CN1340210A - 半导体晶片磨光的方法和系统 - Google Patents

半导体晶片磨光的方法和系统 Download PDF

Info

Publication number
CN1340210A
CN1340210A CN00803741A CN00803741A CN1340210A CN 1340210 A CN1340210 A CN 1340210A CN 00803741 A CN00803741 A CN 00803741A CN 00803741 A CN00803741 A CN 00803741A CN 1340210 A CN1340210 A CN 1340210A
Authority
CN
China
Prior art keywords
cmp
wafer
film thickness
polishing
uniformity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00803741A
Other languages
English (en)
Other versions
CN100378940C (zh
Inventor
L·张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1340210A publication Critical patent/CN1340210A/zh
Application granted granted Critical
Publication of CN100378940C publication Critical patent/CN100378940C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/03Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent according to the final size of the previously ground workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37398Thickness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37602Material removal rate
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45232CMP chemical mechanical polishing of wafer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49085CMP end point analysis, measure parameters on points to detect end of polishing process

Abstract

一种在CMP(化学机械磨光)机上优化半导体晶片的CMP处理的方法。优化方法包括在一个CMP机上磨光一个测试系列的半导体晶片的步骤。在CMP处理期间,利用连接于磨光机上的薄膜厚度检测器来测量相应晶片上接近于中心的第一点上的薄膜厚度。还要测量接近于相应晶片的外部边缘处第二点上的薄膜厚度。根据在第一点和第二点上测量的处理中的晶片的薄膜厚度,优化处理确定一个描述与一组处理变量相关的清除率和清除均匀度的磨光轮廓。处理变量包括磨光处理的不同的CMP机设定,诸如施加于晶片上的向下作用力的大小。从而,磨光轮廓被随后用于磨光产品晶片。对于每一个产品晶片,通过利用薄膜厚度检测器测量晶片中心点和外部边缘点的薄膜厚度,来确定其相应的清除率和清除均匀度。基于这些测量,依照清除率和清除均匀度的测量结果来调整该组处理变量,在磨光每个相应的产品晶片时,优化产品晶片的CMP处理。

Description

半导体晶片磨光的方法和系统
技术领域
本发明的技术领域属于半导体加工处理。本发明涉及的是优化半导体晶片的化学机械处理的方法和系统。尤其是,本发明涉及一种方法和一个系统,用于化学机械磨光(CMP)设备的磨光处理的就地优化,来改进处理效率。
发明背景
当今的数字集成电路装置的大部分能力和功效都归结于集成水平的提高。越来越多的部件(电阻、二极管、晶片管及类似的部件)被不断地集成到底层地芯片或集成电路中。典型集成电路的最开始的材料是硅。材料逐渐发展为单晶片。呈实心圆柱体的形状。该晶片然后被割锯(类似于一条面包)生产出直径为10-30厘米厚度为250微米的典型的晶片。
通常通过一个熟知的照相平版印刷的处理来用摄影确定集成电路外表几何形状。用该项技术可以精确地复制出非常良好的表面几何形状。照相平版印刷处理用来确定组件区域和在一层的顶部构造另一个层面。复杂的集成电路通常可以具有多个不同的构造层面,每个层面都有一些组件,每个层面具有不同的相互连接,并且每个层面都是堆叠在前一个层面之上。所产生的这些复杂集成电路的外形通常类似于陆地的“山脉”,具有许多的“丘陵”和“山谷”,因为集成电路组件是构建在硅晶片的底部表面上。
在照相平版印刷处理中,利用紫外光把一个确定不同组件的掩膜影像或模式定焦到感光层。通过照相平版印刷工具的光学装置把影像聚焦到表面,并印记在感光层上。为了构建更小的外形,必须使聚焦到感光层的影像越来越精良,就是说,必须提高光学分辨率。随着光学分辨率的提高,掩膜影像的定焦的深度相应地变小。这是由于照相平版印刷工具中的高速数字快门镜头迫使聚焦深度的范围很窄。这一变窄的聚焦深度通常是限制可获得的分辨程度的因素,因此也是限制利用照相平版印刷工具所能获得的最小组件的因素。复杂集成电路的外端的外形结构,即“丘陵”和“山脉”,加剧了聚焦深度减小的现象。因此,为了把确定次微米几何形状的掩膜影像正确聚焦到感光层上,需要一个精确平坦的表面。精确平坦(即完全平面化的)表面将允许极小的聚焦深度,进而允许极小组件的确定和后续加工。
化学机械磨光(CMP)是获得晶片完全平面化的优选方法。它包括利用晶片与一个浸满磨光液的移动磨光垫间的机械接触来清除一个舍弃的层面。因为外形上凸出的区域(丘陵)要比凹陷的区域(山谷)清除得快,所以磨光会打平高度上的偏差。磨光是仅有的能够使得磨光后最大的角度不到1度的打平毫米级以上的平面差距的技术。
现有技术的图1显示的是CMP机100的俯视图,而图2显示的是CMP机100的侧视图。将要磨光的晶片被送入到CMP机100中。CMP机100利用一个臂101拾取晶片并将其放置到一个旋转的磨光垫102上。磨光垫102是由一种有弹性的材料制成的,具有辅助磨光处理的结构。磨光垫102在一个转盘104或位于磨光垫102下面的转台上,以一个预定的速度旋转。晶片105被固定在磨光垫102和臂101上。晶片105的前侧对着磨光垫102。当磨光垫102旋转时,臂101以一个预定的速度旋转晶片105。臂101用一个预定大小的向下的力将晶片105压入磨光垫。CMP机100还包括一个磨光液配送臂107,可以在磨光垫的半径范围内延伸。磨光液配送臂107向磨光垫102上配送一个磨光液流。
磨光液是一种去离子水和设计用来在化学上辅助晶片的打平和可预知的平面化的磨光药剂的混合物。磨光垫102和晶片105的旋转运动,连同磨光液的磨光作用,在某种额定的比率下联合对晶片105进行打平或磨光。该比率被称为清除率。对于晶片加工处理的均匀性和产量性能而言,一个不变的和可预知的清除率是很重要的。清除率应该是适宜的,而生产出精确平面化的晶片,消除表面的不规则。如果清除率太慢,在给定的时间内生产出的平面化的晶片数量就会减少,影响加工处理的晶片生产量。如果清除率太快,CMP平面化处理可能不够精确(导致凹陷、腐蚀、过磨等),影响加工处理的输出。
仍参考图1和图2,如上所述,磨光液和磨光垫102的磨光作用决定了清除率和清除率的均匀性,并因此决定CMP处理的有效性。工艺工程师已发现为了获得足够高和足够稳定的清除率,需要在相应的CMP机上处理大量的一般的晶片,以便正确校准机器的CMP处理(例如“训练”机器的磨光垫、校准磨光液的供应率、调整晶片的向下压力等等)。
例如,在CMP机100上进行的钨互连层平面化处理时,一批晶片中的第一个具有很低的清除率。后面处理的晶片具有较高的清除率。每个连续处理的晶片显示出逐渐提高的清除率。对于一个典型处理,为了充分提高晶片的钨层的清除率,需要对大量的晶片进行处理。直到CMP机100的清除率充分稳定时(例如对于每一个连续的晶片已校准到某一额定的清除率),CMP机100才适应于设备加工处理。由CMP机100和磨光垫102加工过的晶片会具有不可预知的平坦性和薄膜厚度,因而包括了许多非功能性的或不可靠的集成电路印模,相应地,产量也比较低。
因此,传统的CMP校准方法包括使用定标CMP机(例如化学机械磨光机100)对大量的“测试晶片”进行加工。测试被设计用于获得描述CMP处理有效性的不同的参数。这些参数为从晶片上清除的薄膜材料的清除率和材料清除的均匀度。这两个参数是CMP处理的质量的基本体现。清除率将主要用来决定产品晶片的磨光时间。材料清除的均匀度直接影响到晶片表面完整的平面化,当设备加工中采用较大的晶片时尤为重要。清除率和均匀度都取决于消耗品和磨光的参数,包括压力或向下作用力、磨光盘速度、晶片载体的速度、磨光液流以及其他因素。当选择好一组消耗品后,可以调整磨光参数以达到期望的清除率和均匀度。
这种传统的校准处理具有很大的缺陷。由于产品晶片(即用不同的设备生产的晶片)和CMP处理本身(如由于磨光垫磨损而造成的清除率的不断变化)的几个潜在的变化,广泛使用了终端检测器。理想情况下,使用就地终端检测,可以在正确的时间触发停止CMP处理,而不必考虑实际的清除率。例如,如果由于处理过程的某些变化使得磨光率变低,则随后会在终端显示出来,磨光时间将持续较长些。事实上,磨光时间还应与材料清除的均匀度有关。例如,通常金属CMP处理(清除多余的金属膜薄膜并使晶片端面呈现由绝缘材料围绕的金属线路或通道)具有很高的不均匀性,这就需要一个长的过磨时间,以保证跨越晶片表面的金属膜被清除。另一方面,如果CMP处理具有一个很低的不均匀度,由于在相同的时间里清除跨越晶片表面的多余的膜层,一个很小的过磨是可以承受的。当前,终端方法大多用于监控薄膜的清除量而不是非均匀度,不提供任何的对其它不同的处理参数的洞察和控制。这就需要极大增加测试晶片的数量,以便获得一个稳定的处理。
另一个缺陷是与这些测试晶片相关的费用很高。除了测试晶片的费用之外,训练新的磨光垫的时间和正确校准机器的CMP处理所花费的时间也是很多的。为了得到一个额定的清除率(如每分钟4000-5000埃)必须加工20-50个测试晶片,其中每个测试晶片要耗费一段宝贵的处理时间。此外,测试晶片的处理会减少磨光垫102的使用寿命,因为在需要更换之前,磨光垫的磨光周期数量是有限的。这种常规的训练磨光垫102的方法的另一个缺陷为了正确训练一个相应的磨光垫而需要处理的测试晶片的数量的不确定性。
这样,需要一个系统,可极大减少正确校准CMP处理所需的测试晶片的数量。需要一个系统,减少与达到稳定的CMP处理相关的费用。进一步需要一个系统,减少处理时间量和一条CMP机工艺线的合格校验所需的消耗品数量。本发明提供了上述问题的一个新的解决方案。
发明概述
本发明提供一种系统,可极大减少正确校准CMP处理所需的测试晶片的数量。本发明提供一个系统,减少实现一个稳定的CMP处理相关的费用。本发明进一步提供一个系统,减少处理时间量和一条化学机械磨光机工艺线的合格校验所需的消耗品数量。
在一个实施方案中,本发明实现为一种方法,在化学机械磨光(CMP)机上优化对半导体晶片的CMP处理。优化方法包括在CMP上磨光一个测试系列的半导体晶片的步骤。在CMP处理过程中,采用一个与机器相连的薄膜厚度检测器在接近相应晶片中心的第一点上测量薄膜的厚度。还要测量接近相应晶片边缘的第二点的薄膜厚度。根据在第一点和第二点上测量的处理晶片的薄膜厚度,优化处理针对一组处理变量来确定一个描绘清除率和清除的均匀度的磨光轮廓。
处理变量包括磨光处理的不同的CMP机设定,如施加于晶片的向下的作用力大小。相应地,磨光轮廓随后被用于磨光产品晶片。对于每一个产品晶片,通过使用一个薄膜厚度检测器来测量晶片中心的薄膜厚度和晶片外部边缘的薄膜厚度来确定晶片相应的清除率和清除的均匀度。基于这些测量结果,根据清除率和清除的均匀度的测量来调整该组处理变量,在每一个晶片被磨光时,对产品晶片的化学机械磨光处理进行优化。这样做时,本发明提供了一个系统,减少实现一个稳定的化学机械磨光处理的相关费用。
附图说明
通过附图中的图形,借助于实例,但不局限于这些例子,对本发明进行说明,图中同样的参考数字表示相似的元件,其中:
现有技术图1显示的是现有技术的CMP机的俯视图。
现有技术图2显示的是现有技术的CMP机的侧视图。
图3A显示的是依照本发明的一个实施方案的CMP机的俯视图。
图3B显示的图3A的CMP机一个侧面剖视图。
图4显示的是依照本发明的一个实施方案的具有第一个和第二个薄膜厚度测试点的晶片。
图5显示的是依照本发明的一个实施方案的计算机系统的框图。
图6示出根据本发明的一个实施例的计算机系统的方框图。
发明详述
现在详细参阅本发明的优选实施方案,即一种在化学机械磨光处理中半导体晶片的就地优化的方法和系统,在附图中对其实例进行了说明。当结合优选实施方案对本发明进行描述时,应该清楚本发明并不局限于这些实施方案。相反,本发明意图覆盖附加权利声明中规定的本发明的宗旨和范围所包括的替换、修正和等效的方法。而且,在本发明的下面的详细描述中,阐明许多特定的细节,以便提供一个对本发明的透彻的理解。但是,很明显,对一个本领域的一般熟练人员而言,可以无需这些特定的细节即可实施本发明。在其它的例子中,没有对那些熟知的方法、过程、组件和电路进行详细的描述,以避免对本发明的某些方面造成不必要的混淆。
本发明提供一个系统,可极大减少正确校准CMP处理所需的测试晶片的数量。本发明提供一个系统,减少实现一个稳定的CMP处理相关的费用。此外,本发明的系统减少了处理时间量和一条化学机械磨光机工艺线合格校验所需的消耗品数量。下面进一步描述本发明及其优点。
化学机械磨光(CMP)是一种获得包含加工处理设备的半导体晶片完全平面化的优选方法。CMP处理包括通过晶片和一个浸满磨光液的移动磨光垫间的摩擦接触和磨光液本身的化学作用来清除一个舍弃的材料层面。通过CMP处理的磨光消除高度上的差别,因为外形上的凸出的区域(丘陵)比外形上凹陷的区域(山谷)清除得快。CMP处理是具有磨平超过毫米级平面差异的外表面能力的优选技术,磨光后最大的角度不超过1度。
CMP处理可能具有很高的费用,特别是采用更精确的加工处理时(例如深度次微米平板印刷术)。对于一个完全合格的CMP机的工艺线而言,清除率和平坦化均匀度需要充分稳定(例如对每个连续的晶片校准到某一个额定的清除率),致使机器适合于设备加工处理。本发明提供一种系统,减少处理时间量和一条化学机械磨光机工艺线的合格校验所需的消耗品数量。
现在参考图3A和图3B,图中显示了依照本发明的CMP机300的一个俯视图和一个通过剖线A-A的侧面剖视图。CMP机300通过一个臂301拾取晶片并将其放置到旋转的磨光垫302上。CMP机300的磨光垫302在一个转台304或一个定位在磨光垫302之下的旋转盘上以一个预定的速度旋转。臂301以一个精确控制大小的向下的作用力(例如由所需的特定磨光效果决定的力)将一个晶片311压入到磨光垫302中。晶片311由臂301固定在磨光垫302上。晶片311的前侧面对着磨光垫302。晶片311的背侧对着臂301的前侧。当磨光垫以一个精确控制的速度旋转时,臂301以一个精确控制的速度旋转晶片311。CMP机还包括薄膜厚度检测器320,用于测量晶片311前侧的上层厚度,和一个用于存取和控制CMP机300的CMP处理性能的计算机系统330。
在依照本发明的一个实施方案的一个例子中,CMP机300使用的磨光液是一种去离子水和设计用于在化学上辅助晶片上部氧化层的打平和可预知的平面化的化学试剂的混合物。磨光垫302和晶片311的旋转运动,连同磨光液的磨光作用,以一个额定的比率联合打平或磨光晶片311。该比率是指清除率。对于晶片加工处理的均匀度和性能来讲,一个不变的且可预知的清除率是很重要的。清除率应该是适宜的,而产出精确平坦的晶片,消除表面的不规则。如果清除率太慢,在给定的时间内生产出的平坦化的晶片数量就会减少,影响加工处理的晶片生产量。如果清除率太快,化学机械平坦化处理可能不够精确(导致凹陷、腐蚀、过抛等),影响加工处理的输出。与清除率同样重要的是表面材料(例如氧化物)磨除的均匀度。为了维持可接受的输出,沿表面均匀清除晶片311的上面层面是非常重要的。
图4显示的具有外部区域420和中心区域410的晶片311的示意图。还图示了晶片311的第一个薄膜厚度测量点401和第二个薄膜厚度测量点402。测量点401-402分别位于中心区域410和外部区域420中。
依照本发明的一个实施方案,由CMP机300进行的CMP处理被配置进行“就地”化学机械磨光处理优化。当磨光晶片311时,可以就地改动影响CMP处理性能的变量和条件,以便保证获得所需的处理结果。
就地优化处理由在CMP机300上对测试系列的半导体晶片的磨光开始。在CMP处理过程中,在第一个薄膜厚度测量点(这里为中心点)401和第二个薄膜厚度测量点(这里为外部点)402来测量薄膜的厚度。在本实施方案中,采用一个与CMP机300相连的薄膜厚度检测器320来进行测量。中心点401提供一个中心区域410中的晶片311的前侧面上的材料上层面的薄膜厚度指示。类似地,外部点402提供一个外部区域420中的晶片311的前侧面上的材料上层面的厚度指示。根据在内部和外部点401-402上进行的薄膜厚度的测量,优化处理针对一组处理变量来确定一个描绘清除率和清除的均匀度的磨光轮廓。
处理变量包括磨光处理的不同的CMP机设定,如用于晶片311的向下的作用力大小。CMP处理的性能及其总体上的成功很大程度上取决于晶片311、垫350和磨光液或其它化学物质间的化学和机械相互作用。磨光液成分、磨光垫的状况和晶片311的特性(例如在其上加工的设备的特性)的变化,都会导致CMP处理的差别。例如薄膜的磨光率可能随着磨光垫的老化而改变,尽管有就地或事先的磨光垫调节(例如通过一个调节器部件)。总的来说,这些因素包括影响CMP处理的变量,因此被总称为处理变量,磨光轮廓是用处理变量来定义的。
仍参考图4,相应地,磨光轮廓随后被用于磨光产品晶片。对于每一个产品晶片,通过使用一个薄膜厚度检测器320在中心和外部点401-402来就地确定晶片相应的清除率和清除的均匀度。基于这些测量结果,根据如前面确定的磨光轮廓所指示的清除率和清除的均匀度的测量结果来调整该组处理变量。磨光轮廓提供了一个与清除率和清除率均匀度的变化相关的调节的性质和程度的指示。这些处理变量的调节是就地完成的,在对晶片磨光时,优化产品晶片的CMP处理。
在这种方式中,本实施方案采用了两个在处理测试晶片期间获得的参数,清除率和清除均匀度,作为调节处理变量的指示参数。在大多数情况下,这两个参数足够表示CMP处理的质量。清除率主要用来决定产品晶片的磨光时间,而均匀度直接影响到晶片表面的整体的平面化(当设备加工中采用较大的晶片时尤为重要)。清除率和均匀度起到可靠的指示作用,因为它们都取决于处理参数,例如消耗品、转盘速度(例如转/分钟)、晶片旋转速度、磨光液流速、温度、向下作用力等。在本实施方案中,当选择好一组消耗品后,可以调整其它的处理参数,以达到期望的清除率和均匀度。
仍是参照图4,本发明的就地优化方法利用了典型CMP处理常用的现有功能。例如,一个典型的终端检测方法采用了一个薄膜厚度检测单元(例如薄膜厚度检测器320)来直接测量材料的清除。例如,检测器采用的技术包括测量由晶片表面反射回来的激光束的强度,作为剩余薄膜的数量的指示。
在两个或多个精心选择的位置(例如,外部点和中心点)进行薄膜厚度的测量被用来进行一个考虑影响磨光率和清除均匀度的所有处理参数的试验设计(DOE)。该试验设计主要包括磨光晶片所用的磨光轮廓。当磨光第一个产品晶片时,晶片边缘和晶片中心的“清除时间”被记录下来,并且同磨光轮廓数据一起由计算机系统330来处理。根据这些结果,将依照磨光轮廓对处理参数(如向下的力、转台的速度等)进行必要的调整,以便使得均匀度和清除率保持在例如由工艺工程师指定的正确范围之内。如果CMP处理的一个和多个方面超出指定的范围,则计算机系统330将检测到并校正它们,或者进行补偿。例如,如果清除率和清除的均匀度不能同时满足,则计算机系统330可能选择降低对清除率的要求而保证均匀度。
应当注意该方法也可应用于CMP处理的除清理率和均匀度之外的其它方面,诸如类似于磨光垫温度、CMP期间的振动等。而且应当清楚在某些应用中,可能需要测量晶片表面的多于两个点的薄膜厚度。使用分布于晶片表面上的多个点(如三个或三个以上)可以允许更精确的存取清除率和均匀度。因而,本发明的就地优化处理延长了消耗品的寿命,将CMP机合格校准的工作和所用资源减为最小。利用就地优化,可以实现CMP更高的产出和更低的费用。
本发明的就地优化处理还可提供一些另外的好处。例如,鉴于产品晶片的几个潜在的变化(例如具有不同加工的设备的晶片)、不同的清除率,和CMP处理本身的变化,广泛采用了一个“终点”检测器来检测清除正确数量的材料所用的时间。然而,利用本发明的就地检测,可以在正确的时间触发停止CMP处理,而不必关心实际的清除率。例如,如果因为CMP处理的某种变化,终点将出现较晚,磨光处理将持续较长。在本实施方案中,磨光时间与材料清除的均匀度紧密相关。
例如,通常如果金属CMP处理(清除多余的金属膜并使晶片端面由呈现为由绝缘材料围绕的金属线或通路)具有一个很高的不均匀度,将需要一个长的“过磨”时间,以保证跨越晶片表面的金属膜被清除,另一方面,如果CMP处理具有一个很低的不均匀度,由于在相同的时间里清除跨越晶片表面的多余的膜层,利用一个短暂的过磨可以到达可接受的结果。这样,利用本发明的就地优化处理,多个薄膜厚度测量(例如在点401-402)被用于监控薄膜的清除量和均匀度,从而能够在根本上实现可靠的总体磨光时间控制的终点检测,而无需改变任何其它的处理参数。因此,本发明的就地优化处理有利地扩展了CMP处理的终点检测的概念。
现在参考图5,显示了依照本发明的一个实施方案的处理500的步骤流程图。如图5所示,处理500图示了处理测试晶片、确定磨光轮廓和处理产品晶片时的本发明的就地优化处理的步骤。在该实施方案中,处理500也进行终点检测。
过程500由步骤501开始,其中利用合格校验的CMP机(即图3的CMP机)对一系列测试晶片进行处理。如上面所述,在处理实际的产品晶片之前,需对CMP机的性能进行合格性校验。
在步骤502中,对每个测试晶片就地进行薄膜厚度测量。如上所述,至少在两个点(例如图4的中心点401和外部点402)上对相应的被处理的测试晶片进行薄膜厚度的测量。测量允许存取CMP机的CMP处理的清除率和清除率的不均匀度。
在步骤503,步骤502的测量和其它关联的处理参数被用于产生一个CMP机300的CMP处理的磨光轮廓。如上所述,磨光轮廓说明了相对于磨光参数的CMP处理特性。基于该磨光轮廓,CMP机300适合于处理产品晶片。
在步骤504中,一旦确定了磨光轮廓,即可利用CMP机300对一个产品晶片进行处理。
在步骤505,依照本发明,在产品晶片的多个点上(例如点401-402)就地进行薄膜厚度的测量。如上所示,薄膜厚度测量允许在处理产品晶片时存取CMP处理的清除率和清除率的不均匀度。
在步骤506中,步骤505中进行的测量决定是否到达CMP处理的终点。如果达到终点,则处理500继续进行步骤507,否则,处理500转回到步骤504。
在步骤507中,在到达结束点之后,从CMP机300中撤出产品晶片。
这样,本发明提供了一个系统,极大地减少了正确校准一部CMP机所需地测试晶片的数量。本发明提供一个系统,减少与达到稳定的CMP处理相关的费用。而且,本发明的系统减少了处理的时间量和CMP机工艺线的合格校验所需的消耗品数量。
现在参考图6,显示了依照本发明的一个实施方案的计算机系统330的流程图。在本实施方案中,计算机系统330被包含在图3所示的CMP机300中。图6的计算机系统330包括一个地址/数据总线600,用于信息的通讯,一个或多个与总线600相连的中央处理器601,用于信息和指令的处理,一个连接于总线600的易失存储器602(例如随机存取存储器RAM),用于为中央处理器601存储信息和指令,和一个与总线600连接的非易失存储器603(例如只读存储器ROM),用于存储处理器601的静态信息和指令。计算机系统330还可以有选择地包括数据存储硬件604,诸如瞬时存储器或磁盘,用于存储信息和指令。还包括一个可选择的总线接口/信号输入输出通讯单元608,用于与CMP机300的其它组件间的接口。
为说明和描述起见,前面对本发明的特定实施方案进行了阐述。它们并不是绝对的,并不是将本发明局限于所公布的这些确切的形式,显然可以根据上述的讲解进行许多修正和更改。选择和描述这一方案是为了更好地解释本发明的原理及其实际应用,因而使得本领域的其它熟练人员能够通过为适应所期望的特定的应用而进行的不同的修正,更好地利用本发明和不同的实施方案。将通过附加的权利声明及其等效声明来限定本发明的范围。

Claims (10)

1.一种优化CMP(化学机械磨光)机上对半导体晶体进行的CMP处理的方法,该方法包括的步骤:
a)在CMP机上磨光测试系列的半导体晶体;
b)确定相应晶体上接近于中心的第一点上的薄膜厚度;
c)确定相应晶体上接近于外部边缘的第二点上的薄膜厚度;
d)根据第一点和第二点上的薄膜厚度,确定一个描述与一组处理变量相关的清除率和清除均匀度的磨光轮廓,处理变量包括一个施与晶体上的向下的作用力;
e)依照磨光轮廓在CMP机上对一个产品晶体进行磨光;
f)通过确定产品晶体的中心薄膜厚度和外部边缘薄膜厚度,来确定产品晶体的清除率和清除均匀度;和
g)根据步骤f中确定的产品晶体的清除率和清除均匀度来调整该组变量,优化产品晶体的CMP处理。
2.权利要求1的方法,其中CMP机包括一个计算机处理系统,用于执行计算机可读取的指令,使得CMP机执行上述的优化方法,其中所述的方法在步骤d)中,处理变量还包括CMP机的磨光垫的旋转速度。
3.权利要求1或2的方法,其中处理变量包括晶体的旋转速度。
4.权利要求1或2的方法,其中处理变量包括CMP机的磨光垫的旋转速度。
5.权利要求1或2的方法,其中磨光轮廓包括描述晶体边缘的清除时间和晶体中心的清除时间的信息。
6.权利要求1或2的方法,进一步包括依照磨光轮廓调整该组处理变量的步骤,将清除率维持在一个指定的范围内。
7.权利要求1或2的方法,进一步包括依照磨光轮廓调整该组处理变量的步骤,将清除均匀度维持在一个指定的范围内。
8.权利要求1或2的方法,进一步包括通过利用步骤b)中确定的第一点的薄膜厚度和步骤c)中确定的第二点的薄膜厚度来检测磨光的结束点。
9.权利要求1或2的方法,其中通过进行一个考虑影响磨光率和清除均匀度的处理参数的试验设计来确定磨光轮廓。
10.权利要求1的方法,其中利用连接于CMP机的薄膜厚度检测器执行步骤b),利用薄膜厚度检测器来执行步骤c)和f)。
CNB008037418A 1999-10-13 2000-09-12 半导体晶片磨光的方法和系统 Expired - Fee Related CN100378940C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/417,417 1999-10-13
US09/417,417 US6159075A (en) 1999-10-13 1999-10-13 Method and system for in-situ optimization for semiconductor wafers in a chemical mechanical polishing process

Publications (2)

Publication Number Publication Date
CN1340210A true CN1340210A (zh) 2002-03-13
CN100378940C CN100378940C (zh) 2008-04-02

Family

ID=23653949

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008037418A Expired - Fee Related CN100378940C (zh) 1999-10-13 2000-09-12 半导体晶片磨光的方法和系统

Country Status (7)

Country Link
US (1) US6159075A (zh)
EP (1) EP1138071B1 (zh)
JP (1) JP2003511873A (zh)
KR (1) KR100701356B1 (zh)
CN (1) CN100378940C (zh)
DE (1) DE60044330D1 (zh)
WO (1) WO2001027990A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372071C (zh) * 2005-05-19 2008-02-27 上海宏力半导体制造有限公司 薄化硅片方法
CN102152237A (zh) * 2010-02-11 2011-08-17 中芯国际集成电路制造(上海)有限公司 用于化学机械研磨机台的制造程序控制方法及其控制系统
CN101165617B (zh) * 2006-10-05 2011-08-17 东京毅力科创株式会社 基板处理系统的处理方案最佳化方法
CN102463521A (zh) * 2010-11-16 2012-05-23 无锡华润上华半导体有限公司 研磨方法及装置
CN103165487A (zh) * 2011-12-12 2013-06-19 上海华虹Nec电子有限公司 检测图形片硅研磨速率的方法
CN103681296A (zh) * 2012-09-14 2014-03-26 意法半导体公司 用于获得均匀性和表面电荷的全晶片映射的内建度量
CN104827382A (zh) * 2014-02-08 2015-08-12 中芯国际集成电路制造(上海)有限公司 化学机械研磨的方法
CN104827383A (zh) * 2014-02-08 2015-08-12 中芯国际集成电路制造(上海)有限公司 化学机械研磨设备及化学机械研磨的方法
CN108788940A (zh) * 2018-06-26 2018-11-13 上海华力微电子有限公司 化学机械研磨设备工艺能力的监控方法
CN111699074A (zh) * 2018-12-26 2020-09-22 应用材料公司 普雷斯顿矩阵产生器
CN113611625A (zh) * 2021-07-30 2021-11-05 上海华虹宏力半导体制造有限公司 一种监控钨cmp工艺出现的晶边钨残留的方法
CN113664712A (zh) * 2021-08-13 2021-11-19 芯盟科技有限公司 涡流侦测装置以及金属层厚度的测量方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6276989B1 (en) * 1999-08-11 2001-08-21 Advanced Micro Devices, Inc. Method and apparatus for controlling within-wafer uniformity in chemical mechanical polishing
US6640151B1 (en) 1999-12-22 2003-10-28 Applied Materials, Inc. Multi-tool control system, method and medium
JP3968695B2 (ja) * 1999-12-27 2007-08-29 信越半導体株式会社 ウェーハ外周部の加工能力評価方法
US6290572B1 (en) * 2000-03-23 2001-09-18 Micron Technology, Inc. Devices and methods for in-situ control of mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6708074B1 (en) 2000-08-11 2004-03-16 Applied Materials, Inc. Generic interface builder
JP2002219645A (ja) * 2000-11-21 2002-08-06 Nikon Corp 研磨装置、この研磨装置を用いた半導体デバイス製造方法並びにこの製造方法によって製造された半導体デバイス
US7188142B2 (en) 2000-11-30 2007-03-06 Applied Materials, Inc. Dynamic subject information generation in message services of distributed object systems in a semiconductor assembly line facility
DE10065380B4 (de) * 2000-12-27 2006-05-18 Infineon Technologies Ag Verfahren zur Charakterisierung und Simulation eines chemisch-mechanischen Polier-Prozesses
US6620027B2 (en) * 2001-01-09 2003-09-16 Applied Materials Inc. Method and apparatus for hard pad polishing
JP2002273649A (ja) 2001-03-15 2002-09-25 Oki Electric Ind Co Ltd ドレッサ−を有する研磨装置
US6675058B1 (en) * 2001-03-29 2004-01-06 Advanced Micro Devices, Inc. Method and apparatus for controlling the flow of wafers through a process flow
US7698012B2 (en) 2001-06-19 2010-04-13 Applied Materials, Inc. Dynamic metrology schemes and sampling schemes for advanced process control in semiconductor processing
US7160739B2 (en) 2001-06-19 2007-01-09 Applied Materials, Inc. Feedback control of a chemical mechanical polishing device providing manipulation of removal rate profiles
JP3932836B2 (ja) * 2001-07-27 2007-06-20 株式会社日立製作所 薄膜の膜厚計測方法及びその装置並びにそれを用いたデバイスの製造方法
US6727107B1 (en) * 2001-09-07 2004-04-27 Lsi Logic Corporation Method of testing the processing of a semiconductor wafer on a CMP apparatus
US6837983B2 (en) * 2002-01-22 2005-01-04 Applied Materials, Inc. Endpoint detection for electro chemical mechanical polishing and electropolishing processes
US6884146B2 (en) * 2002-02-04 2005-04-26 Kla-Tencor Technologies Corp. Systems and methods for characterizing a polishing process
US20030199112A1 (en) 2002-03-22 2003-10-23 Applied Materials, Inc. Copper wiring module control
US7063597B2 (en) 2002-10-25 2006-06-20 Applied Materials Polishing processes for shallow trench isolation substrates
AU2003290932A1 (en) 2002-11-15 2004-06-15 Applied Materials, Inc. Method, system and medium for controlling manufacture process having multivariate input parameters
US6821895B2 (en) * 2003-02-20 2004-11-23 Taiwan Semiconductor Manufacturing Co., Ltd Dynamically adjustable slurry feed arm for wafer edge profile improvement in CMP
US7299151B2 (en) * 2004-02-04 2007-11-20 Hewlett-Packard Development Company, L.P. Microdevice processing systems and methods
JP2006286766A (ja) * 2005-03-31 2006-10-19 Nec Electronics Corp 化学的機械的研磨方法及び化学的機械的研磨システム
DE102006022089A1 (de) * 2006-05-11 2007-11-15 Siltronic Ag Verfahren zur Herstellung einer Halbleiterscheibe mit einr profilierten Kante
DE102007015503B4 (de) * 2007-03-30 2013-03-21 Globalfoundries Inc. Verfahren und System zum Steuern des chemisch-mechanischen Polierens durch Berücksichtigung zonenspezifischer Substratdaten
KR100828295B1 (ko) * 2007-06-20 2008-05-07 주식회사 동부하이텍 반도체 소자의 제조 방법
JP5219569B2 (ja) * 2008-03-21 2013-06-26 株式会社東京精密 ウェーハ研削装置における加工良否判定方法およびウェーハ研削装置
JP6884082B2 (ja) * 2017-10-11 2021-06-09 株式会社Screenホールディングス 膜厚測定装置、基板検査装置、膜厚測定方法および基板検査方法
CN110270924B (zh) * 2019-07-31 2021-07-02 上海华虹宏力半导体制造有限公司 Cmp研磨方法
JP2021079518A (ja) * 2019-11-22 2021-05-27 株式会社ディスコ 加工装置、及び加工装置に用いる算出基板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616475B2 (ja) * 1987-04-03 1994-03-02 三菱電機株式会社 物品の製造システム及び物品の製造方法
US5700180A (en) * 1993-08-25 1997-12-23 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US5408405A (en) * 1993-09-20 1995-04-18 Texas Instruments Incorporated Multi-variable statistical process controller for discrete manufacturing
US5904609A (en) * 1995-04-26 1999-05-18 Fujitsu Limited Polishing apparatus and polishing method
US5665199A (en) * 1995-06-23 1997-09-09 Advanced Micro Devices, Inc. Methodology for developing product-specific interlayer dielectric polish processes
US6012966A (en) * 1996-05-10 2000-01-11 Canon Kabushiki Kaisha Precision polishing apparatus with detecting means
JPH1076464A (ja) * 1996-08-30 1998-03-24 Canon Inc 研磨方法及びそれを用いた研磨装置
JP3454658B2 (ja) * 1997-02-03 2003-10-06 大日本スクリーン製造株式会社 研磨処理モニター装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372071C (zh) * 2005-05-19 2008-02-27 上海宏力半导体制造有限公司 薄化硅片方法
CN101165617B (zh) * 2006-10-05 2011-08-17 东京毅力科创株式会社 基板处理系统的处理方案最佳化方法
CN102152237A (zh) * 2010-02-11 2011-08-17 中芯国际集成电路制造(上海)有限公司 用于化学机械研磨机台的制造程序控制方法及其控制系统
CN102152237B (zh) * 2010-02-11 2013-02-27 中芯国际集成电路制造(上海)有限公司 用于化学机械研磨机台的制造程序控制方法及其控制系统
CN102463521A (zh) * 2010-11-16 2012-05-23 无锡华润上华半导体有限公司 研磨方法及装置
CN103165487A (zh) * 2011-12-12 2013-06-19 上海华虹Nec电子有限公司 检测图形片硅研磨速率的方法
CN103165487B (zh) * 2011-12-12 2016-02-10 上海华虹宏力半导体制造有限公司 检测图形片硅研磨速率的方法
CN103681296A (zh) * 2012-09-14 2014-03-26 意法半导体公司 用于获得均匀性和表面电荷的全晶片映射的内建度量
CN104827383A (zh) * 2014-02-08 2015-08-12 中芯国际集成电路制造(上海)有限公司 化学机械研磨设备及化学机械研磨的方法
CN104827382A (zh) * 2014-02-08 2015-08-12 中芯国际集成电路制造(上海)有限公司 化学机械研磨的方法
CN104827382B (zh) * 2014-02-08 2018-03-20 中芯国际集成电路制造(上海)有限公司 化学机械研磨的方法
CN108788940A (zh) * 2018-06-26 2018-11-13 上海华力微电子有限公司 化学机械研磨设备工艺能力的监控方法
CN111699074A (zh) * 2018-12-26 2020-09-22 应用材料公司 普雷斯顿矩阵产生器
CN113611625A (zh) * 2021-07-30 2021-11-05 上海华虹宏力半导体制造有限公司 一种监控钨cmp工艺出现的晶边钨残留的方法
CN113611625B (zh) * 2021-07-30 2024-02-02 上海华虹宏力半导体制造有限公司 一种监控钨cmp工艺出现的晶边钨残留的方法
CN113664712A (zh) * 2021-08-13 2021-11-19 芯盟科技有限公司 涡流侦测装置以及金属层厚度的测量方法

Also Published As

Publication number Publication date
EP1138071B1 (en) 2010-05-05
KR20010086103A (ko) 2001-09-07
DE60044330D1 (de) 2010-06-17
US6159075A (en) 2000-12-12
JP2003511873A (ja) 2003-03-25
WO2001027990A1 (en) 2001-04-19
KR100701356B1 (ko) 2007-03-28
CN100378940C (zh) 2008-04-02
EP1138071A1 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
CN100378940C (zh) 半导体晶片磨光的方法和系统
US6794206B2 (en) Method of polishing a film
US6495463B2 (en) Method for chemical mechanical polishing
CN1744285A (zh) 制造系统
CN1602546A (zh) 基于原位传感器的半导体处理工序控制
US6120349A (en) Polishing system
JP2004531077A (ja) 研磨パッドをコンディショニングする構造および方法
CN1447396A (zh) 化学机械抛光装置及其控制方法
JPH11165256A (ja) 化学的機械的研磨方法及びその装置
TWI709170B (zh) 化學機械平坦化系統和使用其的方法
US11945070B2 (en) Rocker polishing apparatus and method for full-aperture deterministic polishing of a planar part
JPH02222533A (ja) 半導体ウェーハの研削装置
JP5028354B2 (ja) ウェーハの研磨方法
WO2006041629A1 (en) Semiconductor wafer material removal apparatus and method for operating the same
US6609946B1 (en) Method and system for polishing a semiconductor wafer
JP2010034462A (ja) 両面研磨装置
US6413152B1 (en) Apparatus for performing chemical-mechanical planarization with improved process window, process flexibility and cost
CN116551559A (zh) 一种带压力传感系统的晶圆研磨抛光机
CN115972096A (zh) 一种双面抛光设备去除量分布的控制方法
CN1941323A (zh) 化学机械抛光以及利用其制造半导体器件的方法
JP2019114708A (ja) ウェーハの両面研磨方法
JP7288373B2 (ja) 研削装置、研削砥石、および研削方法
JP3307854B2 (ja) 研磨装置、研磨材及び研磨方法
JP6712841B2 (ja) 研削加工方法
US20040002289A1 (en) Method and apparatus for monitoring a polishing condition of a surface of a wafer in a polishing process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NXP CO., LTD.

Free format text: FORMER OWNER: ROYAL PHILIPS ELECTRONICS CO., LTD.

Effective date: 20070817

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070817

Address after: Holland Ian Deho Finn

Applicant after: Koninkl Philips Electronics NV

Address before: Holland Ian Deho Finn

Applicant before: Koninklike Philips Electronics N. V.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080402

Termination date: 20150912

EXPY Termination of patent right or utility model