CN1363965A - 二次电池 - Google Patents

二次电池 Download PDF

Info

Publication number
CN1363965A
CN1363965A CN01145672A CN01145672A CN1363965A CN 1363965 A CN1363965 A CN 1363965A CN 01145672 A CN01145672 A CN 01145672A CN 01145672 A CN01145672 A CN 01145672A CN 1363965 A CN1363965 A CN 1363965A
Authority
CN
China
Prior art keywords
mixture layer
negative pole
thickness
positive
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01145672A
Other languages
English (en)
Other versions
CN1233059C (zh
Inventor
明石宽之
藤田茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1363965A publication Critical patent/CN1363965A/zh
Application granted granted Critical
Publication of CN1233059C publication Critical patent/CN1233059C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种通过优化正极混合物层的厚度与负极混合物层的厚度之间的关系能够改善特性的二次电池。该二次电池包括卷绕电极体,其中在其间设置有隔板的条件下卷绕带状的正极和负极。在充电时,锂金属会在负极上析出。负极的容量用包藏/释放锂的容量组分以及析出/溶解锂金属的容量组分的和表示。正极混合物层的厚度与负极混合物层的厚度的比为0.92或更大。从而,能够实现锂金属在负极上的稳定析出,并能够获得高能量密度和优异的循环特性。

Description

二次电池
发明领域
本发明涉及包括正极,负极和电解质的二次电池,特别将是轻金属用于电极反应的二次电池。
相关技术描述
最近,便携式电子设备,比如具有内置照相机的VTRs(录像机),蜂窝电话,或便携式计算机已广泛使用,从而对这些设备的长时间连续驱动产生强烈的需求。据此,极需获得具有大容量和高能量密度的二次电池作为这些设备的便携式电源。
具有高能量密度的二次电池的例子是使用能够包藏/释放锂(Li)的材料,比如含碳的材料用于负极的锂离子二次电池,以及使用锂金属用于负极的锂二次电池。尤其是,锂二次电池预计可以比锂离子二次电池得到更高的能量密度,因为锂二次电池中的锂金属的理论电化学当量高达2054mAh/dm3,这相当于锂离子二次电池中使用的石墨材料的2.5倍。
然而,在锂二次电池的负极中使用了锂金属的析出/溶解反应,所以在充电/放电时,负极的体积变化很大。因此,充电/放电循环特性差,从而很难使锂二次电池得到实用。
因此,本发明人研究了由包藏/释放锂和析出/溶解锂得到的容量组分的总和来表示负极容量的二次电池。能够包藏/析出锂的含碳材料用作负极,并且在充电过程中,锂会在含碳材料的表面上析出。使用该二次电池,当达到高能量密度的同时,循环特性能够改善。然而,为了使二次电池得到实用,需要优化诸如正极和负极这样的电池结构,才能实现进一步的改善和稳定的特性。
例如,包藏/释放锂的正极混合物层的厚度与包藏/释放锂的负极混合物层的厚度之间的关系在电池结构中是重要的因素之一,通过优化该关系能够获得优异的特性。在相关技术的锂离子二次电池中,已经进行了对正极混合物层和负极混合物层厚度之间的关系的各种研究。比如,通常通过使负极混合物层的厚度厚于正极混合物层的厚度,而把负极的容量设计得比正极的容量稍大,以避免锂金属在负极上析出(参见日本专利No.2701347)。
与此相反,本发明人更早期开发的二次电池从负极中用锂包藏/释放和析出/溶解的电极反应角度来讲不同于相关技术的锂离子二次电池。因此,不能够如此地使用相关技术的锂离子二次电池中的正极混合物层与负极混合物层厚度之间的关系。
发明概述
本发明设计为克服上述缺陷。其一个目的是提供一种二次电池,其中通过优化正极混合物层与负极混合物层厚度之间的关系而使特性得以改善。
本发明的二次电池包括正极,负极和电解质。正极包括能够包藏和释放轻金属的正极混合物层,而负极包括能够包藏和释放轻金属的负极混合物层。负极的容量用包藏和释放轻金属的容量细分与析出和溶解轻金属的容量组分的总和来表示。正极混合物层的厚度A与负极混合物层的厚度B的比例(A/B)为0.92或更大。
在本发明的二次电池中,负极的容量用包藏/释放轻金属的容量组分与析出/溶解轻金属的容量组分的总和来表示。正极混合物层的厚度A与负极混合物层的厚度B的比例(A/B)为0.92或更大。因此,负极中轻金属的包藏和释放以及轻金属的析出和溶解都稳定且有效地进行。
本发明的其它和进一步的目的,特点以及优点会从下面的描述中更充分地体现出来。
附图的简更说明
    图1所示为根据本发明一个实施方案的二次电池的结构的剖面图。
    图2所示为取自示于图1中的二次电池的卷绕电极体的放大剖面图。
    图3是根据本发明的实施例1的负极的X-射线衍射图。
    图4是根据本发明的对比例1的负极的X-射线衍射图。
优选实施方案的详细描述
下面,将参考附图来详细描述发明的实施方案。
图1所示为根据本发明一个实施方案的二次电池的剖面结构。该二次电池是所谓的凝胶卷绕型,并具有通过在基本中空圆柱形电池壳体11中,卷绕其间设置有隔板23的带状正极21和负极22而得到的卷绕电极体20。该电池壳体11是由,诸如镀镍的铁制成的。电池壳体11的一端是封闭的,另一端是开放的。一对绝缘片12和13垂直于卷绕体的周边表面放置在电池壳体11内,以便夹住卷绕电极体20。
电池盖14,和位于电池盖14内的安全阀机构15和PTC(正温度系数)16,在其间用垫圈17填隙而使之与电池壳体11的开放端连接,并使电池壳体1密封。电池盖14是用例如与电池壳体11相似的材料制成的。安全阀机构15用PTC16与电池盖14电连接。当发生内部短路或由于外部加热或类似的情况使电池的内部压力超过设定值时,盘片15a上下翻转,从而断开电池盖14与卷绕电极体20间的电连接。当温度升高时,PTC16通过增加电阻而限制电流,从而防止由于大电流引起的异常加热。PTC16是用诸如钛酸钡基半导体陶瓷制成的。垫圈17是用诸如表面涂覆沥青的绝缘材料制成的。
卷绕电极体20是以,比如中心针24为中心卷绕的。用铝或类似材料制成的正极引线25与卷绕电极体20的正极21相连,而用镍或类似材料制成的负极引线26与负极22相连。正极引线25通过焊接到安全阀机构15上而与电池盖14电连接,而负极引线26通过接与电池壳体11电连接。
图2所示为图1中所示的卷绕电极体20部分的放大图。正极21具有下述结构,其中例如,正极混合物层21b涂覆到正极集电器层21a的两侧。尽管在图中未示出,正极混合物层21b也可以只涂覆在正极集电器层21a的一侧。正极集电器层21a约5μm~50μm厚,并由金属箔制成。比如铝箔,镍箔或不锈钢箔。正极混合物层21b包括含有能够包藏/释放轻金属锂的正极材料。
能够包藏/释放锂的正极材料的合适例子是氧化锂,硫化锂或含锂的化合物,比如含锂的层间化合物。这些材料中的两种或更多种可以混合起来使用。尤其是,优选的是主要包括LiXMO2的含锂复合氧化物,以增加能量密度,M优选的是一种或多种的过渡金属。具体地说,优选的是选自钴(Co),镍(Ni),锰(Mn),铁(Fe),铝(Al),钒(V)和钛(Ti)中的至少一种。而且,X的值依赖于电池的充电/放电状态而不同,并一般在0.05≤X≤1.10的范围内。锂复合氧化物的具体实例是LiXCoO2,LiXNiO2,LiXNiyCo1-yO2或LiXMn2O4(其中X=1,0<y<1)。
这样的锂复合氧化物是用下面的方法制备的。比如,将锂的碳酸盐,硝酸盐,氧化物或氢氧化物,和过渡金属的碳酸盐,硝酸盐,氧化物或氢氧化物,以所需的组成混合,并研磨,随后在氧化气氛下,在600℃到1000℃的温度范围内煅烧。
正极混合物层21b还含有,比如,导电剂,并且如果需要可以含有粘合剂。导电剂的例子是含碳材料,例如石墨,碳黑或Ketjen黑。可以使用这些物质中的一种或两种或更多种的混合物。除含碳材料外,可以使用金属材料或具有导电性的导电聚合物材料。正极混合物层21b中的正极材料和导电剂的优选含量是,比如,相对于100质量份的正极材料,导电剂为0.1质量份~20质量份的范围内,包括两个端值。在此范围内,在不降低电池容量下,能够确保电池额外的放电容量。
粘合剂的例子是合成橡胶,比如,苯乙烯-丁二烯橡胶,氟橡胶和乙烯-丙烯-二烯橡胶,或者是如聚偏二氟乙烯这样的聚合物材料。可以使用这些中的一种或两种或更多种的混合物。例如,在图1所示的正极21和负极22卷绕的情况下,优选的是使用具有韧性的苯乙烯-丁二烯橡胶或氟橡胶作为粘合剂。正极混合物层21b中的正极材料和粘合剂的优选含量是,比如,相对于100质量份的正极材料,粘合剂为1质量份~20质量份的范围内,包括两个端值,更为优选的是粘合剂为2质量份~10质量份。
负极22具有下述结构,其中例如,负极混合物层22b涂覆在负极集电器层22a的两侧上。尽管在图中未示出,该负极混合物层22b也可以只涂覆在负极集电器层22a的一侧上。负极集电器层22a约为5μm~30μm厚,并且由金属箔制成,比如铜箔,镍箔或不锈钢箔。负极混合物层22b包括含有能够包藏/释放轻金属锂的负极材料,并且可以含有,例如,与在正极混合物层21b中相同的粘合剂。负极混合物层22b中的负极材料和粘合剂的优选含量与在正极混合物层21b中的一样,相对于100质量份的负极材料,粘合剂为1质量份~20质量份,包括两个端值,更为优选的是2质量份~10质量份。
能够包藏/释放锂的负极材料的合适例子是含碳材料,金属化合物,硅,硅化合物,或聚合物材料。使用这些中的一种或两种或更多种的混合物。含碳材料是石墨,非石墨化的碳,石墨化的碳及它们的相似物。金属化合物包括诸如SnSiO3或SnO2这样的氧化物和包括聚乙炔,聚吡咯和其相似物的聚合物材料。
特别地,优选的是含碳材料,因为该材料在充电/放电时发生的晶体结构上的变化非常小。因此,能够获得高充电/放电容量,并且可以获得优异的循环特性。尤其是,从高电化学当量和高能量密度的角度看,石墨是优选的。
例如,真密度为2.10g/cm3或更大的石墨是优选的,并且真密度为2.18/cm3或更大的石墨是更优选的。为了得到这样的真密度,需要使(002)面的c-轴晶的厚度为14.0nm或更大。而且(002)面的间距优选小于0.340nm,更优选在0.335nm~0.337nm的范围内,包括两个端值。
石墨可以是天然石墨或人造石墨。人造石墨可以通过,诸如碳化有机材料,在高温下进行热处理,而后对其进行研磨/分级来得到。高温下的热处理例如按下面的方式进行。如果需要,在惰性气体流,比如氮气(N2)中,使有机材料在从300℃到700℃的温度下碳化;以每分钟1℃到100℃的速率将温度升高到900℃到1500℃,并维持此温度0到30小时以煅烧;将温度升高到2000℃或更高,优选的是2500℃或更高,并且在此温度维持合适长的时间。
作为起始原料有机材料,可以使用煤或沥青。沥青的例子是,可由诸如煤焦油,乙烯底油或原油通过高温热裂解得到的焦油,由沥青等经蒸镏(真空蒸馏,常压蒸馏,蒸汽蒸馏)、热缩聚、萃取、化学缩聚和类似的方法处理得到的材料,在木头、聚氯乙烯树脂、聚醋酸乙烯酯、聚丁酸乙烯酯和3,5-二甲基-酚树脂干馏时形成的材料。在碳化过程中,煤和沥青在最高为约400℃的温度下以液态存在,而芳环通过经过保持该温度缩合和多环化变成了层状取向状态。在大约500℃或更高温度下,形成了半焦炭(液相碳化过程),它是固体碳的前体。
有机材料的例子是缩合的多环烃化合物,如萘,菲,蒽,苯并菲,芘,二萘嵌苯,戊芬,并五苯,及其衍生物(比如,它们的羧酸,羧酐,羧基酰亚胺)和其混合物。其它的例子是缩合的杂环化合物,例如,苊(acenaphtylene),吲哚,异吲哚,喹啉,异喹啉,喹喔啉,酞嗪,咔唑,吖啶,吩嗪,phenantolidine,及其衍生物和其混合物。
研磨可以在碳化和煅烧前/后的任何时间,或在石墨化前的程序升温过程中进行。在这些情况下,石墨化热处理最后是在粉末状态下进行的。然而,为了得到具有高的松装密度和断裂强度的石墨粉,优选的是在起始原料模制后进行热处理,随后研磨和筛分得到的石墨化模制成型体。
例如,当加工石墨化成型体时,焦炭为填料,并以粘合剂沥青为成型剂或烧结剂,混合并成型。随后,反复在1000℃或以下进行热处理的烧结过程和粘合沥青浸渍的沥青-浸渍过程进行多次,其中沥青在烧结体中熔融。随后,在高温下进行热处理。通过上述的热处理过程,浸渍的粘合剂沥青碳化且石墨化。在这种情况下,填料(焦炭)和粘合剂沥青被用作起始原料,为的是使其石墨化成多晶,并且起始原料中含有的硫和氮在热处理过程中生成气体,从而在其经过的路上形成微空隙。由于空隙,锂的包藏/释放易于进行,并且运行效率得到了工业化的改进。而且,本身具有成型性或烧结特性的填料可以用作成型体的基础材料。这种情况下,无需使用粘合剂沥青。
作为非石墨化碳,优选的是(002)面间距为0.37nm或更大,并且真密度小于1.70g/cm3,同时在空气中的差热分析(DTA)中,在高于700℃没有放热峰。
非石墨化碳可以例如通过在约1200℃下对有机原料进行热处理,随后对其进行研磨和筛分来得到。例如,如果需要的话,通过在300℃到700℃下碳化(固相碳化过程)该原料,以每分钟1℃到100℃的速率程序化升温至900℃到1300℃,并维持该温度0到30个小时来进行热处理。研磨可以在石墨化前/后或在程序化升温的过程中进行。
作为起始原料的有机材料的例子是糠醇和糠醛的聚合物或共聚物,或是该聚合物和其它树脂的共聚物的呋喃树脂。其他的例子是苯酚树脂,丙烯酸类树脂,卤化乙烯树脂,聚酰亚胺树脂,聚酰胺-酰亚胺树脂,聚酰胺树脂,如聚乙炔或对聚苯(polyparaphenylene)这样的共轭树脂,纤维素和纤维类的,咖啡豆,竹子,包括脱乙酰壳多糖的甲壳纲(crustacea),和使用细菌的生物纤维素。还有其它的例子是,通过把含有氧(O)(所谓的氧交联)的官能团与石油沥青键合起来得到的化合物,其中石油沥青中的氢(H)和碳(C),原子个数的分数H/C,例如为0.6到0.8。
优选地,该化合物含有3%或更多的氧。更为优选地是5%或更多(见日本专利申请公开平3-252053)。这是因为氧的含量影响含碳材料的晶体结构,超过上述含量,则非石墨化碳的性能能够改善,且负极的容量能够增加。石油沥青可以例如通过对煤焦油、乙烯底油、原油或相似物的高温热裂解得到的焦油得到,和可以通过对沥青或相似物进行蒸馏(真空蒸馏,常压蒸馏,蒸汽蒸馏)、热缩聚、萃取、化学热缩聚或相似的方法得到的材料得到。形成氧化物交联的方法的例子是湿法,其中硝酸,硫酸,次氯酸或这些酸的混合物的水溶液以及石油沥青被活化,干法,其中空气或氧气的氧化性气体和石油沥青被活化,和以下一种方法,其中固体试剂硫,硝酸铵,过硫酸氨。或氯化铁和石油沥青被活化。
作为起始原料的有机材料不限于这些,只要是经氧交联处理和类似的处理进行固相碳化过程后能变成非石墨化材料的其它有机材料也可以使用。
作为非石墨化含碳材料,主要含磷(P),氧和碳的化合物也是优选的,这已在日本专利申请公开平3-137010中公开,因为除了通过使用上述有机材料为起始原料来制备的材料以外,其显示了上述的性能参数。
在二次电池中,在充电过程中,在开路电压(即,电池电压)低于过充电电压时,锂金属开始在负极22上析出。换句话说,负极22的容量用包藏/释放锂的容量组分和析出/溶解锂金属的容量组分的总和来表示。这里的过充电电压的意思是,当电池过充电时的开路电压,并表明该电压高于“完全充电”电池的开路电压,这被定义在“二次锂电池的安全评估规则”(SBA G 1101)中,这例如是由日本蓄电池协会(日本电池协会)指定的规则中的一个。
因此,在二次电池中,能够得到高能量密度,并且循环特性能够改善。尽管在锂金属在负极15上析出方面,该二次电池与相关技术的锂二次电池相同,但是通过在能够包藏/释放锂的负极材料上析出锂金属,在保持负极22容量的同时,能够降低由于充电/放电造成的负极22的体积上的变化。
当用正极混合物层21b的厚度A与负极混合物层22b的厚度B的比(A/B)表示时,正极混合物层21b的厚度A与负极混合物层22b的厚度B的比为0.92或更大。厚度比(A/B)根据正极混合物层21b与负极混合物层22b的容量而变。若该比例等于或大于0.92,则在开路电压低于过充电电压的状态下,锂金属能够稳定地在负极22上析出,并能得到高能量密度和优异的循环特性。而且,当厚度比(A/B)变大时,能量密度倾向于变大。然而,当该比例太大时,循环特性变差,所以厚度比(A/B)优选的是2.0或更小。但是,如果在将来改善循环特性的技术得以发展,厚度比(A/B)有可能超过2.0。
正极混合物层21b的厚度A用正极集电器层21a两侧的厚度Ad1,Ad2的和(Ad1+Ad2)来表示。负极混合物层22b的厚度B用负极集电器层22a两侧的厚度Bd1,Bd2的和(Bd1+Bd2)来表示。正极混合物层21b和负极混合物层22b可以只涂覆于一侧,而不是在卷绕电极体20的最外部或最内部的正极集电器层21a或负极集电器层22a的两侧。在这种情况下,正极混合物层21b的厚度A也可用Ad1+Ad2表示,而负极混合物层22b的厚度B也可用Bd1+Bd2来表示,其中最厚的部分被定义为本发明的正极混合物层21b的厚度A以及被定义为负极混合物层22b的厚度B。在正极混合物层21b只涂覆在正极集电器层21a的一侧或负极混合物层22b只涂覆于负极集电器层22a的一侧的情况下也是一样的。在这种情况下,两侧的厚度和指的是一侧的厚度。
负极混合物层22b的厚度B是锂金属没有在负极混合物层22b上析出的状态下的厚度(例如,完全放电状态下的厚度)。换句话说,厚度B不包括析出的锂金属的厚度。完全放电状态的意思是,没有电极活性材料(实施方案中的锂离子)从负极22供应到正极21的状态。例如,在本实施方案的二次电池和一种锂离子二次电池的情况下,可以认为“完全放电”状态是闭合回路电压达到2.75V时的状态。
例如,优选地,正极混合物层21b的厚度A和负极混合物层22b的厚度B在80μm到250μm的范围内,包括两个端值。如果它小于80μm,则其厚度对于正极集电器层21a和负极集电器层22a来说变得相当地薄。因此,正极混合物层21b和负极混合物层22b占据电池的体积变小,所以能量密度变差。若厚度超过250μm,则正极混合物层21b和负极混合物层22b易于从正极集电器层21a和负极集电器层22a中剥离。
隔板23是用由合成树脂,比如聚四氟乙烯,聚丙烯,聚乙烯或相似物制成的多孔膜,或陶瓷多孔膜形成的。而且,其可以具有两种或更多种这些多孔膜的层压结构。在这些多孔膜中,优选的是用聚烯烃制成的多孔膜,因为它在防止短路方面是优秀的,并能通过关闭(shut down)效应改善电池的安全性。具体而言,作为形成隔板23的材料,聚乙烯是优选的,因为它能在100℃到160℃的温度范围内,包括两个端值,实现关闭效应,并且在电化学稳定性方面也很优秀。聚丙烯也是优选的。具有化学稳定性的其它树脂通过与聚乙烯或聚丙烯共聚或混合也能够使用。
由聚烯烃制成的多孔膜可通过下述方式获得。例如,将处于熔融态的液态低挥发溶剂捏合到熔融聚烯烃组合物中,从而得到含有高浓度均匀聚烯烃组合物的溶剂,所得溶剂用模具(dice)成型,冷却以得到凝胶片,随后取出。
例如,能够使用壬烷,癸烷,萘烷(decaline),对二甲苯,十一烷,诸如液体石蜡这样的低挥发脂肪族,和环烃作为低挥发溶剂。优选地,混合聚烯烃组合物和低挥发溶剂的比例为聚烯烃组合物的质量的10质量%或更多到80质量%或更少,更为优选的是15质量%或更多到70质量%或更少,只要两者的总和为100质量%即可。若所含聚烯烃组合物太少,则成型时在模具(dice)的出口处,膨胀或颈缩变大。这样将难以形成该片。另一方面,如果含过多的聚烯烃,则很难制备均相溶剂。
当用小片模具成型含有高浓度聚烯烃组合物的溶剂时,优选的间隙是,例如从0.1mm到5mm,包括两个端值。优选地,加压温度从140℃到250℃,包括两个端值,加压速度从2cm/分钟到30cm/分钟,包括两个端值。
冷却至少要进行到温度降至凝胶化温度或以下。冷却方法的例子是与冷风、冷却剂或其它的冷介质直接接触的方法,以及用通过冷却剂冷却的辊接触的方法。含有高浓度聚烯烃组合物的溶剂在冷却过程期间或之前可以取回从1到10部分,包括两个端值,优选的是1到5,包括两个端值。若该部分太高,颈缩变得太大,并且拉伸该片时,很容易造成断裂,这不是优选的。
加热凝胶片后,凝胶片拉伸优选通过拉幅法的双轴拉伸,卷绕法,压力法或这些方法的组合进行。此时,可以同时进行纵向和侧向拉伸或顺序拉伸。特别是,同时的二次拉伸是优选的。优选的拉伸温度等于或低于该温度加上10℃到聚烯烃细合物的熔点,更为优选的温度是在晶体的分散温度或更高到低于熔点的温度范围内。如果拉伸温度太高,则由于树脂熔融,不能通过拉伸得到有效分子链取向,这不是优选的。如果拉伸温度太低。则树脂未充分软化,从而拉伸时该片容易破裂,并且不能以高倍率拉伸。
拉伸凝胶片后,优选的是用挥发性溶剂清洗拉伸的薄膜,并随后去掉残留的低挥发溶剂。清洗后,通过加热或输送空气干燥拉伸的薄膜,并且使清洗溶剂挥发掉。清洗溶剂的例子是:如戊烷,己烷,庚烷(hebutane)这样的碳氢化合物;如二氯甲烷,四氯化碳这样的氯烃;如三氟乙烷这样的碳氟化物;和如二乙醚,二氧杂环乙烷这样的醚,所有这些都具有挥发特性。清洗溶剂根据所用的低挥发性溶剂进行选择,并可单独或以混合物使用。通过把拉伸的薄膜浸泡在挥发性溶剂中的方法,把挥发性溶剂喷洒在薄膜上的方法,或这些方法的组合而进行清洗。拉伸的薄膜要清洗至残余的低挥发性溶剂减少到小于1质量份相对于100质量份聚烯烃组合物计。
一种电解液浸渍到隔板23中。该电解液通过把作为电解质盐的锂盐溶解于液态的非水溶剂中得到的。该液态非水溶剂是,在诸如25℃时本征粘度为10.0mPas或更小的非水化合物。作为非水溶剂,优选的是用具有相当高的电化学稳定性的溶剂,例如,碳酸亚乙酯,碳酸亚丙酯,碳酸二乙酯或碳酸甲乙酯为主要溶剂。也可以使用这些中的一种或两种或更多种的混合物。
作为非水溶剂,下面的副溶剂可以与主溶剂混合。例如,碳酸亚丁酯,γ-丁内酯,γ-戊内酯,用氟基部分或全部取代这些化合物的氢基得到的溶剂,1-2-二甲氧基乙烷,四氢呋喃,2-甲基四氢呋喃,1,3-二氧戊环,4-甲基-1,3-二氧戊环,乙酸甲酯,丙酸甲酯,乙腈,戊二腈,己二腈,甲氧基乙腈,3-甲氧基丙烯腈(3-methoxypropylenitrile),N,N-二甲基甲酰胺(N,N-dimethylformamid),N-甲基吡咯烷酮(N-methypyrrolidinone),N-甲基噁唑烷酮(N-methyloxzolidinone),N,N-二甲基咪唑烷酮,硝基甲烷,硝基乙烷,环丁砜,二甲亚砜(dimethylsulfoxyde)以及磷酸三甲酯相混合。可以使用这些中的一种或两种或更多种的混合物。
合适的锂盐的例子是LiPF6,LiBF4,LiAsF6,LiCIO4,LiB(C6H5)4,LiCH3SO3,LiCF3SO3,LiN(SO2CF3)2,LiC(SO2CF3)3,LiAlCl4,LiSiF6,LiCl和LiBr。可以使用这些中的一种或两种或更多种的混合物。尤其优选的是LiPF6,以便在进一步改善循环特性的同时得到高离子传导率。锂盐相对于非水溶剂的浓度优选的是2.0mol/Kg或更低,更为优选的是0.5mol/Kg或更大。这个范围能够改善电解液的离子传导率。
代替使用电解液,可以使用凝胶电解质,其中电解液保持于基质高分子化合物中。只要在室温下离子电导为1mS/cm或更大,对于凝胶电解质的组成或基质高分子化合物的结构没有限制。电解液(即,液体非水溶剂和电解质盐)如上所述。这些基质高分子化合物的例子是聚丙烯腈,聚偏二氟乙烯,聚偏二氟乙烯和聚六氟丙烯的共聚物,聚四氟乙烯,聚六氟丙烯,聚环氧乙烷,聚环氧丙烷,聚磷腈,聚硅氧烷,聚醋酸乙烯酯,聚乙烯醇,聚甲基丙烯酸甲酯,聚丙烯酸脂,聚甲基丙烯酸酯,苯乙烯-丁二烯橡胶,聚苯乙烯和聚碳酸酯。尤其是,从电化学稳定性方面考虑,优选的是使用具有聚丙烯腈,聚偏二氟乙烯,聚六氟丙烯或聚氧乙烯结构的高分子化合物。添加到电解液中的基质高分子化合物的量根据相容性而异。通常,添加的基质高分子化合物的量相当于电解液的质量的5到50%。
如同电解液,锂盐相对于非水溶剂的浓度优选的是2.0mol/Kg或更低,更为优选的是0.5mol/Kg或更大。这里的非水溶剂不仅包括液态非水溶剂,也包括解离电解质盐的非水溶剂。因此,在使用具有离子电导率的基质高分子化合物的情况下,基质高分子化合物也作为非水溶剂而包括在内。
例如,二次电池可以下述的方式制造。
首先,通过混合,例如,能够包藏/释放锂的正极材料,导电剂和粘合剂来制备正极混合物。将该正极混合物分散在N-甲基-2-吡咯烷酮或相似的溶剂中以得到膏状的正极混合物料浆。将正极混合物料浆涂覆到正极集电器层21a的两侧,并干燥。接着,用辊压机等把正极集电器层21a压制成型,以形成正极混合物层21b,而后,制成正极21。
接下来,通过混合,例如,能够包藏/释放锂的负极材料和粘合制来制备负极混合物。将该负极混合物分散在N-甲基-2-吡咯烷酮或相似的溶剂中以得到膏状的负极混合物料浆。将负极混合物料浆涂覆到负极集电器层22a上,并干燥。接着,用辊压机等把负极集电器层22a压制成型,以形成负极混合物层22b,而后,制成负极22。
接下来,正极引线25通过焊接或类似的方法与正极集电器层接触,同时负极引线26通过焊接或类似的方法与负极集电器层接触。随后,在其设置有隔板23的情况下,卷绕正极21和负极22。负极引线26的尖端焊接到电池壳体11上,而正极引线25的尖端焊接到安全阀机构15上。卷绕在一起的正极21和负极22由一对绝缘板12和13夹紧,并封入电池壳体11中。把正极21和负极22封入壳体11中以后,把电解质注入电池壳体11内,从而使隔板23用电解质浸渍。电池盖14,安全阀机构15和PTC16通过用垫圈17填隙而固定在电池壳体11的开口端。由此制得图1所示的二次电池。
二次电池如下所述进行工作。
当二次电池充电时,从正极混合物层21b释放出锂离子,穿过浸渍到隔板23中的电解液,首先包藏于负极混合物层22b中的能够包藏/释放锂的负极材料中。当充电继续时,处于开路电压低于过充电电压的状态,充电容量超过负极材料的充电容量,从而使锂金属开始在负极材料的表面上析出。此后,锂金属继续在负极22中析出直到充电结束。因此,当使用诸如含碳材料作为负极材料时,负极混合物层22b的外表由黑色变成金色,再变成银色。
当电池放电时,首先,在负极22上析出的锂金属,溶解成离子,穿过浸渍到隔板23中的电解液,随后包藏在正极混合物层21中。当放电进一步进行时,包藏在负极混合物层22b的负极材料中的锂离子被释放,并且通过电解液包藏在正极混合物层21b中。因此,在二次电池中,锂二次电池和相关技术的锂离子二次电池的特性,即,高能量密度和优异的循环特性都能够获得。尤其是,在本实施方案中,正极混合物层21b的厚度A与负极混合物层22b的厚度B的比(A/B)设定为0.92或更大。因此,可以实现在负极22上的稳定地析出锂或稳定地得到更为优异的特性。
正如实施方案中所述,正极混合物层21b的厚度A与负极混合物层22b的厚度B的比(A/B)设定为0.92或更大,包括两个端值。因此,在开路电压低于过充电电压的状态,锂金属能够稳定地在负极22上析出。所以,能够稳定地得到高能量密度和优异的循环特性。
尤其是通过设定正极混合物层21b的厚度A与负极混合物层22b的厚度B在80μm到250μm的范围内,包括两个端值。能够进一步改善能量密度,并能够防止正极混合物层21b和负极混合物层22b的剥离。
[实施例]
下面将详细描述本发明的具体实例。
作为实施例1到7,制备如图1所示的凝胶卷绕型二次电池。将参照图1说明实施例,其中使用与图1相同的参考数字。
首先,通过以Li2CO3∶CoCO3=0.5∶1(摩尔分数)的比例混合碳酸锂(Li2CO3)和碳酸钴(CoCO3),并在空气中900℃下煅烧5个小时,得到作为正极材料的锂-钴复合氧化物(LiCoO2)。当用X-射线衍射测量所得锂-钴复合氧化物时,其峰与在JCPDS文件中登记的LiCoO2的峰非常相似。接着,将锂-钴复合氧化物研磨成粉末,其累积50%的颗粒直径为15μm,这可通过激光衍射得到,从而得到正极材料。随后,混合95%质量的锂-钴复合氧化物粉末和5%质量的碳酸锂。此后,将94%质量所得到的混合物和作为导电剂的3%质量的Ketjen黑,作为粘合剂的3%质量的聚偏二氟乙烯混合以制备正极混合物。接着,将正极混合物分散在作为溶剂的N-甲基-吡咯烷酮中形成料浆,之后将其均匀地涂覆到20μm厚的铝箔带制成的正极集电器层21a的两侧,再干燥并压制成型,以形成正极混合物层21b。由此制成正极21。此时,在实施例1到7中,正极混合物层的厚度A发生变化,如表1所示。随后,由铝制成的正极引线25与正极集电器层21a的一端相连。
[表1]
 正极混合物层的厚度A  负极混合物层的厚度B    厚度比A/B  放电容量(mAh)   能量密度(Wh/dm3)   放电容量保持率(%)   锂金属衍射峰
  实施例1     132.0     140.2   0.942     857     325     90.2     有
  实施例2     132.0     127.2   1.038     898     341     91.3     有
  实施例3     132.0     111.3   1.186     946     359     91.8     有
  实施例4     132.0     95.4   1.384     997     379     89.3     有
  实施例5     182.0     121.5   1.498     1024     389     88.8     有
  实施例6     182.0     108.3   1.681     1152     438     86.4     有
  实施例7     234.1     143.4   1.632     1285     488     84.5     有
  对比例1     132.0     159.0   0.830     818     311     90.8     无
  对比例2     233.0     257.2   0.906     823     313     91.0     无
制备充电容量为512mAh/dm3的天然石墨作为负极材料。通过混合90%质量的天然石墨和作为粘合剂的10%质量的聚偏二氟乙烯制备成负极混合物。接着,将负极混合物分散在溶剂N-甲基-2吡咯烷酮中以得到料浆,随后将其均匀地涂覆到10μm厚的铝箔带制成的负极集电器层22a的两侧,再干燥并压制成型以形成负极混合物层22b。由此制成了负极22。此时,在实施例1到7中,负极混合物层的厚度B发生变化,如表1所示,并且正极混合物层21b与负极混合物层22b的厚度的比(A/B)设定成0.92或更大。随后,由镍制成的负极引线26与负极集电器层22a的一端接触。
制成每个正极21和负极22后,制备由多孔聚乙烯拉制膜制成的隔板23。将负极22,隔板23,正极21,和隔板23,以此种顺序堆叠,并且将堆叠体卷绕数次,从而得到外径为14mm的卷绕电极体20。
在制成卷绕电极体20后,将卷绕电极体20用一对绝缘板12和13夹住,将负极引线26焊接到电池壳体11上,并将正极引线25焊接到安全阀机构15上。接下来,将卷绕电极体20封入由镀镍的铁制成的电池壳体11内。而后,将电解液在减压下注入电池壳体11内。所用的电解液是通过将作为电解质盐的1.5mol/dm3的LiPF6溶解于非水溶剂中制得的,该非水溶剂是20%质量的碳酸亚乙酯,56%质量的碳酸二甲酯,4%质量的碳酸甲乙酯和20%质量碳酸亚丙酯的混合。注入的电解液的量为3.0g。
在将电解液注入电池壳体11中后,通过用垫圈17填隙把电池盖14封苯到电池壳体11上,在其间凖蚋灿辛て唷4佣或
Figure A0114567200161
玫绞凳1到7中的每个直径为14mm,高为6mm的圆柱形二次电池。
对所得到的实施例1到7中的二次电池进行充电/放电测试,以获得电池放电容量,能量密度和放电容量保持率。此时,在300mA恒流下进行充电直至电池电压达到4.2V,再在4.2V的恒压下继续进行总共5个小时。刚好在完全充电前正极21和负极22之间的电压为4.2V,且电流值为5mA或更小。另外一方面,在300mA恒流下进行放电直至电池电压达到2.75V。当充电/放电在这里所描述的条件下进行时,电池会处于完全充电或完全放电的状态。电池的放电容量和能量密度被设置成第二个循环的放电容量和能量密度,并且以第200个循环的放电容量与第二个循环的放电容量的分数为放电容量保持率。结果列于表1中。
而且,实施例1到7的二次电池在上述条件下进行10个充电/放电循环,接着再次完全充电,如果在负极混合物层22b上有锂盒属的析出,则将电池分解并用X-射线衍射测量加以研究。其结果如表1所示。同样,实施例1中获得的X-射线衍射图示于图3中。
作为实施例的对比例1和2,二次电池是用与实施例1到7相同的方法制备的,除了正极混合物层的厚度A和负极混合物层的厚度B发生了如表l所示的变化,且厚度比(A/B)设定为小于0.92,如表1所示。而且,在对比例1和2的二次电池中,电池的放电容量,能量密度,放电容量保持率,和完全充电状态下存在的析出的锂金属用与实施例1到7相同的方法进行研究。结果列于表1中。而且,由对比例1得到的X-射线衍射图示于图4中。
正如从表1图3和图4中所看到的,在实施例1到7中观察到相应于锂金属(110)面的X-射线衍射峰。相反,在对比例1和2中观察不到锂金属的X-射线衍射峰。换句话说,实施例1到7中,证实了负极容量是用包藏/释放锂的容量组分和析出/溶解锂金属的容量组分的和表示的。
而且,正如从表1中所看到的,与对比例1和2相比,实施例1到7中获得的放电容量和能量密度都是更大的值,并且在放电容量保持率方面也得到大致相同的优异值。进而,当正极混合物层21b的厚度A与负极混合物层22b的厚度B的比(A/B)变大时,放电容量和能量密度的值也倾向于变大。换句话说,它证实了通过把正极混合物层21b的厚度A与负极混合物层22b的厚度B的比(A/B)设定为0.92或更大,在开路电压低于过充电电压的状态下,能够实现锂金属在负极22b中稳定地析出,并且同时也能获得高能量密度和优异的循环特性。
通过参考实施方案和实施例描述了本发明。然而,本发明并不限于上述实施方案和实施例中,而是可以进行各种改进。
例如,在上述实施方案和实施例中,描述了使用锂作为轻金属的情况。然而,本发明也适用使用其它如钠(Na)或钾(K)这样的碱金属,如镁(Mg)或钙(Ca)这样的碱土金属,如铝(Al),锂这样的其它金属,或它们合金的情况。在这些情况下也能得到相同的效果。在那些情况下,能够包藏/释放轻金属的负极材料,正极材料,非水溶剂,电解质盐等要根据所使用的轻金属进行选择。但是,优选的是使用锂或含锂的合金作为轻金属,因为其电压可以与已广泛使用的锂离子二次电池高度匹配。
而且,在上述实施方案和实施例中,描述了使用电解液或为一种固体电解质的凝胶电解质的情况。但是,也可以使用其它的电解质。其它的电解质的例子是有机固体电解质,其中电解质盐分散在离子导电聚合物、离子导电陶瓷、离子导电玻璃中,由离子晶体或类似的晶体制成的无机固体电解质,无机固体电解质和电解液的混合物,无机固体电解质和凝胶电解质的混合物,以及无机固体电解质和有机固体电解质的混合物。
进而,在上述的实施方案和实施例中,描述了具有卷绕结构的圆柱形二次电池。但是,本发明也适用于具有卷绕结构的椭圆形二次电池或多边形二次电池,或具有其中正极和负极折叠或堆叠结构的二次电池。另外,本发明也适用于所谓的硬币型,扭扣型或卡片型二次电池。
正如所述的,在本发明的二次电池中,正极混合物层的厚度A与负极混合物层的厚度B的比(A/B)设定为0.92或更大。因此,在开路电压低于过充电电压的状态下,能够实现锂金属在负极上稳定地析出,从而能够稳定地得到高能量密度和优异的循环特性。
尤其是在本发明的一个方面的二次电池中,每个正极混合物层的厚度A与负极混合物层的厚度B设定为80μm到250μm的范围内,包括两个端值。因此,能够进一步改善能量密度,并防止正极混合物层和负极混合物层的剥离。
显然,在以上的教导下,可能对本发明进行许多改进和变化。所以要理解在所附的权利要求书要求保护的发明范围内,除了如具体说明的之外,本发明还可以用其它方法实现。

Claims (7)

1.一种二次电池,包括正极、负极和电解质,其中
该正极包括能够包藏和释放轻金属的正极混合物层;
该负极包括能够包藏和释放轻金属的负极混合物层;
该负极的容量用包藏和释放轻金属的容量组分以及析出和溶解轻金属的容量组分的和表示,以及
该正极混合物层的厚度A与该负极混合物层的厚度B的比(A/B)为0.92或更大。
2.如权利要求1的二次电池,其中每个正极混合物层的厚度A与负极混合物层的厚度B分别在80μm到250μm的范围内,包括两个端值。
3.如权利要求1的二次电池,其中负极混合物层包含含碳材料。
4.如权利要求1的二次电池,其中负极混合物层含有石墨。
5.如权利要求1的二次电池,其中轻金属包括锂。
6.如权利要求1的二次电池,其中电解质含有LiPF6
7.如权利要求1的二次电池,其中电解质含有非水溶剂和电解质盐,其中在非水溶剂中电解质盐的浓度为2.0mol/Kg或更低。
CNB011456728A 2000-09-18 2001-09-18 二次电池 Expired - Fee Related CN1233059C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP281887/2000 2000-09-18
JP2000281887A JP2002093464A (ja) 2000-09-18 2000-09-18 二次電池

Publications (2)

Publication Number Publication Date
CN1363965A true CN1363965A (zh) 2002-08-14
CN1233059C CN1233059C (zh) 2005-12-21

Family

ID=18766479

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011456728A Expired - Fee Related CN1233059C (zh) 2000-09-18 2001-09-18 二次电池

Country Status (6)

Country Link
US (1) US20020076605A1 (zh)
EP (1) EP1189299A3 (zh)
JP (1) JP2002093464A (zh)
KR (1) KR20020022015A (zh)
CN (1) CN1233059C (zh)
TW (1) TW518780B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022177B (zh) * 2006-03-31 2010-12-08 松下电器产业株式会社 非水电解质二次电池
CN107851838A (zh) * 2015-08-04 2018-03-27 汽车能源供应公司 锂离子二次电池
CN110495021A (zh) * 2017-06-21 2019-11-22 株式会社Lg化学 锂二次电池

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4423699B2 (ja) 1999-05-27 2010-03-03 ソニー株式会社 半導体レーザ素子及びその作製方法
JP3956384B2 (ja) * 1999-09-20 2007-08-08 ソニー株式会社 二次電池
JP2002280079A (ja) * 2001-03-19 2002-09-27 Sony Corp 電 池
US6670071B2 (en) * 2002-01-15 2003-12-30 Quallion Llc Electric storage battery construction and method of manufacture
US6677076B2 (en) * 2002-01-15 2004-01-13 Quallion Llc Electric storage battery construction and method of manufacture
JP4150202B2 (ja) * 2002-04-02 2008-09-17 ソニー株式会社 電池
JP2004063432A (ja) * 2002-06-05 2004-02-26 Sony Corp 電池
KR101111365B1 (ko) 2002-07-15 2012-03-09 우베 고산 가부시키가이샤 비수성 전해액 및 리튬 전지
JP4183472B2 (ja) 2002-10-10 2008-11-19 三洋電機株式会社 非水電解質二次電池
AU2003251798A1 (en) * 2003-01-15 2005-10-07 Quallion Llc Battery
JP2005005117A (ja) * 2003-06-11 2005-01-06 Sony Corp 電池
JP4748930B2 (ja) * 2003-09-09 2011-08-17 三洋電機株式会社 非水溶媒系二次電池
US8080329B1 (en) 2004-03-25 2011-12-20 Quallion Llc Uniformly wound battery
TWI269473B (en) * 2004-05-28 2006-12-21 Lg Chemical Ltd Lithium secondary batteries with charge-cutoff voltages over 4.35
TWI306680B (en) * 2004-05-28 2009-02-21 Lg Chemical Ltd Additives for lithium secondary battery
US8313860B2 (en) * 2004-09-28 2012-11-20 Tadiran Batteries Ltd. Lithium cell and method of forming same
JP4857643B2 (ja) * 2005-04-04 2012-01-18 ソニー株式会社 二次電池
JP2007305546A (ja) * 2006-05-15 2007-11-22 Sony Corp リチウムイオン電池
EP2526578B1 (en) * 2007-08-16 2015-09-30 LG Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
JP5319947B2 (ja) * 2008-03-25 2013-10-16 株式会社東芝 非水電解質電池
JP5618698B2 (ja) * 2010-08-20 2014-11-05 株式会社東芝 非水電解質電池
JP6045162B2 (ja) * 2011-03-25 2016-12-14 株式会社半導体エネルギー研究所 二次電池の作製方法
US20130300340A1 (en) * 2012-05-09 2013-11-14 General Motors Llc Arrangement and method for recharging a rechargeable backup battery
JP6305263B2 (ja) * 2014-07-31 2018-04-04 株式会社東芝 非水電解質電池、組電池、電池パック及び車
KR101885781B1 (ko) * 2017-07-05 2018-08-06 (주)다오코리아 온열 매트
CN108198999A (zh) * 2018-02-12 2018-06-22 宁波超霸能源有限公司 锂电池负极片和电池卷绕品及一次性锂金属电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019421B2 (ja) * 1990-12-28 2000-03-13 ソニー株式会社 非水電解質二次電池
EP0573266B1 (en) * 1992-06-01 1999-12-08 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US5437945A (en) * 1993-03-19 1995-08-01 Sony Corporation Secondary battery having non-aqueous electrolyte
WO1998038029A1 (en) * 1997-02-25 1998-09-03 Elf Atochem S.A. A thermoplastic fluororesin porous body, a method for the production thereof and use of said porous body for producing a battery cell
DE69837484T2 (de) * 1997-05-27 2007-12-13 Tdk Corp. Sekundärzelle mit nichtwässrigem Elektrolyt
JP4016506B2 (ja) * 1998-10-16 2007-12-05 ソニー株式会社 固体電解質電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022177B (zh) * 2006-03-31 2010-12-08 松下电器产业株式会社 非水电解质二次电池
US8673505B2 (en) 2006-03-31 2014-03-18 Panasonic Corporation Non-aqueous electrolyte secondary battery
CN107851838A (zh) * 2015-08-04 2018-03-27 汽车能源供应公司 锂离子二次电池
CN110495021A (zh) * 2017-06-21 2019-11-22 株式会社Lg化学 锂二次电池

Also Published As

Publication number Publication date
US20020076605A1 (en) 2002-06-20
EP1189299A3 (en) 2006-12-27
JP2002093464A (ja) 2002-03-29
TW518780B (en) 2003-01-21
KR20020022015A (ko) 2002-03-23
EP1189299A2 (en) 2002-03-20
CN1233059C (zh) 2005-12-21

Similar Documents

Publication Publication Date Title
CN1233059C (zh) 二次电池
JP3956384B2 (ja) 二次電池
EP1251576A2 (en) Anode active material and nonaqueous electrolyte secondary battery
JP2004022507A (ja) 電極およびそれを用いた電池
JP2002280079A (ja) 電 池
JP4150202B2 (ja) 電池
JP2003157900A (ja) 電 池
JP2002270230A (ja) 電 池
JP2005197175A (ja) 正極、負極、電解質および電池
JP2002270228A (ja) 電 池
JP2002270159A (ja) 電 池
JP2002280065A (ja) 電解質および電池
JP2002280080A (ja) 二次電池の充電方法
JP2002270231A (ja) 電 池
JP2004363076A (ja) 電池
JP4784718B2 (ja) 電解質および電池
JP4465875B2 (ja) 非水電解質二次電池及びその製造方法
US20050008940A1 (en) Battery
JP2004356092A (ja) 電池
JP2003045487A (ja) 電 池
JP2005197174A (ja) 電池
JP2002270233A (ja) 電 池
JP2002280078A (ja) 電 池
JP2003331827A (ja) 負極およびそれを用いた電池
JP2004200115A (ja) 負極およびそれを用いた電池

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee