CN1376270A - 用反应性亲水聚合物进行的医疗器件的表面处理 - Google Patents

用反应性亲水聚合物进行的医疗器件的表面处理 Download PDF

Info

Publication number
CN1376270A
CN1376270A CN00807815A CN00807815A CN1376270A CN 1376270 A CN1376270 A CN 1376270A CN 00807815 A CN00807815 A CN 00807815A CN 00807815 A CN00807815 A CN 00807815A CN 1376270 A CN1376270 A CN 1376270A
Authority
CN
China
Prior art keywords
hydrophilic
medical device
monomer
polymer
monomeric unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00807815A
Other languages
English (en)
Other versions
CN1156713C (zh
Inventor
小保罗·L·瓦林特
约瑟夫·A·麦吉
约瑟夫·C·萨拉莫内
理查德·M·奥萨克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bausch and Lomb Inc
Original Assignee
Bausch and Lomb Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bausch and Lomb Inc filed Critical Bausch and Lomb Inc
Publication of CN1376270A publication Critical patent/CN1376270A/zh
Application granted granted Critical
Publication of CN1156713C publication Critical patent/CN1156713C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Abstract

本发明涉及硅氧烷医疗器件如接触镜片和医疗植入物的表面处理。具体而言,本发明涉及用亲水聚合物涂布器件而修饰医疗器件的表面以提高其生物相容性或亲水性的方法,所述涂布通过亲水聚合物上的官能团之间的反应进行,所述官能团与医疗器件表面上或附近的反应官能团互补。本发明还涉及具有这种表面涂层的接触镜片或其它医疗器件。

Description

用反应性亲水聚合物进行的医疗器件的表面处理
                      发明领域
本发明涉及医疗器件如接触镜片和医疗植入物的表面处理。具体而言,本发明涉及用亲水聚合物涂布器件而修饰医疗器件的表面以提高其生物相容性或亲水性的方法,所述涂布通过接触镜片材料中的反应官能团和亲水聚合物上的反应官能团的反应进行。本发明还涉及具有这种表面涂层的接触镜片或其它医疗器件。
                      背景技术
由含硅氧烷的材料制成的接触镜片已被研究多年。一般这类材料可再分为两大类:水凝胶和非水凝胶。非水凝胶不吸收可感知量的水分,而水凝胶则能以平衡态吸收并保留水分。水凝胶的含水量一般大于约5%(重量),更常见的为约10%(重量)至约80%(重量)。不管其含水量如何,非水凝胶和水凝胶硅氧烷接触镜片均倾向于具有相对疏水性的、不可湿润的表面。
表面结构和组成决定了固体材料的许多物理性质和最终用途。诸如湿润、摩擦和粘附或光滑性的特征很大程度上受表面特征的影响。改变表面特征在生物技术应用中具有特殊的重要性,其中生物相容性特别受到关注。因此,本领域技术人员久已认识到需要使接触镜片和其它医疗器件的表面亲水或更为亲水。增加接触镜片表面的亲水性改善接触镜片对眼中泪液的湿润性。这进而提高接触镜片的配戴舒适性。在连续配戴镜片的情况下,表面尤其重要。连续配戴镜片的表面必须设计成不仅舒适,而且避免不良反应如角膜水肿、炎症或淋巴细胞浸润。因此一直在寻找修饰接触镜片,尤其是为连续(过夜)配戴而设计的高DK(高氧渗透性)镜片的表面的改进的方法。
许多专利公开了将亲水或其它生物相容性聚合物链连接到接触镜片的表面以使这些镜片更具生物相容性。例如,美国专利5,652,014公开了将基底胺化,然后与其它聚合物如PEO星形分子或硫酸多糖反应。这种方法的一个问题在于由于难以将聚合物连接到硅氧烷基底上因而这种聚合物链的密度有限。
美国专利5,344,701公开了通过等离子体将噁唑啉酮(oxazolinone)或二氢唑酮单体连接到基底上。该发明在表面介导或催化反应领域中用于合成或位点特异性分离,包括生物分子、诊断载体和酶膜反应器的亲合分离。通过噁唑啉酮单体中的烯键式不饱和与基底表面上由等离子体形成的基团的反应而将噁唑啉酮基团连接到多孔基底上。或者可以用单体涂布基底并与等离子体反应以形成交联的涂层。然后可以将已连接到表面的噁唑啉酮基用于连接生物活性物质,例如蛋白质,因为噁唑啉酮被胺、硫醇和醇攻击。Valint等人的美国专利5,364,918和Lai等人的美国专利5,352,714公开了将噁唑啉酮单体用作接触镜片的内部湿润剂,该试剂可以迁移至接触镜片的表面。
Goldenberg等人的美国专利4,734,475公开了由主链中含有环氧乙烷(环氧)取代的单体单元的聚合物制造的接触镜片的用途,使镜片的外表面含有亲水诱导量的环氧乙烷单体单元与水溶性反应有机胺、醇、硫醇、脲、硫脲、亚硫酸盐、重亚硫酸盐或硫代硫酸盐的反应产物。
考虑到上述,需要为硅氧烷医疗器件表面找到光学澄清的亲水涂层,其使该器件更具生物相容性。进一步需要为硅氧烷水凝胶接触镜片形成在更长的时间内更为舒适同时可被眼泪湿润且对氧高度渗透的涂层。期望这种生物相容化的镜片能够连续配戴过夜,优选连续佩戴一周或更长时间而对角膜没有不良作用。
                 附图的简要说明
图1显示了在以下的实施例15中描述的对照接触镜片的原子力显微镜(AFM)局部图像(50μm2),以与本发明的接触镜片进行比较;该镜片的前侧图像显示在图1的左方而后侧而显示在右方。
图2显示了在实施例14中描述的根据本发明的一个实施方案的涂层接触镜片的原子力显微镜(AFM)局部图像(50μm2),该镜片是用实施例10中描述的聚合物,二甲基丙烯酰胺和甲基丙烯酸缩水甘油酯的共聚物涂布的硅氧烷刚性可透气镜片。
图3显示了在实施例15中描述的根据本发明的一个实施方案的涂层接触镜片的原子力显微镜(AFM)局部图像(50μm2),该镜片是用实施例10和实施例12中描述的亲水共聚物的组合涂布的硅氧烷刚性可透气镜片。
图4显示了在实施例16中描述的对照接触镜片的原子力显微镜(AFM)局部图像(50μm2),以与本发明另一实施方案的其它镜片进行比较,该镜片是用实施例11中描述的聚合物涂布的硅氧烷水凝胶镜片。
图5显示了在实施例16中描述的根据本发明的一个实施方案涂层接触镜片的原子力显微镜(AFM)局部图像(50μm2),该镜片是用实施例11中描述的聚合物,二甲基丙烯酰胺、甲基丙烯酸缩水甘油酯和八氟戊基甲基丙烯酸酯的共聚物涂布的硅氧烷水凝胶镜片。
图6显示了在实施例16中描述的根据本发明的一个实施方案涂层接触镜片的原子力显微镜(AFM)局部图像(50μm2),该镜片是用实施例11中描述的聚合物,二甲基丙烯酰胺、甲基丙烯酸缩水甘油酯和八氟戊基甲基丙烯酸酯的共聚物涂布的硅氧烷水凝胶镜片,所述共聚物被用于以高于涂布图5中的镜片所用的浓度涂布。
                     发明简述
本发明涉及硅氧烷接触镜片和其它硅氧烷医疗器件的表面处理,包括修饰接触镜片的表面以提高其亲水性或湿润性的方法。该表面处理包括通过镜片基底材料上的反应官能团与单体单元中沿亲水反应性聚合物的互补反应官能团的反应将亲水聚合物链连接到接触镜片基底的表面上。本发明还涉及含有由这种方法所制的表面的医疗器件,包括接触镜片、眼内镜片、导管、植入物等等。
                     发明详述
如上所述,本发明涉及硅氧烷医疗器件,包括接触镜片、眼内镜片和血管植入物的表面处理,以增强其生物相容性。术语硅氧烷意指所处理的材料为含有至少5%(重量)硅氧烷(-OSi-键),优选10-100%(重量)的硅氧烷,更优选30-90%(重量)的硅氧烷的有机聚合物。本发明特别有利于应用于接触镜片,其为硅氧烷水凝胶或硅氧烷刚性可透气材料的。本发明尤其有利于应用于硅氧烷水凝胶连续配戴镜片。水凝胶为已知的一类材料,它包括以平衡状态含有水的水合、交联聚合物系统。通常硅氧烷水凝胶的含水量大于约5%(重量),更常见的是约10%(重量)至约80%(重量)。这种材料一般通过聚合含有至少一种含硅氧烷的单体和至少一种亲水单体的混合物而制得。含硅氧烷的单体或亲水单体可以用作交联剂(交联剂被定义为具有多种可聚合的官能团的单体)或者可以使用单独的交联剂。在硅氧烷水凝胶的形成中可以应用的含硅氧烷的单体单元在现有技术中是已知的,其许多实例在以下文献中给出:美国专利4,136,250、4,153,641、4,740,533、5,034,461、5,070,215、5,260,000、5,310,779和5,358,995。
可应用的含硅单体单元的实例包括膨松聚硅氧烷基烷基(甲基)丙烯酸单体。膨松聚硅氧烷基烷基(甲基)丙烯酸单体的实例如下式I表示:
Figure A0080781500121
其中,
x表示-O-或-NR-;
各个R18独立地表示氢或甲基;
各个R19独立地表示低级烷基、苯基或由下式表示的基团:
Figure A0080781500122
其中各个R19独立地表示低级烷基或苯基;且h为1-10。
一些优选的膨松单体为甲基丙烯酰氧基丙基三(三甲基甲硅烷氧基)硅烷或三(三甲基甲硅烷氧基)甲硅烷基丙基甲基丙烯酸酯,有时称之为TRIS,和三(三甲基甲硅烷氧基)甲硅烷基丙基乙烯基氨基甲酸酯,有时称之为TRIS-VC。
这些膨松单体可以与硅氧烷大分子单体共聚,它是由不饱和基团在该分子的两端或更多端封端的聚(有机硅氧烷)。例如,Deichert等人的美国专利4,153,641公开了多种不饱和基团,包括丙烯酰氧基或甲基丙烯酰氧基。
另一类代表性的含硅氧烷单体包括含硅氧烷的乙烯基碳酸酯或乙烯基氨基甲酸酯单体,如:1,3-双[4-乙烯基氧基羰氧基)丁-1-基]四甲基-二硅氧烷;3-(三甲基甲硅烷基)丙基乙烯基碳酸酯;3-(乙烯基氧基羰硫基)丙基-[三(三甲基甲硅烷氧基)硅烷];3-[三(三甲基甲硅烷氧基)甲硅烷基]丙基乙烯基氨基甲酸酯;3-[三(三甲基甲硅烷氧基)甲硅烷基]丙基烯丙基氨基甲酸酯;3-[三(三甲基甲硅烷氧基)甲硅烷基]丙基乙烯基碳酸酯;叔丁基二甲基甲硅烷氧基乙基乙烯基碳酸酯;三甲基甲硅烷基乙基乙烯基碳酸酯;和三甲基甲硅烷基甲基乙烯基碳酸酯。
另一类含硅单体包括聚氨基甲酸酯-聚硅氧烷大分子单体(有时还称之为预聚物),它可以具有硬-软-硬嵌段,象一般的尿烷弹性体一样。硅氧烷尿烷的实例在多种出版物中公开,包括Lai,Yu-Chin,″膨松聚硅氧烷基烷基甲基丙烯酸酯在聚氨基甲酸酯-聚硅氧烷水凝胶中的作用″,Journal of Applied Polymer Science,第60卷,1193-1199(1996)。PCT公开申请WO 96/31792和美国专利5,451,617与5,451,651公开了这种单体的实例,这些文献均引入本文作参考。硅氧烷尿烷单体的其它实例由式II和III表示:(II)   E(*D*A*D*G)a*D*A*D*E′;或(III)  E(*D*G*D*A)a*D*G*D*E′;其中:
D表示具有6-30个碳原子的烷基双自由基、烷基环烷基双自由基、环烷基双自由基、芳基双自由基或烷基芳基双自由基;
G表示具有1-40个碳原子并在主链中可以含有醚、硫或胺键的烷基双自由基、环烷基双自由基、烷基环烷基双自由基、芳基双自由基或烷基芳基双自由基;
*表示尿烷或脲键;
a至少为1;
A代表式IV的二价聚合基团:
Figure A0080781500141
其中:
各个Rs独立地表示具有1-10个碳原子且碳原子之间可以含有醚键的烷基或氟取代的烷基;
m′至少为1;和
p为提供400-10000的部分量的数字;
各个E和E′独立地表示由式VI代表的可聚合的不饱和有机基团:
        (VI)其中:
R23为氢或甲基;
R24为氢、具有1-6个碳原子的烷基,或-CO-Y-R26基团,其中Y为-O-、-S-或-NH-;
R25为具有1-10个碳原子的二价亚烷基;
R26为具有1-12个碳原子的烷基;
X表示-CO-或-OCO-;
Z表示-O-或-NH-;
Ar表示具有6-30个碳原子的芳基;
w为0-6;x为0或1;y为0或1;且z为0或1。
优选的含硅氧烷尿烷单体由式(VII)表示:
Figure A0080781500151
其中m至少为1并优选为3或4,a至少为1并优选为1,p为提供400-10000的部分量的数字并优选至少为30,R27为除去异氰酸酯基团后的双异氰酸酯双自由基,如异佛尔酮双异氰酸酯双自由基,而各个E″为由下式表示的基团:
Figure A0080781500152
另一类代表性的含硅氧烷单体包括氟代的单体。这种单体已被用于形成氟硅氧烷水凝胶以减少由其制得的接触镜片上沉积物的蓄积,如在美国专利4,954,587、5,079,319和5,010,141中所描述。已发现使用具有某些氟代的侧基,即-(CF2)-H的含硅氧烷单体改善亲水和含硅氧烷单体单元之间的生物相容性,如在美国专利5,387,662和5,321,108中所述。
在本发明的一个优选的实施方案中,硅氧烷水凝胶材料包括(大批,即在被共聚的单体混合物中)5-50%(重量),优选10-25%(重量)的一种或多种硅氧烷大分子单体;5-75%(重量),优选30-60%(重量)的一种或多种聚硅氧烷基烷基(甲基)丙烯酸单体;和10-50%(重量),优选20-40%(重量)的亲水单体。亲水单体的实例包括但不限于烯键式不饱和含内酰胺单体如N-乙烯基吡咯烷酮、甲基丙烯酸和丙烯酸;丙烯酸取代的醇,如2-羟基乙基甲基丙烯酸酯和2-羟基乙基丙烯酸酯;和丙烯酰胺,如甲基丙烯酰胺和N,N-二甲基丙烯酰胺;乙烯基碳酸酯或乙烯基氨基甲酸酯单体,如在美国专利5,070,215中所公开的;和噁唑啉酮单体,如在美国专利4,910,277中所公开的。其它亲水单体对本领域技术人员是明确的。
以上的硅氧烷材料只是例举性的,其它可以用作通过根据本发明的涂布而受益的基底材料已在各种出版中公开,且正被不断地开发以应用于接触镜片和其它医疗器件。
如上所述,本发明涉及通过将亲水聚合物链连接到表面而进行的硅氧烷医疗器件如接触镜片的表面的修饰。通过将表面暴露于具有和该医疗器件表面上的反应基团互补的开环或异氰酸酯反应官能团的亲水反应性聚合物(包括低聚物在内)而将亲水聚合物链连接到表面上。或者可以通过将表面暴露于具有与硅氧烷材料中的二氢唑酮反应基团互补的羟基或(伯或仲)胺基,或者具有与硅氧烷材料中的环氧反应基团互补的羧酸互补基团的亲水反应性聚合物(包括低聚物在内)而将该亲水聚合物链连接到该表面上。换句话说,医疗器件表面上的化学官能团被用于将亲水聚合物共价连接到目标或基底上。
亲水反应性聚合物可以是包括任选地含有异氰酸酯或开环反应官能团单体单元的均聚物或共聚物。虽然这些反应单体单元还可以是亲水的,但该亲水反应性聚合物还可以是反应单体单元与一种或多种不同非反应性亲水单体单元共聚的共聚物。在该亲水聚合物中可以任选地存在较少量的疏水单体单元。开环单体包括二氢唑酮官能性、环氧官能性和酸酐官能性单体。
可以使用亲水反应性聚合物的混合物。例如,连接到基底上的亲水聚合物链可以是聚合物混合物反应的结果,所述聚合物混合物包括(a)沿亲水聚合物在单体单元中具有与基底表面上的反应官能团互补的反应官能团的第一亲水反应性聚合物,和,另外的(b)具有可以与第一亲水反应性聚合物反应的补充反应官能团的第二亲水反应性聚合物。已发现将包括环氧官能性聚合物与酸官能性聚合物的混合物同时或依次施加于要涂布的基底上,可以提供相对厚的涂层。
优选地,该亲水反应性聚合物包括1-100%(摩尔)的反应单体单元,更优选5-50%(摩尔),最优选10-40%(摩尔)。该聚合物可以包括0-99%(摩尔)的非反应性亲水单体单元,优选50-95%(摩尔),更优选60-90%(摩尔)(该反应单体一旦反应还可以是亲水的,但根据定义被称为非反应性亲水单体的单体互不相容)。亲水反应性聚合物的重均分子量的适宜范围可以是约200-1000000,优选约1000-500000,最优选约5000-100000。
亲水单体可以是非质子型的如丙烯酰胺(N,N-二甲基丙烯酰胺,DMA),内酰胺如N-乙烯基吡咯烷酮,和聚(烯化氧)如甲氧基聚氧亚乙基甲基丙烯酸酯;或者可以是质子型的如甲基丙烯酸或羟基烷基甲基丙烯酸酯如羟基乙基甲基丙烯酸酯。亲水单体还可以包括两性离子如N,N-二甲基-N-甲基丙烯酰氧基乙基-N-(3-硫丙基)-铵甜菜碱(SPE)和N,N-二甲基-N-甲基丙烯酰氨基丙基-N-(3-硫代丙基)-铵甜菜碱(SPP)。
疏水单体单元任选地以多至35%(摩尔)的量被使用,优选0-20%(摩尔),最优选0-10%(摩尔)。疏水单体的实例为烷基甲基丙烯酸酯、氟代烷基甲基丙烯酸酯、长链丙烯酰胺如辛基丙烯酰胺等等。
如上所述,亲水反应性聚合物可以包括衍生自二氢唑酮-官能性、环氧-官能性和酸酐-官能性单体的单体单元。例如,用于涂布镜片的环氧-官能性亲水反应性聚合物可以是含有甲基丙烯酸缩水甘油酯(GMA)单体单元的共聚物,它将与,例如,含有羧酸基团的镜片基底反应。酐-官能性亲水反应性聚合物的优选实例包括衍生自诸如马来酸酐和衣康酸酐的单体的单体单元。
一般而言,亲水反应性聚合物中的环氧-官能性反应基团或酐-官能性反应基团与基底中的羧基(-COOH)、醇(-OH)或伯胺(-NH2)基团反应,例如由包括作为单体单元的甲基丙烯酸(MAA)、羟基烷基甲基丙烯酸酯如羟基乙基甲基丙烯酸酯(HEMA),或氨基烷基甲基丙烯酸酯如氨基丙基甲基丙烯酸酯,所有常见和商购的单体的聚合物制成的基底。在醇的情况下,可以使用催化剂如4-二甲基氨基吡啶以加速室温下的反应,这化学家而言是可以理解的。还可以通过使用水解成酸的二氢唑酮单体单元而在基底中产生酸基团。这些酸基团可以与亲水反应性聚合物中的环氧或酐基团反应。例如,参见Valint和McGee的美国专利5,364,918,该文献引入本文作参考,作为这种基底的实例。
一般而言,亲水反应性聚合物中的二氢唑酮或异氰酸酯-官能团可以与聚合物基底中的胺或醇类似地反应,反应涉及优选在催化剂的存在下的醇。此外,亲水反应性聚合物中的羧酸、胺和水解二氢唑酮可以与基底中的环氧基团反应,如在Goldenberg等人的美国专利4,734,475中所描述的单体单元,该文献引入本文作参考。
在本发明的优选的实施方案中,将预先形成的(非可聚合的)含有衍生自至少一种开环单体、含异氰酸酯单体、含胺单体、含羟基单体或含羧基单体的(不可聚合的)亲水聚合物与医疗器件如接触镜片的基底表面上的反应基团反应。一般地,亲水反应性聚合物沿该聚合物链在一个或多个位置连接于该基底。对于环氧、异氰酸酯或开环单体单元的情况,连接后可以将亲水反应性聚合物中任何未反应的反应官能团水解成非反应性部分。
用于包含亲水反应性聚合物的适宜的亲水非反应单体通常包括溶于水的常规乙烯基单体如2-羟基乙基-、2-和3-羟基丙基-、2,3-二羟基丙基-、聚乙氧基乙基-,和聚乙氧基丙基丙烯酸酯、甲基丙烯酸酯、丙烯酰胺和甲基丙烯酰胺;丙烯酰胺、甲基丙烯酰胺、N-甲基丙烯酰胺、N-甲基甲基丙烯酰胺、N,N二甲基丙烯酰胺、N,N-二甲基甲基丙烯酰胺、N,N-二甲基-和N,N-二乙基氨基乙基丙烯酸酯和甲基丙烯酸酯以及相应的丙烯酰胺和甲基丙烯酰胺;2和4-乙烯基吡啶、4-和2-甲基-5-乙烯基吡啶;N-甲基-4-乙烯基哌啶;2-甲基-1-乙烯基咪唑;N,-N-二甲基烯丙基胺;二甲基氨基乙基乙烯基醚和N-乙烯基吡咯烷酮。
有用的非反应性单体通常包括以下结构的溶于水的常规乙烯基单体如丙烯酸酯和甲基丙烯酸酯:
Figure A0080781500191
其中R2为氢或甲基,而R3为氢或多至10个碳原子的脂族烃基,所述脂族烃基被一个或多个水增溶性基团如羧基、羟基、氨基、低级烷基氨基、低级二烷基氨基、具有约2至约100个重复单元的聚环氧乙烷基团取代,或被一个或多个硫酸酯、磷酸酯、磺酸酯、膦酸酯、酰胺基、亚磺酰氨基或亚膦酰氨基取代,或者它们的混合物;
优选R3为低聚物或聚合物如聚乙二醇、聚丙二醇、聚(亚乙基-亚丙基)二醇、聚(羟基乙基甲基丙烯酸酯)、聚(二甲基丙烯酰胺)、聚(丙烯酸)、聚(甲基丙烯酸)、聚砜、聚(乙烯醇)、聚丙烯酰胺、聚(丙烯酰胺-丙烯酸)聚(苯乙烯磺酸酯)钠盐、聚(环氧乙烷)、聚(环氧乙烷-氧化丙烯)、聚(乙醇酸)、聚(乳酸)、聚(乙烯基吡咯烷酮)、纤维素、多糖,其混合物和其共聚物;
下式的丙烯酰胺和甲基丙烯酰胺其中R2和R3如以上定义;
下式的丙烯酰胺和甲基丙烯酰胺:
Figure A0080781500201
其中R4为1-3个碳原子的低级烷基而R2如以上定义;
下式的马来酸酯和富马酸酯:
R3OOCH=CHCOOR3其中R3以上定义;
下式的乙烯基醚:
H2C=CH-O-R3,其中R3如以上定义;
下式的脂族乙烯基化合物:
R2CH=CHR3其中R2如以上定义而R3如以上定义,条件是R3不为氢;和
乙烯基取代的杂环,如乙烯基吡啶、哌啶,和咪唑与N-乙烯基内酰胺,如N-乙烯基-2-吡咯烷酮。
有用的水溶性单体包括丙烯酸和甲基丙烯酸;衣康酸,巴豆酸,富马酸和马来酸及其低级羟基烷基单和二酯,如2-羟基乙基富马酸酯和马来酸酯,丙烯酸钠和甲基丙烯酸钠;2-甲基丙烯酰氧基乙基磺酸和烯丙基磺酸。
亲水反应性聚合物中包含的某些疏水单体可以提供导致溶液中形成微小分散的聚合物聚集体的好处,这一点由聚合物溶液的混浊性得到证实。还可以在被涂布的医疗器件的原子力显微镜图中观察到这种聚集体。
适宜的疏水可共聚单体包括水溶性的常规乙烯基单体如下通式的丙烯酸酯和甲基丙烯酸酯:
Figure A0080781500211
其中R2如以上定义,而R5为具有多至20个碳原子的直链或支链脂族、脂环族或芳族基团,它是未取代的或被一个或多个多至12个碳原子的烷氧基、烷酰氧基或烷基,或者被卤素,尤其是氯或优选为氟取代,2至约100个单元的C2-C5聚亚烷氧基;或为低聚物如聚乙烯、聚(甲基甲基丙烯酸酯)、聚(乙基甲基丙烯酸酯)或聚(甲基丙烯酸缩水甘油酯),其混合物或其共聚物;
以下通式的丙烯酰胺和甲基丙烯酰胺:其中R2和R5如以上定义;
下式的乙烯基醚:
H2C=CH-O-R5其中R5如以上定义;
下式的乙烯基酯:
H2C=CH-OCO-R5其中R5如以上定义;
下式的马来酸酯和富马酸酯:
R5OOC-HC=CH-OOOR5其中R5如以上定义;和
下式的乙烯基取代的烃:
R2CH=CHR5其中R2和R5如以上定义。
有用或适宜的疏水单体包括,例如,甲基、乙基、丙基、异丙基、丁基、乙氧基乙基、甲氧基乙基、乙氧基丙基、苯基、苄基、环己基、六氟异丙基,或正辛基-丙烯酸酯和甲基丙烯酸酯以及相应的丙烯酰胺和甲基丙烯酰胺;富马酸二甲酯、马来酸二甲酯、富马酸二乙酯、甲基乙烯基醚、乙氧基乙基乙烯基醚、乙酸乙烯基酯、丙酸乙烯基酯、苯甲酸乙烯基酯、丙烯腈、苯乙烯、α-甲基苯乙烯、1-己烯、乙烯基氯、乙烯基甲基酮、硬脂酸乙烯基酯、2-己烯和2-乙基己基甲基丙烯酸酯。
亲水反应性聚合物以领域已知的方式由相应的单体(本文中的术语单体还包括大分子单体)通过对本领域技术人员来说常规的聚合反应合成。一般而言,亲水反应性聚合物或链通过以下方法形成:(1)混合单体;(2)加入聚合引发剂;(3)将单体/引发剂混合物接受紫外线或光化性照射源并固化所述混合物。常规的聚合引发剂包括以下例举的自由基生成聚合引发剂:过氧化乙酰、过氧化月桂酰、过氧化癸酰、过氧化椰子酰(coprylyl)、过氧化苯甲酰、过氧新戊酸叔丁酯、过碳酸钠、过辛酸叔丁酯和偶氮二异丁腈(AIBN)。还可以使用诸如二乙氧基苯乙酮的紫外游离基引发剂。当然其固化方法取决于所用的引发剂和共聚单体混合物的物理特征如粘度。在任何情况下,所用的引发剂的水平将在单体混合物的重量的0.01-2%范围内变化。通常,加入游离基形成物来加热上述单体的混合物。
形成亲水反应性聚合物的聚合作用可以在存在或不存在溶剂的情况下进行。适宜的溶剂大体上为所有溶解所用单体的溶剂,例如水;醇如低级链烷醇,例如乙醇和甲醇;酰胺如二甲基甲酰胺、偶极非质子溶剂如二甲基亚砜或甲基乙基酮;酮如丙酮或环己酮;烃如甲苯;醚如THF、二甲氧基乙烷或二噁烷;卤化烃如三氯乙烷;和适宜溶剂的混合物,例如水和醇的混合物,例如水/乙醇或水/甲醇混合物。
在本发明的方法中,可以通过将基底浸入含有亲水反应性聚合物的溶液中而将接触镜片或其它医疗器件暴露于该聚合物。例如,可以将接触镜片放置或浸入在适宜介质,例如非质子溶剂如乙腈中的亲水反应性聚合物或共聚物的溶液中保持适宜的时间。
如以上所述,本发明的一个实施方案涉及将反应性亲水聚合物连接到医疗器件上,所述聚合物包括含异氰酸酯的单体单元或开环单体单元。在本发明的一个实施方案中,开环反应单体具有由下式表示的二氢唑酮基团:其中R3和R4可以独立地为具有1-14个碳原子的烷基、具有3-14个碳原子的环烷基、具有5-12个环原子的芳基、具有6-26个碳原子的芳烯基,和0-3个选自S、N和O的非过氧化杂原子;或者R3和R4和与它们连接的碳一起形成含有4-12个环原子的碳环,而n为整数0或1。这种单体单元在Valint等人的美国专利5,177,165中公开。
这种反应官能团的环结构易与被处理的基底表面的互补反应官能团发生亲核开环反应。例如,二氢唑酮官能团可以与基底中的伯胺、羟基或酸反应,如上所述,而在基底和亲水反应性聚合物之间在一个或多个沿聚合物的位置形成共价键。多个连接可以在基底上形成一系列聚合物环,其中各个环包括连接在基底两端的亲水链。
用于制备亲水反应性聚合物的二氢唑酮-官能性单体可以是任何包括上式的二氢唑酮官能团的单体、预聚物或低聚物,所述二氢唑酮官能团与二氢唑酮连接其上的不饱和烃上的乙烯基组合。优选采用2-链烯基二氢唑酮单体而在亲水聚合物上提供二氢唑酮官能团。2-链烯基二氢唑酮单体为已知的化合物,其合成在,例如美国专利4,304,705、5,081,197和5,091,489(均为Heilmann等人)中所述,这些文献引入本文作参考。适宜的2-链烯基二氢唑酮包括:
2-乙烯基-1,3-噁唑啉-5-酮,
2-乙烯基-4-甲基-1,3-噁唑啉-5-酮,
2-异丙烯基-1,3-噁唑啉-5-酮,
2-异丙烯基-4-甲基-1,3-噁唑啉-5-酮,
2-乙烯基-4,4-二甲基-1,3-噁唑啉-5-酮,
2-异丙烯基-4,-二甲基-1,3-噁唑啉-5-酮,
2-乙烯基-4-甲基-乙基-1,3-噁唑啉-5-酮,
2-异丙烯基-4-甲基-4-丁基-1,3-噁唑啉-5-酮,
2-乙烯基-4,4-二丁基-1,3-噁唑啉-5-酮,
2-异丙烯基-4-甲基-4-十二烷基-1,3-噁唑啉-5-酮,
2-异丙烯基-4,4-二苯基-1,3-噁唑啉-5-酮,
2-异丙烯基-4,4-亚戊基-1,3-噁唑啉-5-酮,
2-异丙基-4,4-亚丁基-1,3-噁唑啉-5-酮,
2-乙烯基-4,4-二乙基-1,3-噁唑啉-5-酮,
2-乙烯基-4-甲基-4-壬基-1,3-噁唑啉-5-酮,
2-异丙烯基-甲基-4-苯基-1,3-噁唑啉-5-酮,
2-异丙烯基-4-甲基-4-苄基-1,3-噁唑啉-5-酮,
2-乙烯基-4,4-亚戊基-1,3-噁唑啉-5-酮,
更优选二氢唑酮单体为由以下通式表示的化合物:其中R1和R2独立地表示氢原子或具有1-6个碳原子的低级烷基,而R3和R4独立地表示具有1-6个碳原子的烷基或具有5或6个碳原子的环烷基。具体的实例包括2-异丙烯基-4,4-二甲基-2-噁唑啉-5-酮(IPDMO)、2-乙烯基-4,4-二甲基-2-噁唑啉-5-酮(VDMO)、螺-4′-(2′-异丙烯基-2′-噁唑啉-5-酮)环己烷(IPCO)、环己烷-螺-4′-(2′-乙烯基-2′-噁唑-5′-酮)(VCO)和2-(-1-丙烯基)-4,4-二甲基-噁唑-5-酮(PDMO)等等。
这些化合物可以按一般反应程序制备:
Figure A0080781500251
第一步为氨基酸的Shotten-Bauman酰化。通过使用丙烯酰氯或甲基丙烯酰氯而引入可聚合的官能团。第二步涉及用氯甲酸酯闭环以得到期望的噁唑啉酮。采用常规的有机化学方法分离和纯化产物。
如上所述,该化合物可以与亲水和/或疏水共聚单体共聚形成亲水反应性聚合物。在连接到期望的基底上以后,任何未反应的噁唑啉酮基团可以接着被水解以将噁唑啉酮组分转化成氨基酸。一般而言,水解步骤按照以下的一般反应进行:
Figure A0080781500252
R1和R2基团之间的碳-碳双键显示为未反应,但当被共聚成聚合物时可以发生反应。
用于和二氢唑酮官能部分共聚以形成用于涂布医疗器件的亲水反应性聚合物的共聚单体的非限制性实例包括上述,优选为二甲基丙烯酰胺、N-乙烯基吡咯烷酮。共聚单体的其它实例公开在欧洲专利公开0 392 735中,该文献引入本文作参考。优选将二甲基丙烯酰胺用作共聚单体以赋予共聚物亲水性。
这种二氢唑酮-官能性单体可以与其它单体以各种重量百分比的组合共聚。使用具有类似于二氢唑酮单体的竞聚率的单体将导致无规共聚物。共聚作用的竞聚率的测定公开在Odian,《聚合原理》,第2版,John Wiley & Sons,第425-430页(1981)中,该文献引入本文作参考。或者具有比二氢唑酮更高反应性的共聚单体的使用将趋于形成在链终端附近导致具有更高浓度的二氢唑酮官能团的嵌段共聚物链。
虽然不相单体一样优选,具有至少一个游离基聚合部位的二氢唑酮-官能性预聚物或低聚物也可以被用于在本发明的亲水反应性聚合物中提供二氢唑酮官能团。例如二氢唑酮-官能性低聚物由二氢唑酮单体游离基,任选地与在美国专利4,378,411和4,695,608中所描述的共聚单体聚合而制备,这些文献引入本文作参考。二氢唑酮-官能性低聚物和预聚物的非限制性实例公开在美国专利4,485,236和5,081,197以及欧洲专利公开0 392 735中,这些文献引入本文作参考。
在本发明的另一个实施方案中,亲水反应性聚合物中的开环反应基为环氧官能团。优选的环氧-官能性单体为含环氧乙烷的单体如甲基丙烯酸缩水甘油酯、烯丙基缩水甘油基醚、4-乙烯基-1-环己烯-1,2-环氧化物等等,但可以使用其它含环氧的单体。
将亲水反应性聚合物连接到可以用常规生产方法制得的硅氧烷医疗器件上。例如,可以使用各种常规技术生产用于实施本发明的接触镜片,以获得具有期望的后和前镜片表面的成形制品。旋转铸造法公开在美国专利3,408,429和3,660,545中;优选的静态铸造法公开在美国专利4,113,224和4,197,266中。单体混合物的固化之后常常是机械加工以提供具有期望的最终外形的接触镜片。例如,美国专利4,555,732公开了一种方法,其中通过在模具中旋转铸造将过量的单体混合物固化形成具有前镜片表面和相对厚的成形制品。然后旋切固化的旋转铸造制品的后表面以提供具有期望厚度和后镜片表面的接触镜片。在旋切镜片表面之后可以进一步机械加工,例如边界涂饰加工。
在制成具有期望的最终形状的镜片后,宜于在边界涂饰加工之前从镜片中除去残留溶剂。这是因为,通常有机稀释剂被包含在最初的单体混合物中以使由单体混合物的聚合产生的聚合产物的相分离最小化并降低正在反应的聚合混合物的玻璃化转变温度,从而允许更为有效的固化工艺并最终导致更均匀聚合的产物。最初的单体混合物和聚合产物的充足均匀性对硅氧烷水凝胶特别重要,主要原因在于含硅氧烷的单体趋于与亲水共聚单体分离。适宜的有机稀释剂包括,例如,一元醇、具有C6-C10直链的脂族一元醇,如特别优选的正己醇和正壬醇;二醇如乙二醇;多元醇如甘油;醚如乙二醇单乙基醚;酮如甲基乙基酮;酯如庚酸甲酯;和烃如甲苯。优选该有机稀释剂具有足够的挥发性以利于在或接近大气压力下通过蒸发将其从固化制品中除去。一般而言,所包括的稀释剂为单体混合物的重量的5-60%,特别优选为10-50%(重量)。
固化的镜片然后进行溶剂去除,它可以通过在或接近大气压力或在真空下蒸发而实现。可以采用升高温度以缩短蒸发稀释剂所需的时间。溶剂去除步骤的时间、温度和压力条件将随稀释剂和具体单体组分的挥发性等因素而改变,这可由本领域技术人员容易地确定。根据优选的实施方案,在去除步骤中所用的温度优选为至少50℃,例如60-80℃。可以用在惰性气体中或真空下在线性烘箱中的一系列加热循环来优化溶剂去除的效率。在稀释剂去除步骤之后的固化制品应该含有不超过20%(重量)的稀释剂,优选为不超过5%(重量)或更低。
在除去有机稀释剂之后,接着使该镜片接受脱模和任选的机械加工。机械加工步骤包括,例如,磨光或抛光镜片边缘和/或表面。一般在该制品从模具部分释放之前或之后进行机械加工。优选使用真空镊子从模具中干脱模(dry release)镜片以从模具中升高镜片,然后通过机械镊子将镜片转移到第二组真空镊子并靠着旋转表面放置以使表面或边缘光滑。然后可以将镜片翻转以机械加工镜片的另一侧。
如以上所述,在脱模/机械加工之后,使镜片接受本发明的表面处理,包括亲水反应性聚合物链的连接。
在表面处理之后,可以提取镜片以除去镜片中的残留物。一般而言,在接触镜片的生产中,一些单体混合物没有完全被聚合。来自聚合过程的未完全聚合的物质可影响光学澄明度或对眼睛有害。残留物质可能包括没有被前面的溶剂去除操作完全去除的溶剂、来自单体混合物的未反应的单体、作为聚合方法的副产物存在的低聚物,或甚至是可能从用于形成镜片的模具迁移的添加剂。
从聚合接触镜片材料中提取这些残留物的常规方法包括用醇溶液提取数小时(以提取疏水残留物),然后用水提取(以提取亲水残留物)。这样,一些醇提取溶液保留在聚合接触镜片材料的聚合网络中,并应该在该镜片可以被安全而舒适地配戴在眼中之前从镜片材料中被提取出。可以采用加热水数小时而实现从镜片中的醇提取。提取应尽可能地完全,因为不完全提取镜片中的残留物可能对镜片的使用寿命产生不利影响。而且,这种残留物可以通过干扰镜片表面的光学澄明度或期望的均匀亲水性而影响镜片的性能和舒适度。重要的是所选择的提取溶液决对镜片的光学澄明度产生不利影响。主观上认为光学澄明度是当肉眼检查时观察到的澄明度水平。
在提取之后,使该镜片接受水合作用,其中用水、缓冲盐水等完全水合镜片。在镜片最终水合时(其中镜片一般扩大10%至约20%或更大),涂层保持完整并结合在镜片上,提供耐久的亲水涂层,已发现其耐脱层。
在水合之后,该镜片可以接受美容学检查(cosmeticinspection),其中受训的检查员检查接触镜片的澄明度和诸如孔、颗粒、气泡、划痕、裂纹等缺陷的存在。优选在10X放大倍数下检查。在镜片已经通过美容学检查之后,镜片即可以在无菌条件下被包装在小瓶、塑料囊泡包装或其它用于保养该镜片的容器中供消费者使用。最后,包装的镜片经消毒,消毒可以在常规的高压灭菌器中完成,优选在气密(ari pressurization)灭菌循环,有时称之为气流混合(air-steam mixture)循环,这是本领域技术人员可以理解的。优选高压灭菌法在100℃-200℃进行10-120分钟。在消毒之后,可以在存储之前检查该消毒的镜片的尺寸。
通过以下实施例进一步说明本发明的目的和优点,但不应将这些实施例中引述的特定物质和其量,以及其它条件和细节解释为对本发明的限制。
实施例1
该实施例公开了用作以下实施例中的涂层基底的代表性硅氧烷水凝胶镜片材料。该材料的配方由下表1给出。
         表1
    成分     重量份
    TRIS-VC     55
    NVP     30
    V2D25     15
    VINAL     1
    正壬醇     15
    Darocur     0.2
    染色剂     0.05
以上的物质缩写指以下物质:TRIS-VC      三(三甲基甲硅烷氧基)甲硅烷基丙基乙烯基氨基甲酸
         酯NVP          N-乙烯基吡咯烷酮V2D25      先前在美国专利5,534,604中描述的含硅氧烷乙烯基
         碳酸酯VINAL        N-乙烯基氧基羰基丙氨酸Darocur      Darocur-1173、UV引发剂染色剂       1,4-双[4-(2-甲基丙烯酰氧基乙基)苯基氨基]蒽醌
实施例2
该实施例例举了在根据本发明的接触镜片表面修饰之前制备接触镜片的方法。由以上实施例1的配方制备的硅氧烷水凝胶镜片由聚丙烯模具铸模得到。在惰性氮气氛下,将45μl的该配方注射到清洁的聚丙烯凹模部分并用互补的聚丙烯凸模部分覆盖。在70psi的压力下压缩模部分并在UV光线(光谱UV仪测得为6-11mW/cm2)下将混合物固化约15分钟。再将该模具暴露于UV光线约5分钟。除去顶模部分,并将镜片于60℃的强制通风烘箱下保持3小时以除去正壬醇。然后,在2300rpm和60g的压力下将镜片边缘球磨10秒钟。
实施例3
该实施例例举了采用下表2中的成分合成含80/20重量百分比率的单体(DMA/VDMO)的亲水反应性共聚物。
Figure A0080781500311
试剂 量(g) 量(m)
二甲基丙烯酰胺(DMA) 16g 0.1614
乙烯基-4,4-二甲基-2-噁唑啉-5-酮(VDMO) 4g 0.0288
VAZO-64引发剂 0.031g 0.1%
甲苯 200ml -
将除了VAZO-64之外的所有成分置于500-ml配有磁力搅拌器、冷凝器、氩掩蔽层(blanket)和温控器的圆底烧瓶中。将以上溶液用氩脱气30分钟。加入VAZO-64,然后将溶液加热至60℃并保持50小时。在用FTIR(傅里叶变换红外光谱)监测到反应完全以后,将溶液缓慢地加到2500ml乙醚中以沉淀聚合物。搅拌混合物10分钟,放置10分钟并过滤。在30-35℃下真空干燥沉淀物过夜,测得分子量为Mn=19448、Mw=43548而Pd=2.25,均基于聚苯乙烯标准(Pd指多分散性)。
实施例4
该实施例例举了用于制备大分子单体以最终用于本发明的反应性亲水聚合物的N,N-二甲基丙烯酰胺的预聚物的合成。根据以下反应流程制备该预聚物:
将试剂DMA(200g,2.0摩尔)、巯基乙醇(3.2g,0.041摩尔)、AIBN(3.3g量的Vazo-64,0.02摩尔)和四氢呋喃(1000ml)合并到两升配有磁力搅拌器、冷凝器、温控器和氮入口的圆底烧瓶中。将氮气吹过溶液1.5小时。在无源氮掩蔽层下将温度升至60℃保持72小时。用20升乙醚从反应混合物中沉淀出聚合物(分离出171.4g聚合物)。样品进行SEC(大小排阻色谱)分析得出Mn=3711,Mw=7493而Pd=2.02。
实施例5
该实施例例举了采用实施例4的预聚物合成DMA大分子单体,该大分子单体用于制备以下实施例6和8的亲水反应性聚合物,根据以下的反应流程制备该大分子单体:
Figure A0080781500322
在氮掩蔽层下将实施例4的预聚物(150g,0.03摩尔)、异氰酸乙酯基甲基丙烯酸酯(IEM,5.6g,0.036摩尔)、二月桂酸二丁基锡(0.23g,3.6×10-5摩尔)、四氢呋喃(THF,1000ml)和2,6-二-叔丁基-4-甲基酚(BHT,0.002g,9×10-6摩尔)合并。将混合物加热到35℃同时良好地搅拌7小时。停止加热,并在氮气下搅拌该混合物过夜。将数ml的甲醇加入以与任何残留的IEM反应。然后在从大体积(16升)的乙醚中沉淀之后收集大分子单体。在室内真空下干燥该固体(产量115g)。该聚合物对聚苯乙烯标准的大小排阻色谱给出以下结果:Mn=2249,Mw=2994,而Pd=1.33。
实施例6
该实施例例举了制备可用于形成本发明的涂层的DMA/DMA-mac/VDMO聚合物。将16g(0.1614摩尔)的二甲基丙烯酰胺(DMA)、2g(0.0144摩尔)的乙烯基-4,4-二甲基-2-噁唑啉-5-酮(VDMO)、2g(0.0004摩尔)的实施例5中制得的二甲基丙烯酰胺大分子单体(DMA-mac),和200ml的甲苯置于500毫升的配有磁力搅拌器、冷凝器、温控器和氮入口的圆底烧瓶中。用氩将溶液脱气30分钟。然后加入0.029g(0.1摩尔%)的VAZO-64并将反应物加热到60℃保持50小时。在反应完全(用FTIR监测)以后,将该溶液缓慢地加到2500ml乙醚中以沉淀聚合物。在加入完成以后,搅拌混合物10分钟,放置10分钟并过滤。在30-35℃下真空干燥沉淀物过夜。将干燥的聚合物取样进行凝胶渗透色谱分析,将其装瓶并储存在干燥器中。
实施例7
该实施例例举了制备根据本发明可用于涂布硅氧烷基底的DMA/PEOMA/VDMO聚合物。将12g(0.1211摩尔)的二甲基丙烯酰胺、4g(0.0288摩尔)的乙烯基-4,4-二甲基-2-噁唑啉-5-酮和4g(0.0036摩尔)的MW为1000的PEO甲基丙烯酸酯(PEOMA)和200ml的甲苯置于500ml配有磁力搅拌器、冷凝器、氩掩蔽层和温控器的圆底烧瓶中。用氩该溶液脱气30分钟。然后加入0.025g(0.1摩尔%)VAZO-64并将反应物加热到60℃保持50小时。在反应完成(用FTIR监测)以后,将溶液缓慢地加到2500ml乙醚中以沉淀聚合物。在加入完成以后,搅拌该混合物10分钟,放置10分钟并过滤。在30-35℃下真空干燥沉淀物过夜。将干燥的聚合物取样进行凝胶渗透色谱分析,将其装瓶并储存在干燥器中。
实施例8
该实施例例举了合成具有刷或分枝结构和悬挂在聚合物主链上的DMA链的亲水反应性聚合物。该聚合物由DMA大分子单体、甲基丙烯酸缩水甘油酯和DMA单体组合而成,其制备如下。往反应烧瓶中加入蒸馏的N,N-二甲基丙烯酰胺(DMA,32g,0.32摩尔)、4g(0.0008摩尔)的实施例5的DMA大分子单体、蒸馏的甲基丙烯酸缩水甘油酯(GM,4.1g,0.029摩尔)、Vazo-64(AIBN,0.06g,0.00037摩尔)和甲苯(500ml)。该反应容器上装有磁力搅拌器、冷凝器、温控器和氮入口。将氮吹过溶液15分钟以除去任何溶解的氧。然后在无源氮掩蔽层下将反应烧瓶加热到60℃保持20小时。然后将反应混合物缓慢加到4升乙醚中,同时进行良好的机械搅拌。反应性聚合物沉淀出并通过真空过滤被收集。将固体置于30℃真空烘箱中过夜以除去醚,剩余33.2g的反应性聚合物(83%收率)。将该反应性聚合物置于干燥器中储存至使用。
实施例9
该实施例例举了根据本发明用于涂布硅氧烷基底的乙烯基吡咯烷酮-共-4-乙烯基环己基-1,2-环氧化物聚合物(NVP-共-VCH)的合成。该聚合物按照以下的反应流程制备:
往1升反应烧瓶中加入蒸馏的N-乙烯基吡咯烷酮(NVP,53.79g,0.48摩尔)、4-乙烯基环己基-1,2-环氧化物(VCHE,10.43g,0.084摩尔)、Vazo-64(AIBN,0.05g,0.0003摩尔)和THF(600ml)。反应容器配有磁力搅拌器、冷凝器、温控器和氮入口。将氮吹过溶液15分钟以除去任何溶解的氧。然后在无源氮掩蔽层下将反应烧瓶加热到60℃保持20小时。然后将反应混合物缓慢加到4升乙醚中,同时进行良好的机械搅拌。共聚物沉淀出并将其真空过滤收集。将固体置于30℃真空烘箱中过夜以除去乙醚,剩余21g反应性聚合物(32%收率)。将该反应性聚合物置于干燥器中储存至使用。
实施例10
该实施例例举了按照以下反应流程,合成以下实施例13、14和15中所用的DMA/GMA的亲水反应性(线性)共聚物:
Figure A0080781500361
往1升反应烧瓶中加入蒸馏的N,N-二甲基丙烯酰胺(DMA,48g,0.48摩尔)、蒸馏的甲基丙烯酸缩水甘油酯(GM,12g,0.08摩尔)、Vazo-64(AIBN,0.096g,0.0006摩尔)和甲苯(600ml)。反应容器配有磁力搅拌器、冷凝器、温控器和氮入口。将氮吹过溶液15分钟以除去任何溶解的氧。然后在无源氮掩蔽层下将反应烧瓶加热到60℃保持20小时。然后将反应混合物缓慢加到6升乙醚中,同时进行良好的机械搅拌。反应性聚合物沉淀出并将其真空过滤收集。将固体置于30℃真空烘箱中过夜以除去醚,剩余50.1g反应性聚合物(83%收率)。将反应性聚合物置于干燥器中储存至使用。
实施例11
该实施例例举了根据以下反应流程合成DMA/GMA/OFPMA的水溶性反应性聚合物:
Figure A0080781500371
往500ml反应烧瓶中加入蒸馏的N,N-二甲基丙烯酰胺(DMA,16g,0.16摩尔)、1H,1H,5H-八氟戊基甲基丙烯酸酯(OFPMA,1g,0.003摩尔,未另外处理而使用)、蒸馏的甲基丙烯酸缩水甘油酯(GM,4g,0.028摩尔)、Vazo64(AIBN,0.03g,0.00018摩尔)和甲苯(300ml)。反应容器配有磁力搅拌器、冷凝器、温控器和氮入口。将氮吹过溶液15分钟以除去任何溶解的氧。然后在无源氮掩蔽层下将反应烧瓶加热到60℃保持20小时。然后将反应混合物缓慢加到3升乙醚中,同时进行良好的机械搅拌。反应性聚合物沉淀出并将其真空过滤收集。将固体置于30℃真空烘箱中过夜以除去乙醚,剩余19.3g反应性聚合物(92%收率)。将反应性聚合物置于干燥器中储存至使用。
实施例12
该实施例例举了根据以下反应流程合成DMA/MAA的亲水反应性聚合物:
Figure A0080781500381
往500ml反应烧瓶中加入蒸馏的N,N-二甲基丙烯酰胺(DMA,16g,0.16摩尔)、甲基丙烯酸(MAA,4g,0.05摩尔)Vazo-64(AIBN,0.033g,0.0002摩尔)和无水2-丙醇(300ml)。反应容器配有磁力搅拌器、冷凝器、温控器和氮入口。将氮吹过溶液15分钟以除去任何溶解的氧。然后在无源氮掩蔽层下将反应烧瓶加热到60℃保持72小时。然后将反应混合物缓慢加到3升乙醚中,同时进行良好的机械搅拌。反应性聚合物沉淀出并将其真空过滤收集。将固体置于30℃真空烘箱中过夜以除去乙醚,剩余9.5g反应性聚合物(48%收率)。将该反应性聚合物置于干燥器中储存至使用。
实施例13
该实施例例举了由实施例1的材料制得的Balafilcon A接触镜片(PureVision,可以从Bausch & Lomb,Inc.,Rochester,NY商购)的表面处理,该表面处理根据以下的反应流程,使用以上实施例10制备的亲水反应性聚合物:
Figure A0080781500391
制备实施例10的反应性聚合物溶液(10.0g每1000ml水)。在四小时内三次更换2-丙醇,然后在1.5小时内三次更换水来提取镜片。然后将镜片(36个样品)置于反应性聚合物溶液中。加入一滴甲基二乙醇胺以催化反应。使该镜片经受一个30分钟的高压灭菌循环。
实施例14
该实施例例举了根据本发明的RGP镜片表面的表面处理,如以下所示。镜片为QuantumII RGP接触镜片,可从Bausch & Lomb,Inc商购得到。
Figure A0080781500401
制备实施例10的反应性聚合物溶液(5.09每1000ml水)。然后将镜片(20个样品)和两(2)滴三乙醇胺置于反应性聚合物溶液中,并加热到55℃保持一(1)小时。然后用纯水冲洗表面涂层镜片两次并干燥。放置在未处理的镜上的一滴水形成珠并从表面滚落,而放置在处理镜片上的一滴水则完全扩散,湿润镜片表面。
从Bausch and Lomb内部的表面科学实验室获得x-射线光电子能谱(XPS)数据。使用Physical Electronics[PHI]Model5600 XPS作表面表征。该仪器使用在300瓦、15kV和20微安下工作的单色A1阳极。该仪器的基线压力为2.0×10-10托而工作压力为5.0×10-8托。该仪器使用半球形分析器。该仪器具有带PHI 8503A4.0版软件的Apollo工作站。在取样角度为45°时该仪器实际测得的取样深度为74。
使用低分辨率测量(survey)光谱(0-1100eV)分析各个样品以确定样品表面存在的元素(10-100)。由在低分辨率测量扫描中检测到的元素的高分辨率光谱测定表面元素组成。这些元素包括氧、氮、碳、硅和氟。在增敏具有仪器转换功能的面积和有用轨道的原子横截面后通过积分光电子峰面积而完成对元素组成的定量。涂层镜片和对照镜片的XPS数据如下表3所示:
                        表3
    样品                 O     N    C     Si    F
    镜片后面    平均     22.3  4.8  54.4  10.3  10.9标准偏差
    镜片前面    平均     19.1  6.7  63.4  2.7   8.1标准偏差 0.6   0.3  1.1   0.6   0.7
QuantumII对照 平均     18.7  0.0  56.1  5.2   20.0(后面和前面相同)标准偏差 0.5   0.0  0.7   0.3   0.4
DMA-共-GMA  反应性聚合物 17    12   71    0     0的理论原子浓度
实施例15
该实施例例举了按照以下反应程序的QuantumII RGP接触镜片的另一种表面处理;该镜片可从Bausch & Lomb,Inc.商购得到。
Figure A0080781500421
制备以上实施例10和实施例12的反应性聚合物的溶液(2.5g每种聚合物每100ml水)。尝试使用聚合物的混合物通过层叠作用(layering effect)构建更厚的聚合物涂层。然后将镜片(20个样品)和两滴三乙醇胺置于反应性聚合物溶液中,并加热到55℃保持1小时。然后用纯水冲洗表面涂层的镜片两次并让其干燥。放置在未处理的镜上的一滴水形成珠并从表面滚落,而放置在处理镜片上的一滴水则完全扩散,湿润镜片表面。原子力显微镜(AFM)分析表明聚合物的组合给出更厚的聚合物涂层。不具有聚合物涂层(图1)、具有实施例14的聚合物涂层(图2)和具有实施例15的聚合物涂层(图3)的QuantumII镜片之间的对比如图1-3所示。
从Bausch and Lomb内部的表面科学实验室获得x-射线光电子能谱(XPS)数据。使用Physical Electronics[PHI]Model5600 XPS作表面表征。该仪器使用在300瓦、15kV和20微安下工作的单色Al阳极。该仪器的基线压力为2.0×10-10托而工作压力为5.0×10-8托。该仪器使用半球形分析器。该仪器具有一个带PHI8503A 4.0版软件的Apollo工作站。在取样角度为45°时该仪器实际测得的取样深度为74。
使用低分辨测量光谱(0-1100eV)分析各个样品以确定样品表面(10-100)存在的元素。由在低分辨率测量扫描中检测到的元素的高分辨率光谱测定表面元素组成。这些元素包括氧、氮、碳、硅和氟。在增敏具有仪器转换功能的面积和有用轨道的原子横截面后通过积分光电子峰面积完成对元素组成的定量。涂层镜片和对照镜片的XPS数据如下表4A所示。
                             表4A
    样品   O   N   C   Si   F
    镜片后面   平均   18.8   8.0   67.6   3.7   2.6
  标准偏差
    镜片前面   平均   18.4   4.2   62.8   4.1   10.5
  标准偏差   0.5   1.2   1.7   0.4   3.1
  QuantumII对照   平均   18.7   0.0   56.1   5.2   20.0
  (后面和前面相同)   标准偏差   0.5   0.0   0.7   0.3   0.4
DMA-共-GMA反应性聚合物的理论原子浓度   17   12   71   0   0
实施例16
该实施例例举了由实施例1的材料制备的Balafiicon A接触镜片(PureVision,可以从Bausch & Lomb,Inc.,Rochester,NY商购)的表面处理,该表面处理根据以下的反应流程,使用以上实施例11制备的亲水反应性聚合物:
制备两份实施例11的反应性聚合物的溶液(见以下表4B)。在2-丙醇中提取镜片4小时,然后将其放置在水中10分钟。然后改换水浴,将镜片另外浸泡10分钟。然后将镜片(30个样品)和一滴甲基二乙醇胺置于各反应性聚合物中,甲基二乙醇胺用以催化该反应。使镜片经受一个30分钟的高压灭菌循环。然后用纯水代替小瓶中的溶液两次,再次将样品高压灭菌。该过程用于除去任何非化学连接到镜片上的亲水聚合物。
                          表4B
    样品   聚合物浓度     处理镜片的数目
    A   1.0%(2.5g/250ml H2O)     30
    B   2.0%(5g/250ml H2O)     30
    对照   无     30
对照的原子力显微镜(AFM)图如图4所示。图5和图6分别显示样品A和B的表面。与对照样品的表面图相比,图5和图6清楚地显示了亲水涂层。通过XPS进行的元素分析还表明材料表面已被修饰。从Bausch and Lomb内部的表面科学实验室获得XPS数据。使用Physical Electronics[PHI]Model 5600 XPS作表面表征。该仪器使用在300瓦、15kV和20微安下工作的单色A1阳极。该仪器的基线压力为2.0×10-10托而工作压力为5.0×10-8托。该仪器使用半球形分析器。该仪器具有一个带PHI 8503 A 4.0版软件的Apollo工作站。在取样角度为45°时该仪器实际测得的取样深度为74。
使用低分辨率测量光谱(0-1100eV)分析各个样品以确定样品表面(10-100)存在的元素。由在低分辨率测量扫描中检测到的元素的高分辨率光谱测定表面元素组成。这些元素包括氧、氮、碳、硅和氟。在增敏具有仪器转换功能的面积和有用轨道的原子横截面后通过积分光电子峰面积完成对元素组成的定量。XPS数据如以下表4C给出。
                                    表4C
    样品   O1s   N1s     C1s     S12p     F1s
    对照后面  平均   17.7   7.2     66.9     8.1     0.0
 标准偏差   0.9   0.2     0.8     0.3     0.0
    对照前面  平均   17.9   7.0     66.9     8.2     0.0
 标准偏差   0.6   0.6     0.7     0.4     0.0
    A后面  平均   17.9   8.9     69.5     1.8     2.0
 标准偏差   0.3   0.2     0.6     0.6     0.2
    A前面  平均   17.7   9.1     69.7     1.7     1.9
 标准偏差   0.3   0.3     0.8     0.3     0.2
    B后面  平均   18.0   8.9     69.9     1.2     2.1
 标准偏差   0.3   0.5     1.0     0.1     0.4
    B前面  平均   17.8   8.8     70.0     1.3     2.0
 标准偏差   0.2   0.3     0.6     0.3     0.0
实施例11的DMA-共-OFPMA-共-GMA反应性聚合物的理论原子浓度   17.1   11.0     70.1     0.0     1.8
实施例17
该实施例例举了通过与本发明的各种亲水反应性聚合物反应而涂层的Balafilcon A镜片(PureVision镜片)的脂质沉积的改进的抑制作用。使用实施例11的DMA/OFPMA/GM共聚物的1%溶液涂布样品E镜片,而采用相同聚合物的2%溶液涂布样品EE镜片。分别采用实施例10的DMA/GM共聚物的1%和2%溶液涂布样品F和FF镜片。将这些镜片和催化剂置于反应性亲水聚合物的水溶液中,并经受一个高压灭菌循环。然后在HPLC级水中冲洗镜片,将其置于新鲜的HPLC水中,并再次高压灭菌。将对照镜片(无表面处理)置于HPLC水中并高压灭菌。一个对照镜片为任何表面处理之前的Balafilicon A镜片。另一个对照镜片为用氧化等离子体表面处理的商品化PureVision镜片。为了进行脂质分析,使用包括具有FID检测器的HP Ultra 1柱和He载气的气相色谱(GC)。在体外脂质沉积方案中,测试的每种类型的镜片的六个镜片的沉积,使用处在MOPS缓冲剂中的棕榈酸甲基酯、胆固醇、角鲨烯和粘蛋白的脂质混合物。粘蛋白被用作辅助增溶脂质的表面活性剂。将1.5ml以上脂质混合物加到受试镜片中,在37℃振荡水浴中沉积24小时。然后从水浴中移出镜片,用ReNu盐水冲洗以除去任何残留的沉积溶液,并将其置于玻璃小瓶同以供提取。进行3小时的1∶1 CHCl3/MeOH的提取,然后用己烷提取三小时。然后合并提取物并在GC色谱上分析。在1∶1 CHCl3/MeOH中制备沉积混合物中的各种脂质的标准溶液,并在GC上分析以测定从该镜片中提取的脂质的浓度。采用上述方案测试的受试镜片的体外沉积情况(profile)如以下表5所示。
                  表5
    样品     平均脂质浓度*(μg)
    E     39.9
    EE     36.7
    F     51.2
    FF     39.6
    等离子体-氧化对照     117
    非表面处理对照镜片     243.3
*均值代表6个沉积镜片的沉积情况。
结果表明根据本发明涂层的镜片可以表现出脂质沉积减少,这对于连续配戴水凝胶镜片是特别有利的性质。
在本文的教导下本发明的许多其它的改进或变体是可能的。因此应该理解在权利要求的范围内,本发明可以不以本文具体描述的方式实施。

Claims (28)

1.处理硅氧烷医疗器件表面的方法,所述方法包括:
(a)由硅氧烷材料形成医疗器件,其中硅氧烷材料包括具有选自二氢唑酮、羧酸、胺、羟基和环氧官能团及其组合的反应官能团的单体单元;和
(b)形成沿着聚合物链具有选自二氢唑酮、异氰酸酯、酸酐、环氧、羟基、伯或仲胺,或羧酸官能团及其组合的互补反应官能团的亲水反应性聚合物,其中在羟基或胺互补反应官能团的情况下,硅氧烷材料包括二氢唑酮反应官能团,而在羧酸互补官能团的情况下,硅氧烷材料包括环氧反应官能团;
(c)使(b)的沿着聚合物链具有互补反应官能团的亲水反应性聚合物与(a)的医疗器件的表面上或附近的所述反应官能团反应,从而在该医疗器件上形成生物相容的表面。
2.权利要求1的方法,其中医疗器件为硅氧烷接触镜片或眼内镜片且涂层是无色的。
3.权利要求1的方法,其中医疗器件为硅氧烷水凝胶连续配戴的接触镜片。
4.权利要求1的方法,其中亲水反应性聚合物包括1-100%(摩尔)的具有所述反应官能团的单体单元。
5.权利要求1的方法,其中亲水反应性聚合物包括0-99%(摩尔)的衍生自非反应性亲水单体的单体单元。
6.权利要求1的方法,其中聚合物包括50-95%(摩尔)的衍生自选自丙烯酰胺、内酯、聚(亚烷氧基)甲基丙烯酸酯、甲基丙烯酸或羟基烷基甲基丙烯酸酯的非反应性亲水单体的单体单元,和5-50%的衍生自选自含有环氧、二氢唑酮和酐的单体的官能性反应单体的单体单元,其中的烷基或亚烷基具有1-6个碳原子。
7.权利要求7的方法,其中官能性反应单体选自甲基丙烯酸缩水甘油酯、马来酸酐、衣康酸酐和异氰基甲基丙烯酸酯。
8.权利要求1的方法,其中亲水单体选自二甲基丙烯酰胺、丙烯酰胺和N-乙烯基吡咯烷酮。
9.权利要求1的方法,其中亲水反应性聚合物包括0-35%(摩尔)的衍生自疏水单体的单体单元。
10.权利要求1的方法,其中亲水聚合物包括具有以下分子式的噁唑啉酮(oxazolinone)部分:
Figure A0080781500031
其中R3和R4可以独立地为具有1-14个碳原子的烷基,具有3-14个碳原子的环烷基,具有5-12个环原子的芳基,具有6-26个碳原子的芳烯基,和0-3个选自S、N与非过氧化O的杂原子;或者R3和R4可以和与其连接的碳一起形成含有4-12个环原子的碳环,而n为整数0或1。
11.权利要求10的方法,其中聚合物包括含有由以下通式代表的单体的单体混合物的反应产物:
Figure A0080781500032
其中,R1和R2独立地指氢原子或具有1-6个碳原子的低级烷基,而R3和R4独立地指具有1-6个碳原子的烷基或具有5或6个碳原子的环烷基。
12.权利要求11的方法,其中单体选自2-乙烯基-4,4-二甲基-2-噁唑啉-5-酮、2-异丙烯基-4,4-二甲基-2-噁唑啉-5-酮、2-异丙烯基-4,4-二甲基-2-噁唑啉-5-酮和2-乙烯基-4,4二甲基-2-噁唑啉-5-酮。
13.权利要求10的方法,其中在不存在着色物质的情况下将医疗器件浸入含有至少一种亲水反应性聚合物的溶液中。
14.包括亲水表面的硅氧烷医疗器件,其包括:
由硅氧烷材料制成的医疗器件,其中硅氧烷材料包括具有选自二氢唑酮、羧酸、胺、羟基和环氧官能团及其相容组合的反应官能团的单体单元;和连接到医疗器件上的亲水聚合物,其中连接点是单体单元中沿着亲水反应性聚合物的异氰酸酯、羟基、胺、羧酸或开环互补反应官能团或其相容组合与医疗器件表面上或附近的所述官能团反应的结果,或者是以下的结果:其中,在羟基或胺互补反应官能团的情况下,硅氧烷材料包括二氢唑酮反应官能团,而在羧酸互补官能团的情况下,硅氧烷材料包括环氧反应官能团,由此产生澄清、透明的生物相容性涂层。
15.权利要求14的医疗器件,其中医疗器件为硅氧烷接触镜片或眼内器件。
16.权利要求14的医疗器件,其中医疗器件为硅氧烷水凝胶连续配戴镜片。
17.权利要求14的医疗器件,其中亲水聚合物包括1-100%(摩尔)的具有所述反应官能团的单体单元和0-99%(摩尔)的衍生自非反应性亲水单体的单体单元。
18.权利要求14的医疗器件,其中反应官能团衍生自含有一个或多个以下基团的单体:缩水甘油基、二氢唑酮、异氰酸酯和酸酐。
19.权利要求14的医疗器件,其中亲水单体单元衍生自选自丙烯酰胺、内酰胺、聚(亚烷氧基)甲基丙烯酸酯、甲基丙烯酸或羟基烷基甲基丙烯酸酯的单体。
20.权利要求14的医疗器件,其中亲水聚合物包括沿着链的具有以下分子式的部分:
Figure A0080781500051
其中,R3和R4可以独立地为具有1-14个碳原子的烷基,具有3-14个碳原子的环烷基,具有5-12个环原子的芳基,具有6-26个碳原子的芳烯基,和0-3个选自S、N与非过氧化O的杂原子;或者R1和R2可以和与其连接的碳一起形成含有4-12个环原子的碳环,而n为整数0或1。
21.权利要求14的医疗器件,其中亲水聚合物包括沿着链的由以下通式代表的部分:
Figure A0080781500052
其中R3和R4独立地指氢原子或具有1-6个碳原子的低级烷基,而R3和R4独立地指具有1-6个碳原子的烷基或具有5或6个碳原子的环烷基。
22.权利要求14的医疗器件,其中连接到碳层的亲水聚合物链为聚合物混合物反应的结果,所述聚合物混合物包括(a)在单体单元中沿着亲水聚合物具有与医疗器件表面上的反应官能团互补的反应官能团的第一亲水反应性聚合物,和,另外的(b)具有与第一亲水反应性聚合物反应的补充反应官能团的第二亲水反应性聚合物。
23.权利要求22的医疗器件,其中第一亲水反应性聚合物为环氧官能性聚合物而第二亲水反应性聚合物为酸官能性聚合物,它们同时或依次被施加于要涂布的基底上。
24.权利要求14的医疗器件,其中基底包括涂层,所述涂层包括单独的环氧官能性亲水反应性聚合物和酸官能性亲水聚合物的反应产物。
25.权利要求14的医疗器件,其中基底包括表面附近或上面的已被转化成酸基团的二氢唑酮官能性单体单元。
26.共聚物,其包括1-99%(摩尔)的衍生自选自丙烯酰胺、内酰胺和聚(烯化氧)、羟基烷基甲基丙烯酸酯的单体的单体单元,其中亚烷基或烷基具有1-6个碳原子;和1-99%(摩尔)的选自下式的单体:
Figure A0080781500061
其中R1和R2独立地指氢原子或具有1-6个碳原子的低级烷基,而R3和R4独立地指具有1-6个碳原子的烷基或具有5或6个碳原子的环烷基。
27.处理硅氧烷医疗器件表面的方法,所述方法包括:
(a)由硅氧烷材料形成医疗器件,其中硅氧烷包括具有选自二氢唑酮、羧酸、胺、羟基和环氧官能团及其组合的反应官能团的单体单元;和
(b)形成沿着聚合物链具有选自二氢唑酮、异氰酸酯、酸酐、环氧、胺、羧酸和酸官能团及其相容组合的互补反应官能团的亲水反应性聚合物,该亲水聚合物包括5-50%的衍生自选自含有异氰酸酯、环氧、二氢唑酮、酐的单体及其组合的官能性反应单体的单体单元,和0.5-20%的衍生自疏水单体的单体单元,其中在羟基或胺互补反应官能团的情况下,硅氧烷材料包括二氢唑酮反应官能团,而在羧酸互补官能团的情况下,硅氧烷材料包括环氧反应官能团;
(c)在不存在着色物质的情况下使(b)的沿着聚合物链具有互补反应官能团的亲水反应性聚合物与(a)的医疗器件的表面上或附近的所述反应官能团反应,从而在该医疗器件上形成生物相容的表面。
28.权利要求26的方法,其中亲水反应性聚合物另外包括50-95%(摩尔)的衍生自选自丙烯酰胺、内酯、聚(亚烷氧基)甲基丙烯酸酯、甲基丙烯酸或羟基烷基甲基丙烯酸酯的非反应性亲水单体的单体单元。
CNB008078157A 1999-05-20 2000-05-12 用反应性亲水聚合物进行的医疗器件的表面处理 Expired - Fee Related CN1156713C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/315,620 US6440571B1 (en) 1999-05-20 1999-05-20 Surface treatment of silicone medical devices with reactive hydrophilic polymers
US09/315,620 1999-05-20

Publications (2)

Publication Number Publication Date
CN1376270A true CN1376270A (zh) 2002-10-23
CN1156713C CN1156713C (zh) 2004-07-07

Family

ID=23225286

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008078157A Expired - Fee Related CN1156713C (zh) 1999-05-20 2000-05-12 用反应性亲水聚合物进行的医疗器件的表面处理

Country Status (15)

Country Link
US (2) US6440571B1 (zh)
EP (1) EP1179190B1 (zh)
JP (1) JP4544753B2 (zh)
KR (1) KR20020013890A (zh)
CN (1) CN1156713C (zh)
AU (1) AU762372B2 (zh)
BR (1) BR0011610A (zh)
CA (1) CA2373541A1 (zh)
DE (1) DE60027289T2 (zh)
ES (1) ES2264665T3 (zh)
HK (1) HK1045375B (zh)
MX (1) MXPA01011853A (zh)
TW (1) TW589465B (zh)
WO (1) WO2000072052A1 (zh)
ZA (1) ZA200109528B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349622C (zh) * 2002-12-19 2007-11-21 庄臣及庄臣视力保护公司 具有亲水涂层的生物医学装置及其制备方法
CN102271719A (zh) * 2008-12-30 2011-12-07 博士伦公司 包装溶液
CN103038699A (zh) * 2010-07-30 2013-04-10 诺瓦提斯公司 具有交联亲水涂层的硅氧烷水凝胶透镜
CN103405807A (zh) * 2013-07-05 2013-11-27 温州医科大学 一种表面梳状聚合物亲水改性的人工晶状体及其制备方法
CN106715101A (zh) * 2014-08-26 2017-05-24 诺华股份有限公司 用于在硅酮水凝胶接触镜片上施用稳定的涂层的方法
CN109790259A (zh) * 2016-09-30 2019-05-21 东丽株式会社 共聚物和使用其的医疗材料
CN111777909A (zh) * 2020-07-14 2020-10-16 浙江工业大学 一种通用的功能性聚合物涂层的制备方法
CN115785800A (zh) * 2022-10-18 2023-03-14 广州市嵩达新材料科技有限公司 一种光固化导热涂层及其制备方法
CN116655987A (zh) * 2022-02-21 2023-08-29 颖利科技股份有限公司 基底表面亲水处理方法及具有亲水改性表面的基底

Families Citing this family (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052131B2 (en) * 2001-09-10 2006-05-30 J&J Vision Care, Inc. Biomedical devices containing internal wetting agents
US6822016B2 (en) 2001-09-10 2004-11-23 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
AU4318800A (en) * 1999-05-12 2000-12-05 Menicon Co., Ltd Ocular lens materials and process for producing the same
US6599559B1 (en) 2000-04-03 2003-07-29 Bausch & Lomb Incorporated Renewable surface treatment of silicone medical devices with reactive hydrophilic polymers
US6428839B1 (en) * 2000-06-02 2002-08-06 Bausch & Lomb Incorporated Surface treatment of medical device
CN1266197C (zh) * 2000-09-19 2006-07-26 博士伦公司 施涂聚合物透镜涂层的方法
US7060288B2 (en) * 2001-02-28 2006-06-13 Timothy Charles Hughes Biomedical devices
US6835410B2 (en) * 2001-05-21 2004-12-28 Novartis Ag Bottle-brush type coatings with entangled hydrophilic polymer
DE60143171D1 (de) * 2001-08-17 2010-11-11 Johnson & Johnson Vision Care Verfahren zur herstellung eines polymers für eine augenoptische linse und augenoptische linse
US6765069B2 (en) * 2001-09-28 2004-07-20 Biosurface Engineering Technologies, Inc. Plasma cross-linked hydrophilic coating
US20060100408A1 (en) * 2002-03-11 2006-05-11 Powell P M Method for forming contact lenses comprising therapeutic agents
US7083646B2 (en) * 2002-06-28 2006-08-01 Bausch & Lomb Incorporated Surface modification of functional group-containing intraocular lenses
US7270678B2 (en) * 2002-06-28 2007-09-18 Bausch & Lomb Incorporated Surface modification of functional group-containing medical devices with catalyst-containing reactive polymer system
US20070138692A1 (en) * 2002-09-06 2007-06-21 Ford James D Process for forming clear, wettable silicone hydrogel articles
US20060073185A1 (en) * 2002-12-13 2006-04-06 Bausch & Lomb Incorporated Method and composition for contact lenses
US6958169B2 (en) * 2002-12-17 2005-10-25 Bausch & Lomb Incorporated Surface treatment of medical device
US20040166232A1 (en) * 2002-12-23 2004-08-26 Bausch & Lomb Incorporated Surface treatment utilizing microwave radiation
US7247387B1 (en) 2003-07-24 2007-07-24 Sepax Technologies Inc. Material and process for controlled thin polymeric coatings on plastic surface
US7084188B2 (en) * 2003-12-05 2006-08-01 Bausch & Lomb Incorporated Surface modification of contact lenses
JP5473219B2 (ja) * 2004-08-27 2014-04-16 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ シリコーンヒドロゲルコンタクトレンズ
US9322958B2 (en) 2004-08-27 2016-04-26 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses
US20070087113A1 (en) * 2005-10-19 2007-04-19 Bausch & Lomb Incorporated Surface-modified medical devices and method of making
US20070116741A1 (en) * 2005-11-21 2007-05-24 Bausch & Lomb Incorporated Contact lenses with mucin affinity
US7988988B2 (en) * 2005-11-21 2011-08-02 Bausch & Lomb Incorporated Contact lenses with mucin affinity
WO2007064594A2 (en) * 2005-11-29 2007-06-07 Bausch & Lomb Incorporated New coatings on ophthalmic lenses
US20070264509A1 (en) * 2006-05-11 2007-11-15 Yu-Chin Lai Copolymer and Medical Device with the Copolymer
EP2035050A2 (en) * 2006-06-30 2009-03-18 Bausch & Lomb Incorporated Modification of surfaces of polymeric articles by michael addition reaction
US7625598B2 (en) * 2006-12-15 2009-12-01 Bausch & Lomb Incorporated Silicone contact lenses with wrinkled surface
US20080143955A1 (en) * 2006-12-15 2008-06-19 Bausch & Lomb Incorporated Silicone Contact Lenses with Silicate Coating
US20080142038A1 (en) * 2006-12-15 2008-06-19 Bausch & Lomb Incorporated Surface treatment of medical devices
US20080151181A1 (en) * 2006-12-20 2008-06-26 Bausch & Lomb Incorporated Coatings and Solutions for Contact Lenses
US7832856B2 (en) * 2006-12-20 2010-11-16 Bausch & Lomb Incorporated Coatings and solutions for contact lenses
US20080206481A1 (en) * 2007-02-26 2008-08-28 Bausch & Lomb Incorporated Silicone contact lenses with wrinkled surface
US8119753B2 (en) * 2007-10-23 2012-02-21 Bausch & Lomb Incorporated Silicone hydrogels with amino surface groups
US20090111942A1 (en) * 2007-10-25 2009-04-30 Bausch & Lomb Incorporated Method for Making Surface Modified Biomedical Devices
WO2009079224A2 (en) * 2007-12-14 2009-06-25 Bausch & Lomb Incorporated Surface modified biomedical devices
WO2009079223A1 (en) 2007-12-14 2009-06-25 Bausch & Lomb Incorporated Surface modified biomedical devices
CN101896514B (zh) * 2007-12-14 2013-03-06 博士伦公司 生物医学装置
US20090171049A1 (en) * 2007-12-27 2009-07-02 Linhardt Jeffrey G Segmented reactive block copolymers
US20100168851A1 (en) * 2008-12-30 2010-07-01 David Paul Vanderbilt Surface Modified Biomedical Devices
US8163358B2 (en) * 2009-02-18 2012-04-24 Synergeyes, Inc. Surface modification of contact lenses
JP5273675B2 (ja) * 2009-06-09 2013-08-28 株式会社メニコン 眼用レンズ用ケア用品及び樹脂基材の親水化方法
US8083348B2 (en) * 2009-06-16 2011-12-27 Bausch & Lomb Incorporated Biomedical devices
US20100315588A1 (en) * 2009-06-16 2010-12-16 Bausch & Lomb Incorporated Biomedical devices
US8043369B2 (en) * 2009-06-16 2011-10-25 Bausch & Lomb Incorporated Biomedical devices
US8133960B2 (en) 2009-06-16 2012-03-13 Bausch & Lomb Incorporated Biomedical devices
WO2011005326A1 (en) 2009-07-09 2011-01-13 Massachusetts Institute Of Technology Methods and compositions for increased safety of stem cell-derived populations
CA2773223C (en) * 2009-10-01 2015-11-24 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses and methods of making silicone hydrogel contact lenses
EP2496987B1 (en) * 2009-11-04 2020-04-29 Alcon Inc. A silicone hydrogel lens with a grafted hydrophilic coating
TWI483996B (zh) * 2009-12-08 2015-05-11 Novartis Ag 具有共價貼合塗層之聚矽氧水凝膠鏡片
US9522980B2 (en) 2010-05-06 2016-12-20 Johnson & Johnson Vision Care, Inc. Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same
AU2016201366B2 (en) * 2010-07-30 2017-05-25 Alcon Inc. Silicone hydrogel lenses with water-rich surfaces
AU2012223584B8 (en) 2011-02-28 2014-08-14 Coopervision International Limited Dimensionally stable silicone hydrogel contact lenses
MY161159A (en) 2011-02-28 2017-04-14 Coopervision Int Holding Co Lp Silicone hydrogel contact lenses
ES2441385T3 (es) 2011-02-28 2014-02-04 Coopervision International Holding Company, Lp Lentes de contacto de hidrogel de silicona humectables
EP2681616B1 (en) 2011-02-28 2019-01-23 CooperVision International Holding Company, LP Silicone hydrogel contact lenses having acceptable levels of energy loss
ES2707276T3 (es) 2011-02-28 2019-04-03 Coopervision Int Holding Co Lp Lentes de contacto de hidrogel de silicona y composiciones y métodos relacionados
MY162458A (en) 2011-02-28 2017-06-15 Coopervision Int Holding Co Lp Silicone hydrogel contact lenses
CA2828428C (en) 2011-02-28 2017-07-25 Coopervision International Holding Company, Lp Phosphine-containing hydrogel contact lenses
US9170349B2 (en) 2011-05-04 2015-10-27 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
CA2851668C (en) 2011-10-12 2016-08-16 Novartis Ag Method for making uv-absorbing ophthalmic lenses by coating
HUE027313T2 (en) 2011-11-15 2016-10-28 Novartis Ag Silicone hydrogel lens with cross-linked hydrophilic coating
WO2013086119A2 (en) * 2011-12-08 2013-06-13 Novartis Ag Contact lenses with enzymatically degradable coatings thereon
US9140825B2 (en) * 2011-12-23 2015-09-22 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels
US9447378B2 (en) 2012-04-27 2016-09-20 Massachusetts Institute Of Technology Method for differentiating human embryonic stem cells into β-cells for the treatment of type I diabetes
US8798332B2 (en) 2012-05-15 2014-08-05 Google Inc. Contact lenses
US10073192B2 (en) 2012-05-25 2018-09-11 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US9244196B2 (en) 2012-05-25 2016-01-26 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
JP6306576B2 (ja) 2012-06-14 2018-04-04 ノバルティス アーゲー アゼチジニウム含有コポリマー及びこれらの使用
US9523865B2 (en) 2012-07-26 2016-12-20 Verily Life Sciences Llc Contact lenses with hybrid power sources
US9158133B1 (en) 2012-07-26 2015-10-13 Google Inc. Contact lens employing optical signals for power and/or communication
US8857981B2 (en) 2012-07-26 2014-10-14 Google Inc. Facilitation of contact lenses with capacitive sensors
US9298020B1 (en) 2012-07-26 2016-03-29 Verily Life Sciences Llc Input system
US8919953B1 (en) 2012-08-02 2014-12-30 Google Inc. Actuatable contact lenses
US9696564B1 (en) 2012-08-21 2017-07-04 Verily Life Sciences Llc Contact lens with metal portion and polymer layer having indentations
US9111473B1 (en) 2012-08-24 2015-08-18 Google Inc. Input system
US9395468B2 (en) * 2012-08-27 2016-07-19 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
US8820934B1 (en) 2012-09-05 2014-09-02 Google Inc. Passive surface acoustic wave communication
US20140192315A1 (en) 2012-09-07 2014-07-10 Google Inc. In-situ tear sample collection and testing using a contact lens
US9398868B1 (en) 2012-09-11 2016-07-26 Verily Life Sciences Llc Cancellation of a baseline current signal via current subtraction within a linear relaxation oscillator-based current-to-frequency converter circuit
US10010270B2 (en) 2012-09-17 2018-07-03 Verily Life Sciences Llc Sensing system
US9326710B1 (en) 2012-09-20 2016-05-03 Verily Life Sciences Llc Contact lenses having sensors with adjustable sensitivity
US8960898B1 (en) 2012-09-24 2015-02-24 Google Inc. Contact lens that restricts incoming light to the eye
US8870370B1 (en) 2012-09-24 2014-10-28 Google Inc. Contact lens that facilitates antenna communication via sensor impedance modulation
US20140088372A1 (en) 2012-09-25 2014-03-27 Google Inc. Information processing method
US8989834B2 (en) 2012-09-25 2015-03-24 Google Inc. Wearable device
US8979271B2 (en) 2012-09-25 2015-03-17 Google Inc. Facilitation of temperature compensation for contact lens sensors and temperature sensing
US8821811B2 (en) 2012-09-26 2014-09-02 Google Inc. In-vitro contact lens testing
US8960899B2 (en) 2012-09-26 2015-02-24 Google Inc. Assembling thin silicon chips on a contact lens
US9884180B1 (en) 2012-09-26 2018-02-06 Verily Life Sciences Llc Power transducer for a retinal implant using a contact lens
US8985763B1 (en) 2012-09-26 2015-03-24 Google Inc. Contact lens having an uneven embedded substrate and method of manufacture
US9063351B1 (en) 2012-09-28 2015-06-23 Google Inc. Input detection system
US8965478B2 (en) 2012-10-12 2015-02-24 Google Inc. Microelectrodes in an ophthalmic electrochemical sensor
US9176332B1 (en) 2012-10-24 2015-11-03 Google Inc. Contact lens and method of manufacture to improve sensor sensitivity
US9757056B1 (en) 2012-10-26 2017-09-12 Verily Life Sciences Llc Over-molding of sensor apparatus in eye-mountable device
SG11201504592YA (en) 2012-12-11 2015-07-30 Novartis Ag Method for applying a coating onto a silicone hydrogel lens
CN104871036B (zh) 2012-12-17 2019-12-10 诺华股份有限公司 制备改进的uv吸收性眼用透镜的方法
US8874182B2 (en) 2013-01-15 2014-10-28 Google Inc. Encapsulated electronics
US9289954B2 (en) 2013-01-17 2016-03-22 Verily Life Sciences Llc Method of ring-shaped structure placement in an eye-mountable device
US9636016B1 (en) 2013-01-25 2017-05-02 Verily Life Sciences Llc Eye-mountable devices and methods for accurately placing a flexible ring containing electronics in eye-mountable devices
US20140209481A1 (en) 2013-01-25 2014-07-31 Google Inc. Standby Biasing Of Electrochemical Sensor To Reduce Sensor Stabilization Time During Measurement
US9161712B2 (en) 2013-03-26 2015-10-20 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US9113829B2 (en) 2013-03-27 2015-08-25 Google Inc. Systems and methods for encapsulating electronics in a mountable device
USRE49528E1 (en) * 2013-04-26 2023-05-16 Biointeractions Ltd. Bioactive coatings
CN114957564A (zh) * 2013-04-26 2022-08-30 生物相互作用有限公司 生物活性涂层
WO2014201431A1 (en) * 2013-06-14 2014-12-18 Massachusetts Institute Of Technology Articles and methods for stem cell differentiation
US20140371560A1 (en) 2013-06-14 2014-12-18 Google Inc. Body-Mountable Devices and Methods for Embedding a Structure in a Body-Mountable Device
US9084561B2 (en) 2013-06-17 2015-07-21 Google Inc. Symmetrically arranged sensor electrodes in an ophthalmic electrochemical sensor
US9948895B1 (en) 2013-06-18 2018-04-17 Verily Life Sciences Llc Fully integrated pinhole camera for eye-mountable imaging system
US9685689B1 (en) 2013-06-27 2017-06-20 Verily Life Sciences Llc Fabrication methods for bio-compatible devices
US9307901B1 (en) 2013-06-28 2016-04-12 Verily Life Sciences Llc Methods for leaving a channel in a polymer layer using a cross-linked polymer plug
US9028772B2 (en) 2013-06-28 2015-05-12 Google Inc. Methods for forming a channel through a polymer layer using one or more photoresist layers
US9814387B2 (en) 2013-06-28 2017-11-14 Verily Life Sciences, LLC Device identification
US9492118B1 (en) 2013-06-28 2016-11-15 Life Sciences Llc Pre-treatment process for electrochemical amperometric sensor
CN105917270A (zh) 2013-11-15 2016-08-31 视觉力学有限责任公司 具有亲水层的接触透镜
CN103705965B (zh) * 2013-12-10 2015-07-08 浙江大学 一种超薄抗菌水凝胶薄膜的制备方法
MY180543A (en) 2013-12-17 2020-12-01 Novartis Ag A silicone hydrogel lens with a crosslinked hydrophilic coating
US9654674B1 (en) 2013-12-20 2017-05-16 Verily Life Sciences Llc Image sensor with a plurality of light channels
US9572522B2 (en) 2013-12-20 2017-02-21 Verily Life Sciences Llc Tear fluid conductivity sensor
US9366570B1 (en) 2014-03-10 2016-06-14 Verily Life Sciences Llc Photodiode operable in photoconductive mode and photovoltaic mode
US9184698B1 (en) 2014-03-11 2015-11-10 Google Inc. Reference frequency from ambient light signal
US9789655B1 (en) 2014-03-14 2017-10-17 Verily Life Sciences Llc Methods for mold release of body-mountable devices including microelectronics
RU2017109631A (ru) 2014-08-26 2018-10-01 Новартис Аг Сополимеры оксазолина и этиленимина с эпихлоргидрином и их применение
US10525170B2 (en) 2014-12-09 2020-01-07 Tangible Science, Llc Medical device coating with a biocompatible layer
US10723842B2 (en) 2015-03-11 2020-07-28 University Of Florida Research Foundation, Inc. Mesh size control of lubrication in gemini hydrogels
RU2705399C2 (ru) * 2015-03-31 2019-11-07 Торэй Индастриз, Инк. Сополимер и медицинское устройство, разделительный мембранный модуль медицинского назначения и устройство для очистки крови, включающее этот сополимер
CA2992823C (en) 2015-09-04 2019-10-29 Novartis Ag Method for producing contact lenses with durable lubricious coatings thereon
ES2822126T3 (es) 2015-12-03 2021-04-29 Alcon Inc Soluciones de envasado de lentes de contacto
CN108367517A (zh) 2015-12-15 2018-08-03 诺华股份有限公司 用于生产具有润滑表面的接触镜片的方法
SG11201803726VA (en) 2015-12-15 2018-06-28 Novartis Ag Method for applying stable coating on silicone hydrogel contact lenses
WO2018078598A1 (en) 2016-10-31 2018-05-03 Chnovartis Ag Method for producing surface coated contact lenses with wearing comfort
MX2019014537A (es) 2017-06-07 2020-08-17 Alcon Inc Lentes de contacto de hidrogel de silicona.
AU2018282054B2 (en) 2017-06-07 2021-01-14 Alcon Inc. Silicone hydrogel contact lenses
TWI640557B (zh) * 2017-07-05 2018-11-11 晶碩光學股份有限公司 具表面修飾的隱形眼鏡及其製備方法
US10809181B2 (en) 2017-08-24 2020-10-20 Alcon Inc. Method and apparatus for determining a coefficient of friction at a test site on a surface of a contact lens
BR112020009607A2 (pt) 2017-12-13 2020-10-13 Alcon Inc. lentes de contato com gradiente aquoso descartáveis semanal e mensalmente
TWI673315B (zh) * 2018-02-22 2019-10-01 優你康光學股份有限公司 具有釋放活性成分能力的水性組成物及可重複使用之隱形眼鏡產品
US20210132411A1 (en) 2019-11-04 2021-05-06 Alcon Inc. Contact lenses with surfaces having different softness
AU2020408087B2 (en) 2019-12-16 2023-10-05 Alcon Inc. Wettable silicone hydrogel contact lenses
US20220032564A1 (en) 2020-07-28 2022-02-03 Alcon Inc. Contact lenses with softer lens surfaces
US20220372391A1 (en) 2021-04-22 2022-11-24 Alcon Inc. Method for applying a coating onto a non-silicone hydrogel lens
US20230103231A1 (en) 2021-09-01 2023-03-30 Alcon Inc. Method for producing wettable silicone hydrogel contact lenses
WO2024038390A1 (en) 2022-08-17 2024-02-22 Alcon Inc. A contact lens with a hydrogel coating thereon

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734475A (en) 1986-12-15 1988-03-29 Ciba-Geigy Corporation Wettable surface modified contact lens fabricated from an oxirane containing hydrophobic polymer
WO1989004330A1 (en) * 1987-11-06 1989-05-18 Ioptex Research, Inc. Surface modified optical lens and method of surface modification
US4810764A (en) * 1988-02-09 1989-03-07 Bausch & Lomb Incorporated Polymeric materials with high oxygen permeability and low protein substantivity
US4910277A (en) * 1988-02-09 1990-03-20 Bambury Ronald E Hydrophilic oxygen permeable polymers
US5219965A (en) 1990-11-27 1993-06-15 Bausch & Lomb Incorporated Surface modification of polymer objects
GB9113875D0 (en) * 1991-06-27 1991-08-14 Biointeractions Ltd Polymer coatings
ATE193654T1 (de) 1991-08-16 2000-06-15 Miles A Galin Mit arzneimittel überzogenes lichtbrechendes implantat für die vordere augenkammer
JP3354571B2 (ja) * 1991-11-05 2002-12-09 ボシュ・アンド・ロム・インコーポレイテッド ぬれ性のシリコーンヒドロゲル組成物およびその製造方法
US5352714A (en) 1991-11-05 1994-10-04 Bausch & Lomb Incorporated Wettable silicone hydrogel compositions and methods for their manufacture
US5310779A (en) * 1991-11-05 1994-05-10 Bausch & Lomb Incorporated UV curable crosslinking agents useful in copolymerization
US5344701A (en) 1992-06-09 1994-09-06 Minnesota Mining And Manufacturing Company Porous supports having azlactone-functional surfaces
US5292514A (en) * 1992-06-24 1994-03-08 Minnesota Mining And Manufacturing Company Azlactone-functional substrates, corneal prostheses, and manufacture and use thereof
AR009439A1 (es) * 1996-12-23 2000-04-12 Novartis Ag Un articulo que comprende un sustrato con un recubrimiento polimerico primario que porta grupos reactivos predominantemente en su superficie, unmetodo para preparar dicho articulo, un articulo que posee un recubrimiento de tipo hibrido y una lente de contacto
US6087415A (en) * 1998-06-11 2000-07-11 Johnson & Johnson Vision Care, Inc. Biomedical devices with hydrophilic coatings
US6039913A (en) * 1998-08-27 2000-03-21 Novartis Ag Process for the manufacture of an ophthalmic molding
US6099852A (en) * 1998-09-23 2000-08-08 Johnson & Johnson Vision Products, Inc. Wettable silicone-based lenses

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349622C (zh) * 2002-12-19 2007-11-21 庄臣及庄臣视力保护公司 具有亲水涂层的生物医学装置及其制备方法
CN102271719B (zh) * 2008-12-30 2014-06-18 博士伦公司 包装溶液
CN102271719A (zh) * 2008-12-30 2011-12-07 博士伦公司 包装溶液
CN104678462B (zh) * 2010-07-30 2019-11-05 诺华股份有限公司 具有交联亲水涂层的硅氧烷水凝胶透镜
CN103038699A (zh) * 2010-07-30 2013-04-10 诺瓦提斯公司 具有交联亲水涂层的硅氧烷水凝胶透镜
CN103052364A (zh) * 2010-07-30 2013-04-17 诺瓦提斯公司 具有富水表面的硅水凝胶透镜
CN103038699B (zh) * 2010-07-30 2015-03-18 诺华股份有限公司 具有交联亲水涂层的硅氧烷水凝胶透镜
CN104678462A (zh) * 2010-07-30 2015-06-03 诺华股份有限公司 具有交联亲水涂层的硅氧烷水凝胶透镜
CN103052364B (zh) * 2010-07-30 2015-12-02 诺华股份有限公司 具有富水表面的硅水凝胶透镜
CN103405807A (zh) * 2013-07-05 2013-11-27 温州医科大学 一种表面梳状聚合物亲水改性的人工晶状体及其制备方法
CN106715101A (zh) * 2014-08-26 2017-05-24 诺华股份有限公司 用于在硅酮水凝胶接触镜片上施用稳定的涂层的方法
CN106715101B (zh) * 2014-08-26 2019-11-05 诺华股份有限公司 用于在硅酮水凝胶接触镜片上施用稳定的涂层的方法
CN109790259A (zh) * 2016-09-30 2019-05-21 东丽株式会社 共聚物和使用其的医疗材料
CN109790259B (zh) * 2016-09-30 2021-12-07 东丽株式会社 共聚物和使用其的医疗材料
CN111777909A (zh) * 2020-07-14 2020-10-16 浙江工业大学 一种通用的功能性聚合物涂层的制备方法
CN116655987A (zh) * 2022-02-21 2023-08-29 颖利科技股份有限公司 基底表面亲水处理方法及具有亲水改性表面的基底
CN115785800A (zh) * 2022-10-18 2023-03-14 广州市嵩达新材料科技有限公司 一种光固化导热涂层及其制备方法

Also Published As

Publication number Publication date
HK1045375A1 (en) 2002-11-22
ES2264665T3 (es) 2007-01-16
AU4713800A (en) 2000-12-12
US20020120084A1 (en) 2002-08-29
KR20020013890A (ko) 2002-02-21
DE60027289D1 (de) 2006-05-24
HK1045375B (zh) 2006-11-24
AU762372B2 (en) 2003-06-26
TW589465B (en) 2004-06-01
BR0011610A (pt) 2002-07-23
ZA200109528B (en) 2003-02-19
EP1179190B1 (en) 2006-04-12
JP4544753B2 (ja) 2010-09-15
WO2000072052A1 (en) 2000-11-30
MXPA01011853A (es) 2002-05-06
DE60027289T2 (de) 2006-08-31
CA2373541A1 (en) 2000-11-30
CN1156713C (zh) 2004-07-07
JP2003500686A (ja) 2003-01-07
US6440571B1 (en) 2002-08-27
EP1179190A1 (en) 2002-02-13

Similar Documents

Publication Publication Date Title
CN1156713C (zh) 用反应性亲水聚合物进行的医疗器件的表面处理
JP7035010B2 (ja) グラフトポリマーネットワークを含有するポリマー組成物、並びにその調製及び使用プロセス
JP4991075B2 (ja) シリコーン医療デバイスの表面処理
CN1266197C (zh) 施涂聚合物透镜涂层的方法
EP1971376B1 (en) Silicone containing polymers formed from non-reactive silicone containing prepolymers
CN1351630A (zh) 包含连接在中间碳覆盖层上的亲水性聚合物链的硅氧烷水凝胶接触镜片的表面处理
CN1780883A (zh) 用于形成透明可润湿聚硅氧烷水凝胶制品的稀释剂
EP2207852B1 (en) Silicone hydrogels with amino surface groups

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040707