CN1346251A - 能够后期加工改善光学能力的透镜 - Google Patents

能够后期加工改善光学能力的透镜 Download PDF

Info

Publication number
CN1346251A
CN1346251A CN99816300A CN99816300A CN1346251A CN 1346251 A CN1346251 A CN 1346251A CN 99816300 A CN99816300 A CN 99816300A CN 99816300 A CN99816300 A CN 99816300A CN 1346251 A CN1346251 A CN 1346251A
Authority
CN
China
Prior art keywords
lens
compositions
specific refraction
optical element
polymeric matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99816300A
Other languages
English (en)
Other versions
CN1306918C (zh
Inventor
J·M·杰斯玛拉尼
R·H·格鲁伯斯
C·A·桑德斯戴德特
J·A·科恩菲尔德
D·M·施瓦茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Institute of Technology CalTech
Original Assignee
California Institute of Technology CalTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Institute of Technology CalTech filed Critical California Institute of Technology CalTech
Publication of CN1346251A publication Critical patent/CN1346251A/zh
Application granted granted Critical
Publication of CN1306918C publication Critical patent/CN1306918C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • A61F2/1627Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside for changing index of refraction, e.g. by external means or by tilting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • A61F2/1635Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside for changing shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/14Photorefractive lens material

Abstract

这项发明涉及能够后期加工改善光学能力的透镜。一般地说,本发明的透镜包括(i)第一聚合物基体和(ii)分散在所述基体中能够被刺激诱发聚合的调整折射度的组合物。当至少一部分透镜暴露在适当的刺激之中时,调整折射度的组合物形成第二聚合物基体。第二聚合物基体的数量和位置可以通过改变其折射率和/或改变其形状来改善透镜光学能力之类的透镜特征。本发明的透镜分别在电子学和医学领域中有大量的应用,例如作为数据存储装置和作为医学透镜,尤其是眼内透镜。

Description

能够后期加工改善光学能力的透镜
本发明的现有技术
在美国每年完成大约200万例白内障外科手术。手术通常包括在晶状体囊前部做切口,以便摘除患白内障的晶状体并且将眼内透镜移植到其位置上。植入的透镜的光学能力是(根据预先测量的眼球长度(ocularlength)和角膜曲度)选定的,以使患者不用附加的矫正措施(例如,眼镜或接触镜片)就能看见。令人遗憾的是由于测量错误和/或可变的透镜定位和伤口愈合,将近一半经历这种外科手术的患者手术后将不矫正就没有最佳的视力。Brandser等人,Acta Ophthalmol Scand 75:162-165(1997);Oshika等人,J cataract Refract Surg 24:509-514(1998)。因为现有技术的眼内透镜一旦被植入通常不能调节,所以患者通常必须在用另一个光学能力不同的透镜替换植入的透镜或者甘心使用眼镜或接触镜片之类的附加矫正透镜之间作出选择。权衡利弊前者的风险较大,所以几乎从不那样作。
植入并且待到伤口愈合之后光学能力可以调节的眼内透镜将是解决与白内障外科手术相关联的术后折射度误差的理想办法。此外,这样的透镜将具有更广阔的应用并且可以被用来矫正诸如近视、远视和散光之类的更典型的情况。虽然诸如使用激光完成角膜整形的LASIK之类的外科方法可以利用,但是仅仅可以使治疗轻微到中等程度的近视和远视变得容易。反之,象眼镜或接触镜片那样起作用矫正天生的眼睛的折射度的错误的眼内透镜可能被植入任何患者的眼睛。因为植入的透镜的光学能力可以被调节,所以由于测量不规范和/或可变化的透镜定位伤口愈合所造成的术后折射度误差可以被当场调准。
本发明的概述
本发明涉及一些光学元件,尤其是医学透镜及其使用方法。一般地说,本发明的透镜包括(i)第一聚合物基体和(ii)分散在所述基体中能够被刺激诱发聚合的调整折射度的组合物。在一个实施方案中,当至少一部分透镜被暴露在适当的刺激之中时,调整折射度的组合物形成第二聚合物基体,该基体的形成改善透镜的光学能力。
附图简要说明
图1是本发明的透镜的示意图,在其中心接受辐照,接下来辐照整个透镜,以便“锁定”被改善的透镜光学能力。
图2图解说明棱镜的照射过程,它被用来确定棱镜在各种剂量的照射之下暴露之后折射率的变化量。
图3展示本发明的IOL的未经滤光的莫尔干涉条纹图。两个Ronchi刻度之间的角度被设定在12°,而第一和第二莫尔图样之间的位移是4.92mm。
图4是本发明的IOL的Ronchi图。Ronchi图对应于透镜的2.6mm中心区。
图5是图解说明第二机理的示意图,凭借该机理第二聚合物基体的形成通过改变透镜的形状调整透镜的性质。
图6是激光处理之前和之后IOL的Ronchi干涉图,它描绘眼睛内的透镜的光学能力发生大约+8.6屈光度的变化。交替的明暗条纹的间隔与透镜的光学能力成正比。
本发明的详细说明
本发明涉及能够后期加工改善光学能力的光学元件(例如,透镜和棱镜)。具体地说,本发明涉及植入眼睛后可以现场调节其光学能力的眼内透镜。
本发明的光学元件包括第一聚合物基体和分散在其中的调整折射度的组合物。第一聚合物基体形成光学元件的构架并且一般地对其许多材料性质负责。调整折射度的组合物(“RMC”)可以是能够被刺激诱发聚合(优选光致聚合)的单一化合物或者是化合物的组合。本文中所使用的术语“聚合”指的是某种反应,在该反应中调整折射度的组合物的至少一种成分发生反应,以便与同样的成分或不同的成分形成至少一种共价键或物理键。在第一聚合物基体和调整折射度的组合物的同一性将取决于光学元件的最终用途。但是作为一般规律,第一聚合物基体和调整折射度的组合物是这样选定的,以致组成调整折射度的组合物的成分能够在第一聚合物基体内扩散。换言之,松散的第一聚合物基体将倾向于与较大的RMC成分配对,而紧密的第一聚合物基体将倾向于与较小的RMC成分配对。
调整折射度的组合物暴露在适当的能源(例如,热或光)之下时通常在光学元件的暴露区中形成第二聚合物基体。第二聚合物基体的存在改变光学元件中这个部分的材料特征,使之调整其折射能力。一般地说,第二聚合物基体的形成通常提高光学元件中受影响的那个部分的折射率。暴露之后,未暴露区域中的调整折射度的组合物将随着时间的推移迁移到暴露区域中。RMC迁移到暴露区域中的数量是随时间变化的,并且可以受到精确的控制。如果有足够的时间,RMC成分将重新均衡并且再次遍布光学元件而分布(即包括暴露区域的第一聚合物基体)。当该区域再次暴露在能源下的时候,此前已经迁移到该区域中的调整折射度的组合物(“RMC”)(可能少于允许RMC组合物再次均衡的情况)将聚合,以便进一步增加第二聚合物基体的形成。这个过程(暴露之后有允许扩散的适当的时间间隔)可以一直重复到光学元件的暴露区域达到预期的性质(例如,光学能力、折射率或形状)。在这个点,整个光学元件被暴露在能源之下,以使暴露区域之外的剩余的RMC成分在可能迁移到暴露区域中之前聚合,从而“锁定”预期的透镜性质。换言之,因为可自由扩散的RMC成分不再可以利用,所以此后再使光学元件暴露在能源之下不能进一步改变其光学能力。图1图解说明本发明的一个实施方案,调整折射率(因此调整透镜的光学能力),随后进行锁定。
第一聚合物基体是通过共价键或物理作用链接起来的结构,该结构作为光学元件起作用并且是由第一聚合物基体组合物(“FPMC”)制成的。一般地说,第一聚合物基体组合物包括聚合时将形成第一聚合物基体的一种或多种单体。第一聚合物基体组合物可以非必选地包括任何数量的配方辅助成分,这些辅助成分将调整聚合反应或改善光学元件的任何性质。作为例证的适当的FPMC单体的实例包括丙烯酸酯类单体、异丁烯酸酯类单体、磷腈类单体、硅氧烷类单体、乙烯基类单体、以及它们的均聚物和共聚物。本文中使用的术语“单体”指的是可以链接在一起形成包含同样的重复单元的聚合物的任何单元(其本身也可以是均聚物或共聚物)。如果FPMC单体是共聚物,那么它可以是由相同类型的单体组成的(例如,两种不同的硅氧烷单体),或者是由不同类型的单体组成的(例如,硅氧烷类单体和丙烯酸类单体)。
在一个实施方案中,形成第一聚合物基体的一种或多种单体是在有调整折射度的组合物存在的情况下聚合和交联的。在另一个实施方案中,形成第一聚合物基体的聚合物原材料是在有调整折射度的组合物存在的情况下交联的。无论在哪种模式下,RMC成分都必须是与第一聚合物基体的形成相容的并且不明显地干扰第一聚合物基体的形成。同样,第二聚合物基体的形成也应该与已有的第一聚合物基体相容。换言之,第一聚合物基体和第二聚合物基体不应该发生相分离,而且通过光学元件的光传输不应该受到影响。
如同前面介绍的那样,调整折射度的组合物可以是一种成分或者多种成分,只要:(i)它与第一聚合物基体的形成相容;(ii)它在第一聚合物基体形成后仍然能够被刺激诱发聚合;以及(iii)它能在第一聚合物基体范围内自由扩散。在优选的实施方案中,刺激诱发的聚合是光诱发的聚合。
本发明的光学元件在电子学和数据存储产业中有为数众多的应用。本发明的另一种应用是作为医学透镜,尤其是眼内透镜。
一般地说,有两种类型的眼内透镜(“IOL”)。第一种类型的眼内透镜代替眼睛中天生的晶状体。对于这样的过程来说最常见的原因是白内障。第二种类型的眼内透镜增补现有透镜并作为永久性的矫正透镜。这种类型的透镜(有时称之为晶状体类的眼内透镜)被植入前房或后房,以便矫正眼睛的任何折射误差。从理论上说,就两种眼内透镜中的任何一种而言达到屈光正常(即来自无限远的光线完美无缺地聚焦在视网膜上)必不可少的光学能力都能精确地被计算。但是,在实践中,由于在角膜曲率的测量中存在误差和/或可变的透镜定位和伤口愈合的原因,据估计只有大约半数接受IOL移植的患者将在外科手术后不需要附加的矫正就能具有最佳的视力。因为现有技术的IOL通常不能在手术后改善光学能力,所以其余的患者必须采取其它类型的视力矫正方法,例如外部的透镜(例如,眼镜或接触镜片)或角膜手术。在使用本发明的眼内透镜的情况下,将不再需要这些类型的附加的矫正措施。
本发明的眼内透镜包括第一聚合物基体和分散在其中的调整折射度的组合物。第一聚合物基体和调整折射度的组合物象前面用补充条件介绍的那样是生物相容的。
作为例证的适当的第一聚合物基体的实例包括:丙烯酸酯类聚合物,例如聚丙烯酸烷基酯和聚丙烯酸羟烷基酯;异丁烯酸酯类聚合物,例如聚异丁烯酸甲酯(“PMMA”)、聚异丁烯酸羟乙基酯(“PHEMA”)和聚异丁烯酸羟丙基酯(“HPMA”);乙烯基类聚合物,例如聚苯乙烯和聚乙烯基吡咯烷酮(“PNVP”);硅氧烷类聚合物,例如聚二甲基硅氧烷;磷腈类聚合物以及它们的共聚物。美国专利第4,260,725号及其引用的专利和参考文献(在此通过引证将它们全部并入)提供更多的可以用来形成第一聚合物基体的适当的聚合物的特定的实例。
在优选的实施方案中,第一聚合物基体通常拥有比较低的玻璃化转变温度(“Tg”)以致最终获得的IOL倾向于呈现象流体和/或弹性体一样的行为,并且通常是通过一种或多种聚合物原材料的交联形成的,其中每种聚合物的原材料都包括至少一种可交联的基团。作为例证的适当的可交联的基团的实例包括但不限于氢化物、乙酰氧基、烷氧基、氨基、酸酐、芳氧基、羧基、enoxy、环氧、卤化物、异氰酸基、烯键和肟。在更优选的实施方案中,每种聚合物原材料都包括末端单体(也被称为封端),该末端单体可以与组成聚合物原材料的一种或多种单体相同也可以或不同,但是都包括至少一个可交联的基团。换言之,末端单体是作为聚合物原材料结构一部分的始端和末端并且包括至少一个可交联的基团。虽然对于本发明的实践并非必不可少,但是优选的是聚合物原材料的交联机理不同于组成调整折射度的组合物的各种成分的刺激诱发聚合机理。例如,如果调整折射度组合物是通过光诱发聚合被聚合起来的,那么优选的是聚合物的原材料具有这样的可交联的基团,它们凭借任何不同于光诱发聚合机理聚合。
为形成第一聚合物基体特别优选的一类聚合物原材料是用末端单体封端的硅氧烷类聚合物(也被称为“有机硅”),其中末端单体包括选自乙酰氧基、氨基、烷氧基、卤化物、羟基和巯基的可交联的基团。因为有机硅IOL往往是柔软的和可折叠的,所以在IOL移植过程中通常可以采用更小的切口。特别优选的聚合物原材料的实例是双(二乙酰氧基甲基甲硅烷基)聚二甲基硅氧烷(它是用二乙酰氧基甲基甲硅烷基末端单体封端的聚二甲基硅氧烷)。
在制作IOL过程中使用的调整折射度的组合物如上所述,但具有生物相容性的补充必要条件。调整折射度的组合物能够被刺激诱发聚合并且可以是单一成分或多种成分,只要:(i)它与第一聚合物基体的形成是相容的;(ii)它在形成第一聚合物基体之后仍然能够被刺激诱发聚合;以及(iii)它在第一聚合物基体的范围内能够自由地扩散。一般地说,与形成第一聚合物基体所用的单体类型相同的单体可以作为调整折射度的组合物的成分被使用。但是,由于有RMC单体必须能在第一聚合物基体的范围内扩散的必要条件,RMC单体通常倾向于与形成第一聚合物基体的单体相比是比较小的(即具有比较低的分子量)。除了一种或多种单体之外,调整折射度的组合物可以包括使第二聚合物基体的形成变得容易的其它成分,例如引发剂和增感剂。
在优选的实施方案中,刺激诱发聚合是光致聚合。换言之,在组成调整折射度的组合物的一种或多种单体中每种都优选包括至少一个能够光致聚合的基团。作为例证的这种可光致聚合的基团的实例包括但不限于丙烯酸基、烯丙氧基、肉桂酰基、异丁烯酸基、乙酰锑铵和乙烯基。在更优选的实施方案中,调整折射度的组合物单独或在有增感剂存在的情况下包括光引发剂(任何用来产生游离自由基的化合物)。适当的光引发剂的实例包括苯乙酮(例如,被取代的卤代苯乙酮、二乙氧基苯乙酮);2,4-二氯甲基-1,3,5-三嗪;苯偶姻甲醚;以及邻苯甲酰基肟基酮。适当的增感剂的实例包括对(二烷氨基)芳醛;N-烷基二氢亚吲哚;以及双[对(二烷氨基)亚苄基]酮。
由于优先选择柔软且可折叠的IOL,所以特别优选的一类RMC单体是用包括可光致聚合的基团的末端硅氧烷部分封端的聚硅氧烷。这种单体的举例表达式是X-Y-X1,其中Y是硅氧烷,它可以是单体、由任何数量的硅氧烷单元形成的均聚物或共聚物;X和X1可以是相同的或者是不同的,而且每个都独立地是包括可光致聚合的基团的末端硅氧烷部分。作为例证的Y的实例包括:
Figure A9981630000121
Figure A9981630000122
其中:m和n各自独立地是整数,而R1、R2、R3和R4各自独立地是氢、烷基(伯、仲、叔、环)、芳基或杂芳基。在优选的实施方案中,R1、R2、R3和R4是C1-C10烷基或苯基。因为人们发现芳基含量比较高的RMC单体使本发明的透镜的折射率产生比较大的变化,所以通常优选的是R1、R2、R3和R4当中至少有一个是芳基,尤其是苯基。在更优选的实施方案中,R1、R2和R3是相同的并且是甲基、乙基或丙基;而R4是苯基。
作为例证的X和X1的实例(即取决于RMC聚合物描绘方法的X1和X)分别是:
其中:R5和R6各自独立地是氢、烷基、芳基或杂芳基;而Z是可光致聚合的基团。
在优选的实施方案中,R5和R6各自独立地是C1-C10的烷基或苯基,而Z是包括选自丙烯酸基、烯丙氧基、肉桂酰基、异丁烯酸基、乙酰锑铵和乙烯基的可光致聚合的基团。在更优选的实施方案中,R5和R6是甲基、乙基或丙基,而Z是包括丙烯酸基或者异丁烯酸基结构部分的可光致聚合的基团。
在特别优选的实施方案中,RMC单体是用下式描绘的:
Figure A9981630000132
其中X和X1是相同的,而R1、R2、R3和R4的是象前面那样定义的。这种RMC单体的作为例证的实例包括用乙烯基二甲基硅烷基团封端的二甲基硅氧烷与二苯基硅氧烷的共聚物;用异丁烯酰氧丙基二甲基硅烷基封端的二甲基硅氧烷与甲基苯基硅氧烷的共聚物;以及用异丁烯酰氧丙基二甲基硅烷基封端的二甲基硅氧烷。
尽管任何适当的方法都可以使用,但是人们已经发现有三氟甲基磺酸存在的情况下一种或多种环状硅氧烷的开环反应是制作一类本发明的RMC单体的特别有效的方法。简单地说,这种方法包括使环状硅氧烷和下式表示的化合物在有三氟甲基磺酸存在的情况下接触:其中R5、R6和Z是象前面那样定义的。环状硅氧烷可以是环状的硅氧烷单体、均聚物或共聚物。作为替代,可以使用一种以上环状的硅氧烷。例如,环状二甲基硅氧烷的四聚体和环状甲基苯基硅氧烷的三聚体可以在有三氟甲基磺酸存在的情况下与二异丁酰氧丙基四甲基二硅氧烷接触,以形成一种特别优选的RMC单体,即用异丁烯酰氧丙基二甲基硅烷基团封端的二甲基硅氧烷与甲基苯基硅氧烷的共聚物。
本发明的IOL可以用任何适当的方法制作,该方法将导致具有一种或多种成分并且包括分散在其中的调整折射度的组合物的第一聚合物基体,其中调整折射度的组合物能够被刺激诱发聚合,形成第二聚合物基体。一般地说,用来制作本发明的IOL的方法与用来制作本发明的光学元件的方法是一样的。在一个实施方案中,该方法包括:
第一聚合物基体组合物与调整折射度的组合物混合,以形成反应混合
物;
把反应混合物放进模具;
使第一聚合物基体组合物聚合以形成所述的光学元件;以及
从模具中取出光学元件。
所用的模具类型取决于被制作的光学元件。例如,如果光学元件是棱镜,那么将使用棱镜形状的模具。同样,如果光学元件是眼内透镜,那么将使用眼内透镜的模具,依此类推。正象前面介绍的那样,第一聚合物基体组合物包括用来形成第一聚合物基体的一种或多种单体并且非必选地包括任何数量的配方辅助成分,这些辅助成分或者调整聚合反应或者改善光学元件的任何性质(不论是否与光学特征有关)。类似地,调整折射度的组合物包括一种或多种成分,这些成分能够一起被刺激诱发聚合,以形成第二聚合物基体。因为柔软且可折叠的眼内透镜通常允许比较小的切口,所以优选的是在使用本发明方法制作IOL时第一聚合物基体组合物和调整组合物折射度的组合物两者都包括一种或多种基于有机硅的或者低Tg的丙烯酸单体。
本发明的眼内透镜的关键的优点是可以在移植之后在眼睛内修改IOL性质。例如,由不完善的角膜测量和/或可变的透镜定位和伤口愈合造成的任何光学能力计算错误都可以在手术后的门诊过程中得以纠正。
人们已经发现刺激诱发形成的第二聚合物基体除了改变IOL折射率之外还以可预测的方式通过改变透镜曲率来影响IOL的光学能力。因此,在IOL被植入眼睛之后可以利用两种机理来调整IOL性质,例如光学能力。一般地说,用来实施具有第一聚合物基体和分散在其中的调整折射度的组合物的本发明的IOL的方法包括:
(a)使至少一部分透镜暴露在刺激之下,借此刺激诱发调整折射度的组合物的聚合。如果移植和伤口愈合之后不需要修改IOL性质,那么暴露部分是整个透镜。暴露整个透镜将把被植入的透镜当时已有的性质锁定。
但是,如果诸如光学能力之类的透镜特征需要修改,那么仅仅将透镜的一部分(比整个透镜小几分)暴露出来。在一个实施方案中,实现本发明的IOL的方法进一步包括:
(b)等待某个时间间隔;以及
(c)再次使透镜的那个部分暴露在刺激之下这个过程通常将诱发在透镜被暴露部分的范围内调整折射度的组合物的进一步聚合。步骤(b)和(c)可以被多次重复,直到眼内透镜(或者光学元件)达到预期的透镜特征为止。在这个时刻,该方法可以进一步包括使整个透镜暴露在刺激之下的步骤,以便将预期的透镜性质锁定。
在另一个透镜性质需要修改的实施方案中,实现本发明的IOL的方法包括:
(a)使透镜的第一部分暴露在刺激之下,借此该刺激诱发调整折射度的组合物的聚合;以及
(b)使透镜的第二部分暴露在刺激之下。透镜的第一部分和透镜的第二部分代表透镜的不同区域,尽管它们可以重叠。该方法可以非必选地包括在暴露透镜的第一部分和第二部分之间留有时间间隔。此外,该方法可以进一步包括使透镜的第一部分和/或第二部分多次暴露在刺激之下(两次暴露之间有或没有时间间隔),或者可以进一步包括使透镜的追加部分暴露在刺激之下(例如,透镜的第三部分、透镜的第四部分等等。)。如果预期的性质已经达到,那么该方法可以进一步包括使整个透镜暴露在刺激之下的步骤,以便将预期的透镜性质锁定。
一般地说,一个或多个暴露部分的位置将根据被矫正的折射度误差的类型变化。例如,在一个实施方案中,IOL的暴露部分是作为透镜的中心区的光学区域(例如,直径在大约4mm和大约5mm之间。)。作为替代,透镜的一个或多个暴露部分可以沿着IOL外部边缘或特定的子午线。在优选的实施方案中,刺激是光。在更优选的实施方案中,光来自激光源。
总之,本发明涉及一种新颖的光学元件,该光学元件包括(i)第一聚合物基体和(ii)分散在其中并且能够被刺激诱发聚合的调整折射度的组合物。当至少一部分光学元件暴露在适当的刺激之下时,调整折射〔度〕的组合物形成第二聚合物基体。第二聚合物基体的数量和位置将通过改变其折射率和/或改变其形状来改善光学元件的性质,例如光学能力。
                    实施例1
包括用表1说明的各种数量的(a)用二乙酰氧基甲基硅烷封端的聚二甲基硅氧烷(“PDMS”)(36000克/摩尔);(b)用乙烯基二甲基硅烷封端的二甲基硅氧烷与二苯基硅氧烷的共聚物(“DMDPS”)(15,500克/摩尔)和(c)UV-光引发剂,2,2-二甲氧基-2-苯基苯乙酮(“DMPA”)的材料被制作出来并且进行试验。PDMS是形成第一聚合物基体的单体,而DMDPS和DMPA一起组成调整折射度的组合物。
                      表1
 PDMS(wt%) DMDPS(wt%) DMPA(wt%)a
 1  90  10  1.5
 2  80  20  1.5
 3  75  25  1.5
 4  70  30  1.5
a相对DMDPS的wt%
简单地说,将适量的PMDS(Gelest DMS-D33;36000克/摩尔)、DMDPS(Gelest PDV-0325;3.0-3.5摩尔%二苯基,15,500克/摩尔)和DMPA(Acros;相对DMDPS为1.5wt%)在铝盘中一起称重,在室温下手工混合到DMPA被溶解,然后在压力下(5毫托)脱气2-4分钟以便除去气泡。光敏棱镜是通过把最终产生的有机硅组合物倒入模具制作的,其中所述模具是这样制作的,即用透明胶带把三块玻璃片按棱镜的形状固定在一起并且在一端用有机硅腻子封堵。棱镜大约5cm长,而三个侧面的尺寸每个都是大约8mm。棱镜中的PDMS被潮气固化并且在室温下在黑暗中储存7天,以保证最终获得的第一聚合物基体是不发粘而且清澈透明。
光引发剂的量(1.5wt%)是根据早期实验确定的,在该早期实验中把RMC单体含量固定在25%,改变光引发剂的含量。最大的折射率调整是在组合物包含1.5%的和2wt%的光引发剂时观察到的,而折射率的饱和发生在5wt%。
                    实施例2合成RMC单体
正象用流程1图解说明的那样,在一釜合成中各种比率的市售的环状二甲基硅氧烷四聚体(“D4”)、环状甲基苯基硅氧烷三聚体(“D3’”)借助三氟甲基磺酸开环并且与双异丁酰氧丙基四甲基二硅氧烷(“MPS”)反应。美国专利第4,260,725号;Kunzler,J.F.,Trends in PolymerScience,4:52-59(1996);Kunzler等人,J.Appl.Poly.Sci.,55:611-619(1995);以及Lai等人,J.Poly.Sci.A.Poly.Chem.,33:1773-1782(1995)。
                    流程1
Figure A9981630000181
                      RMC单体
简单地说,将适量的MPS、D4和D3’在管形瓶中搅拌1.5-2小时。添加适量的三氟甲基磺酸,并且将最终获得的混合物在室温下再搅拌20小时。该反应混合物用己烷稀释,通过添加碳酸氢钠中和酸,并且通过添加无水硫酸钠干燥。过滤和回转蒸发(rotovaporation)掉己烷之后,RMC单体进一步通过活性炭柱过滤得以纯化。RMC单体在70-80℃之间在5毫托的压力下被干燥12-18小时。
苯基、甲基和端基结合的数量是依据1H-NMR谱计算出来的,其中1H-NMR谱是用氘化的氯仿而不是用内部标准四甲基硅烷(“TMS”)获得的。就某些合成的RMC单体而言作为例证的化学位移实例如下。包含5.58摩尔%苯基的1000克/摩尔RMC单体(它是通过使4.85克(12.5毫摩尔)MPS、1.68g(4.1毫摩尔)D3’、5.98g(20.2毫摩尔)D4和108微升(1.21毫摩尔)三氟甲基磺酸发生反应制成的):δ=7.56-7.57ppm(m,2H)芳基;δ=7.32-7.33ppm(m,3H)芳基;δ=6.09ppm(d,2H)烯键;δ=5.53ppm(d,2H)烯键;δ=4.07-4.10ppm(t,4H)-O-CH2CH2CH2-;δ=1.93ppm(s,6H)异丁烯酸基的甲基;δ=1.65-1.71ppm(m,4H),-O-CH2CH2CH2-;δ=0.54-0.58ppm(m,4H)O-CH2CH2CH2-Si;δ=0.29-0.30ppm(d,3H),CH3-Si-C6H5;δ=0.04-0.08ppm(s,50H)主链中的(CH3)2Si。
包含5.26摩尔%苯基的2000克/摩尔的RMC单体(它是通过使2.32克(6.0毫摩尔)的MPS、1.94克(4.7毫摩尔)的D3’、7.74克(26.1毫摩尔)的D4和136微升(1.54毫摩尔)的三氟甲基磺酸发生反应制成的):δ=7.54-7.58ppm(m,4H),芳基;δ=7.32-7.34ppm(m,6H),芳基;δ=6.09ppm(d,2H),烯键;δ=5.53ppm(d,2H),烯键;δ=4.08-4.11ppm(t,4H),-O-CH2CH2CH2-;δ=1.94ppm(s,6H),异丁烯酸基中的甲基;δ=1.67-1.71ppm(m,4H),-O-CH2CH2CH2-;δ=0.54-0.59ppm(m,4H),-O-CH2CH2CH2-Si;δ=0.29-0.31ppm(d,6H),CH3-Si-C6H5;δ=0.04-0.09ppm(s,112H),主链中的(CH3)2Si。
包含4.16摩尔%苯基的4000克/摩尔的RMC单体(它是通过使1.06克(2.74毫摩尔)的MPS、1.67克(4.1毫摩尔)的D3’、9.28克(31.3毫摩尔)的D4和157微升(1.77毫摩尔)的三氟甲基磺酸发生反应制成的):δ=7.57-7.60ppm(m,8H),芳基;δ=7.32-7.34ppm(m,12H),芳基;δ=6.10ppm(d,2H),烯键;δ=5.54ppm(d,2H),烯键;δ=4.08-4.12ppm(t,4H),-O-CH2CH2CH2-;δ=1.94ppm(s,6H),异丁烯酸基中的甲基;δ=1.65-1.74ppm(m,4H),-O-CH2CH2CH2-;δ=0.55-0.59ppm(m,4H),-O-CH2CH2CH2-Si;δ=0.31ppm(m,11H),CH3-Si-C6H5;δ=0.07-0.09ppm(s,272H),主链中的(CH3)2Si。
类似地,为了合成用异丁酰氧丙基二甲基硅烷封端而且没有任何甲基苯基硅氧烷单元的二甲基硅氧烷聚合物,在不与D3’结合的情况下改变D4对MPS的比率。
分子量是借助1H-NMR和凝胶渗透色谱(“GPC”)计算出来的。绝对的分子量是利用聚苯乙烯和聚异丁烯酸甲酯作为标准物借助普适校正法得到的。表2列出借助三氟甲基磺酸开环聚合合成的其它RMC单体的特征。
                                    表2
   苯基摩尔%    甲基摩尔%  异丁烯酸基摩尔%    Mn(NMR)   Mn(GPC)     nD
 A    6.17    87.5     6.32   1001   946  1.44061
 B    3.04    90.8     6.16    985    716  1.43188
 C    5.26    92.1     2.62   1906   1880      …
 D    4.16    94.8     1.06   4054   4200   1.42427
 E     0   94.17     5.83   987   1020  1.42272
 F     0   98.88     1.12   3661   4300  1.40843
在10-40wt%下,分子量为1000~4000克/摩尔且苯基含量为36.2摩尔%的RMC单体在与聚硅氧烷基体结合时是完全混溶的、生物相容的并且形成光学透明的棱镜和透镜。高苯基含量(4-6摩尔%)和低分子量(1000-4000克/摩尔)的RMC单体导致与表1所用的RMC单体(用乙烯基二甲基硅烷封端的二甲基硅氧烷二苯基硅氧烷的共聚物(“DMDPS”)(3-3.5摩尔%二苯基含量,15500克/摩尔))相比折射率变化增加2.5倍和扩散速度增加3.5~5.0倍。这些用于制作光学元件的RMC单体包括:(a)二乙酰氧基甲基硅烷封端的聚二甲基硅氧烷(PDMS,36000克/摩尔)、(b)用异丁酰氧丙基二甲基硅烷封端的二甲基硅氧烷与甲基苯基硅氧烷的共聚物和(c)2,2-二甲氧基-2-苯基苯乙酮(“DMPA”)。请注意,成分(a)是形成第一聚合物基体的单体,而成分(b)和(c)组成调整折射度的组合物。
                    实施例3
制作眼内透镜(“IOL”)
眼内透镜的模具是按照公认的标准完成设计的。例如,参阅美国专利第5,762,836;5,141,678和5,213,825号。简单地说,模具是围绕着分别拥有6.46mm和/或-12.92mm的曲率半径的两个平凹表面构成的。由此产生的透镜具有6.35mm的直径和在0.64mm、0.98mm或1.32mm之间变动的厚度(取决于所用的凹透镜表面的组合)。利用两种不同的曲率半径、按它们的三种可能的组合并且假设IOL组合物的标称折射率为1.404,制作出照射前光学能力分别为10.51D(空气中62.09D)、15.75D(空气中92.44)和20.95D(空气中121.46D)的透镜。
                    实施例4组合物的耐浸提稳定性
在30wt%和10wt%的RMC单体B和D与60wt%的PDMS基体结合的情况下制成三个IOL。在PDMS被潮气固化形成第一聚合物基体之后,象下面介绍的那样分析存在于水溶液中的任何游离的RMC单体。三个透镜中的两个透镜利用340nm的光线照射3次,持续时间2分钟,而第三个透镜全然不被照射。然后,被照射的透镜之一通过使整个透镜基体暴露在辐照之下而被锁定。三个透镜全部放在1.0M的NaCI溶液中被机械摇动3天。然后,用己烷萃取NaCI溶液并且用1H-NMR进行分析。在NMR谱中没有观察到由RMC单体造成的峰。这些结果意味着在三种情况下RMC单体都没有被从基体浸提到水相中。早期对乙烯基封端的有机硅RMC单体的研究表明即使在1.0M的NaCI溶液中储存1年以上仍然是类似的结果。
                      实施例5用兔子眼睛进行的毒理学研究
经过灭菌消毒、未经照射和经过照射的本发明的有机硅IOL(象实施例3所描述的那样制作的)和经过灭菌消毒的市售的有机硅IOL都被植入患白化病的兔子眼睛。临床跟踪这些眼睛一星期之后,将兔子杀掉。把被提取的眼睛剜出来,置于福尔马林中,并且进行病理组织学研究。没有角膜毒性的证据、前室部分炎症或透镜毒性的其它迹象。
                      实施例6照射有机硅棱镜
由于容易测定棱镜的折射率变化(n)和百分比净折射率的变化(%n),所以本发明的配方被模塑成棱镜,以便于照射和描绘其特征。棱镜是这样制作的,即把(a)90-60wt%的高Mn的PDMS、(b)10-40wt%的表2列出的RMC单体和(c)0.75wt%(相对于RMC单体)的光引发剂DMPA混合起来,然后倒入呈5cm长,每个侧面8.0mm宽的棱镜形玻璃模具。棱镜中的有机硅组合物是被潮气固化,并且在室温下在黑暗中储存7天,以保证最终的基体不发粘而且是清澈透明的。
每个棱镜上两个长侧面被黑色背景覆盖,而第三个长侧面用铝板制成的带矩形窗(2.5mm×10mm)的光掩膜覆盖。每个棱镜都在光通量为1.2mW/cm2的来自1000W Xe:Hg弧光灯的340nm(光引发剂的吸收峰)准直光束中曝光不同的时间周期。ANSI准则指出把340nm的光束用于10-30000秒的曝光在视网膜处可允许的最大曝光量(“MPE”)是1000mJ/cm2。Criteria for Exposure of Eye and Skin(用于眼睛和皮肤的曝光准则),美国国家标准Z136,1:31-42(1993)。持续时间2分钟的340nm的光线的单一剂量强度1.2mW/cm2相当于ANSI准则范围内的144mJ/cm2。实际上,甚至3次曝光的总曝光量(432mJ/cm2)也在ANSI准则范围内。图2是棱镜照射过程的图解说明。
棱镜经历两种曝光(i)一次持续时间已知的连续辐照曝光和(ii)有长时间间隔的“断断续续的”三次比较短暂的辐照曝光。在连续辐照期间,折射率的反差取决于交联密度和苯基的摩尔百分比(摩尔%),另一方面,RMC单体在中断照射时的扩散和进一步交联也起重要作用。在断断续续的照射期间,RMC单体的聚合取决于每次曝光期间的增长速率和在曝光之间的间隔期间游离RMC单体的相互扩散的程度。有机硅基体中的低聚物(类似于实践本发明时使用的1000克/摩尔的RMC单体)的扩散系数的典型数值在10-6到10-7cm2/s的数量级上。换言之,本发明的RMC单体要扩散1mm(大约为辐照宽度的一半)需要大约2.8至28小时。在IOL中典型的光学区域距离为大约4mm至大约5mm宽。但是,光学区域的距离也可能超出这个范围。在适当的曝光之后,棱镜在没有光掩膜(因此暴露整个基体)的情况下被中等压力的水银弧光灯照射6分钟。这使剩余的有机硅RMC单体聚合并借此将棱镜的折射率就地“锁定”。值得注意的是局部曝光和“锁定”曝光合并的总辐照量仍然在ANSI准则范围内。
                      实施例7棱镜的剂量响应曲线
由表2描述的RMC单体制成的本发明的棱镜被掩膜遮蔽并且最初在来自1000瓦的Xe:Hg弧光灯的1.2mW/cm2的340nm光线中曝光0.5、1、2、5和10分钟。棱镜的曝光区域被掩膜遮蔽,拆除掩膜并且测量折射率的变化。棱镜的折射率调整是通过观察穿过棱镜的激光光束的偏斜进行测量的。在分别穿过曝光区域和未曝光区域时光束偏斜的差异被用来定量测定折射率的变化(n)和折射率的变化百分比(%n)。3小时之后,棱镜再次被掩膜遮蔽(其中窗口与前一次的曝光区域重叠)并且被第二次照射0.5、1、2和5分钟(这样,总时间分别等于1、2、4和10分钟)。拆除掩膜并且测量折射率的变化。在另一个3小时之后,这些棱镜被第三次曝光0.5、1和2分钟(这样,总时间等于1.5、3和6分钟),并且再次测量折射率的变化。正象预期的那样,每次曝光之后每个棱镜的%n都随着曝光次数增加而增加,从而导致原始的剂量响应曲线。根据这些结果,适当的RMC单体扩散就1000克/摩尔的RMC单体而言似乎发生在大约3小时中。
除了RMC单体A之外,所有的RMC单体(B-F)都在它们各自曝光之前和之后导致光学上清澈透明的棱镜。例如,就以40wt%的RMC单体B、C和D并入60wt%的FPMC的配方而言,最大的%n分别为0.52%、0.63%和0.30%,它们对应于6分钟的总曝光量(三次2分钟曝光,每次曝光之间的时间间隔对于RMC单体B为3小时,而对于RMC单体C和D则为3天)。尽管用RMC单体A制成的棱镜(也是将40wt%的RMC单体并入60wt%的FPMC,而且也是6分钟的总曝光量,三次2分钟的曝光,每次相隔3小时)产生最大的折射率变化(0.95%),但是它多少有一些霾雾。因此,如果RMC单体A被用来制作IOL,那么RMC必须包括不足40wt%的RMC单体A,或者%n必须保持在某个水平以下,以避免牺牲材料的光学透明度。
对棱镜中的RMC A和C进行连续照射和断断续续照射的比较结果表明棱镜暴露在连续照射之中时所发生的与采用断断续续照射所观察到的相比前者的%n值比较低。正象这些结果所表明的那样,两次曝光之间的时间间隔(它与RMC从曝光区域向未曝光区域扩散的数量有关)可以被用来精确地调整由本发明的聚合物组合物制成的任何材料的折射率。
把经过照射的棱镜整个暴露在中等压力的Hg弧光灯之下将使剩余的游离RMC全部聚合,从而有效地把折射率的反差锁定。光锁定之前和之后折射率变化的测量结果表明在折射率方面没有进一步的调整。
                    实施例8IOL的光学特征
Talbot干涉测量学和Ronchi试验被用来定性地和定量地测定在被照射前和被照射后的透镜中存在的任何主要的光学像差(主要的球面像差、彗形差、像散、场曲差和变形),以及量化光致聚合时光学能力方面的变化。
在Talbot干涉测量学中,试验IOL被定位在两个Ronchi刻度之间,第二格栅被置于IOL的焦点之外并且相对第一格栅按已知的角度θ旋转。第一Ronchi刻度(p1=300线/英寸)的自身图像(autoimage)叠加到第二格栅(P2=150线/英寸)上产生按角度α1倾斜的莫尔干涉条纹图。第二莫尔干涉条纹图是这样构成的,即第二Ronchi刻度沿着光学轴线从试验透镜轴向位移某个已知的距离d。第二格栅的位移允许第一Ronchi刻度的自身图像增加放大倍数,从而引起被观察的莫尔干涉条纹图旋转到新角度α2。有关莫尔倾斜角的知识允许通过下面的表达式确定透镜的焦距(或者反过来确定其光学能力): f = p 1 p 2 d ( 1 tan α 2 sin θ + cos θ - 1 tan α 1 sin θ + cos θ ) - 1
为了图解说明Talbot干涉测量学在这项工作中的实用性,用图3给出本发明的IOL(60wt%的PDMS、30wt%的RMC单体B、10wt%的RMC单体D和相对两种RMC单体为0.75%的DMPA)之一被照射前在空气中实测的莫尔干涉条纹图。每个莫尔干涉条纹图都用为处理莫尔图专门设计的最小二乘拟合算法进行拟合。两个Ronchi刻度之间的角度被设定为12°,在第一和第二莫尔干涉条纹图之间第二Ronchi刻度的位移是4.92mm,而相对由仪器的光学轴线定义的并且以90°与两个Ronchi刻度交叉的直角坐标系实测的莫尔干涉条纹图的倾斜角是α1=-33.2±0.30,而α2=-52.7±0.40。把这些数值代入上述公式得出焦距为10.71±0.50mm(光学能力=93.77±4.6D)。
本发明的IOL的光学像差(来自加工过程或者来自RMC成分的刺激诱发聚合)是利用“Ronchi试验”监视的,该试验涉及从Talbot干涉测量仪上拆除第二Ronchi刻度并且在通过试验IOL的通道后面观察第一Ronchi刻度被放大的自身图像。在成像平面观察时试验透镜的像差通过(Ronchi刻度所产生的)干涉条纹系统的几何变形来表现它们。有关变形图像的知识揭示透镜的像差。一般地说,本发明制成的透镜(照射前和照射后两种处理)呈现清晰、平行、有周期性间隔的干涉条纹图,从而表明不存在大多数初级光学像差、高光学表面质量、本体中n的均质性和恒定的透镜光学能力。图4是本发明的IOL被照射前的Ronchi图的示范实例,其中IOL是由60wt%的PDMS、30wt%的RMC单体B、10wt%的RMC单体D和相对两种RMC单体为0.75%的DMPA制成的。
单一的Ronchi刻度的运用也可以被用来测定折射波前的会聚程度(即光学能力)。在这种测量中,试验IOL被置于与第一Ronchi刻度接触的位置,准直光线射入Ronchi刻度上,而透镜和放大的自身图像被投影到观察屏幕上。自身图像的放大通过测定投影的干涉条纹图的空间的频率使测量折射波前的曲率成为可能。这些陈述是用下式量化的: P v = 1000 L ( 1 + d s d )
其中Pv是用屈光度表达的透镜的光学能力,L是从透镜到观察平面的距离,ds是第一Ronchi刻度被放大的干涉条纹间隔,而d是初始格栅间隔。
                       实施例9来自本发明的IOL的光致聚合的光学能力变化
本发明的IOL是象实施例3介绍的那样制成的,包括60wt%的PDMS(nD=1.404)、30wt%的RMC单体B(nD=1.4319)、10wt%的RMC单体D(nD=1.4243)和相对两种RMC单体的重量百分比为0.75wt%的光引发剂DMPA。该IOL被装上1mm直径的光掩膜并且在来自1000瓦的Xe:Hg弧光灯的1.2mW/cm2的340nm准直光束下曝光2分钟。然后,经照射的透镜在黑暗中放置3小时,以允许聚合和RMC单体扩散。再利用前面提到的光照条件通过连续的整体曝光6分钟使IOL光致锁定。将莫尔倾斜角的测定结果代入式1得出对于未被照射和经过照射的区域光学能力分别为95.1±29D(f=10.52±0.32mm)和104.1±3.6D(f=9.61mm±0.32mm)。
光学能力增加的幅度比依据棱镜实验预测的增加幅度更大,折射率的增加经常达到0.6%。如果类似的折射率增加在IOL中得以实现,那么预期的折射率变化将是1.4144至1.4229。在计算透镜光学能力(空气中)时利用新的折射率(1.4229)并且假定透镜的尺寸在光致聚合时不改变,那么将计算出透镜光学能力是96.71D(f=10.34mm)。由于这个数值小于观测到的104.1±3.6D,所以额外增加的光学能力一定是来自另一种机理。
对光致聚合的IOL的进一步研究表明继最初的辐射曝光之后发生的RMC单体扩散导致改变透镜的曲率半径。例如,见图5。RMC单体从未被照射的区域迁移到被照射的区域将引起透镜的前表面和后表面之一或两者膨胀,从而改变了透镜的曲率半径。业已确定就两个表面而言曲率半径减少7%就足以解释观察到的透镜光学能力的增加。
伴生的曲率半径变化得到进一步的研究。制作了与前面的介绍完全一样的IOL。IOL的Ronchi干涉图是用图6a(左边的干涉图)被表示。利用Talbot干涉测量仪,通过实验测定出透镜的焦距是10.52±0.30mm(95.1D±2.8D)。然后,IOL被装上1mm的光掩膜,并且用来自1000瓦的Xe:Hg弧光灯的1.2mW/cm2的340nm准直光束连续照射2.5分钟。不同于以前的IOL,这个透镜在照射之后3小时不被“锁定”。图6b(右边的干涉图)是照射之后6天获得的透镜的Ronchi干涉图。在两张干涉图之间最明显的特点是干涉条纹间隔发生明显的增大,这表明透镜的折射能力增加。
干涉条纹间隔的测量结果表明在空气中屈光度增加大约+38(f≈7.5mm)。这相当于眼睛的屈光度变化在大约+8.6的数量级上。由于白内障外科手术后大多数矫正在2屈光度范围内,所以这个实验表明使用本发明的IOL将允许比较大的治疗窗口。
                       实施例10不含苯基的IOL的光致聚合研究
制作包含不含苯基的RMC单体的本发明的IOL为的是进一步研究来自形成第二聚合物基体形成的表面膨胀。这样的IOL的作为例证的实例是由60wt%的PDMS、30wt%的RMC单体E、10wt%的RMC单体F和和相对两种RMC单体为0.75%的DMPA制成的。由此产生的IOL照射前的焦距是10.76mm(92.94±2.21D)。
在这个实验中,光源是来自He:Cd激光器的325nm的激光。1mm直径光掩膜被放到透镜上并且在0.75mW/cm2的准直光通量(325nm)中曝光2分钟。然后,将透镜在黑暗中放置3小时。实验测量结果表明在空气中IOL的焦距从10.76mm±0.25mm(92.94D±2.21D)变成8.07mm±0.74mm(123.92D±10.59D)或屈光度变化为+30.98D±10.82D。这相当于眼睛发生大约+6.68D的变化。诱发这些变化所需要的照射量只有0.09J/cm2,这个值远远低于ANSI容许的最大曝光量(“MPE”)的水平1.0J/cm2
                      实施例11监视来自环境光线的IOL潜在变化
本发明的IOL的光学能力和质量受到监视,以表明处理和环境光线条件在透镜光学能力方面不产生任何的不想要的变化。1mm孔径的光掩膜被置于本发明的IOL(包含60wt%的PDMS、30wt%的RMC单体E、10wt%的RMC单体F和相对两种RMC单体为0.75wt%的DMPA)的中心区之上,在室内光线之中连续曝光96小时,并且每隔24小时监测一次Ronchi图的空间频率以及莫尔干涉条纹的角度。采用莫尔干涉条纹图的方法,从透镜模具中取出后立即在空气中测定的透镜焦距是10.87±0.23mm(92.00D±1.98D),而在室内环境光线中暴露96小时之后是10.74mm±0.25mm(93.11D±2.22D)。因此,在测量的实验不确定度范围内,表明环境光线在光学能力方面不诱发任何不想要的变化。由此获得的Ronchi图的比较结果表明干涉图的空间频率或质量没有变化,从而证实了暴露在室内光线下不影响本发明的IOLs的光学能力或质量。
                      实施例12经照射的IOL的锁定过程的效果
为了看一看锁定过程是否导致透镜光学能力的进一步调整,对光学能力已通过照射得到调整的本发明的IOL进行试验。由60wt%的PDMS、30wt%的RMC单体E、10wt%的RMC单体F和相对两种RMC单体为0.75%的DMPA制成的IOL被来自He:Cd激光器的0.75mW/cm2的325nm激光照射2分钟并且在中等压力的Hg弧光灯下暴露8分钟。锁定过程之前和之后的Talbot图像的比较结果表明透镜光学能力保持不变。干涉条纹鲜明的反差表明本发明的透镜的光学质量也仍然未受影响。
为了确定锁定过程是否完成,IOL被再次装上1mm直径的光掩膜,并且在0.75mW/cm2的325nm激光束中第二次曝光2分钟。象以前一样,在干涉条纹间隔或透镜的光学质量方面没有观察到可观测的变化。
                      实施例13监视来自锁定的潜在的IOL变化
一种凭借它植入的IOL不需要在手术后调整光学能力的状态可能出现,在这种情况下,IOL必须被这样锁定,以致其特征将不再被改变。为了确定锁定过程是否在以前未被照射的IOL的折射能力方面诱发不希望的变化,本发明的IOL(包含60wt%的PDMS、30wt%的RMC单体E、10wt%的RMC单体F和相对两种RMC单体为0.75wt%的DMPA)被来自He:Cd激光器的0.75mW/cm2的325nm激光束照射三次2分钟,每次照射的间隔为3小时,而且次次都照在它的全部面积上。Ronchi图和莫尔干涉条纹图是在每次后续照射之前和之后获取的。从透镜模具中取出之后和第三次2分钟照射之后立即获取的本发明的IOL在空气中的莫尔干涉条纹图表明焦距分别为10.50mm±0.39mm(95.24D±3.69D)和10.12mm±0.39mm(93.28D±3.53D)。这些测量结果表明使以前未曝光的透镜光致锁定就光学能力而言不诱发不想要的变化。此外,在Ronchi干涉条纹图的干涉条纹间隔或质量中没有检测到可辨别的变化,从而表明折射能力没有因锁定引起的变化。

Claims (34)

1.  一种光学元件,其中包括:
第一聚合物基体,以及
分散在其中调整折射度的组合物,其中调整折射度的组合物能够被
刺激诱发聚合。
2.  根据权利要求1的光学元件,其中调整折射度的组合物能够通过光
诱发聚合。
3.  根据权利要求1的光学元件,其中光学元件是棱镜。
4.  根据权利要求1的光学元件,其中光学元件是透镜。
5.  一种透镜,其中包括:
第一聚合物基体,以及
分散在其中调整折射度的组合物,其中调整折射度的组合物能够光
致聚合。
6.  根据权利要求5的透镜,其中第一聚合物基体选自丙烯酸酯类聚合
物、异丁烯酸酯类聚合物、乙烯基类聚合物、硅氧烷类聚合物和
磷腈类聚合物。
7.  根据权利要求5的透镜,其中调整折射度的组合物包括选自丙烯酸
酯、异丁烯酸酯、乙烯基类、硅氧烷和磷腈的组分。
8.  根据权利要求5的透镜,其中调整折射度的组合物包括式X-Y-X1
所示的单体和光引发剂,其中Y是:
而X1是:
Figure A9981630000031
其中:m和n每个都是独立的整数;R1、R2、R3、R4、R5和R6每个
都是独立地选自氢、烷基、芳基和杂芳基的基团;Z是可光致聚合
的基团。
9.  根据权利要求6的透镜,其中第一聚合物基体包括聚硅氧烷。
10. 根据权利要求6的透镜,其中第一聚合物基体包括聚丙烯酸酯。
11. 根据权利要求8的透镜,其中R1、R2、R3、R4、R5和R6各自独立地
是C1-C10烷基或苯基,Z包括选自丙烯酸基,烯丙氧基,肉桂酰基,
异丁烯酸基,肉桂酰基,乙酰锑铵和乙烯基的基团。
12. 根据权利要求11的透镜,其中R1、R2、R3、R5和R6选自甲基、乙
基和丙基,而R4是苯基。
13. 根据权利要求11的透镜,其中单体是(i)用乙烯基二甲基硅烷基
封端的二甲基硅氧烷-二苯基硅氧烷共聚物,用异丁烯酰氧基丙基
二甲基硅烷基封端的二甲基硅氧烷-甲基苯基硅氧烷共聚物,或者
(iii)用异丁烯酰氧基丙基二甲基硅烷基封端的二甲基硅氧烷,
而光引发剂是2,2-二甲氧基-2-苯基苯乙酮。
14. 一种眼内透镜,其中包括:
聚硅氧烷基体和分散在其中的调整折射度的组合物,其中调整折
射度的组合物能够光致聚合。
15. 根据权利要求14的眼内透镜,其中聚硅氧烷基体是用二乙酰氧基
甲基硅烷基封端的聚二甲基硅氧烷。
16. 根据权利要求14的眼内透镜,其中调整折射度的组合物包括:
用乙烯基二甲基硅烷基封端的二甲基硅氧烷-二苯基硅氧烷共聚
物,用异丁烯酰氧基丙基二甲基硅烷基封端的二甲基硅氧烷-甲基
苯基硅氧烷共聚物或者用异丁烯酰氧基丙基二甲基硅烷基封端的
二甲基硅氧烷;以及
2,2-二甲氧基-2-苯基苯乙酮。
17. 一种实施具有分散在其中的调整折射度的组合物的光学元件的方
法,该方法包括:
(a)使至少一部分光学元件暴露在刺激之下,借此刺激诱发调
   整折射度的组合物聚合。
18. 根据权利要求17的方法,其中光学元件是棱镜或透镜。
19. 根据权利要求17的方法,其中暴露部分代表整个光学元件。
20. 根据权利要求17的方法,进一步包括:
(b)等待某个时间间隔;以及
(c)使那部分光学元件再次暴露在刺激之下,以便诱发所述部
   分内调整折射度的组合物进一步聚合。
21. 根据权利要求20的方法,进一步包括重复步骤(b)和(c)。
22. 根据权利要求20的方法,进一步包括使整个光学元件暴露在刺激
之下。
23. 一种实施眼内透镜的方法,其中所述眼内透镜具有分散在其中的
调整折射度的组合物并且已被植入眼内,该方法包括:
(a)使至少一部分透镜暴露在光源之下,借此光源诱发调整折
   射度的组合物聚合。
24. 根据权利要求23的方法,其中暴露部分代表整个眼内透镜。
25. 根据权利要求23的方法,进一步包括:
(b)等待某个时间间隔;以及
(c)使那部分透镜再次暴露在光源之下,以便诱发所述部分内
   调整折射度的组合物进一步聚合
26. 根据权利要求23的方法,进一步包括重复步骤(b)和(c)。
27. 根据权利要求23的方法,进一步包括使整个透镜暴露在光源之下。
28. 根据权利要求23的方法,其中暴露部分是透镜的光学区域。
29. 根据权利要求23的方法,其中暴露部分是透镜的外边缘。
30. 根据权利要求23的方法,其中暴露部分是沿着透镜的子午线。
31. 一种实施眼内透镜的方法,其中所述眼内透镜具有分散在其中的
调整折射度的组合物并且已被植入眼内,该方法包括:
(a)使透镜的第一部分暴露在光源之下,借此光源诱发调整折
   射度的组合物聚合;
(b)使透镜的第二部分暴露在光源之下。
32. 根据权利要求31的方法,进一步包括使透镜的第三部分暴露在光
源之下。
33. 根据权利要求31的方法,进一步包括使整个透镜暴露在光源之下。
34. 一种制造光学元件的方法,该方法包括:
将第一聚合物基体组合物与调整折射度的组合物混合,以便形成
反应混合物;
把反应混合物放进模具;
使第一聚合物基体组合物聚合,以便形成有调整折射度的组合物
分散在其中的第一聚合物基体;以及
从模具中取出所述的光学元件。
CNB998163007A 1999-01-12 1999-10-13 能够后期加工改善光学能力的透镜 Expired - Fee Related CN1306918C (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US11561799P 1999-01-12 1999-01-12
US60/115,617 1999-01-12
US13287199P 1999-05-05 1999-05-05
US60/132,871 1999-05-05
US14029899P 1999-06-17 1999-06-17
US60/140,298 1999-06-17
US09/416,044 1999-10-08
US09/416,044 US6450642B1 (en) 1999-01-12 1999-10-08 Lenses capable of post-fabrication power modification
PCT/US1999/023728 WO2000041650A1 (en) 1999-01-12 1999-10-13 Lenses capable of post-fabrication power modification

Publications (2)

Publication Number Publication Date
CN1346251A true CN1346251A (zh) 2002-04-24
CN1306918C CN1306918C (zh) 2007-03-28

Family

ID=27494026

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998163007A Expired - Fee Related CN1306918C (zh) 1999-01-12 1999-10-13 能够后期加工改善光学能力的透镜

Country Status (12)

Country Link
US (10) US6450642B1 (zh)
EP (1) EP1139921B1 (zh)
JP (2) JP2004500585A (zh)
CN (1) CN1306918C (zh)
AT (1) ATE355800T1 (zh)
AU (1) AU766157B2 (zh)
BR (1) BR9916895A (zh)
CA (1) CA2360583A1 (zh)
DE (1) DE69935449T2 (zh)
IL (1) IL144245A0 (zh)
MX (1) MXPA01007051A (zh)
WO (1) WO2000041650A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031411B (zh) * 2004-08-03 2012-01-11 卡尔豪恩视觉公司 可调节组合物的制备方法
CN103998490A (zh) * 2011-09-16 2014-08-20 卡尔霍恩影像公司 通过诱导靶向量的非球面性,使用光可调节的透镜(lal)增加聚焦深度
CN105105869A (zh) * 2009-03-04 2015-12-02 完美Ip有限公司 用于形成和修改晶状体的方法
TWI651550B (zh) * 2013-03-18 2019-02-21 挪威商波萊股份有限公司 透明光學裝置元件
US11135052B2 (en) 2011-09-16 2021-10-05 Rxsight, Inc. Method of adjusting a blended extended depth of focus light adjustable lens with laterally offset axes
US11191637B2 (en) 2011-09-16 2021-12-07 Rxsight, Inc. Blended extended depth of focus light adjustable lens with laterally offset axes

Families Citing this family (246)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7281795B2 (en) * 1999-01-12 2007-10-16 Calhoun Vision, Inc. Light adjustable multifocal lenses
US20050099597A1 (en) * 2002-12-24 2005-05-12 Calhoun Vision Light adjustable multifocal lenses
US6450642B1 (en) 1999-01-12 2002-09-17 California Institute Of Technology Lenses capable of post-fabrication power modification
US20030128336A1 (en) * 2001-12-28 2003-07-10 Jethmalani Jagdish M. Customized lenses
US20030151831A1 (en) * 2001-12-28 2003-08-14 Sandstedt Christian A. Light adjustable multifocal lenses
WO2000052516A2 (en) 1999-03-01 2000-09-08 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US20060238702A1 (en) 1999-04-30 2006-10-26 Advanced Medical Optics, Inc. Ophthalmic lens combinations
DE19932902A1 (de) 1999-07-12 2001-01-25 Beiersdorf Ag Datenspeicher
DE19935775A1 (de) * 1999-07-26 2001-02-08 Beiersdorf Ag Datenspeicher und Verfahren zum Schreiben von Information in einen Datenspeicher
DE10008328A1 (de) * 2000-02-23 2002-01-31 Tesa Ag Datenspeicher
EP1658829A1 (en) * 2000-03-20 2006-05-24 California Institute of Technology Application of wavefront sensor to lenses capable of post-fabrication power modification
EP1266256B1 (en) * 2000-03-20 2006-06-21 California Institute of Technology Application of wavefront sensor to lenses capable of post-fabrication power modification
US20070031473A1 (en) * 2005-08-05 2007-02-08 Peyman Gholam A Drug delivery system and method
US8162927B2 (en) * 2000-03-21 2012-04-24 Gholam A. Peyman Method and apparatus for accommodating intraocular lens
US20050113911A1 (en) * 2002-10-17 2005-05-26 Peyman Gholam A. Adjustable intraocular lens for insertion into the capsular bag
US6949093B1 (en) * 2000-03-21 2005-09-27 Minu, L.L.C. Adjustable universal implant blank for modifying corneal curvature and methods of modifying corneal curvature therewith
EP1281176A2 (en) * 2000-05-10 2003-02-05 California Institute Of Technology Phase contrast variation of a photo-induced refractive material
DE10028113A1 (de) * 2000-06-07 2001-12-20 Beiersdorf Ag Datenspeicher
US6626538B1 (en) * 2000-07-12 2003-09-30 Peter N. Arrowsmith Method for determining the power of an intraocular lens used for the treatment of myopia
DE10039372C2 (de) 2000-08-11 2003-05-15 Tesa Scribos Gmbh Holographischer Datenspeicher
DE10039374A1 (de) * 2000-08-11 2002-02-21 Eml Europ Media Lab Gmbh Holographischer Datenspeicher
DE10039370A1 (de) * 2000-08-11 2002-02-28 Eml Europ Media Lab Gmbh Holographischer Datenspeicher
US6905641B2 (en) * 2000-09-26 2005-06-14 Calhoun Vision, Inc. Delivery system for post-operative power adjustment of adjustable lens
AU2001294818B2 (en) * 2000-09-26 2006-08-17 Calhoun Vision, Inc. Power adjustment of adjustable lens
AU2002211728A1 (en) 2000-10-11 2002-04-22 Calhoun Vision, Inc Light adjustable aberration conjugator
US7293871B2 (en) 2000-11-27 2007-11-13 Ophthonix, Inc. Apparatus and method of correcting higher-order aberrations of the human eye
US6813082B2 (en) * 2000-11-27 2004-11-02 Ophthonix, Inc. Wavefront aberrator and method of manufacturing
DE10060235A1 (de) * 2000-12-05 2002-06-13 Tesa Ag Verwendung eines Packbands als holographischer Datenträger
US6884261B2 (en) 2001-01-25 2005-04-26 Visiogen, Inc. Method of preparing an intraocular lens for implantation
US20030078658A1 (en) 2001-01-25 2003-04-24 Gholam-Reza Zadno-Azizi Single-piece accomodating intraocular lens system
US6761737B2 (en) * 2001-01-25 2004-07-13 Visiogen, Inc. Translation member for intraocular lens system
US7780729B2 (en) 2004-04-16 2010-08-24 Visiogen, Inc. Intraocular lens
US20030078657A1 (en) 2001-01-25 2003-04-24 Gholam-Reza Zadno-Azizi Materials for use in accommodating intraocular lens system
US8062361B2 (en) 2001-01-25 2011-11-22 Visiogen, Inc. Accommodating intraocular lens system with aberration-enhanced performance
WO2002076338A2 (en) * 2001-03-21 2002-10-03 Calhoun Vision Composition and method for producing shapable implants in vivo and implants produced thereby
US20050182489A1 (en) * 2001-04-27 2005-08-18 Peyman Gholam A. Intraocular lens adapted for adjustment via laser after implantation
US7217375B2 (en) 2001-06-04 2007-05-15 Ophthonix, Inc. Apparatus and method of fabricating a compensating element for wavefront correction using spatially localized curing of resin mixtures
US7229475B2 (en) 2001-06-11 2007-06-12 Vision Solutions Technologies, Inc. Multi-focal intraocular lens, and methods for making and using same
US6855164B2 (en) * 2001-06-11 2005-02-15 Vision Solutions Technologies, Llc Multi-focal intraocular lens, and methods for making and using same
US20050119739A1 (en) * 2001-06-11 2005-06-02 Vision Solution Technologies, Llc Multi-focal intraocular lens, and methods for making and using same
JP2004528148A (ja) * 2001-06-13 2004-09-16 ザ ライオンズ アイ インスティチュート オブ ウェスターン オーストラリア インコーポレイテッド 改善された人工角膜移植物
DE10128902A1 (de) * 2001-06-15 2003-10-16 Tesa Scribos Gmbh Holographischer Datenspeicher
DE10128901A1 (de) * 2001-06-15 2002-12-19 Tesa Ag Verfahren zum Eingeben von Information in einen optisch beschreibbaren und auslesbaren Datenspeicher
US7044604B1 (en) 2001-07-11 2006-05-16 Arrowsmith Peter N Method for determining the power of an intraocular lens used for the treatment of myopia
WO2003011194A1 (en) * 2001-07-27 2003-02-13 California Institute Of Technology Intraoccular lenses with power adjustability in vivo
US20030060878A1 (en) 2001-08-31 2003-03-27 Shadduck John H. Intraocular lens system and method for power adjustment
US6682195B2 (en) 2001-10-25 2004-01-27 Ophthonix, Inc. Custom eyeglass manufacturing method
US7434931B2 (en) 2001-10-25 2008-10-14 Ophthonix Custom eyeglass manufacturing method
US6712466B2 (en) 2001-10-25 2004-03-30 Ophthonix, Inc. Eyeglass manufacturing method using variable index layer
US7241009B2 (en) * 2001-11-21 2007-07-10 Calhoun Vision, Inc. Crosslinking of silicones presence of functionalized silicones
US20030151825A1 (en) * 2001-12-28 2003-08-14 California Institute Of Technology Polyacrylate-based light adjustable optical element
US7237893B2 (en) * 2001-12-28 2007-07-03 Chang Shiao H Light adjustable lenses capable of post-fabrication power modification via multi-photon processes
JP4387195B2 (ja) 2002-01-10 2009-12-16 カール ツアイス メディテック アクチエンゲゼルシャフト 人間の眼の水晶体を照明するための装置および方法
US7763069B2 (en) 2002-01-14 2010-07-27 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US7115305B2 (en) 2002-02-01 2006-10-03 California Institute Of Technology Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials
US8048155B2 (en) 2002-02-02 2011-11-01 Powervision, Inc. Intraocular implant devices
US6836371B2 (en) 2002-07-11 2004-12-28 Ophthonix, Inc. Optical elements and methods for making thereof
US7420743B2 (en) 2002-07-11 2008-09-02 Ophthonix, Inc. Optical elements and methods for making thereof
US6966649B2 (en) * 2002-08-12 2005-11-22 John H Shadduck Adaptive optic lens system and method of use
US7662180B2 (en) 2002-12-05 2010-02-16 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US7637947B2 (en) 2002-12-12 2009-12-29 Powervision, Inc. Accommodating intraocular lens system having spherical aberration compensation and method
US8361145B2 (en) 2002-12-12 2013-01-29 Powervision, Inc. Accommodating intraocular lens system having circumferential haptic support and method
US10835373B2 (en) 2002-12-12 2020-11-17 Alcon Inc. Accommodating intraocular lenses and methods of use
US8328869B2 (en) * 2002-12-12 2012-12-11 Powervision, Inc. Accommodating intraocular lenses and methods of use
WO2004052242A1 (en) 2002-12-12 2004-06-24 Powervision Lens system for power adjustment using micropumps
JP4480585B2 (ja) * 2002-12-12 2010-06-16 パワービジョン, インコーポレイテッド 眼内レンズの調節および方法
US7217288B2 (en) 2002-12-12 2007-05-15 Powervision, Inc. Accommodating intraocular lens having peripherally actuated deflectable surface and method
US7615056B2 (en) 2003-02-14 2009-11-10 Visiogen, Inc. Method and device for compacting an intraocular lens
DE10307741A1 (de) 2003-02-24 2004-09-02 Carl Zeiss Meditec Ag Anordnung zur Bildfeldverbesserung bei ophthalmologischen Geräten
EP1599748A4 (en) 2003-03-06 2007-10-24 John H Shadduck ADAPTIVE OPTICAL LENS AND METHOD OF MANUFACTURE
DE10314944A1 (de) 2003-04-02 2004-10-14 Carl Zeiss Meditec Ag Beleuchtungs- und Bestrahlungseinheit für ophthalmologische Geräte
US7188950B2 (en) * 2003-11-14 2007-03-13 Ophthonix, Inc. Eyeglass dispensing method
EP1702232A1 (en) * 2003-11-14 2006-09-20 Ophthonix, Inc. System for manufacturing an optical lens
US20050131535A1 (en) 2003-12-15 2005-06-16 Randall Woods Intraocular lens implant having posterior bendable optic
JP3765425B2 (ja) * 2004-01-26 2006-04-12 日立工機株式会社 携帯用電動切断機
US7645300B2 (en) * 2004-02-02 2010-01-12 Visiogen, Inc. Injector for intraocular lens system
EA010687B1 (ru) * 2004-02-06 2008-10-30 Нимокс Корпорейшн Гуманизированное антитело
US20050234316A1 (en) * 2004-04-16 2005-10-20 Sensors For Medicine And Science, Inc. Housing for a circuit that is to be implanted in-vivo and process of making the same
IL161706A0 (en) 2004-04-29 2004-09-27 Nulens Ltd Intraocular lens fixation device
US9005282B2 (en) * 2004-04-30 2015-04-14 Calhoun Vision, Inc. Intraocular lens system with injectable accommodation material
US9713527B2 (en) * 2004-04-30 2017-07-25 Rxsight, Inc. Multilens intraocular lens system with injectable accommodation material
US20050246018A1 (en) * 2004-04-30 2005-11-03 Calhoun Vision, Inc. Injectable accommodation composition
JP2007536101A (ja) 2004-05-05 2007-12-13 カリフォルニア インスティテュート オブ テクノロジー ナノ繊維配列(array)のキャピラリーリソグラフィー
US20050260388A1 (en) * 2004-05-21 2005-11-24 Lai Shui T Apparatus and method of fabricating an ophthalmic lens for wavefront correction using spatially localized curing of photo-polymerization materials
DE602005018221D1 (de) * 2004-07-30 2010-01-21 Novartis Ag Verfahren zur herstellung ophthalmischer linsen mit modulierter energie
US20060043623A1 (en) * 2004-08-27 2006-03-02 Powell P M Masked precure of ophthalmic lenses: systems and methods thereof
US20060050228A1 (en) * 2004-09-07 2006-03-09 Lai Shui T Method for stabilizing refractive index profiles using polymer mixtures
US8000013B2 (en) 2004-09-07 2011-08-16 Ophthonix, Inc. Tinted lenses that correct for high order aberrations
US7371804B2 (en) * 2004-09-07 2008-05-13 Ophthonix, Inc. Monomers and polymers for optical elements
US9872763B2 (en) * 2004-10-22 2018-01-23 Powervision, Inc. Accommodating intraocular lenses
US8021967B2 (en) 2004-11-01 2011-09-20 California Institute Of Technology Nanoscale wicking methods and devices
US8377123B2 (en) 2004-11-10 2013-02-19 Visiogen, Inc. Method of implanting an intraocular lens
US8029515B2 (en) 2005-01-31 2011-10-04 Yichieh Shiuey Corneal implants and methods and systems for placement
US20060173539A1 (en) * 2005-01-31 2006-08-03 Yichieh Shiuey Corneal implants and methods and systems for placement
US9999497B2 (en) * 2005-01-31 2018-06-19 Yichieh Shiuey Corneal implants and methods and systems for placement
CA2601351A1 (en) 2005-03-30 2006-10-05 Nulens Ltd Accommodating intraocular lens (aiol) assemblies, and discrete components therfor
US7781100B2 (en) * 2005-05-10 2010-08-24 Advanced Lithium Electrochemistry Co., Ltd Cathode material for manufacturing rechargeable battery
BRPI0611968B8 (pt) * 2005-06-13 2021-07-27 Alcon Inc dispositivos oftálmicos e otorrinolaringológicos, seu material, e lente intraocular
US8579970B1 (en) 2005-06-27 2013-11-12 Visiogen, Inc. Magnifying intraocular lens
DE102005032041A1 (de) 2005-07-08 2007-01-18 Carl Zeiss Meditec Ag Vorrichtung und Verfahren zum Ändern einer optischen und/oder mechanischen Eigenschaft einer in ein Auge implantierten Linse
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
EP1933751A4 (en) 2005-10-13 2009-12-02 Shui T Lai INTRASTROMAL REFRACTIVE SURGERY BY INDUCTION OF SHAPE CHANGES IN THE HORN SKIN
US20070100443A1 (en) * 2005-10-27 2007-05-03 Peyman Gholam A Intraocular lens adapted for accommodation via electrical signals
US9681800B2 (en) 2005-10-27 2017-06-20 The Arizona Board Of Regents On Behalf Of The University Of Arizona Holographic adaptive see-through phoropter
US8657877B2 (en) * 2005-11-14 2014-02-25 Vision Solutions Technologies, Inc. Multi-focal prosthesis, and methods for making and using same
EP1966224A4 (en) * 2005-12-29 2012-03-21 Univ Akron PHOTOCURABLE POLYMERS FOR OPHTHALMOLOGICAL APPLICATIONS
US7726811B2 (en) * 2006-02-14 2010-06-01 Lai Shui T Subjective wavefront refraction using continuously adjustable wave plates of Zernike function
US7701641B2 (en) * 2006-03-20 2010-04-20 Ophthonix, Inc. Materials and methods for producing lenses
WO2007147152A2 (en) * 2006-06-15 2007-12-21 Lai Shui T High visual acuity contact lenses
US8071693B2 (en) * 2006-06-22 2011-12-06 Sabic Innovative Plastics Ip B.V. Polysiloxane/polyimide copolymers and blends thereof
US7789910B2 (en) 2006-06-28 2010-09-07 Bausch & Lomb Incorporated Optical material and method for modifying the refractive index
US20080001320A1 (en) 2006-06-28 2008-01-03 Knox Wayne H Optical Material and Method for Modifying the Refractive Index
TWI399228B (zh) * 2006-07-21 2013-06-21 Alcon Inc 低黏性的眼科與耳鼻喉科裝置材料(二)
WO2008014330A2 (en) * 2006-07-25 2008-01-31 Lai Shui T Method of making high precision optics having a wavefront profile
US20080027537A1 (en) * 2006-07-26 2008-01-31 Calhoun Vision, Inc. Method for improved retinal safety using the light adjustable lens (LAL)
US8622544B2 (en) * 2006-08-31 2014-01-07 Nike, Inc. Adjustable spectral transmittance curved lens eyewear
US7828434B2 (en) * 2006-08-31 2010-11-09 Nike, Inc. Zone switched sports training eyewear
US8708484B2 (en) 2006-08-31 2014-04-29 Nike, Inc. Adjustable spectral transmittance eyewear
WO2008036695A2 (en) * 2006-09-18 2008-03-27 Lai Shui T Customized contact lenses for reducing aberrations of the eye
US20080103592A1 (en) * 2006-10-30 2008-05-01 Calhoun Vision, Inc. Piggyback lenses
US8403984B2 (en) 2006-11-29 2013-03-26 Visiogen, Inc. Apparatus and methods for compacting an intraocular lens
AU2007338100B2 (en) 2006-12-22 2014-01-30 Amo Groningen Bv Accommodating intraocular lens, lens system and frame therefor
US20080161914A1 (en) 2006-12-29 2008-07-03 Advanced Medical Optics, Inc. Pre-stressed haptic for accommodating intraocular lens
CN101678149B (zh) 2007-02-21 2013-07-17 力景公司 适用于眼用装置的聚合材料及其制造方法
US20080236864A1 (en) * 2007-03-28 2008-10-02 General Electric Company Cross linked polysiloxane/polyimide copolymers, methods of making, blends thereof, and articles derived therefrom
EP2671541B1 (en) 2007-07-23 2019-04-17 PowerVision, Inc. Accommodating intraocular lenses
JP5752415B2 (ja) 2007-07-23 2015-07-22 パワーヴィジョン・インコーポレーテッド 移植後のレンズの屈折力の修正
CA2696450C (en) 2007-07-23 2016-02-16 Terah Whiting Smiley Lens delivery system
US8314927B2 (en) 2007-07-23 2012-11-20 Powervision, Inc. Systems and methods for testing intraocular lenses
US9610155B2 (en) 2008-07-23 2017-04-04 Powervision, Inc. Intraocular lens loading systems and methods of use
US8668734B2 (en) 2010-07-09 2014-03-11 Powervision, Inc. Intraocular lens delivery devices and methods of use
US8968396B2 (en) 2007-07-23 2015-03-03 Powervision, Inc. Intraocular lens delivery systems and methods of use
US20090118828A1 (en) * 2007-11-06 2009-05-07 Altmann Griffith E Light-adjustable multi-element ophthalmic lens
WO2009070438A1 (en) 2007-11-30 2009-06-04 Bausch & Lomb Incorporated Optical material and method for modifying the refractive index
US8425595B2 (en) 2008-03-12 2013-04-23 Visiogen, Inc. Method for inserting an intraocular lens
US8034108B2 (en) 2008-03-28 2011-10-11 Abbott Medical Optics Inc. Intraocular lens having a haptic that includes a cap
US10018853B2 (en) 2008-04-04 2018-07-10 Battelle Memorial Institute Methods of altering the refractive index of materials
US10254562B2 (en) * 2008-04-04 2019-04-09 Battelle Memorial Institute Methods for tailoring the refractive index of lenses
US9232993B2 (en) 2008-04-04 2016-01-12 Battelle Memorial Institute Adjustable intraocular lens
US9060847B2 (en) * 2008-05-19 2015-06-23 University Of Rochester Optical hydrogel material with photosensitizer and method for modifying the refractive index
US10299913B2 (en) 2009-01-09 2019-05-28 Powervision, Inc. Accommodating intraocular lenses and methods of use
US8222360B2 (en) 2009-02-13 2012-07-17 Visiogen, Inc. Copolymers for intraocular lens systems
US8292952B2 (en) 2009-03-04 2012-10-23 Aaren Scientific Inc. System for forming and modifying lenses and lenses formed thereby
US8646916B2 (en) 2009-03-04 2014-02-11 Perfect Ip, Llc System for characterizing a cornea and obtaining an opthalmic lens
EP2243622A3 (en) * 2009-04-22 2015-06-03 Canon Kabushiki Kaisha Method for producing optical part
AU2010266022B2 (en) 2009-06-26 2015-04-23 Johnson & Johnson Surgical Vision, Inc. Accommodating intraocular lenses
WO2011017322A1 (en) 2009-08-03 2011-02-10 Abbott Medical Optics Inc. Intraocular lens for providing accomodative vision
WO2011026068A2 (en) 2009-08-31 2011-03-03 Powervision, Inc. Lens capsule size estimation
PL2317511T3 (pl) 2009-11-03 2012-08-31 Bayer Materialscience Ag Formulacje fotopolimerowe z nastawialnym mechanicznym modułem Guv
US8900298B2 (en) 2010-02-23 2014-12-02 Powervision, Inc. Fluid for accommodating intraocular lenses
US8604098B2 (en) 2010-07-07 2013-12-10 California Institute Of Technology On-demand photoinitiated polymerization
EP3730093B1 (en) 2010-09-30 2022-12-21 KeraMed, Inc. Reversibly deformable artificial cornea
WO2012106673A1 (en) 2011-02-04 2012-08-09 Forsight Labs, Llc Intraocular accommodating lens
US9144491B2 (en) 2011-06-02 2015-09-29 University Of Rochester Method for modifying the refractive index of an optical material
WO2013011511A1 (en) 2011-07-18 2013-01-24 Mor Research Applications Ltd. A device for adjusting the intraocular pressure
US10433949B2 (en) 2011-11-08 2019-10-08 Powervision, Inc. Accommodating intraocular lenses
CA2857306C (en) 2011-12-02 2017-07-25 Acufocus, Inc. Ocular mask having selective spectral transmission
US8900300B1 (en) 2012-02-22 2014-12-02 Omega Ophthalmics Llc Prosthetic capsular bag and method of inserting the same
US9084674B2 (en) 2012-05-02 2015-07-21 Abbott Medical Optics Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US8798332B2 (en) 2012-05-15 2014-08-05 Google Inc. Contact lenses
US8857981B2 (en) 2012-07-26 2014-10-14 Google Inc. Facilitation of contact lenses with capacitive sensors
US9523865B2 (en) 2012-07-26 2016-12-20 Verily Life Sciences Llc Contact lenses with hybrid power sources
US9158133B1 (en) 2012-07-26 2015-10-13 Google Inc. Contact lens employing optical signals for power and/or communication
US9298020B1 (en) 2012-07-26 2016-03-29 Verily Life Sciences Llc Input system
US8919953B1 (en) 2012-08-02 2014-12-30 Google Inc. Actuatable contact lenses
US9696564B1 (en) 2012-08-21 2017-07-04 Verily Life Sciences Llc Contact lens with metal portion and polymer layer having indentations
US8971978B2 (en) 2012-08-21 2015-03-03 Google Inc. Contact lens with integrated pulse oximeter
US9111473B1 (en) 2012-08-24 2015-08-18 Google Inc. Input system
US8820934B1 (en) 2012-09-05 2014-09-02 Google Inc. Passive surface acoustic wave communication
US20140192315A1 (en) 2012-09-07 2014-07-10 Google Inc. In-situ tear sample collection and testing using a contact lens
US9398868B1 (en) 2012-09-11 2016-07-26 Verily Life Sciences Llc Cancellation of a baseline current signal via current subtraction within a linear relaxation oscillator-based current-to-frequency converter circuit
US10010270B2 (en) 2012-09-17 2018-07-03 Verily Life Sciences Llc Sensing system
US9326710B1 (en) 2012-09-20 2016-05-03 Verily Life Sciences Llc Contact lenses having sensors with adjustable sensitivity
US8960898B1 (en) 2012-09-24 2015-02-24 Google Inc. Contact lens that restricts incoming light to the eye
US8870370B1 (en) 2012-09-24 2014-10-28 Google Inc. Contact lens that facilitates antenna communication via sensor impedance modulation
US20140088372A1 (en) 2012-09-25 2014-03-27 Google Inc. Information processing method
US8989834B2 (en) 2012-09-25 2015-03-24 Google Inc. Wearable device
US8979271B2 (en) 2012-09-25 2015-03-17 Google Inc. Facilitation of temperature compensation for contact lens sensors and temperature sensing
US8960899B2 (en) 2012-09-26 2015-02-24 Google Inc. Assembling thin silicon chips on a contact lens
US9884180B1 (en) 2012-09-26 2018-02-06 Verily Life Sciences Llc Power transducer for a retinal implant using a contact lens
US8985763B1 (en) 2012-09-26 2015-03-24 Google Inc. Contact lens having an uneven embedded substrate and method of manufacture
US8821811B2 (en) 2012-09-26 2014-09-02 Google Inc. In-vitro contact lens testing
US9063351B1 (en) 2012-09-28 2015-06-23 Google Inc. Input detection system
ES2457840B1 (es) 2012-09-28 2015-02-16 Universidad De Murcia Lente intraocular acomodativa de potencia variable y conjunto de lente intraocular acomodativa de potencia variable y anillo capsular
US8965478B2 (en) 2012-10-12 2015-02-24 Google Inc. Microelectrodes in an ophthalmic electrochemical sensor
US9176332B1 (en) 2012-10-24 2015-11-03 Google Inc. Contact lens and method of manufacture to improve sensor sensitivity
US9757056B1 (en) 2012-10-26 2017-09-12 Verily Life Sciences Llc Over-molding of sensor apparatus in eye-mountable device
US8998984B2 (en) 2013-01-14 2015-04-07 Andrew F. Phillips Adjustable toric intraocular lens
US8874182B2 (en) 2013-01-15 2014-10-28 Google Inc. Encapsulated electronics
US9289954B2 (en) 2013-01-17 2016-03-22 Verily Life Sciences Llc Method of ring-shaped structure placement in an eye-mountable device
US20140209481A1 (en) 2013-01-25 2014-07-31 Google Inc. Standby Biasing Of Electrochemical Sensor To Reduce Sensor Stabilization Time During Measurement
US9636016B1 (en) 2013-01-25 2017-05-02 Verily Life Sciences Llc Eye-mountable devices and methods for accurately placing a flexible ring containing electronics in eye-mountable devices
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US9608433B2 (en) 2013-03-14 2017-03-28 Hubbell Incorporated GFCI test monitor circuit
EP2967842B1 (en) 2013-03-15 2020-11-04 Alcon Inc. Method of reconfiguring an intraocular lens for delivery to a delivery device
US9161712B2 (en) 2013-03-26 2015-10-20 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US9113829B2 (en) 2013-03-27 2015-08-25 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US20140371560A1 (en) 2013-06-14 2014-12-18 Google Inc. Body-Mountable Devices and Methods for Embedding a Structure in a Body-Mountable Device
US9084561B2 (en) 2013-06-17 2015-07-21 Google Inc. Symmetrically arranged sensor electrodes in an ophthalmic electrochemical sensor
US9948895B1 (en) 2013-06-18 2018-04-17 Verily Life Sciences Llc Fully integrated pinhole camera for eye-mountable imaging system
US9685689B1 (en) 2013-06-27 2017-06-20 Verily Life Sciences Llc Fabrication methods for bio-compatible devices
US9814387B2 (en) 2013-06-28 2017-11-14 Verily Life Sciences, LLC Device identification
US9028772B2 (en) 2013-06-28 2015-05-12 Google Inc. Methods for forming a channel through a polymer layer using one or more photoresist layers
US9307901B1 (en) 2013-06-28 2016-04-12 Verily Life Sciences Llc Methods for leaving a channel in a polymer layer using a cross-linked polymer plug
US9492118B1 (en) 2013-06-28 2016-11-15 Life Sciences Llc Pre-treatment process for electrochemical amperometric sensor
US9827088B2 (en) 2013-09-12 2017-11-28 Battelle Memorial Institute Methods of altering the refractive index of materials
US9572522B2 (en) 2013-12-20 2017-02-21 Verily Life Sciences Llc Tear fluid conductivity sensor
US9654674B1 (en) 2013-12-20 2017-05-16 Verily Life Sciences Llc Image sensor with a plurality of light channels
US9366570B1 (en) 2014-03-10 2016-06-14 Verily Life Sciences Llc Photodiode operable in photoconductive mode and photovoltaic mode
US9184698B1 (en) 2014-03-11 2015-11-10 Google Inc. Reference frequency from ambient light signal
US9789655B1 (en) 2014-03-14 2017-10-17 Verily Life Sciences Llc Methods for mold release of body-mountable devices including microelectronics
JP6591525B2 (ja) 2014-03-28 2019-10-16 フォーサイト・ラブス・リミテッド・ライアビリティ・カンパニーForSight Labs, LLC 遠近調節型の眼内レンズ
KR101802574B1 (ko) * 2014-03-28 2017-12-01 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
EP2924085B1 (en) * 2014-03-28 2019-05-08 Samsung SDI Co., Ltd. Composition for encapsulation of organic light emitting diode and organic light emitting diode display manufactured using the same
KR101861893B1 (ko) * 2014-04-23 2018-05-29 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
EP4029474A1 (en) 2014-06-19 2022-07-20 Omega Ophthalmics LLC Prosthetic capsular devices
US20140358226A1 (en) * 2014-08-15 2014-12-04 Allen Louis Cohen Light Adjustable IOL With Diffraction Multifocal
EP3236884A4 (en) * 2014-12-22 2018-07-18 Adventus Technology, Inc. Compositions and methods for injectable composition for an accommodating intraocular lens
US9358103B1 (en) 2015-02-10 2016-06-07 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
DE102015102298A1 (de) * 2015-02-18 2016-08-18 Carl Zeiss Meditec Ag Ophthalmologische Zusammensetzung mit wenigstens einer molekularen Schalterverbindung
BR112017009900A2 (pt) 2015-05-20 2017-12-26 Rxsight Inc método para modificar a potência de lente ajustável com luz
GB2540144A (en) * 2015-07-06 2017-01-11 Rayner Intraocular Lenses Ltd Intraocular lens
EP3370647B8 (en) 2015-11-06 2021-06-30 Alcon Inc. Accommodating intraocular lenses and methods of manufacturing
WO2017106321A1 (en) 2015-12-15 2017-06-22 University Of Rochester Refractive corrector incorporating a continuous central phase zone and peripheral phase discontinuities
ES2631354B1 (es) 2016-02-29 2019-10-09 Univ Murcia Lente intraocular correctora de aberraciones
JP2019520886A (ja) 2016-06-06 2019-07-25 オメガ・オフサルミックス・エルエルシーOmega Ophthalmics LLC 人工水晶体嚢装置、システムおよび方法
EP3528747B1 (en) 2016-10-21 2021-09-15 Omega Ophthalmics LLC Prosthetic capsular devices
WO2018081595A1 (en) 2016-10-28 2018-05-03 Forsight Vision6, Inc. Accommodating intraocular lens and methods of implantation
US10433951B2 (en) 2017-05-22 2019-10-08 Rxsight, Inc. Depth of focus and visual acuity using colorized apodization of intra-ocular lenses
US20210322152A1 (en) * 2020-04-15 2021-10-21 Rxsight, Inc. Composite light adjustable intraocular lens with adhesion promoter
US10966819B2 (en) * 2017-05-29 2021-04-06 Rxsight, Inc. Composite light adjustable intraocular lens
EP3681438A1 (en) 2017-09-11 2020-07-22 AMO Groningen B.V. Methods and apparatuses to increase intraocular lenses positional stability
ES2935731T3 (es) * 2017-11-01 2023-03-09 Nayam Innovations Pvt Ltd Composición polimérica fotosensible que cambia de forma para lentes ópticas coloreadas
US10456240B2 (en) 2017-11-24 2019-10-29 Rxsight, Inc. Patient interface for light adjustable intraocular lens irradiation system
US10864075B2 (en) 2017-12-31 2020-12-15 Rxsight, Inc. Intraocular lens visualization and tracking system
EP3773334A4 (en) 2018-04-06 2021-12-29 Omega Ophthalmics LLC Prosthetic capsular devices, systems, and methods
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11564839B2 (en) 2019-04-05 2023-01-31 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
EP4041131A4 (en) 2019-10-04 2023-11-15 Alcon Inc. ADJUSTABLE INTRAOCULAR LENSES AND METHODS FOR POST-OPERATIVE ADJUSTMENT OF INTRAOCULAR LENSES
US11266495B2 (en) 2019-10-20 2022-03-08 Rxsight, Inc. Light adjustable intraocular lens with a modulable absorption front protection layer
US11364107B2 (en) 2020-10-12 2022-06-21 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525857B2 (zh) 1972-10-23 1977-02-17
US4008136A (en) 1974-08-09 1977-02-15 Temple University Process for the treatment of waste water by heterogeneous photosensitized oxidation
JPS5315152A (en) 1976-07-27 1978-02-10 Canon Inc Hologram
DE2722928C2 (de) 1977-05-20 1983-01-05 Hans Grohe Gmbh & Co Kg, 7622 Schiltach Flexibler Kunststoffschlauch
US4173475A (en) 1977-05-31 1979-11-06 Bell Telephone Laboratories, Incorporated Latent image thick refractive index recordings
US4330383A (en) * 1978-07-18 1982-05-18 Polymer Technology Corporation Dimensionally stable oxygen permeable hard contact lens material and method of manufacture
US4260725A (en) 1979-12-10 1981-04-07 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes which are thermally bonded to polymerizable groups and which contain hydrophilic sidechains
JPS60175009A (ja) 1984-02-21 1985-09-09 Nippon Sheet Glass Co Ltd 屈折率分布を有する合成樹脂光学素子の製造方法
US4581031A (en) * 1984-06-22 1986-04-08 Koziol Jeffrey E Prismatic intraocular lens
JPS6127501A (ja) 1984-07-17 1986-02-07 Nippon Sheet Glass Co Ltd 屈折率分布を有する合成樹脂光学素子の製造方法
US4575373A (en) 1984-11-02 1986-03-11 Johnson Don R Laser adjustable intraocular lens and method of altering lens power
JPS61190546A (ja) * 1985-02-20 1986-08-25 Central Glass Co Ltd 光学用樹脂組成物
SE449555B (sv) 1985-02-26 1987-05-11 Birger Pettersson Hopfellbar stol med en vermekella
US4787903A (en) 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
US4685921A (en) 1986-02-24 1987-08-11 Peyman Gholam A Variable refractive power, expandable intraocular lenses
US4843136A (en) * 1986-09-26 1989-06-27 Bayer Aktiengesellschaft (Meth)-acrylates of siloxanes containing tricyclodecane groups
US4846172A (en) 1987-05-26 1989-07-11 Berlin Michael S Laser-delivery eye-treatment method
US4790847A (en) 1987-05-26 1988-12-13 Woods Randall L Intraocular lens implant having eye focusing capabilities
US4942112A (en) 1988-01-15 1990-07-17 E. I. Du Pont De Nemours And Company Photopolymerizable compositions and elements for refractive index imaging
US4816031A (en) 1988-01-29 1989-03-28 Pfoff David S Intraocular lens system
US4921589A (en) 1988-12-20 1990-05-01 Allied-Signal Inc. Polysiloxane bound photosensitizer for producing singlet oxygen
JP2508241B2 (ja) * 1989-02-23 1996-06-19 鹿島建設株式会社 能動型制震・制風装置の安全監視装置
FR2646930B1 (fr) * 1989-05-12 1993-04-09 Essilor Int Procede de realisation d'un element diffractif, utilisable notamment dans la fabrication de lentilles optiques artificielles, et lentilles ainsi obtenues
US5112205A (en) * 1989-05-15 1992-05-12 Sony Corporation Optical-disk manufacturing apparatus
US4944112A (en) 1989-05-25 1990-07-31 Garmany Douglas L Lure system with adaptable insitu bill assembly
JP2798468B2 (ja) 1990-02-28 1998-09-17 ホーヤ株式会社 コンタクトレンズ材料及びコンタクトレンズの製造方法
JPH03288102A (ja) * 1990-04-04 1991-12-18 Fujitsu Ltd 光ビーム形状変換素子
FR2661914B1 (fr) * 1990-05-11 1994-05-06 Essilor Internal Cie Gle Optique Procede de fabrication d'une lentille en polymere transparent a indice de refraction module.
US5296305A (en) 1990-05-11 1994-03-22 Esslior International (Compagnie Generale D'optique) Method of fabricating a lens made of transparent polymer with modulated refracting index
EP0472384A3 (en) 1990-08-16 1992-10-28 Yasuhiro Koike Plastic optical fiber and its manufacturing method
JPH04110110A (ja) 1990-08-30 1992-04-10 Seiko Epson Corp プリズム付プラスチックレンズの成形法
US5171266A (en) 1990-09-04 1992-12-15 Wiley Robert G Variable power intraocular lens with astigmatism correction
US5066301A (en) 1990-10-09 1991-11-19 Wiley Robert G Variable focus lens
US5141678A (en) 1990-10-10 1992-08-25 Blum Ronald D Method for forming disposable molds for producing optical quality lenses
US5086192A (en) * 1990-12-14 1992-02-04 Minnesota Mining And Manufacturing Company Photopolymerizable compositions and photoinitiators therefor
JP3193067B2 (ja) 1991-05-23 2001-07-30 康博 小池 視力矯正用レンズの製造方法
US5173381A (en) 1991-08-05 1992-12-22 Queen's University Azo polymers for reversible optical storage
FR2683918B1 (fr) * 1991-11-19 1994-09-09 Thomson Csf Materiau constitutif d'une lunette de visee et arme utilisant cette lunette.
US5463084A (en) * 1992-02-18 1995-10-31 Rensselaer Polytechnic Institute Photocurable silicone oxetanes
US5444106A (en) 1992-04-21 1995-08-22 Kabi Pharmacia Ophthalmics, Inc. High refractive index silicone compositions
JP3579737B2 (ja) 1992-04-21 2004-10-20 カビ ファーマシア オフサルミクス インコーポレイテッド 高屈折率シリコーン組成物
DE69316792T2 (de) 1992-06-17 1998-05-28 Nitto Denko Corp Verfahren zur Herstellung von Polymerisation oder vernetzter Rate-distribuierte Produkte und Verfahren zur Herstellung einer Linse, Linsenanordnung oder Lichtwellenleiter durch dieses Verfahren
US5288293A (en) 1992-09-24 1994-02-22 Donnell Jr Francis E O In vivo modification of refractive power of an intraocular lens implant
US5443506A (en) 1992-11-18 1995-08-22 Garabet; Antoine L. Lens with variable optical properties
JP3504683B2 (ja) * 1993-04-12 2004-03-08 日東電工株式会社 レンズ領域の形成方法並びにレンズ及びレンズアレイ板
RU2033114C1 (ru) 1993-04-22 1995-04-20 Межотраслевой научно-технический комплекс "Микрохирургия глаза" Искусственный хрусталик глаза
US5377176A (en) 1993-07-14 1994-12-27 Tamarack Storage Devices Method and apparatus for isolating data storage regions in a thick holographic storage media
JP3370762B2 (ja) 1993-11-04 2003-01-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フィルム組成物およびその組成物を含む積層構造
JPH07281426A (ja) 1994-04-01 1995-10-27 W R Grace & Co 屈折率変調画像形成用感光性樹脂組成物
US5808627A (en) 1994-04-22 1998-09-15 Apple Computer, Inc. Method and apparatus for increasing the speed of rendering of objects in a display system
EP1315006A1 (en) 1994-06-22 2003-05-28 Fujitsu Limited Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board
DE4431823A1 (de) 1994-09-07 1996-03-14 Bayer Ag Verfahren zur Verstärkung von Information in photoadressierbaren Seitenkettenpolymeren
US5694195A (en) * 1994-09-30 1997-12-02 Signet Armorlite, Inc. Polyester resin-based high index ophthalmic lenses having improved optical uniformity and/or tintability
US5702846A (en) 1994-10-03 1997-12-30 Nippon Paint Co. Ltd. Photosensitive composition for volume hologram recording
JPH08101499A (ja) 1994-10-03 1996-04-16 Nippon Paint Co Ltd 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
JPH08101503A (ja) 1994-10-03 1996-04-16 Nippon Paint Co Ltd 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
JPH08101502A (ja) 1994-10-03 1996-04-16 Nippon Paint Co Ltd 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
JP3532621B2 (ja) * 1994-10-03 2004-05-31 日本ペイント株式会社 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
US5744267A (en) 1994-10-12 1998-04-28 Arizona Board Of Regents Acting For And On Behalf Of University Of Arizona Azo-dye-doped photorefractive polymer composites for holographic testing and image processing
ES2171557T3 (es) 1994-10-14 2002-09-16 Corneal Laboratoires Metodo para hacer un implante intraocular con una lente flexible.
JP3222026B2 (ja) * 1994-12-26 2001-10-22 株式会社メニコン コンタクトレンズ材料および眼内レンズ材料
FR2731081B1 (fr) * 1995-02-27 1997-04-11 Essilor Int Procede d'obtention d'un article transparent a gradient d'indice de refraction
TW393498B (en) 1995-04-04 2000-06-11 Novartis Ag The preparation and use of Polysiloxane-comprising perfluoroalkyl ethers
CA2172643C (en) * 1995-05-05 2000-02-15 Kevin Curtis Multiplex holography
US5943145A (en) 1995-05-05 1999-08-24 Lucent Technologies Inc. Phase distance multiplex holography
CA2226268C (en) 1995-07-05 2006-11-21 Yenploy Pty. Ltd. Optical storage system
US5684636A (en) 1995-08-24 1997-11-04 Lockheed Martin Corporation Polymer-optical liquid matrix for use as a lens element
JPH09106240A (ja) * 1995-10-09 1997-04-22 Toyo Ink Mfg Co Ltd ホログラム記録用感光性組成物、ホログラム記録媒体およびそれを用いたホログラムの製造方法
JP3815811B2 (ja) * 1995-10-12 2006-08-30 ダウ・コ−ニング・コ−ポレ−ション 屈折率変調素子及び屈折率変調方法
US5728155A (en) 1996-01-22 1998-03-17 Quantum Solutions, Inc. Adjustable intraocular lens
US5984962A (en) 1996-01-22 1999-11-16 Quantum Vision, Inc. Adjustable intraocular lens
US5838650A (en) 1996-06-26 1998-11-17 Lucent Technologies Inc. Image quality compensation method and apparatus for holographic data storage system
US5728156A (en) 1996-08-06 1998-03-17 Prism Opthalmics, L.L.C. Prismatic intraocular lenses and related methods of in situ alteration of their optical characteristics
DE19631864A1 (de) 1996-08-07 1998-02-12 Bayer Ag Photoadressierbare Seitengruppenpolymere hoher Empfindlichkeit
US5777719A (en) 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
US6174464B1 (en) * 1997-04-21 2001-01-16 Corning Incorporated Organic photochromic contact lens compositions
FR2762840B1 (fr) * 1997-05-02 1999-08-13 Corning Sa Compositions photochromiques, composes photochromes, matrices (co)polymeres et produits finis les incorporant
US5995521A (en) * 1997-05-16 1999-11-30 New Focus, Inc. External cavity laser pivot design
US20030157414A1 (en) 1997-11-13 2003-08-21 Pradeep K. Dhal Holographic medium and process for use thereof
JPH11202740A (ja) 1998-01-20 1999-07-30 Fujitsu Ltd 屈折率分布形成材料及びホログラフィ乾板
US5995251A (en) 1998-07-16 1999-11-30 Siros Technologies, Inc. Apparatus for holographic data storage
US6450642B1 (en) * 1999-01-12 2002-09-17 California Institute Of Technology Lenses capable of post-fabrication power modification
US6271281B1 (en) 1999-08-26 2001-08-07 Medennium, Inc. Homopolymers containing stable elasticity inducing crosslinkers and ocular implants made therefrom
US6086204A (en) 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
US6145432A (en) * 1999-11-29 2000-11-14 Bellue, Jr.; Wirt E. Cooking pot
EP1266256B1 (en) 2000-03-20 2006-06-21 California Institute of Technology Application of wavefront sensor to lenses capable of post-fabrication power modification
EP1281176A2 (en) 2000-05-10 2003-02-05 California Institute Of Technology Phase contrast variation of a photo-induced refractive material
US6851804B2 (en) * 2001-12-28 2005-02-08 Jagdish M. Jethmalani Readjustable optical elements

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031411B (zh) * 2004-08-03 2012-01-11 卡尔豪恩视觉公司 可调节组合物的制备方法
US8361353B2 (en) 2004-08-03 2013-01-29 Calhoun Vision, Inc. Method for making novel compositions capable of post fabrication modification
CN105105869A (zh) * 2009-03-04 2015-12-02 完美Ip有限公司 用于形成和修改晶状体的方法
CN103998490A (zh) * 2011-09-16 2014-08-20 卡尔霍恩影像公司 通过诱导靶向量的非球面性,使用光可调节的透镜(lal)增加聚焦深度
CN106554506A (zh) * 2011-09-16 2017-04-05 卡尔霍恩影像公司 通过诱导靶向量的非球面性,使用光可调节的透镜(lal)增加聚焦深度
CN103998490B (zh) * 2011-09-16 2017-10-20 卡尔霍恩影像公司 通过诱导靶向量的非球面性,使用光可调节的透镜(lal)增加聚焦深度
US10010406B2 (en) 2011-09-16 2018-07-03 Rxsight, Inc. Using the light adjustable lens (LAL) to increase the depth of focus by inducing targeted amounts of asphericity
CN106554506B (zh) * 2011-09-16 2020-09-18 卡尔霍恩影像公司 通过诱导靶向量的非球面性,使用光可调节的透镜(lal)增加聚焦深度
US10874505B2 (en) 2011-09-16 2020-12-29 Rxsight, Inc. Using the light adjustable lens (LAL) to increase the depth of focus by inducing targeted amounts of asphericity
US11135052B2 (en) 2011-09-16 2021-10-05 Rxsight, Inc. Method of adjusting a blended extended depth of focus light adjustable lens with laterally offset axes
US11191637B2 (en) 2011-09-16 2021-12-07 Rxsight, Inc. Blended extended depth of focus light adjustable lens with laterally offset axes
TWI651550B (zh) * 2013-03-18 2019-02-21 挪威商波萊股份有限公司 透明光學裝置元件

Also Published As

Publication number Publication date
US6824266B2 (en) 2004-11-30
MXPA01007051A (es) 2002-04-24
JP2011034091A (ja) 2011-02-17
US20020167735A1 (en) 2002-11-14
US20030090013A1 (en) 2003-05-15
DE69935449D1 (de) 2007-04-19
US7210783B2 (en) 2007-05-01
US20030151719A1 (en) 2003-08-14
US20070035698A1 (en) 2007-02-15
US6450642B1 (en) 2002-09-17
WO2000041650B1 (en) 2000-10-19
WO2000041650A1 (en) 2000-07-20
US20070260311A1 (en) 2007-11-08
US20030048411A1 (en) 2003-03-13
ATE355800T1 (de) 2007-03-15
BR9916895A (pt) 2002-03-19
CA2360583A1 (en) 2000-07-20
US20030093150A1 (en) 2003-05-15
JP5411099B2 (ja) 2014-02-12
EP1139921A1 (en) 2001-10-10
EP1139921B1 (en) 2007-03-07
DE69935449T2 (de) 2007-11-29
US7798644B2 (en) 2010-09-21
JP2004500585A (ja) 2004-01-08
AU766157B2 (en) 2003-10-09
CN1306918C (zh) 2007-03-28
US7837326B2 (en) 2010-11-23
US20030173691A1 (en) 2003-09-18
AU6426799A (en) 2000-08-01
US20030090624A1 (en) 2003-05-15
US6813097B2 (en) 2004-11-02
IL144245A0 (en) 2002-05-23

Similar Documents

Publication Publication Date Title
CN1306918C (zh) 能够后期加工改善光学能力的透镜
CN1249454C (zh) 波阵面传感器应用于能够进行制造后光学能力改性的透镜
US7134755B2 (en) Customized lenses
CN1873476A (zh) 光可调节的多焦点透镜
CN1618030A (zh) 光可调节的多焦点透镜
CN101031411A (zh) 可调节组合物的制备方法
CN1622969A (zh) 重复调节的光学元件
JP2015504527A (ja) 光調節可能レンズ(lal)を用いて目的の程度の非球面性を生じさせることによる焦点深度の増加。
EP1658829A1 (en) Application of wavefront sensor to lenses capable of post-fabrication power modification
AU2002360662B2 (en) Customized lenses

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070328

Termination date: 20131013