CN1454851A - 磁铁矿纳米粒子的合成和形成铁基纳米材料的方法 - Google Patents

磁铁矿纳米粒子的合成和形成铁基纳米材料的方法 Download PDF

Info

Publication number
CN1454851A
CN1454851A CN03110763A CN03110763A CN1454851A CN 1454851 A CN1454851 A CN 1454851A CN 03110763 A CN03110763 A CN 03110763A CN 03110763 A CN03110763 A CN 03110763A CN 1454851 A CN1454851 A CN 1454851A
Authority
CN
China
Prior art keywords
described mixture
acac
organic
solvent
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03110763A
Other languages
English (en)
Other versions
CN1454851B (zh
Inventor
孙守恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1454851A publication Critical patent/CN1454851A/zh
Application granted granted Critical
Publication of CN1454851B publication Critical patent/CN1454851B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62826Iron group metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • C09C1/3054Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx

Abstract

描述了一种通过在有机溶剂中混合铁盐与醇、羧酸和胺并将该混合物加热到200-360℃制备磁铁矿纳米粒子材料的方法和结构。通过改变铁盐与酸/胺的比例或者通过用更多的铁氧化物涂覆小的纳米粒子可以控制粒子的尺寸。利用本发明得到了尺寸在2nm到20nm范围内的具有窄尺寸分布的磁铁矿纳米粒子。本发明可以容易地延伸到其它的铁氧化物基纳米粒子材料,包括MFe2O4(M=Co、Ni、Cu、Zn、Cr、Ti、Ba、Mg)纳米材料和涂覆了铁氧化物的纳米粒子材料。通过在反应混合物中用硫醇代替乙醇,本发明还可以实现硫化铁基纳米粒子材料的合成。可以将磁铁矿纳米粒子氧化为γ-Fe2O3或α-Fe2O3,或者可以将其还原为bcc-Fe纳米粒子,还可以使用铁氧化物基材料制备二元铁基金属纳米粒子,例如CoFe、NiFe和FeCoSmx

Description

磁铁矿纳米粒子的合成和形成 铁基纳米材料的方法
                      技术领域
本发明总的来说涉及纳米粒子的合成,更具体地说,涉及铁基纳米粒子、尤其是具有许多重要的技术应用的氧化铁、硫化铁纳米粒子材料的尺寸控制合成。
                      背景技术
磁铁矿Fe3O4是已经发现的具有许多重要应用的三种常见铁氧化物FeO、Fe2O3和Fe3O4中之一。市场上已知为“铁磁流体”的磁性铁氧化物纳米粒子分散体已经广泛用于例如真空容器的转轴密封、各种电子仪器的振动阻尼和航空电子技术、机器人技术、机床和驱动系统位置感知[K.Raj,R.Moskowitz,J.Magn.Mag Mater.,85,233(1990).]。磁铁矿是半金属化材料。其黑色粒子分散体已经用于印刷,作为高质量的调色剂或油墨[美国专利4991191、美国专利5648170和美国专利6083476,这里引入作为参考]。磁铁矿分散体也用于制造液晶器件,包含彩色显示器、单色光开关和可调波长滤波器[美国专利3648269、美国专利3972595、美国专利5948321、美国专利6086780和美国专利6103437,这里引入作为参考]。作为具有高居里温度(858K)的半导体铁氧磁材料,磁铁矿在隧道器件制造中已经显示了巨大的潜能,[G.Gong,et al,Phys.Rev.B,56,5096(1997).J.M.D.Coey,et al,Appl.Phys.Lett.,72,734(1998).X.Li,et al,J.Appl.Phys.,83,7049(1998).T.Kiyomura,et al,J.Appl.Phys.,88,4768(2000).R.G.C.Moore,et al,Physica E,9,253(2001).S.Soeya,et al,Appl.Phys.Lett.,80,823(2002).]。磁铁矿纳米粒子在临床医学中的使用是诊断医学和药物传送中的重要领域。具有10-20nm尺寸的磁铁矿纳米粒子是超顺磁性的。这些粒子干扰外部均匀磁场,并且能够在活体内磁性定位,便于为医学诊断提供磁谐振成像(MRI)[US6123920、US6048515、US6203777、US6207134,D.K.Kim,etal,J.Magn.Mater.,225,256(2001),这里引入作为参考]和为癌症治疗提供AC磁场感应激励[US6165440和US6167313,A.Jordan,etal,J.Magn.Mag.Mater.,201,413(1999),这里引入作为参考]。
磁性铁氧化物流体的所有这些医学和技术上的应用需要磁性粒子的尺寸在单畴尺寸范围内,整个粒子尺寸分布窄以便粒子具有均匀的物理性能、生物分布、生物杀灭和衬度效果。例如,对于医学应用来说,平均粒子尺寸总的来说应在2-15nm的范围内,对于用作血液混合剂(blood pool agent)来说,包含任何涂覆材料的平均整个粒子尺寸最好小于30nm。然而,制造具有理想的尺寸、可接受的尺寸分布而没有粒子聚集的粒子始终是一个问题。
在现有技术中已经使用制备磁铁矿铁磁流体的两个通用方法。在第一方法中,通过在球磨机中用表面活性剂和载体溶剂长时间研磨磁铁矿制备磁性流体,如在美国专利US3215572和美国专利US3917538中所例举的,所述专利在这里引入作为参考。在第二方法中,通过将用油酸酯单层覆盖的共沉淀磁铁矿转移到非极性溶剂中,得到磁铁矿流体的稳定分散体。该方法的主要特征是通过在包含二价铁(Fe2+)和三价铁(Fe3+)离子的水溶液中的化学反应得到超精细磁性氧化物,并且实现水溶液中磁性粒子上表面活性剂的强烈吸附,如美国专利US4019994、US4855079和US6086780(引入上述专利作为参考)和其它公开文献[Y.S.Kang,et al.,Chem.Mater.8,2209(1996).C.-Y.Hong,et al,J.Appl.Phys.81,4275(1997).T.Fried,et al,Adv.Mater.13,1158(2001).]所例举的。该方法不像研磨方法那样需要长的制备时间,并且适合磁性流体的批量生产。但是,它需要不断调整溶液的PH值以便确保粒子的形成和稳定。近来,[R.Vijayakumar,et al,Materials Sci.Eng.A286,101(2000).G.B.Biddlecombe,et al.,J.Mater.Chem.,11,2937(2001).]报导了来自Fe(II)盐的Fe3O4的第三种声化学合成方法。所有这些技术的主要缺点是得到的磁性粒子的尺寸分布、这些粒子的成份和/或粒子之间的相互作用力的不均匀性。该工艺在向更小尺寸的磁铁矿纳米晶体方面进展非常有限。
                        发明内容
本发明提供一种通过在有机溶剂中使铁盐和醇、羧酸及胺混合并将该混合物加热到200-360℃制备磁铁矿纳米粒子材料的方法。通过改变铁盐与酸/胺的比例或者通过用更多的铁氧化物涂覆小的纳米粒子可以控制粒子的尺寸。利用本发明得到了尺寸在2nm到20nm范围内的、具有窄的尺寸分布的磁铁矿纳米粒子。本发明可以容易地延伸到其它的铁氧化物基纳米粒子材料和涂覆了铁氧化物的纳米粒子材料,包括MFe2O4(M=Co、Ni、Cu、Zn、Cr、Ti、Ba、Mg)和MRFeOx(R=稀土金属)纳米材料。通过在反应混合物中用硫醇代替醇,本发明还可以实现硫化铁基纳米粒子材料的合成。可以将磁铁矿纳米粒子氧化为γ-Fe2O3或α-Fe2O3,或者可以将磁铁矿纳米粒子还原为bcc-Fe纳米粒子,同时可以使用铁氧化物基材料来制备二元铁基金属纳米粒子,例如CoFe、NiFe和FeCoSmx纳米粒子。
本发明的目的是提供一种合成Fe3O4纳米粒子材料的的方法,该材料具有控制的粒子尺寸。本发明的第二目的是制备其它类型的铁氧化物纳米粒子材料,例如MFe2O4、RFeO3或MRFeOx纳米粒子材料。本发明的第三目的是制备涂覆了铁氧化物的纳米粒子材料。本发明的第四目的是制备硫化铁和涂覆了硫化铁的纳米粒子材料,本发明的其它目的是制备金属纳米材料。
为了利用本发明制备Fe3O4,在溶剂中将铁盐与烷基醇、脂族酸(alphabetic acid)和伯胺混合。在200℃至360℃的温度范围内加热该混合物。冷却后,从它们的分散体中沉淀出磁铁矿纳米粒子,并且再分散到溶剂中。通过调整铁与酸/胺的比例或者反应温度控制粒子尺寸。通过将小的Fe3O4纳米粒子添加到该混合物中并且加热进行回流,也可以得到大尺寸的粒子。将不同的金属盐添加到该混合物中将得到MFe2O4纳米材料,同时将不同类型的纳米粒子添加到混合物中将生成涂覆了铁氧化物的芯-壳粒子材料。通过在混合物中用硫醇代替醇,可以制备硫化铁纳米材料和涂覆了硫化铁的芯-壳纳米材料。根据施加的反应温度的不同,使氧通过Fe3O4材料将生成γ-Fe2O3或α-Fe2O3,而使包含氢气的气体通过Fe3O4粒子将生成bcc-Fe纳米粒子材料。
                        附图说明
通过下面参考附图对本发明最佳实施例的详细描述将更好地理解前面描述的和其它的目的、方面和优点,其中:
图1是通过铁盐的还原/分解制备Fe3O4纳米粒子的一般性方案示意图;
图2示出了由图1所示的方案制备的6nm Fe3O4粒子的TEM图像;
图3示出了根据图1所示的方案通过用更多的铁氧化物涂覆6nmFe3O4纳米粒子制备的8nm Fe3O4纳米粒子的TEM图像;
图4示出了根据图1所示的方案通过用更多的铁氧化物涂覆8nmFe3O4纳米粒子制备的12nmFe3O4纳米粒子的TEM图像;
图5A-5C示出了根据图1所示的方案通过用更多的铁氧化物涂覆12nmFe3O4纳米粒子制备的16nmFe3O4纳米晶体的三个TEM图像;图5A是2D纳米晶体集合体(assembly)的低分辨率图像;图5B是3D超晶格纳米晶体集合体(assembly)的低分辨率图像,和图5C是几个纳米晶体的高分辨率原子晶格图像;
图6示出了(A)4nm、(B)8nm、(C)12nm和(D)16nmFe3O4纳米晶体集合体的X射线衍射图形。由它们的己烷分散体将样品淀积在玻璃衬底上。在CoKα辐照(λ=1.788965A)下在西门子D-500衍射仪上收集衍射图形;
图7A和7B示出了室温下(例如,15℃-30℃)Fe3O4纳米晶体材料的磁滞回线,图7A来自4nmFe3O4,图7B来自8nmFe3O4
图8示出了硫化铁纳米晶体材料的X射线衍射图形;
图9是示意图,表明由Fe3O4纳米粒子开始,可以制备其它各种铁基纳米粒子材料;和
图10示出了(A)16nmFe3O4纳米晶体和(B)通过在250℃下用O2氧化16nmFe3O42小时得到的γ-Fe2O3纳米晶体和(C)通过400℃下和Ar+H2(5%)下还原Fe3O42小时得到的bcc-Fe纳米晶体集合体的X射线衍射图形。
                      具体实施方式
如上所述,本发明的第一目的是提供一种用于合成Fe3O4纳米粒子的方法,该Fe3O4纳米粒子具有控制的粒径和尺寸分布。如图1所示,可以通过在醚溶剂中混合铁盐、醇、羧酸和胺并且加热该化合物进行回流制备铁氧化物纳米粒子材料。形成黑色溶液。冷却到室温(例如15℃-30℃)之后,用乙醇处理该化合物,从溶液中沉淀出黑色的磁性材料。将该黑色产物在酸和胺存在的情况下溶解在己烷中,用乙醇再沉淀。这样,可以从纳米粒子产物中除去高沸点溶剂和其它的有机杂质,得到纯的Fe3O4纳米粒子材料。将该材料分散到各种溶剂中以便得到黑棕色的溶液。TEM分析表明粒子接近单分散。利用上述过程,通过改变稳定剂/铁的比例或者提高反应温度,可以制得具有2nm-12nm尺寸范围的磁铁矿纳米粒子。图2是根据图1制备且由其己烷分散体淀积在非晶碳表面上的6nmFe3O4纳米晶体的TEM图像。这种纳米晶体可以作为籽晶,用于形成大的Fe3O4纳米晶体。
利用籽晶促进的生长还可以制备较大的Fe3O4纳米晶体。将小的Fe3O4纳米晶体即籽晶与图1所示的更多原料混合,并且加热进行回流。通过控制小的纳米晶体籽晶的量,可以形成各种尺寸的Fe3O4纳米晶体。根据所用的小Fe3O4和铁盐混合物的相对重量,该方法可以得到尺寸在4nm-20nm范围内的Fe3O4纳米粒子。例如,混合和加热62mg的8nmFe3O4纳米粒子与2mmol的铁盐、10mmol的醇、2mmol的羧酸和2mmol的胺,形成12nmFe3O4纳米粒子,而混合和加热15mg的8nmFe3O4与相同量的铁盐和其它有机前体,得到16nm的Fe3O4纳米粒子。
图3-5C是利用籽晶促进的生长方法制备的各种尺寸的Fe3O4纳米晶体的TEM图像。与图2所示的磁铁矿纳米晶体相比,这些图像表明籽晶促进的生长不仅生成了更大的纳米晶体,还使纳米晶体的尺寸分布变窄,生成更均匀的纳米晶体材料,并且便于纳米晶体超晶格的形成,如图5B所示。通过单个纳米晶体的高分辨率TEM和一组纳米晶体的X射线衍射揭示出这些纳米晶体(fcc尖晶石结构)的高质量晶体特性。在高分辨率TEM图像(图5C)中清楚地看到与d(111)=4.86埃的晶格常数对应的原子晶格。该fcc尖晶石结构的晶胞参数是8.41埃,与标准Fe3O4的参数一致。图6示出了由图1的图形(A)和籽晶促进的生长图形(B-D)制备的各种尺寸的Fe3O4纳米晶体集合体的X射线衍射图形。由图6中X射线的宽化,可以从Scherrer公式评估平均粒径:
Lhkl=Kλ/βcosθ
其中L是沿着密勒指数(hkl)方向的平均晶粒尺寸,λ是所用的X射线的波长,K是Scherrer常数,并且其值大约为0.9,θ是布喇格角,β是弧度半高处的峰宽度。该计算确认了该粒子尺寸与通过对TEM图像进行统计分析确定的平均粒径匹配,表明每个粒子是单个的晶体。
由于Fe3O4纳米晶体的小尺寸,因此在室温下它们是超顺磁性的。图7A和7B示出了室温下两种不同的Fe3O4纳米晶体材料的磁滞回线。图7A来自4nm Fe3O4纳米晶体,图7B来自8nm Fe3O4纳米晶体。由于具有低的磁各向异性能量(KV)的小粒子的热扰动(KT),可以看出较小的粒子(4nm)需要较强的磁场使它们排列。
图1所示的方法可以容易地延伸到更复杂的纳米粒子材料例如MFe2O4纳米粒子材料的合成。这包括在溶剂中将M(或R)盐和铁盐与烷基醇、脂族酸(alphabetic acid)和伯胺混合,并加热该混合物进行回流。金属盐可来自任何以下的盐:Zn、Cu、Ni、Co、Mn、Cr、V、Ti、Mg、Ba和稀土金属。而且,铁盐可以是下列任何盐:Fe(OOCCH3)2、Fe(acac)2、Fe(acac)3、FeC2O4和Fe2(C2O4)3。也可以以类似的方式制备一些非化学计量比的纳米材料例如FeMoxOy、CoSmxFeyOz
图1所示的相同方法还可以制备涂覆了铁氧化物的纳米粒子材料。例如,在溶剂中将铁盐和FePt纳米粒子与烷基醇、脂族酸和伯胺混合、然后加热该混合物进行回流将得到涂覆了Fe3O4的FePt纳米粒子。该工艺具有较高的一般性,并且可以应用到其它的涂覆铁氧化物的纳米粒子的合成,包括磁性的Co、Ni、Fe、FePt等和非磁性的Au、Ag、Cu、Pt、Pd等。
用烷硫醇(RSH)代替Fe3O4合成中的醇(ROH)得到硫化铁纳米材料。图8是合成的硫化铁纳米晶体材料的X射线衍射图形。它与磁黄铁矿FeS相匹配。与铁氧化物涂覆试验类似,通过在溶剂中将纳米粒子与铁盐、硫醇、羧酸和胺混合并且加热回流,也可以制备涂覆了硫化铁的纳米粒子。纳米粒子芯不仅包括磁性纳米粒子,而且包括非磁性纳米粒子。该工艺同样可以延伸到制备其它复杂的纳米材料,包含非化学计量比的FeMoSx和CoMoSx纳米材料。
Fe3O4基纳米晶体材料可以用作其它铁氧化物纳米晶体材料和金属纳米晶体材料的起始材料。图9显示了Fe3O4的各种转变的例子。例如,使氧通过Fe3O4纳米晶件集合体在250℃得到γ-Fe2O3纳米晶件集合体,在500℃则得到α-Fe2O3纳米晶件集合体。在400℃使还原气体[Ar+H2(5%)]通过Fe3O4纳米晶件集合体得到bcc-Fe纳米晶件集合体。在图10中示出了上述转变,其中线A来自开始的Fe3O4,线B来自在250℃、氧气下退火2小时的Fe3O4,线C来自在400℃、Ar+H2(5%)下退火2小时的Fe3O4。线B与众所周知的γ-Fe2O3匹配,而线C相当于一般的bcc-Fe。同样,也可以使用其它的氧化物纳米材料例如CoFeOx、NiFeOx或SmCoFeOx等纳米材料作为一些金属纳米材料CoFe、NiFe或SmCoFex合成的起始材料。
下面示出了本发明如何用于4nmFe3O4纳米晶体材料的一般合成。在玻璃容器中混合乙酰丙酮合铁(III)(706mg,2mmol)、1,2-十六烷二醇(2.58g,10mmol)、油酸(6mmol)、油胺(6mmol)和二辛醚(20mL),并加热回流30分钟。然后应移走加热源,黑棕色的反应混合物冷却到室温。然后应添加乙醇。通过离心法沉淀并分离黑色产物。弃去黄棕色上层清液,在存在油酸和油胺的情况下将黑色产物分散在己烷中。应通过离心法除去任何未溶解的沉淀。通过添加乙醇和离心沉淀出Fe3O4纳米晶体,并且容易地将Fe3O4纳米晶体再分散在烷烃溶剂、芳香族溶剂或含氯的溶剂中。通过改变稳定剂/铁盐的比例或反应温度,以类似的方式可以制备直到12nm直径的各种尺寸的Fe3O4
下面说明了本发明如何用于16nmFe3O4纳米晶体材料的一般合成。在氮气下在玻璃容器中混合乙酰丙酮合铁(III)(706mg,2mmol)、1-十八醇(2.70g,10mmol)、油酸(2mmol)、油胺(2mmol)、苯基醚(20mL)和分散在己烷中的8nmFe3O4纳米粒子(15mg),并搅拌和加热到100℃以便除去己烷。然后应加热混合物回流30分钟。移走加热源,黑棕色的反应混合物冷却到室温。然后应添加乙醇。通过离心法沉淀并分离黑色产物。弃去黄棕色上层清液,并在存在油酸和油胺的情况下将黑色产物分散在己烷中。应通过离心法除去任何未溶解的沉淀。通过添加乙醇和离心沉淀出Fe3O4纳米晶体,它们可以容易地再分散在烷烃溶剂、芳香族溶剂或含氯的溶剂中。可以使用这种籽晶促进的生长法来制备尺寸范围在4nm至20nm内的各种尺寸的Fe3O4纳米粒子材料。
下面说明本发明如何用于CoFe2O4纳米晶体材料的一般合成。在玻璃容器中混合乙酰丙酮合铁(III)(706mg,2mmol)、乙酰丙酮合钴(II)(1mmol)、1-十八醇(2.70g,10mmol)、油酸(2mmol)、油胺(2mmol)、苯基醚(20mL),并加热回流30分钟。移走加热源,使黑棕色的反应混合物冷却到室温。然后应添加乙醇。通过离心法沉淀并分离黑色产物。弃去黄棕色上层清液,并在存在油酸和油胺的情况下将黑色产物分散在己烷中。应通过离心法除去任何未溶解的沉淀。通过添加乙醇和离心沉淀出CoFe2O4纳米晶体,它们可以容易地再分散在烷烃溶剂、芳香族溶剂或含氯的溶剂中。通过将钴盐改变为其它的金属盐,可以制备各种MFe2O4纳米晶体材料,其中M=Zn、Cu、Ni、Co、Mn、Cr、V、Ti、Mg或Ba。
下面说明本发明如何用于制备涂覆了Fe3O4的FePt纳米材料的一般工艺。在氮气下在玻璃容器中混合乙酰丙酮合铁(III)(706mg,2mmol)、1-十八醇(2.70g,10mmol)、油酸(2mmol)、油胺(2mmol)、苯基醚(20mL)和分散在己烷中的4nmFePt纳米粒子,搅拌并加热到100℃以便除去己烷,然后加热该化合物30分钟进行回流。移走加热源,使黑棕色的反应混合物冷却到室温。然后应添加乙醇。通过离心法沉淀并分离黑色产物。弃去黄棕色上层清液,在存在油酸和油胺的情况下将黑色产物分散在己烷中。应通过离心法除去任何未溶解的沉淀。通过添加乙醇和离心沉淀出纳米晶体,它们可以容易地再分散在烷烃溶剂、芳香族溶剂或含氯的溶剂中。该工艺可以容易地延伸到其它类型的涂覆了铁氧化物的纳米材料,这些涂覆了铁氧化物的纳米材料的芯包括磁性(Co、Ni、Fe)和非磁性(Ag、Au、Pd、Pt、Cu或其它聚合物基粒子)的纳米粒子。
下面说明本发明如何用于硫化铁纳米晶体材料的一般合成。混合乙酰丙酮合铁(III)(706mg,2mmol)、1-十六烷硫醇(6mmol)、油酸(2mmol)、油胺(2mmol)和苯基醚(20mL),并加热30分钟进行回流。移走加热源,使黑棕色的反应混合物冷却到室温。然后应添加乙醇。通过离心法沉淀并分离黑色产物。弃去黄棕色上层清液,在存在油酸和油胺的情况下将黑色产物分散在己烷中。应通过离心法除去任何未溶解的沉淀。通过添加乙醇和离心沉淀出硫化铁纳米晶体。该工艺可以用来制备其它的金属硫化物例如硫化钴、硫化镍等以及涂覆了金属硫化物的纳米粒子材料。
上面制备的铁氧化物和硫化铁基纳米粒子材料在例如铁磁流体、数据存储、传感器、医学成像、药品输送、催化作用和磁及光学器件等方面具有重要用途。
因此,如上所述,本发明提供了一种方法,通过在有机溶剂中混合铁盐与乙醇、羧酸和胺并且将混合物加热到200-360℃制备磁铁矿纳米粒子材料。可以通过改变铁盐与酸/胺的比例或者通过用更多的铁氧化物涂覆小的纳米粒子来控制粒子的尺寸。利用本发明得到了尺寸在2nm至20nm的具有窄的尺寸分布的磁铁矿纳米粒子。可以容易地将本发明延伸到其它的铁氧化物基纳米粒子材料,包括MFe2O4(M=Co、Ni、Cu、Zn、Cr、Ti、Ba、Mg)纳米材料和涂覆了铁氧化物的纳米粒子材料。通过在反应混合物中用硫醇代替醇,本发明还提供了硫化铁基纳米粒子材料的合成。磁铁矿纳米粒子可以氧化为γ-Fe2O3或α-Fe2O3,或者可以还原为bcc-Fe纳米粒子,同时可以使用铁氧化物基材料来制备二元铁基金属纳米粒子,例如CoFe、NiFe和FeCoSmx纳米粒子。
在按照最佳实施例已经描述了本发明的同时,本领域技术人员应理解可以在上下文的精神和范围内修改以实施本发明。

Claims (34)

1.一种制备铁氧化物纳米粒子材料的方法,包括:
在有机溶剂中混合铁盐与醇、有机酸和有机胺,以便形成混合物;
加热所述混合物;
将所述混合物冷却到室温;
从所述混合物中沉淀产物;和
在溶剂中分散所述产物以便制备纳米晶体分散体。
2.如权利要求1所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
3.如权利要求1所述的方法,其中所述铁盐包括Fe(OOCCH3)2、Fe(acac)2、Fe(acac)3、FeC2O4和Fe2(C2O4)3之一,其中acac=CH3COCHCOCH3
4.如权利要求1所述的方法,其中所述醇包括具有基本式R(OH)的有机醇,并且包含一元醇和多元醇。
5.如权利要求1所述的方法,其中所述有机酸包括具有基本式为RCOOH、RSOH、RPOH的有机酸。
6.如权利要求1所述的方法,其中所述胺包括RNH2、R2NH和R3N之一。
7.如权利要求1所述的方法,其中所述溶剂包括ROH、R-O-R和R-N-R之一。
8.如权利要求1所述的方法,其中所述分散体包括水、醇、丙酮、烷烃、芳香溶剂和含氯溶剂之一。
9.一种制备金属掺杂的铁氧化物纳米粒子材料的方法,包括:
在有机溶剂中混合铁盐与金属盐、醇、有机酸和有机胺,以便形成混合物;
加热所述混合物;
将所述混合物冷却到室温;
从所述混合物中沉淀产物;和
在溶剂中分散所述产物以便形成纳米晶体分散体。
10.如权利要求9所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
11.如权利要求9所述的方法,其中所述金属盐包括下列化合物及其它们的衍生物之一:Co(OOCCH3)2、Co(acac)2、Co3(柠檬酸根)2、Ni(OOCCH3)2、Ni(acac)2、Ni(草酸根)、Cu(OOCCH3)2、Cu(acac)2、Cu(草酸根)、Zn(OOCCH3)2、Zn(acac)2、Zn(草酸根)、Mn(OOCCH3)2、Mn(acac)2、Mg(OOCCH3)2、Mg(acae)2、Ba(OOCCH3)2、Ba(acac)2、Sm(OOCCH3)3、Sm(acac)3、MoO2(acac)2,其中acac=CH3COCHCOCH3
12.如权利要求9所述的方法,其中所述纳米材料包括化学计量比的MFe2O4、非化学计量比的MFexOy、FeMoxOy和CoSmxFeyOz
13.一种制备涂覆了铁氧化物的纳米粒子材料的方法,包括:
在有机溶剂中混合纳米粒子与铁盐、有机醇、有机酸和有机胺,以便形成混合物;
加热所述混合物;
将所述混合物冷却到室温;
从所述混合物中沉淀产物;和
在溶剂中分散所述产物以便形成纳米晶体分散体。
14.如权利要求13所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
15.如权利要求13所述的方法,其中所述纳米粒子包括金属氧化物、金属和聚合物之一。
16.如权利要求15所述的方法,其中所述金属氧化物包括Fe、Co、Ni、Cu、Zn、Mn、Cr、V、Ti、Mg、Ca、Ba和Sm2O3之一的氧化物。
17.如权利要求15所述的方法,其中所述金属包括Fe、Co、Ni、Cu、Ag、Au、Pd和Pt中之一。
18.如权利要求15所述的方法,其中所述聚合物包括二氧化硅和聚烃(polyhydrocarbon)之一。
19.如权利要求13所述的方法,其中所述铁氧化物包括FeOx和MFexOy之一。
20.一种制备硫化铁纳米粒子材料的方法,包括:
在有机溶剂中混合铁盐与有机硫醇、有机酸和有机胺,以便形成混合物;
加热所述混合物;
将所述混合物冷却到室温;
从所述混合物中沉淀产物;和
在溶剂中分散所述产物以便形成纳米晶体分散体。
21.如权利要求20所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
22.如权利要求20所述的方法,其中所述硫醇包括来自基本式RSH的任何硫醇。
23.一种制备金属掺杂的硫化铁纳米粒子材料的方法,包括:
在有机溶剂中混合铁盐与金属盐、有机硫醇、有机酸和有机胺,以便形成混合物;
加热所述混合物;
将所述混合物冷却到室温;
从所述混合物中沉淀产物;和
在溶剂中分散所述产物。
24.如权利要求23所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
25.如权利要求23所述的方法,其中所述金属盐包括下列化合物及其衍生物之一:MoO2(acac)2、Mo(OOCCH3)2、Co(OOCCH3)2和Co(acac)2
26.一种制备涂覆了硫化铁的纳米粒子材料的方法,包括:
在有机溶剂中混合纳米粒子与金属盐、有机硫醇、有机酸和有机胺,以便形成混合物;
加热所述混合物;
将所述混合物冷却到室温;
从所述混合物中沉淀产物;和
在溶剂中分散所述产物以便形成纳米晶体分散体。
27.如权利要求26所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
28.一种制备Fe2O3纳米晶体材料的方法,包括:
在30℃之上的温度下用氧化剂氧化Fe3O4纳米晶体。
29.如权利要求28所述的方法,其中所述温度在200℃和500℃之间。
30.如权利要求28所述的方法,其中所述氧化剂包括氧和过氧化物之一。
31.一种制备Fe基纳米晶体的方法,包括:
在高于30℃的温度下用还原剂还原Fe3O4和MFeOx纳米晶体之一。
32.如权利要求31所述的方法,其中所述温度在250℃和500℃之间。
33.如权利要求31所述的方法,其中所述Fe纳米晶体包括二元金属FeM和多元金属CoFeSmx、CoFeMox中之一,其中M=Co和Ni、Cu、Zn、Cr。
34.如权利要求31所述的方法,其中所述还原剂包括氢、金属氢化物和适于给出电子的物质中之一。
CN03110763XA 2002-04-17 2003-04-15 磁铁矿纳米粒子的合成和形成铁基纳米材料的方法 Expired - Fee Related CN1454851B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/124,078 2002-04-17
US10/124,078 US6962685B2 (en) 2002-04-17 2002-04-17 Synthesis of magnetite nanoparticles and the process of forming Fe-based nanomaterials

Publications (2)

Publication Number Publication Date
CN1454851A true CN1454851A (zh) 2003-11-12
CN1454851B CN1454851B (zh) 2011-11-02

Family

ID=29268680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03110763XA Expired - Fee Related CN1454851B (zh) 2002-04-17 2003-04-15 磁铁矿纳米粒子的合成和形成铁基纳米材料的方法

Country Status (5)

Country Link
US (3) US6962685B2 (zh)
JP (1) JP3989868B2 (zh)
KR (1) KR100550194B1 (zh)
CN (1) CN1454851B (zh)
SG (1) SG115530A1 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306800B (zh) * 2008-07-04 2010-04-07 中国科学院化学研究所 一种金属氧化物纳米颗粒的制备方法
CN101974265A (zh) * 2010-10-14 2011-02-16 湖南工业大学 一种磁性纳米胶印油墨
CN102686519A (zh) * 2009-12-15 2012-09-19 卡罗比亚意大利(共同)股份公司 纳米微粒形式的磁铁矿
CN103038401A (zh) * 2010-04-29 2013-04-10 巴斯夫公司 含有碳和铁磁性金属或合金的纳米粒子
CN103282775A (zh) * 2010-12-16 2013-09-04 国际商业机器公司 用于分析物的检测的带槽样本组件
CN103894141A (zh) * 2014-04-11 2014-07-02 上海交通大学 硫化剂改性磁性纳米Fe3O4吸附剂及其制备方法和应用
US8855957B2 (en) 2011-05-03 2014-10-07 International Business Machines Corporation Method for calibrating read sensors of electromagnetic read-write heads
US9040311B2 (en) 2011-05-03 2015-05-26 International Business Machines Corporation Calibration assembly for aide in detection of analytes with electromagnetic read-write heads
CN104874807A (zh) * 2015-06-17 2015-09-02 北京科技大学 一种具有体心立方结构纳米铁钴固溶体合金粉末的制备方法
CN104985194A (zh) * 2015-06-17 2015-10-21 北京科技大学 一种氧化物弥散强化铁钴纳米复合粉末的制备方法
CN105734267A (zh) * 2014-09-05 2016-07-06 合肥工业大学 一种通过混合焙烧制备多孔结构材料的方法
CN105734269A (zh) * 2014-09-05 2016-07-06 合肥工业大学 一种制备以磁黄铁矿为主要物相的多孔结构材料的方法
CN105793189A (zh) * 2013-12-06 2016-07-20 韩化石油化学株式会社 具有高再现性的制备均一的金属氧化物纳米粒子的方法
US9435800B2 (en) 2012-09-14 2016-09-06 International Business Machines Corporation Sample assembly with an electromagnetic field to accelerate the bonding of target antigens and nanoparticles
CN106587975A (zh) * 2016-12-28 2017-04-26 中国建筑材料科学研究总院 锌铁氧体材料及其制备方法
CN106898770A (zh) * 2017-03-28 2017-06-27 河南师范大学 铁醇盐硫化制备花状锂电池负极材料铁硫化合物的方法
CN107175112A (zh) * 2017-05-09 2017-09-19 济南大学 一种微马达光催化剂及其制备方法和应用
CN107519873A (zh) * 2017-07-31 2017-12-29 江苏大学 一种Cu基金属催化剂的制备方法及应用
CN109604625A (zh) * 2019-02-20 2019-04-12 哈尔滨工业大学 一种以过渡金属氧化物和铂金属纳米颗粒为前驱体制备铂基二元合金纳米颗粒的方法
CN110498451A (zh) * 2019-08-30 2019-11-26 济南大学 一种镍掺杂Fe3O4纳米粉体的制备及电催化分解水应用
CN110734292A (zh) * 2019-11-27 2020-01-31 宝鸡文理学院 一种CuO与陶瓷粉体均匀混合的方法
CN113853356A (zh) * 2019-05-24 2021-12-28 日铁矿业株式会社 钴铁氧体颗粒的制造方法和由此制造的钴铁氧体颗粒

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030059604A1 (en) * 2001-09-05 2003-03-27 Fuji Photo Film Co., Ltd. Material coated with dispersion of ferromagnetic nanoparticles, and magnetic recording medium using the material
US6962685B2 (en) * 2002-04-17 2005-11-08 International Business Machines Corporation Synthesis of magnetite nanoparticles and the process of forming Fe-based nanomaterials
JP2004165630A (ja) * 2002-10-21 2004-06-10 Fuji Photo Film Co Ltd 磁性粒子塗布物、磁性粒子塗布物の製造方法、磁気記録媒体、電磁シールド材
US8651113B2 (en) * 2003-06-18 2014-02-18 Swr&D Inc. Magnetically responsive nanoparticle therapeutic constructs and methods of making and using
US7531149B2 (en) * 2003-10-14 2009-05-12 The Board Of Trustees Of The University Of Arkansas Synthetic control of metal oxide nanocrystal sizes and shapes
US20050214190A1 (en) * 2004-03-25 2005-09-29 Seoul National University Method of synthesizing nanorods by reaction of metal-surfactant complexes injected using a syringe pump
KR100621309B1 (ko) * 2004-04-20 2006-09-14 삼성전자주식회사 황 전구체로서 싸이올 화합물을 이용한 황화 금속나노결정의 제조방법
JP4485442B2 (ja) * 2004-10-01 2010-06-23 コリア インスティテュート オブ サイエンス アンド テクノロジー 均一な粒度を有する親水性金属酸化物ナノ粒子及びその製造方法
KR100604975B1 (ko) * 2004-11-10 2006-07-28 학교법인연세대학교 자성 또는 금속 산화물 나노입자의 제조방법
WO2006057467A1 (en) * 2004-11-26 2006-06-01 Seoul National University Industry Foundation Method for large-scale production of monodisperse nanoparticles
JP4700374B2 (ja) * 2005-03-03 2011-06-15 学校法人東京理科大学 SmCo系磁性微粒子の製造方法
US20060205591A1 (en) * 2005-03-11 2006-09-14 Do-Hee Lee Adsorbent for removing mercury using sulfided iron compounds containing oxygen and method of producing same
US7405001B2 (en) * 2005-03-24 2008-07-29 3M Innovative Properties Company Surface modified nanoparticle and method of preparing same
GB2441699B (en) * 2005-05-14 2011-04-06 Atmos Metal oxide particles for use as semiconductor materials and methods of producing them
KR100886084B1 (ko) * 2005-12-06 2009-02-26 주식회사 엘지화학 코어-쉘 형태의 나노입자 및 그 제조방법
US7829140B1 (en) 2006-03-29 2010-11-09 The Research Foundation Of The State University Of New York Method of forming iron oxide core metal shell nanoparticles
JP5401754B2 (ja) * 2006-03-31 2014-01-29 三菱化学株式会社 金属酸化物ナノ結晶の製造方法
US7687160B2 (en) * 2006-04-06 2010-03-30 Winarski Tyson Y Magnetic storage medium formed of carbon nanotube arrays
US8437104B2 (en) 2006-04-06 2013-05-07 Sigma Pro Ltd. Llc Read/write apparatus and method for a magnetic storage medium comprised of magnetic nanoparticles contained within nanotubes
JP4765801B2 (ja) * 2006-07-11 2011-09-07 株式会社デンソー 金属酸化物粒子の製造方法
US7892520B2 (en) * 2006-07-31 2011-02-22 The Hong Kong University Of Science And Technology Solid-state synthesis of iron oxide nanoparticles
JP4829046B2 (ja) * 2006-08-30 2011-11-30 国立大学法人 名古屋工業大学 硫化金属ナノ粒子の製造方法及び光電変換素子
WO2008073175A2 (en) 2006-09-14 2008-06-19 The Regents Of The University Of California Nanoplasmonic molecular ruler for nuclease activity and dna footprinting
KR100759716B1 (ko) * 2006-09-26 2007-10-04 고려대학교 산학협력단 복합기능 자성체 코어 - 반도체 쉘 나노 입자 및 그의제조방법
CN101162349B (zh) * 2006-10-09 2010-05-26 鸿富锦精密工业(深圳)有限公司 成像装置
US7985398B2 (en) * 2006-12-12 2011-07-26 Honda Motor Co., Ltd. Preparation of iron or iron oxide nanoparticles
KR100791731B1 (ko) * 2007-01-04 2008-01-03 고려대학교 산학협력단 자성체 코어 - 세라믹 쉘 나노 결정 및 그의 제조방법
CN101600389A (zh) * 2007-01-24 2009-12-09 皇家飞利浦电子股份有限公司 用于影响和/或探测作用区域中的磁性粒子的方法、磁性粒子以及磁性粒子的使用
US8343627B2 (en) * 2007-02-20 2013-01-01 Research Foundation Of State University Of New York Core-shell nanoparticles with multiple cores and a method for fabricating them
US20100119429A1 (en) * 2007-02-28 2010-05-13 3M Innovative Properties Company Methods of making metal oxide nanoparticles
US20080233658A1 (en) * 2007-03-22 2008-09-25 Southwest Research Institute Environmental Fluorescent Sensors
KR101695966B1 (ko) * 2007-09-28 2017-01-12 나노코 테크놀로지스 리미티드 코어 쉘 나노입자들 및 이들의 준비 방법
US20090108229A1 (en) * 2007-10-26 2009-04-30 Headwaters Technology Innovation, Llc Magnetite powder and methods of making same
JP2009161414A (ja) * 2008-01-10 2009-07-23 Nagoya Institute Of Technology 磁性材料の製造方法
DE102008006402A1 (de) * 2008-01-28 2009-07-30 Magnamedics Gmbh Beschichtete Instrumente für die Invasivmedizin
US20090247652A1 (en) * 2008-03-27 2009-10-01 Headwaters Technology Innovation, Llc Metal colloids and methods for making the same
WO2009122330A2 (en) * 2008-04-03 2009-10-08 Koninklijke Philips Electronics N. V. Biocompatible products for magnetic particle imaging
CN102105554A (zh) * 2008-06-10 2011-06-22 阿肯色大学托管委员会 砷化铟纳米晶体及其制备方法
US8137879B2 (en) * 2008-06-26 2012-03-20 Xerox Corporation Ferromagnetic nanoparticles with high magnetocrystalline anisotropy for MICR toner applications
US8465855B2 (en) * 2008-07-16 2013-06-18 International Business Machines Corporation Protective coating of magnetic nanoparticles
WO2010080487A1 (en) * 2008-12-19 2010-07-15 The Regents Of University Of California Method of synthesizing pyrite nanocrystals
US9330821B2 (en) 2008-12-19 2016-05-03 Boutiq Science Limited Magnetic nanoparticles
PE20121017A1 (es) 2009-04-17 2012-08-08 Seerstone Llc Metodo para la produccion de carbono solido mediante la reduccion de oxidos de carbono
US8383085B2 (en) * 2009-05-29 2013-02-26 University Of Manitoba Methods of making iron-containing nanoparticles
JP2010285644A (ja) * 2009-06-10 2010-12-24 Fuji Electric Holdings Co Ltd 微粒子の表面処理方法及び微粒子
JP5604658B2 (ja) * 2009-07-07 2014-10-08 多摩川精機株式会社 球形フェライトナノ粒子の製造方法
US9081004B2 (en) * 2009-09-28 2015-07-14 International Business Machines Corporation Circuit for detecting analytes via nanoparticle-labeled substances with electromagnetic read-write heads
KR101043066B1 (ko) 2009-11-25 2011-06-21 아주대학교산학협력단 조영제용 금속 페라이트 나노입자의 제조 방법
US8114807B2 (en) * 2010-03-05 2012-02-14 Cem Corporation Synthesis and use of intermetallic iron palladium nanoparticle compositions
US20110217379A1 (en) * 2010-03-08 2011-09-08 Davis Llp Magnetic nanomaterials and methods for chemoembolisation
JP5670094B2 (ja) * 2010-05-11 2015-02-18 国立大学法人横浜国立大学 マグネタイトナノ微粒子の製造方法
CN101880065B (zh) * 2010-06-04 2012-03-14 哈尔滨工程大学 吸收高频电磁波的多孔四氧化三铁纳米颗粒的制备方法
JP2013535991A (ja) 2010-06-21 2013-09-19 ユニバーシティ オブ ワシントン センター フォー コマーシャライゼーション 生物医学向けにチューニングされた多機能性磁性ナノ粒子
US9555136B2 (en) 2010-06-21 2017-01-31 University Of Washington Through Its Center For Commercialization Coated magnetic nanoparticles
US10192660B2 (en) * 2010-07-02 2019-01-29 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Process for preparation of nanoparticles from magnetite ore
RU2540472C2 (ru) 2010-08-05 2015-02-10 Ханвха Кемикал Корпорейшн Получение крайне малых и однородных по размеру парамагнитных или псевдопарамагнитных наночастиц на основе оксида железа и, с их использованием, контрастных веществ для т1-режима мрт
US9051180B2 (en) * 2010-08-27 2015-06-09 Iowa State University Research Foundation, Inc. Method of controlling shape of synthesized ferroelectric oxide nanocrystal particles
CN105132284B (zh) 2011-05-13 2018-04-03 加利福尼亚大学董事会 用于选择性转染细胞的光热衬底
WO2013052838A1 (en) * 2011-10-06 2013-04-11 Dow Corning Corporation Method of forming a gel having improved thermal stability
US9126400B2 (en) 2011-11-04 2015-09-08 Deluxe Corporation Negotiable instruments with intelligent microprint
US9331607B1 (en) * 2011-11-28 2016-05-03 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Large strain transparent magneto-active polymer nanocomposites
KR101170669B1 (ko) 2011-11-28 2012-08-07 한국기초과학지원연구원 균일한 마그네타이트 나노입자의 제조 방법
WO2013090601A2 (en) 2011-12-16 2013-06-20 Massachusetts Institute Of Technology Compact nanoparticles for biological applications
CN104114028B (zh) * 2012-02-15 2017-09-22 加尔各答大学 植物营养物包覆的纳米颗粒及其制备和使用方法
DE102012204083A1 (de) * 2012-03-15 2013-09-19 Siemens Aktiengesellschaft Nanopartikel, Permanentmagnet, Motor und Generator
ITTO20120306A1 (it) * 2012-04-06 2013-10-07 Fond Istituto Italiano Di Tecnologia Nanocristalli di ferrite e loro usi
NO2749379T3 (zh) 2012-04-16 2018-07-28
JP6379085B2 (ja) 2012-04-16 2018-08-22 シーアストーン リミテッド ライアビリティ カンパニー 炭素酸化物を含有するオフガスを処理するための方法
MX354529B (es) 2012-04-16 2018-03-07 Seerstone Llc Métodos para producir carbono sólido mediante la reducción de dióxido de carbono.
WO2013158161A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream
MX2014012548A (es) 2012-04-16 2015-04-10 Seerstone Llc Metodos y estructuras para reducir oxidos de carbono con catalizadores no ferrosos.
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
EP2845009B1 (en) * 2012-04-30 2017-07-19 Council of Scientific & Industrial Research A sensor composition for acetone detection in breath
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
CN107215882A (zh) 2012-07-13 2017-09-29 赛尔斯通股份有限公司 用于形成氨和固体碳产物的方法和系统
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
WO2014089464A1 (en) * 2012-12-07 2014-06-12 The Trustees Of Dartmouth College Magnetic nanoparticles, composites, suspensions and colloids with high specific absorption rate (sar)
CN103043723B (zh) * 2012-12-17 2014-10-29 南京工业大学 一种纳米铁氧体颗粒的制备方法
DE102012113070A1 (de) * 2012-12-21 2014-06-26 Rewitec Gmbh Mittel zur Beimischung in einen Betriebsstoff für eine technische Anlage, Konzentrat zur Beimischung in einen Betriebsstoff für eine technische Anlage und Betriebsstoff
EP3129321B1 (en) 2013-03-15 2021-09-29 Seerstone LLC Electrodes comprising nanostructured carbon
EP3129133A4 (en) 2013-03-15 2018-01-10 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
EP3129135A4 (en) 2013-03-15 2017-10-25 Seerstone LLC Reactors, systems, and methods for forming solid products
WO2014150944A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Methods of producing hydrogen and solid carbon
WO2014151144A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
JP6390888B2 (ja) * 2013-03-27 2018-09-19 アイシン精機株式会社 FeOを主成分として含むナノ粒子の製造方法
US10899610B2 (en) * 2013-03-29 2021-01-26 Centre National De La Recherche Scientifique Method for producing high-purity hydrogen gas and/or nanomagnetite
FR3052160B1 (fr) * 2016-06-06 2021-10-22 Centre Nat Rech Scient Procede de preparation de nanomagnetite
CN103205300B (zh) * 2013-04-17 2014-08-20 苏州方昇光电装备技术有限公司 一种抗磨损自修复的硫-金属纳米粒子的制备方法
CN103642569B (zh) * 2013-12-02 2015-07-01 黑龙江省能源环境研究院 一种含超细稀土粉体润滑油添加剂
CN106463627B (zh) * 2014-04-14 2019-06-28 东丽株式会社 光伏元件
CN104059728B (zh) * 2014-06-30 2016-04-27 柳州市菱动能源科技有限公司 润滑油添加剂
CN104059720B (zh) * 2014-07-02 2016-04-06 宝捷润滑油镇江有限公司 一种车用重质润滑油及其制备方法
CN104059719B (zh) * 2014-07-02 2016-04-06 宝捷润滑油镇江有限公司 一种含有改性纳米金刚石的车用润滑油及其制备方法
CN104130843B (zh) * 2014-07-25 2017-07-14 中国石油化工股份有限公司 一种锭子油组合物
CN104130845B (zh) * 2014-07-29 2016-09-28 中国石油化工股份有限公司 一种船用齿轮箱油组合物
CN104445440B (zh) * 2014-11-10 2016-08-24 西北师范大学 一种尺寸、形貌可控的Fe1-XS纳米材料的制备方法
KR20160088700A (ko) 2015-01-16 2016-07-26 고려대학교 산학협력단 뷔스타이트 입자 및 이의 제조방법
TR201603891A2 (tr) * 2016-03-25 2017-10-23 Borcelik Celik San Tic A S Dekapaj çözelti̇leri̇nden saf demi̇r tozu üreti̇mi̇
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
JP7160798B2 (ja) * 2016-09-15 2022-10-25 ロイヤル・メルボルン・インスティテュート・オブ・テクノロジー 金属酸化物粒子の精製方法およびその使用
US10450201B2 (en) 2017-10-04 2019-10-22 King Fahd University Of Petroleum And Minerals Method for the synthesis of nanoparticles of heterometallic nanocomposite materials
KR102432090B1 (ko) * 2018-06-08 2022-08-12 한국과학기술연구원 비정질 나노구조체를 이용하여 제조된 초소형 나노구조체 및 이의 제조방법
US20220176366A1 (en) * 2019-03-29 2022-06-09 Exxonmobil Chemical Patents Inc. Compositions Comprising Nanoparticles and Processes for Making Nanoparticles
WO2020205494A1 (en) 2019-03-29 2020-10-08 Exxonmobil Chemical Patents Inc. Supported nanoparticle compositions and precursors, processes for making the same and syngas conversion processes
US20220227639A1 (en) * 2019-04-30 2022-07-21 Fondazione Istituto Italiano Di Tecnologia Method for the gram-scale preparation of cubic ferrite nanocrystals for biomedical applications
CN110204326B (zh) * 2019-05-16 2020-08-11 横店集团东磁股份有限公司 一种具有核壳结构的铁氧体永磁材料及其制备方法
US11410697B2 (en) 2019-08-20 2022-08-09 International Business Machines Corporation Process for forming underlayer for tape media
US11158339B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Magnetic recording layer formulation for tape media
US11152027B2 (en) 2019-08-20 2021-10-19 International Business Machines Corporation Tape media having synergistic magnetic recording layer and underlayer
US11790942B2 (en) 2019-08-20 2023-10-17 International Business Machines Corporation Process for forming magnetic recording layer for tape media
US11158337B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Tape cartridge having tape media having synergistic magnetic recording layer and underlayer
US11158340B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Underlayer formulation for tape media
CN110627132B (zh) * 2019-09-26 2022-02-22 黑龙江工程学院 一种小尺寸二硫化铁纳米空心球的制备方法
EP3895734B1 (en) * 2020-04-13 2023-01-25 ZTI Biosciences Co., Ltd. Iron oxide magnetic particles comprising copper(i)halides

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1242199B (de) * 1960-12-15 1967-06-15 Bayer Ag Verfahren zur Herstellung von nadelfoermigem gamma-Eisen(III)-oxid
US3215572A (en) 1963-10-09 1965-11-02 Papell Solomon Stephen Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles
US3648269A (en) 1970-07-16 1972-03-07 Ferrofluidics Corp Magnetic fluid display device
US3914538A (en) * 1972-05-16 1975-10-21 Xerox Corp Facsimile communication system
US3917538A (en) 1973-01-17 1975-11-04 Ferrofluidics Corp Ferrofluid compositions and process of making same
US3972595A (en) 1975-01-27 1976-08-03 International Business Machines Corporation Ferrofluid display device
US4019994A (en) 1975-08-28 1977-04-26 Georgia-Pacific Corporation Process for the preparation of aqueous magnetic material suspensions
US4209412A (en) * 1978-05-22 1980-06-24 Hercules Incorporated Process for producing nonstoichiometric ferroso-ferric oxides
US6203777B1 (en) 1983-12-21 2001-03-20 Nycomed Imaging As Method of contrast enhanced magnetic resonance imaging using carbohydrate particles
CN85100736B (zh) * 1985-04-01 1987-11-11 中国科学院化工冶金研究所 自硫酸盐溶液中萃取除铁
US4855079A (en) 1986-10-31 1989-08-08 Hitachi Metals, Ltd. Super paramagnetic fluids and methods of making super paramagnetic fluids
US4991191A (en) 1990-02-05 1991-02-05 The Regents Of The University Of Minnesota Quantitative analysis of the active table ingredient by power x-ray diffractometry
GB9200434D0 (en) * 1992-01-09 1992-02-26 Cavanagh Patrick E Autogenous roasting or iron ore
CN1033159C (zh) * 1992-07-20 1996-10-30 中国科学院合肥智能机械研究所 一种碳化铁纳米材料的制备方法
CA2101196C (en) * 1992-07-28 2005-06-14 James L. Gregory Plastic beverage closure
US5648170A (en) 1993-04-27 1997-07-15 Toda Kogyo Corporation Coated granular magnetite particles and process for producing the same
DE4428851C2 (de) 1994-08-04 2000-05-04 Diagnostikforschung Inst Eisen enthaltende Nanopartikel, ihre Herstellung und Anwendung in der Diagnostik und Therapie
EP0783325B2 (en) 1994-09-27 2004-03-31 Amersham Health AS Contrast agent
GB9600427D0 (en) 1996-01-10 1996-03-13 Nycomed Imaging As Contrast media
JP3438465B2 (ja) 1996-03-07 2003-08-18 戸田工業株式会社 磁性酸化鉄粒子、該粒子を主体としてなる磁性トナー用磁性酸化鉄粒子粉末及びその製造法並びに該磁性酸化鉄粒子粉末を用いた磁性トナー
DE19614136A1 (de) * 1996-04-10 1997-10-16 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung agglomeratfreier nanoskaliger Eisenoxidteilchen mit hydrolysebeständigem Überzug
US6083476A (en) 1996-05-08 2000-07-04 Mitsui Mining & Smelting Company, Ltd. Black ultrafine magnetite particles and process for preparing the same
AUPN978296A0 (en) 1996-05-10 1996-05-30 Gray, Bruce N Targeted hysteresis hyperthermia as a method for treating cancer
US5948321A (en) 1997-04-04 1999-09-07 Hong; Chin-Yih Rex Magnetic fluid thin film displays, monochromatic light switch and tunable wavelength filter
US5954991A (en) 1997-04-04 1999-09-21 Hong; Chin-Yih Rex Ordered structures in homogeneous magnetic fluid thin films and method of preparation
US6165440A (en) 1997-07-09 2000-12-26 Board Of Regents, The University Of Texas System Radiation and nanoparticles for enhancement of drug delivery in solid tumors
JP3818416B2 (ja) * 1999-04-14 2006-09-06 東洋紡績株式会社 粒子担体を使用した核酸の抽出方法
US6533136B1 (en) * 2000-12-18 2003-03-18 Owens-Illinois Closure Inc. Sealing closure for extrusion blow molded containers
US6682713B2 (en) * 2001-01-26 2004-01-27 Tosoh Corporation Iron sulfides, processes for producing the same, iron sulfide mixture, heavy metal treating agent, and method of treating with the agent
US6849186B2 (en) * 2001-05-02 2005-02-01 Phillips Plastic Corporation Composite particles
CN1122674C (zh) * 2001-07-16 2003-10-01 复旦大学 一种磁性聚合物纳米微球及其制备方法
US6962685B2 (en) * 2002-04-17 2005-11-08 International Business Machines Corporation Synthesis of magnetite nanoparticles and the process of forming Fe-based nanomaterials
KR100487905B1 (ko) * 2002-10-02 2005-05-06 한국과학기술연구원 형상이방성 산화철 나노분말 및 그 제조방법
WO2005060610A2 (en) * 2003-12-11 2005-07-07 The Trustees Of Columbia University In The City Ofnew York Nano-sized particles, processes of making, compositions and uses thereof

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306800B (zh) * 2008-07-04 2010-04-07 中国科学院化学研究所 一种金属氧化物纳米颗粒的制备方法
CN102686519B (zh) * 2009-12-15 2015-11-25 卡罗比亚意大利(共同)股份公司 纳米微粒形式的磁铁矿
CN102686519A (zh) * 2009-12-15 2012-09-19 卡罗比亚意大利(共同)股份公司 纳米微粒形式的磁铁矿
CN103038401A (zh) * 2010-04-29 2013-04-10 巴斯夫公司 含有碳和铁磁性金属或合金的纳米粒子
CN108213416A (zh) * 2010-04-29 2018-06-29 巴斯夫公司 含有碳和铁磁性金属或合金的纳米粒子
CN101974265A (zh) * 2010-10-14 2011-02-16 湖南工业大学 一种磁性纳米胶印油墨
CN101974265B (zh) * 2010-10-14 2015-08-19 厦门理工学院 一种磁性纳米胶印油墨
CN103282775A (zh) * 2010-12-16 2013-09-04 国际商业机器公司 用于分析物的检测的带槽样本组件
US10317398B2 (en) 2010-12-16 2019-06-11 International Business Machines Corporation Trenched sample assembly for detection of analytes with electromagnetic read-write heads
CN103282775B (zh) * 2010-12-16 2015-05-20 国际商业机器公司 用于分析物的检测的带槽样本组件
US9304130B2 (en) 2010-12-16 2016-04-05 International Business Machines Corporation Trenched sample assembly for detection of analytes with electromagnetic read-write heads
US11067568B2 (en) 2010-12-16 2021-07-20 International Business Machines Corporation Trenched sample assembly for detection of analytes with electromagnetic read-write heads
US8855957B2 (en) 2011-05-03 2014-10-07 International Business Machines Corporation Method for calibrating read sensors of electromagnetic read-write heads
US9714985B2 (en) 2011-05-03 2017-07-25 Globalfoundries Inc. Calibration assembly for aide in detection of analytes with electromagnetic read-write heads
US9040311B2 (en) 2011-05-03 2015-05-26 International Business Machines Corporation Calibration assembly for aide in detection of analytes with electromagnetic read-write heads
US9411022B2 (en) 2011-05-03 2016-08-09 Globalfoundries Inc. Calibration correlation for calibration assembly having electromagnetic read head
US10656232B2 (en) 2011-05-03 2020-05-19 International Business Machines Corporation Calibrating read sensors of electromagnetic read-write heads
US10393737B2 (en) 2012-09-14 2019-08-27 International Business Machines Corporation Sample assembly with an electromagnetic field to accelerate the bonding of target antigens and nanoparticles
US10132804B2 (en) 2012-09-14 2018-11-20 International Business Machines Corporation Sample assembly with an electromagnetic field to accelerate the bonding of target antigens and nanoparticles
US9435800B2 (en) 2012-09-14 2016-09-06 International Business Machines Corporation Sample assembly with an electromagnetic field to accelerate the bonding of target antigens and nanoparticles
CN105793189A (zh) * 2013-12-06 2016-07-20 韩化石油化学株式会社 具有高再现性的制备均一的金属氧化物纳米粒子的方法
CN105793189B (zh) * 2013-12-06 2018-01-23 韩华化学株式会社 具有高再现性的制备均一的金属氧化物纳米粒子的方法
CN103894141A (zh) * 2014-04-11 2014-07-02 上海交通大学 硫化剂改性磁性纳米Fe3O4吸附剂及其制备方法和应用
CN105734269A (zh) * 2014-09-05 2016-07-06 合肥工业大学 一种制备以磁黄铁矿为主要物相的多孔结构材料的方法
CN105734267B (zh) * 2014-09-05 2017-12-26 合肥工业大学 一种通过混合焙烧制备多孔结构材料的方法
CN105734267A (zh) * 2014-09-05 2016-07-06 合肥工业大学 一种通过混合焙烧制备多孔结构材料的方法
CN104874807A (zh) * 2015-06-17 2015-09-02 北京科技大学 一种具有体心立方结构纳米铁钴固溶体合金粉末的制备方法
CN104985194B (zh) * 2015-06-17 2019-03-29 北京科技大学 一种氧化物弥散强化铁钴纳米复合粉末的制备方法
CN104985194A (zh) * 2015-06-17 2015-10-21 北京科技大学 一种氧化物弥散强化铁钴纳米复合粉末的制备方法
CN106587975A (zh) * 2016-12-28 2017-04-26 中国建筑材料科学研究总院 锌铁氧体材料及其制备方法
CN106898770A (zh) * 2017-03-28 2017-06-27 河南师范大学 铁醇盐硫化制备花状锂电池负极材料铁硫化合物的方法
CN107175112B (zh) * 2017-05-09 2020-07-28 济南大学 一种微马达光催化剂及其制备方法和应用
CN107175112A (zh) * 2017-05-09 2017-09-19 济南大学 一种微马达光催化剂及其制备方法和应用
CN107519873B (zh) * 2017-07-31 2020-05-01 江苏大学 一种Cu基金属催化剂的制备方法及应用
CN107519873A (zh) * 2017-07-31 2017-12-29 江苏大学 一种Cu基金属催化剂的制备方法及应用
CN109604625A (zh) * 2019-02-20 2019-04-12 哈尔滨工业大学 一种以过渡金属氧化物和铂金属纳米颗粒为前驱体制备铂基二元合金纳米颗粒的方法
CN113853356A (zh) * 2019-05-24 2021-12-28 日铁矿业株式会社 钴铁氧体颗粒的制造方法和由此制造的钴铁氧体颗粒
CN110498451A (zh) * 2019-08-30 2019-11-26 济南大学 一种镍掺杂Fe3O4纳米粉体的制备及电催化分解水应用
CN110734292A (zh) * 2019-11-27 2020-01-31 宝鸡文理学院 一种CuO与陶瓷粉体均匀混合的方法
CN110734292B (zh) * 2019-11-27 2022-03-11 宝鸡文理学院 一种CuO与陶瓷粉体均匀混合的方法

Also Published As

Publication number Publication date
KR100550194B1 (ko) 2006-02-08
US20070056401A1 (en) 2007-03-15
JP3989868B2 (ja) 2007-10-10
US7128891B1 (en) 2006-10-31
CN1454851B (zh) 2011-11-02
KR20030082394A (ko) 2003-10-22
US20060239901A1 (en) 2006-10-26
SG115530A1 (en) 2005-10-28
JP2004043287A (ja) 2004-02-12
US6962685B2 (en) 2005-11-08
US7410625B2 (en) 2008-08-12
US20050191231A1 (en) 2005-09-01

Similar Documents

Publication Publication Date Title
CN1454851B (zh) 磁铁矿纳米粒子的合成和形成铁基纳米材料的方法
Wahab et al. Dye degradation property of cobalt and manganese doped iron oxide nanoparticles
Vinosha et al. Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route
Salavati-Niasari et al. Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate
Salavati-Niasari et al. Preparation of cobalt nanoparticles from [bis (salicylidene) cobalt (II)]–oleylamine complex by thermal decomposition
Liu et al. Synthesis of monosized core–shell Fe3O4/Au multifunctional nanoparticles by PVP-assisted nanoemulsion process
Deng et al. Synthesis of crystal MFe2O4 (M= Mg, Cu, Ni) microspheres
Bunge et al. Correlation between synthesis parameters and properties of magnetite clusters prepared by solvothermal polyol method
EP1386886A1 (en) Nanoparticle having an inorganic core
US20060088659A1 (en) Method of making crystalline nanoparticles
Primc et al. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles
Kushwaha et al. Influence of different surfactants on morphological, structural, optical, and magnetic properties of α-Fe2O3 nanoparticles synthesized via co-precipitation method
JP5397602B2 (ja) グラファイト被覆金属ナノ粒子の製造方法及びグラファイト被覆金属ナノ粒子の薄膜化方法
Fantechi et al. Modulation of the magnetic properties of gold-spinel ferrite heterostructured nanocrystals
Wang et al. Synthesis of monodisperse nanocrystals of high crystallinity magnetite through solvothermal process
Adireddy et al. Size-controlled synthesis of quasi-monodisperse transition-metal ferrite nanocrystals in fatty alcohol solutions
Ghosh et al. A novel route to toluene-soluble magnetic oxide nanoparticles: aqueous hydrolysis followed by surfactant exchange
JP2003297617A (ja) 強磁性合金ナノ粒子の製造方法
Kheradmand et al. Optical and magnetic properties of iron-enriched Fe/Fe x O y@ Au magnetoplasmonic nanostructures
CN102817081B (zh) 一种片状四硫化三铁纳米单晶的制备方法
Bhattacharyya et al. One step synthesis of highly crystalline and high coercive cobalt-ferrite nanocrystals
Sanles-Sobrido et al. Tailoring the magnetic properties of nickel nanoshells through controlled chemical growth
Bai et al. Preparation of ultrafine FePt nanoparticles by chemical reduction in PAMAM-OH template
Kundu et al. Shape-influenced magnetic properties of CoO nanoparticles
Zhang et al. Green synthesis of metal sulfide nanocrystals through a general composite-surfactants-aided-solvothermal process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111102

Termination date: 20210415