effective date of registration: 20110719

Address after: Brussels

Patentee after: Umicore NV

Address before: American Pennsylvania

Patentee before: FMC Corp.

EC01 Cancellation of recordation of patent licensing contract

Assignee: Tianjin B & M Science and Technology Joint-Stock Co., Ltd.

Assignor: FMC Corp.

Contract record no.: 2009990000964

Date of cancellation: 20150609

EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20020213

Assignee: Xiamen Tungsten Co., Ltd.

Assignor: Umicore NV

Contract record no.: 2015990000438

Denomination of invention: Layered lithium containing, transition metal and oxygen free compounds containing a cubic cubic spinel structure phase and methods of making the same

Granted publication date: 20050119

License type: Common License

Record date: 20150612

Application publication date: 20020213

Assignee: Changzhou PowerGenie Materials Co., Ltd.

Assignor: Umicore NV

Contract record no.: 2015990000439

Denomination of invention: Layered lithium containing, transition metal and oxygen free compounds containing a cubic cubic spinel structure phase and methods of making the same

Granted publication date: 20050119

License type: Common License

Record date: 20150612

Application publication date: 20020213

Assignee: Xianxing Science-Technology-Industry Co., Ltd., Beijing Univ

Assignor: Umicore NV

Contract record no.: 2015990000437

Denomination of invention: Layered lithium containing, transition metal and oxygen free compounds containing a cubic cubic spinel structure phase and methods of making the same

Granted publication date: 20050119

License type: Common License

Record date: 20150612

Application publication date: 20020213

Assignee: Zhongxinguoan Mengguli Power Supply Technology Co., Ltd.

Assignor: Umicore NV

Contract record no.: 2015990000441

Denomination of invention: Layered lithium containing, transition metal and oxygen free compounds containing a cubic cubic spinel structure phase and methods of making the same

Granted publication date: 20050119

License type: Common License

Record date: 20150612

Application publication date: 20020213

Assignee: Hunan Reshine New Material Co., Ltd.

Assignor: Umicore NV

Contract record no.: 2015990000440

Denomination of invention: Layered lithium containing, transition metal and oxygen free compounds containing a cubic cubic spinel structure phase and methods of making the same

Granted publication date: 20050119

License type: Common License

Record date: 20150612

Application publication date: 20020213

Assignee: Beijing Easpring Material Technology Co., Ltd.

Assignor: Umicore NV

Contract record no.: 2015990000436

Denomination of invention: Layered lithium containing, transition metal and oxygen free compounds containing a cubic cubic spinel structure phase and methods of making the same

Granted publication date: 20050119

License type: Common License

Record date: 20150612

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
CX01 Expiry of patent term

Granted publication date: 20050119

CX01 Expiry of patent term