CN1556996B - 导电制品、组合件和导电轨线 - Google Patents

导电制品、组合件和导电轨线 Download PDF

Info

Publication number
CN1556996B
CN1556996B CN02818506.4A CN02818506A CN1556996B CN 1556996 B CN1556996 B CN 1556996B CN 02818506 A CN02818506 A CN 02818506A CN 1556996 B CN1556996 B CN 1556996B
Authority
CN
China
Prior art keywords
nanotube
layer
conductive
nanotube segments
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN02818506.4A
Other languages
English (en)
Other versions
CN1556996A (zh
Inventor
T·鲁基斯
B·M·西加尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nantero Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/915,095 external-priority patent/US6574130B2/en
Priority claimed from US09/915,173 external-priority patent/US6643165B2/en
Priority claimed from US09/915,093 external-priority patent/US6919592B2/en
Application filed by Nantero Inc filed Critical Nantero Inc
Publication of CN1556996A publication Critical patent/CN1556996A/zh
Application granted granted Critical
Publication of CN1556996B publication Critical patent/CN1556996B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C23/00Digital stores characterised by movement of mechanical parts to effect storage, e.g. using balls; Storage elements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0094Switches making use of nanoelectromechanical systems [NEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/413Nanosized electrodes, e.g. nanowire electrodes comprising one or a plurality of nanowires
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/16Memory cell being a nanotube, e.g. suspended nanotube
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/77Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/81Array wherein the array conductors, e.g. word lines, bit lines, are made of nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/855Manufacture, treatment, or detection of nanostructure with scanning probe for manufacture of nanostructure
    • Y10S977/857Manufacture, treatment, or detection of nanostructure with scanning probe for manufacture of nanostructure including coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching

Abstract

揭示了纳米管膜和制品及其制造方法。一种导电制品(1800)包括纳米管段的聚集,其中纳米管段(1802)和其它纳米管段(101)相互接触,形成沿着制品的许多导电通路。这些纳米管段(1802)可以是单壁的碳纳米管,也可以是多壁的碳纳米管。不同的段可以有不同的长度,同时其长度还可以短于制品的长度。如此形成的制品可沉积在基片上,并可在所述制品内部形成纳米管的导电网络。

Description

导电制品、组合件和导电轨线
相关申请的交叉引用
本申请与下列申请相关,它们全部转让给本申请的受让人,而且它们全部为参考结合于此:
使用纳米管带子的电子机械存储器阵列和其制造方法(美国专利申请系列号09/915093,2001年7月25日提交);
用纳米管技术制造的具有存储单元选择电路的电子机械存储器(美国专利申请系列号09/915173,2001年7月25日提交);
具有纳米管电子机械存储器的混合电路(美国专利申请系列号09/915095,2001年7月25日提交)。
背景
1.技术背景
本发明总体上与碳纳米管膜、织物、层和制品相关,具体是与从碳纳米管膜、织物、层或制造导电制品用于不同的电路等相关。
2.相关技术的讨论
小于10nm范围的导电超薄金属层和电极的可靠制造是有问题的,例如可见S.Wolf的《VLSI时期的硅加工》,卷II—“过程整合”(LATTICE出版社,SunsetBeach1990)。在此尺寸范围内的金属膜通常是不连续的,而且在宏微距离上不导电。还有,这样小于10nm的膜易于受到电流的热损坏,而不适于应用在如半导体器件的电路内部连线中。因低电导率而产生的薄膜金属内部连线热损伤是阻碍高集成半导体器件显著小型化和性能提高的主要因素之一。
常规的连接技术有受到热损伤和金属扩散而使电气性能下降,使半导体器件的性能降低的趋势。当尺寸缩小到目前的0.18-0.13um水平时,这些因素的影响就更明显了,例如在超薄的门氧化物层中金属的扩散所导致的影响。
这样,在本领域中就需要在高电流密度或严峻的热条件下可以良好运行的导电元件。这包括特征尺寸小的电路,但也包括其它更大电流密度和严峻热环境的情况。也需要一种导电元件,它不大会将不合适数量的污染物扩散到另外的电路元件中。
发明简述
本发明提供了纳米管膜和制品以及其制造方法。本发明的一方面,是一种包含纳米管段聚集体的导电制品,其中一个纳米管段和其它纳米管段相接触形成沿制品中的许多导电通道。
本发明的另一方面,该纳米管段可以是单壁的碳纳米管,或是多壁的碳纳米管。不同的段可以有不同的长度,还可以包括有小于制品长度的段。
这样形成的制品可以置于一基片上,并在制品本身内部形成纳米管的电网络。
在本发明的另一方面,通过在基片上形成一层纳米管织物,在该织物内形成线路图,该线路图对应于导电制品,来在基片上生成导电制品。
在本发明的另一方面,通过使用一种催化剂,如气相催化剂、气相金属催化剂,使纳米管在基片上生长而形成纳米管织物。
在本发明的另一方面,将悬浮有纳米管的溶液涂覆在基片上来形成纳米管织物。要涂覆溶液可以旋转来实现溶液的旋转涂覆。
在本方面的另一方面,可将基片浸入溶液中而用该溶液涂覆。
在本发明的另一方面,是在基片表面上喷射含纳米管的气溶胶来生成纳米管织物。
本方面提供了一种制造导电纳米管薄膜的方法。在本发明的一个方面,提供一个基片,引入一种蒸气相催化剂来促进纳米管的生长。也引入一种碳源物质用来生长纳米管层,它基本上与基片的主表面平行。
在本发明的另一方面,该蒸汽相催化剂是金属茂。
在本发明的另一方面,导电制品在基片上生成,是通过在基片上形成一层纳米管织物;在织物内形成线路图,此线路图对应于导电制品;除去织物的一部分,使得有线路图的织物留在基片表面形成导电制品。
在本发明的另一方面,在基片上形成导电制品,是先提供一个基片,引入蒸汽相催化剂以促进纳米管的生长,并引入一种碳源物质用来生长一层纳米管,该层与基片的主要主表面基本上平行。
在本发明的另一方面,在基片上形成导电制品,是先提供一个基片,提供一层有线路图的材料,引入蒸汽相催化剂以促进纳米管的生长,并引入一种碳源物质用来在线路图限定的范围内生长一层纳米管,该层与基片的主表面基本上平行。
在本发明的另一方面,该有线路图的材料层是绝缘体或是半导体,而纳米管在 该有线路图的材料层上面生长。
在本发明的另一方面,该有线路图的材料层是金属的,而纳米管在该有线路图金属层以外的范围中生长。
附图简述
在附图中, 
图1显示依据本发明的某些实施方式,一种纳米管带子纵横制存储装置;
图2A-B显示依据本发明的某些实施方式,一种存储单元的两种状态;
图3显示依据本发明的某些实施方式,制造存储装置的方法;
图4-11显示依据本发明的某些实施方式,产生一种中间结构用于制造忆体装置的几种形式;
图12显示用来制造本发明的某些实施方式的非织造纳米管织物或毡合的纳米管层;
图13显示与本发明的某些实施方式中毡合的纳米管层与隐藏的、下面的轨线的关系;
图14显示本发明某些实施方式的寻址逻辑;
图15显示本发明实施方式的一种混合技术,其中记忆核心使用了纳米管技术;
图16显示本发明实施方式的一种混合技术,其中记忆核心和寻址线使用了纳米管带子技术;
图17显示依据本发明某些实施方式制造导电制品的步骤;
图18显示依据本发明某些实施方式的导电器件如何与电气元件连接;
图19显示依据本发明某些实施方式来制造一个中间层结构的方法;
图20显示用来制造本发明某些实施方式的非织造纳米管织物和毡合纳米管层。
详细描述
揭示了新的电子机械存储器阵列和其制造方法,其中电子机械存储单元按照类似于WO01/03208中所述NTWCM装置的操作生成,该文献全文参考结合于此。但是,和WO01/03208中所述的NTWCM装置不同,用毡合的纳米管层或非织造纳米管织物所制成的新带子被用来作为导电元件。在本发明中,这种带子被称为导电元件的轨线。在有些情况下,带子是悬置的,在其他情况下,带子是在基片上的。在有些情况下,它们用来在电控制下转向某些特定的状态,而在其他情况下,它们并不移动, 而只是用来承载电流或电压。这种新的纳米管带子被认容易以所需的集成度和规模(所生产的装置数)制造,而且其几何形状也较易控制。此新的纳米管带子被认为能够容易承载大电流密度,而没有前述的金属轨线所产生的问题。
依据本发明的某些实施方式,导电制品可从纳米管织物、层或薄膜制成。直径小至1nm的碳纳米管是可承载极大电流密度的导电体,参见如:Z.Yao,C.L.Kane,C.Dekker,《Phys.Rev.Lett.》84,2941(2000)。它们也有已知最高的导热率,参见如S.Berber,Y-K.Kown,D.Tomanek,《Phys.Rev.Lett.》84,4613(2000),并且是热稳定和化学稳定的,参见如P.M.Ajayan,T.W.Ebbesen,《Rep.Prog.Phys.》60,1025(1997)。但是,使用单根的纳米管是有问题的,因为使它们以合适的受控取和长度等生长是困难的。由纳米管织物生成轨线,能使轨线保留单根纳米管的很多即使不是全部的优点。而且用纳米管织物生成的轨线有单根纳米管所没有的优点。例如,因为轨线由很多纳米管聚集组成,当其当单根纳米管失效损坏或破损后,轨线都不会失效。而是,在给定的轨线中有很多交错的路径能让电子在轨线中运行。在效果上,由纳米管织物生成的轨线,在所形成的轨线中中产生了一根根纳米管组成的自身电网络,其中每根纳米管均能传导电子。还有,使用纳米管织物,层或薄膜,使用现有技术就能制造这样的轨线。
纳米管带子纵横制存储器(NTRCM)
因为新型的纳米管纵横制存储器器件的运行和NTWCM相似,它们的结构描述和运行原理在此从略,其描述和背景可参见WO01/03208。
图1显示依据本发明优选实施方式的原理所构建的一个典型的电子机械存储器阵列100。
该阵列有很多非易失性存储单元103,可置于“开”或“关”的状态。这样的单元的确切数目对于理解本发明并不重要,但是,有关技术可支持其信息存储容量与现代非易失性电流装置的容量相当或更大的器件。
每个存储单元103包括一根纳米管带子101,它通过一个或多个支撑层102悬置在电路轨线或导线104上方。
每根带子101和导线如104的交叉,形成了一个交叉结,形成了一个存储单元。在有些实施方式中,各个单元通过对电极112(该电极与带子101电路连通施加电流或电压,或通过与轨线或导线104连通的电极(未显示)可被读写。支撑层102是氮化硅(Si3N4)层108。在层108的下面是门氧化物层109,它将n—掺杂的硅轨 线与下面的硅晶片110分隔。
试联合参见图1-2B,结106显示了在第一种物理和电学状态的单元,其中纳米管带子101和对应的轨线104分隔。结105显示了在第二种物理和电学状态的单元,其中纳米管带子101转向对应的轨线104。在第一种状态中,结是开路的,当就这样寻址时,它可在带子101子或轨线104上被探测到。在第二种状态中,结是个整流结(如Schotty或PN结),当就这样寻址时,它可在带子101或轨线104上被探测到。
在某些实施方式中,纳米管带子101可通过摩擦固定在支撑层上,在其它的实施方式中,带子可用其它方法来固定,如使用任何其它的技术将带子锚定在支撑层上。通过化学相互作用可使摩擦增强,包括通过例如芘或其它化学活性物质的碳化合物来进行共价结合。蒸发或旋涂的材料如金属、半导体或绝缘体,尤其是硅、钛、二氧化硅或聚酰亚胺也可加入用以提高锚定的强度。纳米管带子或单个的纳米管也可使用晶片结合在表面上。参见R.J.Chen等。“用于蛋白质固定化的单壁碳纳米管的非共价边壁功能化”美国化学会杂志。,123,2001,3838-39和Dai等,《应用化学通讯》77,2000,3015-17,其中描述了用金属锚定和涂布纳米管的典型技术。也可参见WO01/03208中的技术。
在图2A-B显示的某些优选的实施方式中,纳米管带子101的宽度约为180nm,它锚定在优选由氮化硅制成的支撑层102上。在带子101下面的轨线104的局部区域形成n—掺杂的硅电极,且在接近支撑层102的位置,其优选的宽度不超过带子如180nm的宽度。从支撑层102的顶部到带子101连接电极206的下弯位置(见图2B)的相互间距208应为5-50nm。此间距208的大小的设计应与存储器的电子机械开关性能适应。对于此实施方式,5-50nm的间距对于使用纳米管制成的带子101的某些实施方式是优选的,但对其他材料,其他间距也可能较好。这个间距大小是由下弯的纳米管带子的应变能和附着能的相互作用而产生的。这些特征尺寸是现代制造技术所提出的。在其它实施方式中,根据制造设备的能力,该下弯尺寸或大或小。
某些实施方式的纳米管带子101是由一种缠绕或毡合的纳米管非织造织物形成的(下面将详述)。这个带子的开关参数单个的纳米管相似。这样,预计的带子的开关时间和电压大约和纳米管的开关时间和电压相同。和先前依赖于单个纳米管的定向生长和化学自组装的技术不同,本发明的优选的实施方式中,使用薄膜和平版印刷的制造技术。这种制造方法能产生超大的表面,尤其是至少6英寸的晶片。(与 此相反,让纳米管生长超过毫米级的尺寸现在还不可能)带子与单个纳米管相比,应有更好的缺陷容忍性,这是因为在带子中提供了许多导电通路的缘故。(如果带子中一根纳米管损坏了,其它纳米管还能提供其它导电通路,而如果使用单根纳米管,存储单元就损坏了)。还有,带子的电阻应比单根的纳米管小得多,这样就减少了阻抗,因为纳米管带子可比单个纳米管制成更大的截面积。
图3显示某些实施方式的NTRCM装置100的制造方法。先制造或提供第一中间结构层302。在所示的实施方式中,结构层302包括一个硅基片110,它具有一个绝缘层109(如二氧化硅)和一个氮化硅层108,后者形成很多支撑层102。在此例中,支撑层102是由图案化的氮化硅排形成,但是其它的排列也可能,例如很多纵列。导电轨线104在支撑层102之间延伸。在此例中,轨线104与支撑层102是基本互相接触的,但其它的排列以及另外的几何形状也有可能,例如:轨线104和支撑层102之间可以有空间,轨线104可以是导线的形状或是非矩形的纵截面或横截面,包括三角行或梯形。牺牲层304位于轨线104上方,和支撑层102的上表面形成一个平表面306。此平坦的表面,下面将要叙述,有助于形成一层毡合的纳米管层。
一旦结构302制成或提供了后,其上表面306上施加一种催化剂308。例如,某些实施方式中,一种含铁(Fe)、钼(Mo)、钴或其它金属的金属催化剂,用旋涂或其它技术施加上去形成一个第二中间结构层310。
然后,一个毡合的纳米管层312在单壁纳米管非织造织物中生长以形成第三中间结构层314。例如,第二中间结构层可置于一加热炉中,加热至高温(如800-1200℃),同时将含有碳源物质、氢气和惰性气体如氩气或氮气的气体吹过上表面。此气氛使得单壁碳纳米管的毡合层或膜312有可能产生或生长。312层主要是一个纳米管的厚度,不同的纳米管之间通过范德华力相互连接。偶而会有一个纳米管在另一个纳米管的上面生长,但是因为此材料的生长特性,这种生长是不常见的。在一些实施方式中(图中显示),催化剂308的分布可以图案化,使得纳米管以某些密度生长,可比要求的密度高或低。当催化剂组成和密度、生长气氛和时间条件适当地控制,在一指定区域内纳米管可以均匀地分布,且主要是单层。合适的生长要求控制的参数包括但不限于催化剂的组成和浓度、下面表面的功能化、旋涂参数(长度和每分钟转数)、生长时间、温度和气体浓度。
一层光致抗蚀剂可施加在层312上,且可以是图案化分布的,用以形成在毡合纳米管层312形式的带子。该带子的图案穿过(例如垂直)下层的轨线104。去除 光致抗蚀剂后,留下非织造的纳米管织物带子101在306平面上,形成第四中间层318。
第四中间层318中有一些部分320,露出其下在的牺牲层304。结构318然后用酸如HF处理,除去牺牲层304,包括带子101下面的部分。这样就形成了悬置在轨线104上面并由支撑层102支撑的带子101的阵列322。
接下来的金属化可用来形成寻址电极,如图1所示的112。
上述技术的一个方面是不同的生长、图案化和腐蚀操作可以使用常规技术。如平版印刷图案化。目前,它可以产生的特征尺寸(如带子101的宽度)为约180nm到小至130nm。但如制造技术容许,元件的物理性能可使其特征尺寸更小。
下面将要进行解释,有很多可能的方法用来生成上述中间结构层或相似的结构层。图4,就显示了一种生成第一中间结构结构层302的方法。
一个硅晶片400带子有氧化物层402。该氧化物层优选地是有几个纳米厚,也可厚至1微米。一层氮化硅(Si3N4)层404沉积在氧化物层402的上面,氮化硅层优选至少有30nm厚。
氮化硅层然后经图案化和腐蚀产生凹穴406,形成支撑结构407。使用现代技术,凹穴的宽度可以是180nm或更小。剩下的氮化硅材料则形成支撑层102(例如成排或纵列)。
然后将n—掺杂的硅覆盖层408沉积上去,填满凹穴406。典型的覆盖层408的厚度是1微米,但可薄至30nm。
覆盖层408然后经过加工,例如用厚硅层的自平化或退火,形成平表面306,如上所讨论的,形成结构411。若用的是自平化,可以使用带子终点探测(EPD)的反应性离子腐蚀(RIE)进行,直至达到经腐蚀的氮化硅的上表面410。
结构411然后进行氧化以形成二氧化硅牺牲层304,它在平表面306以下10-20nm深。
未转化的余下的硅则形成轨线104。
图5显示出另一种制造方法可用来形成NTRCM器件100。先提供一个如图4中所示的一个支撑结构407,然后用CVD、溅射或电镀的方法加上一层n—掺杂硅层514。在某些实施方式中,所加的层514的厚度是氮化硅支撑层102厚度的一半。
层514加上以后,使用退火操作以生成一平表面306,形成如上所述的结构411。该退火操作使层514中的硅流入到凹穴406中。
如就图4所述的,结构411然后经过氧化,形成二氧化硅牺牲层304,它深入 平表面306以下10-20nm。
图6显示形成另一种第一中间结构层302’的另一种方法。在此实施方式中,一个硅基片600上覆盖有一层氮化硅层602,其厚度604至少为30nm。
氮化硅层602然后经图案化和腐蚀以产生凹穴606并形成支撑层102。该腐蚀操作暴露出硅基片600表面的一部分608。
暴露的硅表面608经氧化以产生一个二氧化硅(SiO2)层610,其厚度为几个纳米。这些层610最终绝缘了轨线104,其方式与上述结构302中的绝缘层109相似。
一旦绝缘层610形成后,轨线104可用多种方法制备。图6显示了图4-5中的制造步骤,用来生成这样的轨线进行说明。
图7显示另一种形成第一中间结构层302的方法。一个硅基片700上具有一个二氧化硅层702和一个氮化硅层704,其上面再有图案化的光致抗蚀剂层706。例如,一个光致抗蚀剂层可旋涂在层704上,再经曝光和光刻显影。
反应性离子腐蚀(RIE)等方法可以用来腐蚀氮化硅层704,形成凹穴708而并形成支撑102。
然后,n—掺杂的硅710可沉积进入凹穴708中,在某些实施方式中,硅的沉积高度大约与氮化硅支撑层102的高度712相同
然后揭去光致抗蚀剂706和在光致抗蚀剂706上的硅710,形成如上所述的中间结构层411。
结构411然后经氧化生成二氧化硅牺牲层304。
图8显示生成第一中间结构层302的另一种方法。在这种方法中,提供一起始结构800,它具有最低的硅层802,其上有最低的二氧化硅层804。第二硅层806置于层804上,而第二个二氧化硅(SiO2)层808又置于第二硅层806之上。
顶部的二氧化硅层808经光刻图案化,生成RIE掩模810。此掩模用来腐蚀第二硅层806的外露部分812,直到第一二氧化硅层804。该腐蚀操作生成凹穴814并形成轨线104。
凹穴814用氮化硅(Si3N4)816填满和覆盖之。
此氮化硅覆盖层经RIE背腐蚀达到高度818,和覆盖着n—掺杂硅电极104的二氧化硅层806余下部分一致(形成牺牲层304)。
图9显示形成另一第一中间结构层302”的方法。在此方法中,先提供类似407的结构(在图4中显示,图9中未显示)。在此例子中,Si3N4支撑层102的高度约为30nm。一金属薄层902沉积在Si3N4支撑层102的上面,并沉积在凹穴904底部 的SiO2外露的部分上,此沉积的部分标为903。金属902和903形成暂时的电极。然后,用电镀方法沉积或生长一层n—掺杂硅层906,覆盖着电极903,直至硅层906的高度908达到支撑102层顶部,并和电极902接触。此生长过程可通过起动上下金属电极902,903之间的电流而加以控制。
外露的金属电极902可用湿化学方法或干化学方法加以去除。这就形成了中间结构层411’,和上述411结构相似。但具有一个埋入的电极903,作为硅生长过程的结果。
结构411’然后经氧化形成。位于硅的外露部分的牺牲层304,如上所述。例如,牺牲片层304可生长至厚度为10nm。
图10显示形成第一中间结构层302的另一方法,将一个硅基片1002用作起始材料,其上有一个二氧化硅层1004,而在层1004上有第二硅(n-掺杂的)1006。在1006上有经光刻图案化的掩模1008。
使用氮化技术,使n—掺杂硅层1006的外露部分1010化学转化为氮化硅支撑层102。1006层的未转化的部分形成轨线104。
将掩模1008除去形成一个如上所述的结构411。
硅表面外露的部分1012经氧化形成二氧化硅牺牲层304。
图11显示生成又一个第一中间结构层302”’的方法。在此方法中,覆盖有氮化硅薄膜1104的硅基片1102作为起始材料,在氮化硅层1104的顶部,施加上n—掺杂硅,RIE并光刻图案化,形成轨线104。
轨线104的表面经氧化以形成二氧化硅层1106,作为牺牲层304’的另一种形式。
此结构的的上面再生长氮化硅层1108,背腐蚀以形成平面306,从而形成又一种第一中间结构结构层302”’。如本领域中有经验的人士所熟知的,在此方法中,当牺牲层304后来去除后,轨线104会和支撑层102分离。此技术的一些变体可用来生成轨线104另一种横截面形状。例如,轨线104可制成上部圆形的,或有三角形或梯形的横截面。另外,横截面还可以有其它形状,如带子有渐缩边的三角形。
如上所述,第一中间结构层如302形成后,使一个毡合的纳米管层312生成在层302的平表面306上。在优选的实施方式中,此非织造织物层312生长在此结构上,此时使用催化剂308并通过生长环境的控制。其它实施方式可另行先提供毡合的纳米管层312,然后直接施加在结构302之上。虽然结构302,运用此方法优选地包括牺牲层来提供一个平表面来接受先行生长的织物,但在此方法中,牺牲层可以是非必需的。
因为此生长过程导致这种纳米管的下面与中间结构层302的平表面306相接触,它们显示出一种“自组装”的特点,如图12所示。具体是,一个个纳米管会在其生长的表面上附着,只要在能量上是有利的,这样它们就基本形成一个“单层”。有些纳米管会在其它纳米管上面生长,从而此单层并不是完善的。单个的纳米管并不和其它纳米管互相毡合起来,而是靠范德华氏力相互附着。图12大致显示了一种实际的非织造纳米管织物。因为纳米管的特征尺寸很小,即使现代的扫描电镜SEM也不能将真实的织物拍摄下来而不损失精度;纳米管的特征尺寸为1-2nm,小于SEM的精度。例如,在图12中,显示了织物的毡合特性;图中并不清晰,织物中可能有小范围的间断,其中不存在纳米管。每个纳米管的直径典型的是1-2nm(这样就确定了织物的厚度也是1-2nm),但长度是几个纳米,有些甚至是200nm。纳米管可以是弯曲的,偶而也会互相叉。纳米管之间通过范德华氏力相互附着。
在某些实施方式中,纳米管在X-轴和Y-轴方向上基本上不受限制地生长,但在Z-轴方向上(垂直于图12的纸面)生长受到限制,这是因为有自组装的特性。其它实施方式可以补充上述方法,用场定向或流定向的方法生长技术来生长毡合物312。这样的补充可用来对生长人为设定,如阻止沿一个方向(如X-轴)的生长。这样能以可控的密度形成一层平坦单层的相互交织的纳米管层,更均匀地覆盖所需要的表面。
图13显示了毡合的纳米管层312和其下面的硅轨线104。
如上所解释的,在表面306上有了毡合的纳米管层312以后,将层312图案化和腐蚀,形成纳米管织物带子101,它跨越在支撑层102之上。然后除去牺牲层(如用酸),形成阵列322,如上面图3所示。因为纳米管毡合层312形成的非织造的织物是不连续的,所以腐蚀剂或其它化学试剂可能渗透至纳米管“纤维”之间,并很容易地达到下面的部件,如牺牲层。
接着的金属化可用来形成寻址电极,如图1中所示的112。其它实施方式使用纳米管技术来实现存储单元的寻址,而不使用金属化电极112和寻址线(未显示)。
更具体的,在上述某些实施方式中,纳米管可用来形成NTRCM阵列。某些实施方式使用纳米管技术,不管是单根的导线还是带子的形式,用来执行寻址逻辑来选择存储单元进行读写操作。此方法还整合了纳米管技术和系统设计,有利于更高级别的系统设计。例如,在此方法中,存储器结构不仅能以非易失性电流的方式存储记忆内容,还能存储过去的记忆地址。
基于纳米管的存储单元是双稳态的,其特点是“0”和“1”状态的高电阻比。 这两个状态的转换是将某些电压加到纳米管导线或带子和下面的轨线上,其中至少一个存储单元是纳米管或纳米管带子。在一个方法中,加上一“读出电流”并用一个“读出放大器”测出此结上的电压。读是非破坏性的,意思是破碎器单元仍保持其状态,不必象DRAM那样需要回写操作。
图14显示纵横制对分选择系统或解码器1400。下面还将说明,解码器1400可由纳米管或纳米管带子技术形成。还有,解码器可以建立在如用一个纳米管存储单元阵列如NTRCM或NTWCM的相同电路元件上。
两根线1404和1406的垂直相交点1402,表示两根纳米管或纳米管带子的结。在此方面,其相互作用和CMOS和其它技术中发现的“通过半导体”相似,其中,此交叉可以是敞开或封闭的。
如1420的那些位点,在该处一个纳米管或纳米管带子和别的纳米管或纳米管带子相交,但不拟生成一个交叉结可以用元件之间光刻图案化的绝缘体来互相绝缘。
为清晰起见,所显示的解码器是用于一个3位的两进行地址,承载在寻址线1408上。根据编码的值,交叉(点)会转换来产生仅仅一条通路,传感电流可以通过该道路来选择线1418。
使用这个技术,两进制地址的每个位的一个“双轨”表示1408均在外部形成。这样地址位1410的每一个均以真和补充的形式表示。这样,线1406可以是地址线1408a的逻辑上真空的形式,而线1407可以是地址线1408a的逻辑补充。表示1408的电压值与上述将纵横制结转换到“1”或“0”状态所必需的电压是一致的。
这样,一个地址1408可以用来对一个阵列中的位或一排位例如纳米管或纳米管带子提供传感电流I。相似地,同样的方法也能用来感受一给定的轨线,例如,结合选择一个排选择由其读取感受的特定纵列。因此这样的方法可能用于X和/或Y解码,用于读或写的操作。
本发明的某些实施方式提供一种混合技术,电路1500,如图15所示,一个用NTWCM或NTRCM构建的核心存储单元阵列,该核心被一个半导体电路包围形成X和Y地址解码器1504和1506;X和Y缓冲器1508和1510;逻辑控制1512和输出缓冲器1514。包围NTWCM或NTRCM核心的电路可用于常规的接口功能,包括提供读取电流和读取输出电压。
在其他实施方式中,X和Y地址解码器可被上述的纳米管导线或带子寻址技术所替代。在这些实施方式中,核心会包括存储单元和寻址逻辑。
在某些实施方式中,可用一个纳米管核心(只具有存储器单元或具有储存器单元和寻址逻辑)和用一个场可编程门阵列实现周围电路来形成混合电路1500。核心和门阵列电路如果需要,可在一个物理包装内,也可分别包装。例如,一个密闭包装的纳米管电路(具有存储器或存储器和寻址逻辑)可以与一个PLD/FPGA/ASIC组合,其中I/O接口也在内。所得的完整的芯片组对于产品的用户而言,可以获得纳米管存储器带来了好处,同时能最大限度地使用现有的技术,该技术可被制造厂家以基于需求的方式使用。
图16显示混合技术的一个可能的执行方式。一个含有缓冲和控制逻辑(如上所述)的FPGA芯片1602通过在一个(也许是多层)印刷线路板(PCB)1604上的导电轨线连接到一个含有存储单元和寻址逻辑的纳米管芯片(NT)1606上。
这个具体的实施方式提出能符合当今个人电脑通用的PCI总线标准。其它无源线路,如电容、电阻、变压器等(未不出)也需要符合PCI标准。一个为200MHz~400MHz正面总线速度已作了标示,表明这样的芯片可以这样的外部时钟速度运行。此速度受到PCB内部连线和FPGA/PLD/ASIC的速度以及芯片包装的限制,而不是受纳米管存储单元速度的限制。
碳纳米管薄膜、层、织物和制品
上述NTRCM的实施方式和寻址线使用从纳米管层312制得的轨线或导电制品,如图3和12中所示的。层的厚度为1nm或更小,也就是一个给定纳米管的厚度。纳米管层312是在一个表面上生长或沉积上去的,如硅晶片那样,形成一层给定密度的连续膜。此二维的膜然后可以加以图案化产生导电线或称轨线,其宽度从1nm(纳米管最小的本征尺寸)至几百个纳米或更厚,依据应用和情况而定。此图案可以生成多种长度和宽度范围,使不同大小的半导体器件如晶体管或记忆元件最终相互连接,而且可以展开成为接合垫或其它连接材料或结构。如果有必要,纳米管的连接结构可以金属化,便于和金属或半导体材料相连接,因为金属化后,它容易与金属或半导体材料接触。
此轨线和导电制品可用于其它形式的电路中,例如通常在尺寸非常小的轨线中(如小于10nm的范围)可以使用纳米管轨线,因其能承受大电流密度的特性。使用它们也可减少对其它电路特征的污染。
在图17,例如,显示了在基片上的纳米管带子、轨线或导电制品的典型用途。(经检查,人们可见图17与图3相似,但在这个例子中,膜312是直接生长在基 片上的,而不是将其先生长在中间结构层310表面上的。)在此例子中,硅基片110有一个和图3所示类似的氧化层109。为便于膜312的生长或沉积,可生成一个平坦的表面(在图3中表示为306,而在图17中未表示)。具有单壁/或多壁纳米管的膜312可以使用CVD或旋涂施加在上述这个组合上。如果是使用单壁纳米管,膜312则主要是一个纳米管的厚度,而如果使用多层壁纳米管,厚度则明显增加,如厚达1000nm。
如果要将膜生长上去,则可以使用催化剂,如上所述。但是,催化剂(在图3中表示为308,而在图17中未加表示)不需要直接沉积在基片的表面;代替或附加地催化剂可以以气态的形式并作为CVD过程的一部分。例如,可以使用如二茂铁的气相金属类。二茂铁和其它气相金属物质可生长纳米管,象其它含铁、钼、钨、钴和其它过渡金属的气相物质一样。这些都适合于形成气相中的催化剂。使用气相金属催化剂时,可以对温度、压力、表面准备和生长时间进行优化,来产生纳米管层312。
如果要将膜沉积上去,可以使用预先生长的纳米管。例如,在本发明的某些实施方式中,纳米管可以以溶解或不溶解的形式悬浮在溶剂中,然后经旋涂在表面上,生成纳米管膜312。在这样的排列中,膜的厚度相当于一个或多个纳米管厚度,依据旋涂情几何配置和其它过程参数而异。合适的溶剂包括二甲基甲酰胺、N—旋涂吡咯烷酮,N-甲基甲酰胺,邻二氯苯,对二氯苯,1,2二氯乙烷,乙醇,水,并加有合适的表面活性剂如SDS或TritonX-100或其它。纳米管的浓度和沉积参数如表面官能度、旋涂速率、温度、pH值和时间可加以调节,用以控制按要求纳米管沉积单层或多层的纳米管。
纳米管膜312还能通过将晶片或基片浸入到溶解或悬浮有纳米管的溶液中进行沉积。此膜还可以通过将纳米管以气溶胶的方式喷射到表面上而形成。
当催化剂组成和密度,生长环境,和时间等条件经过适当的控制,纳米管就可以均匀地分布在一个给定的区域上,而且主要是单层纳米管。
在形成纳米管膜312后,一种光致抗蚀剂可以旋涂在纳米管膜312上面,并通过曝光或相似的方法图案化,形成导电轨线。在图17的例子中,轨线显示为平行且直的轨线,但是轨线可形成为其它形式。形成的轨线宽度可为1nm到100nm或更大,取决于所要连接的器件的类型。
形成了轨线后,已曝光的光致抗蚀剂加工除去其一些层,但留下轨线101。接下来可使用金属化形成寻址电极或一个展开的连接结构,如图17中所示的1706。
参见图18,纳米管带子图案1802可和其它带子101、金属带子(未显示)或电子器件1806相连。例如,就中间结构层1800而言,纳米管轨线101可以和有不同特征尺寸如宽度,的纳米管轨线1802相连。轨线101还可以与元件112相连,此元件可为金属接点或结合垫。(但本图中未按尺度显示)。就中间结构层1804而言,轨线1010可和例如1804中的储存元件相连,后者的形式可为NTRCM单元或带有半导体位点。就中间结构层1808而言,轨线可和电子处理位点或逻辑1806相连轨线101还可以和结合垫112相连,但图中该结合垫的显示并未按其尺寸。
虽然这些相互连接主要是单层纳米管的形式,在合适的生长条件下,也可以是多层纳米管带子和纳米管层。这要求控制参数,包括但不限于催化剂组成和密度,其片表面的官能化,旋涂参数(长度和转速,如40秒,50-5000rpm)、生长时间、温度和气体浓度。
上述技术的一个方面,是可以使用不同的生长、沉积、图案化和腐蚀操作,可使用常规技术,如光刻图案化。用了现有的技术,所制得的轨线的宽度可以是从180nm小至130nm。但是,轨线101的物理特性可制成更小的特征尺寸,如果制造条件容许的话。
常规的互连技术有受到热损伤和因金属扩散而使半导体器件性能特别是其电气性能受损的危险。当尺寸缩小到目前的0.18-0.13um水平时,这些因素的影响就更为明显,例如由于超薄门氧化物层中金属的渗透。相反,碳纳米管带子101则不会有这些问题。碳纳米管一般较强,具有已知最高的导热率,不易于受到热损坏。还有,没有金属和掺杂物扩散的情况发生,因为它们是完全由共价连接的碳原子构成的。
图19显示用另一种方法生成第一中间结构层302。一块硅基片1900上面具有一层二氧化硅层1902,再附上一层图案化的光致抗蚀剂层1904。例如:光致抗蚀剂层可以旋涂在1902层上,再经曝光和光刻显影,产生凹穴1906和掩模图案1908。
接下来,n—空穴的硅或金属如钼、钨或钽1910和一个牺牲层1912如氧化铝层可沉积于凹穴1906中,形成所对应的结构1914和1916。
光致抗蚀剂1912以及在光致抗蚀剂1912上面的的材料1914氧化铝1916然后除去,生成一个中间结构层1918,其上面有电极104和牺牲层304。一种可在玻璃上旋涂的(SOG)如可流动氧化物(FOX)旋涂在结构1918的上面,然后使用一种标准的升温步骤在600℃进行退火,生成一个二氧化硅层1920,其在牺牲层1912顶上的高度为200-2000nm。
然后使用反应性离子腐蚀或相似技术来腐蚀二氧化硅层1920,生成带有支撑层102的结构302。
电极材料的选择受到将纳米管施加在基片表面上方法的限制,。上述三种方法包括旋涂基于催化剂的生长,气相催化剂辅助CVD和旋涂或直接沉积。在基于催化剂的生长的情况下,如上所述,催化剂是通过旋涂或将基片浸入到催化剂材料中再用标准的方法进行清洗的方法分布在表面上的。然后,如上所述,纳米管接着通过CVD过程在800℃条件下使用氢气和含碳气体前体组合物来让纳米管生长。此时电极材料应足够稳定能经受这些温度的优选是钼、钨、钽、镉、铜或它们的合金。电极材料可以构建成单层或堆叠的结构,材料是硅、钨、钼、钽、铜或其它。堆叠的电极结构可足以产生Schottky势垒隔,用于每个存储器位的整流。
在使用气相催化剂如二茂铁使纳米管生长的情况下,可以预见到,对于此生长,所需的温度可显著降低,可以使用在比800℃低得多,如低至400℃熔化的材料。某些可用的气相催化剂可包括含5个六元环的钴、钨、钼、或铼的金属茂。这些化合物可用适当的无机化学知识加以合成,并在使用时,在气相中用一起泡器导入,作为基片上的成核位点用于纳米管的生长。当然,这些材料应与文献中已知的典型CMOS过程相适应,并以标准的工业制造设备使用。
如果是在室温条件下通过旋涂纳米管溶液或悬浮液将纳米管沉积在一个表面上,电极材料的选择范围明显变宽。在此情况下,没有高温步骤,任何适合于标准CMOS金属化条件的金属,尤其是铝或其合金,都可以用。
牺牲层304可以用氧化铝,金属氧化物,盐,金属或其它材料。可通过使用不同的材料包括SOG,二氧化硅等生成支撑层102,来形成中间结构层302。在选用低温条件下旋涂纳米管的步骤中,适合作牺牲层的材料范围明显变宽,包括如PMMA或其它聚合物,金属如钨、铬、铝、铋和其它过渡和主族金属这些材料。还可以是其它半导体材料如锗和绝缘体材料如盐,氧化物和其它硫属化物。
支撑层层材料的选择很大程度上取决于纳米管生长所选择的条件和其它因素。在使用低温过程将纳米管生成在表面上时,人们可预见使用这样的材料如氧化铝、一氧化硅、半导体、绝缘体和聚合物如聚酰亚胺。
材料选择的过程受到适合于上述制造过程的材料的限制。本领域中的有经验人士可以明白。选择了一具体电极材料后,牺牲层和支撑层材料也自然受到的半导体制造中通常操作步骤限制。相似的,如果先选定了牺牲层,电极和牺牲层材料的选择也受到限制。同样还有,支撑层材料先选定后,电极和牺牲层材料的选择也类似 地受到限制。
图20显示了一个典型纳米管织物312的原子力显微镜(AFM)的图像。在图中,每个纳米管的直径约为1.5nm(图像的模糊是因为显微镜的本身限制,而不是因为给定纳米管的实际结构)。此图像已是AFM侧向分辨率能力的极限了。
虽然上文所揭示的是当作由纳米管制成的织物是同一类型的,例如全为单壁的纳米管,但织物也可全部由多层壁的纳米管形成,或由单壁和多层壁的纳米管的组合形成。
其它实施方式 
为了便于互相连接线或电极材料的生长,有用的是,先用标准的光刻方法形成一个线路图案以形成一个区域,在此区域内纳米管要以水平方式生长在基片表面上。这样的方法已用来形成图案化的SiO2结构,用以生长厚多层壁竖直的纳米管。在一个相似的方法中,图案化的SiO2结构还用来生长水平的纳米管膜,其厚度为1-1000nm,产生如上所述的结构101。当与适当选择气态金属茂或其它可蒸发的金属前体配合生成预定图形的纳米管带子的时候,能提供用于纳米管生长的支撑层和成核位点的其他材料如绝缘体和金属氧化物也是有用的。下面的图案化的层也可用作牺牲层,当其去除后,就生成悬置的纳米管。这种生长方式是一种“阳文”生长的方式,此时纳米管将预先图案化的表面作为成核位点。
在另一个实施方式中,可以设想使用“阴文”的生长方式,昆经光刻图案化的基片含有一种不支撑层纳米管生长的金属或其它材料。当适当的气相前体如金属茂或相似化合物提供时,纳米管只在没有图案化材料的表面上生长。当除去图案化的金属材料后,去除下面的材料就可以得到悬置的纳米管101或互连结构。
在另一个实施方式中,不用湿化学方法去除牺牲层来将纳米管以一特定高度悬置在电极上,而是使用受控的电极腐蚀(即0.18微米宽的电极腐蚀15nm),例如金属(如铜)和半导体(如硅)电极可被腐蚀,其腐蚀速率为每秒几个纳米。
在又一个实施方式中,使用一层覆盖性的薄涂层来将纳米管固定在支撑层上,以防止在操作中纳米管的滑动。这样就能恰在存储单元的上方开一个窗口。
通过控制纳米管带子的截面积,各层和导电制品的电性能可以配合。例如:在给定宽度和纳米管密度的条件下,纳米管的厚度可以增加。截面积越高,就有越多的导电通路得以提高电性能。
上述纳米管的制造方法使得在粗糙形貌的表面上也有连续的导电性。而典型的 金属蒸发方法会产生结构缺陷,因而产生电缺陷。
除了碳纳米管以外,其它电子和机械性能适于做电子机械开关的材料也是可用的。这些材料有和纳米管相似的性能,但是有不同可能和更小的拉伸强度。材料拉伸应变和附着能量必需在一个范围内,能使得结的二稳态性和电子机械开关性能是可以接受的。
为了整合CMOS逻辑用来寻址,可以使用两种方法。在第一种方法中,纳米管阵列在在金属化以前,但在CMOS逻辑器件的离子注入和平面化之后进行融合。第二种方法是在CMOS器件制造(涉及离子注入和高温退火)之前生长纳米管阵列。一旦这些步骤完成后,纳米管带子和CMOS器件的金属化就用广泛使用的标准方法进行。
在某种金属或半导体线上放置含n—空穴硅的电极也是可以设想的。这样会在开的状态时产生整流结,以致不存在多重的电流通路。
除整流结以外,还有其它广泛接受和采用的方法来防止在交叉阵列中电串话现象的发生(也就是多重电流通路的缘故)。在静态的,光刻制成的电极顶部的隧道垫垒能防止形成电阻性“开”的状态。在零偏电压时无漏电流发生,但一个小的偏电压以使载流子克服此在交叉线之间的垫垒隧道效应。
可以设想采用离子的,共价的或其它力来提高附着能量的方法以改变与电极表面的相互作用。这些方法可用于扩展这些结二稳态性的范围。
纳米管可通过平面共轭的碳氢化合物如芘进行功能化,然后能提高带子内纳米管之间的内部附着力。
上述的某些方面,如用于寻址的混合电路和纳米管技术,可用于单个的纳米管(如使用直接生长技术等)和纳米管带子。
本发明的范围并不被上述实施方式所限制,而由所附的权利要求所限定,这些权利要求可以包括对所描述的进行修正和改进。

Claims (15)

1.一种包含纳米管段聚集体的导电制品,其中一个个纳米管段和其它纳米管段接触,形成沿该制品的许多导电通道,所述纳米管段是非织造纳米管织物或毡合的纳米管层,所述纳米管段的图案化是用平板印刷进行的;
其中所述导电制品与至少两个电极元件电连接,形成存储单元;和
其中所述存储单元通过对所述电极元件施加电流或电压可被读写。
2.权利要求1中所述的制品,其中纳米管段包括单壁的纳米管。
3.权利要求1中所述的制品,其中纳米管段包括多层壁的纳米管。
4.权利要求1中所述的制品,其中纳米管段有不同的长度。
5.权利要求1中所述的制品,其中纳米管段包括长度小于制品长度的段。
6.一种组合件,包括一个基片和一个在基片上的导电轨线,此轨线包括相互接触的纳米管段,形成许多沿轨线的导电通路,所述纳米管段是非织造纳米管织物或毡合的纳米管层,所述纳米管段的图案化是用平板印刷进行的,其中所述导电轨线与至少两个电极元件电连接,形成存储单元;和
其中所述存储单元通过对所述电极元件施加电流或电压可被读写。
7.权利要求6中所述的组合件,其中纳米管段包括单壁的纳米管。
8.权利要求6中所述的组合件,其中纳米管段包括多层壁的纳米管。
9.权利要求6中所述的组合件,其中纳米管段有不同的长度。
10.权利要求6中所述的组合件,其中纳米管段包括长度小于轨线长度的段。
11.一种导电轨线,所述导电轨线包括相互接触的纳米管段形成许多沿轨线的导电通路组成的电网络,所述纳米管段是非织造纳米管织物或毡合的纳米管层,所述纳米管段的图案化是用平板印刷进行的,其中所述导电轨线与至少两个电极元件电连接,形成存储单元;和
其中所述存储单元通过对所述电极元件施加电流或电压可被读写。
12.权利要求11中所述的导电轨线,其中纳米管段包括单壁的纳米管。
13.权利要求11中所述的导电轨线,其中纳米管段包括多层壁的纳米管。
14.权利要求11中所述的导电轨线,其中纳米管段有不同的长度。
15.权利要求11中所述的导电轨线,其中纳米管段包括长度小于轨线长度的段。
CN02818506.4A 2001-07-25 2002-07-25 导电制品、组合件和导电轨线 Expired - Lifetime CN1556996B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US09/915,093 2001-07-25
US09/915,095 US6574130B2 (en) 2001-07-25 2001-07-25 Hybrid circuit having nanotube electromechanical memory
US09/915,173 US6643165B2 (en) 2001-07-25 2001-07-25 Electromechanical memory having cell selection circuitry constructed with nanotube technology
US09/915,093 US6919592B2 (en) 2001-07-25 2001-07-25 Electromechanical memory array using nanotube ribbons and method for making same
US09/915,095 2001-07-25
US09/915,173 2001-07-25
PCT/US2002/023861 WO2003022733A2 (en) 2001-07-25 2002-07-25 Nanotube films and articles

Publications (2)

Publication Number Publication Date
CN1556996A CN1556996A (zh) 2004-12-22
CN1556996B true CN1556996B (zh) 2015-09-02

Family

ID=27420634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02818506.4A Expired - Lifetime CN1556996B (zh) 2001-07-25 2002-07-25 导电制品、组合件和导电轨线

Country Status (8)

Country Link
US (3) US6835591B2 (zh)
EP (4) EP2286929B1 (zh)
JP (1) JP5068921B2 (zh)
KR (1) KR100899587B1 (zh)
CN (1) CN1556996B (zh)
AU (2) AU2002353771A1 (zh)
CA (2) CA2454845C (zh)
WO (2) WO2003022733A2 (zh)

Families Citing this family (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040248381A1 (en) * 2000-11-01 2004-12-09 Myrick James J. Nanoelectronic interconnection and addressing
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US7563711B1 (en) * 2001-07-25 2009-07-21 Nantero, Inc. Method of forming a carbon nanotube-based contact to semiconductor
AU2003235592A1 (en) * 2002-01-11 2003-07-30 The Trustees Of Boston College Reinforced carbon nanotubes
US20060228723A1 (en) * 2002-01-16 2006-10-12 Keith Bradley System and method for electronic sensing of biomolecules
US8154093B2 (en) * 2002-01-16 2012-04-10 Nanomix, Inc. Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices
US20080021339A1 (en) * 2005-10-27 2008-01-24 Gabriel Jean-Christophe P Anesthesia monitor, capacitance nanosensors and dynamic sensor sampling method
US20050161750A1 (en) * 2002-03-20 2005-07-28 Hongjie Dai Molybdenum-based electrode with carbon nanotube growth
US7335395B2 (en) * 2002-04-23 2008-02-26 Nantero, Inc. Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US7304128B2 (en) 2002-06-04 2007-12-04 E.I. Du Pont De Nemours And Company Carbon nanotube binding peptides
AU2003248713A1 (en) 2002-06-19 2004-01-06 Nantero, Inc. Nanotube permeable base transistor and method of making same
US7948041B2 (en) 2005-05-19 2011-05-24 Nanomix, Inc. Sensor having a thin-film inhibition layer
US7067867B2 (en) * 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US20050045867A1 (en) * 2002-10-30 2005-03-03 Ozkan Cengiz S. Nanoscale heterojunctions and methods of making and using thereof
CN1720345A (zh) * 2003-01-13 2006-01-11 南泰若股份有限公司 利用薄金属层制造碳纳米管薄膜、层、织品、条带、元件及物品之方法
US9574290B2 (en) 2003-01-13 2017-02-21 Nantero Inc. Methods for arranging nanotube elements within nanotube fabrics and films
US8937575B2 (en) * 2009-07-31 2015-01-20 Nantero Inc. Microstrip antenna elements and arrays comprising a shaped nanotube fabric layer and integrated two terminal nanotube select devices
US7858185B2 (en) 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
US7075141B2 (en) * 2003-03-28 2006-07-11 Nantero, Inc. Four terminal non-volatile transistor device
US7294877B2 (en) 2003-03-28 2007-11-13 Nantero, Inc. Nanotube-on-gate FET structures and applications
US7045421B2 (en) * 2003-04-22 2006-05-16 Nantero, Inc. Process for making bit selectable devices having elements made with nanotubes
US6995046B2 (en) * 2003-04-22 2006-02-07 Nantero, Inc. Process for making byte erasable devices having elements made with nanotubes
CA2526946A1 (en) 2003-05-14 2005-04-07 Nantero, Inc. Sensor platform using a non-horizontally oriented nanotube element
US7274064B2 (en) 2003-06-09 2007-09-25 Nanatero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US7161218B2 (en) * 2003-06-09 2007-01-09 Nantero, Inc. One-time programmable, non-volatile field effect devices and methods of making same
US7041530B2 (en) * 2003-06-12 2006-05-09 Matsushita Electric Industrial Co., Ltd. Method of production of nano particle dispersed composite material
JP3731589B2 (ja) * 2003-07-18 2006-01-05 ソニー株式会社 撮像装置と同期信号発生装置
US7053520B2 (en) 2003-07-18 2006-05-30 The Regents Of The University Of California Rotational actuator or motor based on carbon nanotubes
WO2005048296A2 (en) 2003-08-13 2005-05-26 Nantero, Inc. Nanotube-based switching elements with multiple controls and circuits made from same
CN1868002B (zh) * 2003-08-13 2011-12-14 南泰若股份有限公司 具有多个控件的基于纳米管的开关元件及由其制成的电路
US7115960B2 (en) * 2003-08-13 2006-10-03 Nantero, Inc. Nanotube-based switching elements
US7289357B2 (en) 2003-08-13 2007-10-30 Nantero, Inc. Isolation structure for deflectable nanotube elements
WO2005017967A2 (en) * 2003-08-13 2005-02-24 Nantero, Inc. Nanotube device structure and methods of fabrication
US7375369B2 (en) 2003-09-08 2008-05-20 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US7504051B2 (en) * 2003-09-08 2009-03-17 Nantero, Inc. Applicator liquid for use in electronic manufacturing processes
US7416993B2 (en) * 2003-09-08 2008-08-26 Nantero, Inc. Patterned nanowire articles on a substrate and methods of making the same
US20050126766A1 (en) * 2003-09-16 2005-06-16 Koila,Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer with improved contact
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
JP4772302B2 (ja) * 2003-09-29 2011-09-14 パナソニック株式会社 微小電気機械システムおよびその製造方法
KR20050049868A (ko) * 2003-11-24 2005-05-27 삼성에스디아이 주식회사 카본나노튜브 에미터 형성방법 및 이를 이용한 전계방출표시소자의 제조방법
US7528437B2 (en) * 2004-02-11 2009-05-05 Nantero, Inc. EEPROMS using carbon nanotubes for cell storage
CA2562475A1 (en) * 2004-04-07 2006-07-13 Eikos, Inc. Fugitive viscosity and stability modifiers for carbon nanotube compositions
US7834530B2 (en) * 2004-05-27 2010-11-16 California Institute Of Technology Carbon nanotube high-current-density field emitters
US7658869B2 (en) * 2004-06-03 2010-02-09 Nantero, Inc. Applicator liquid containing ethyl lactate for preparation of nanotube films
US7556746B2 (en) * 2004-06-03 2009-07-07 Nantero, Inc. Method of making an applicator liquid for electronics fabrication process
US7709880B2 (en) * 2004-06-09 2010-05-04 Nantero, Inc. Field effect devices having a gate controlled via a nanotube switching element
US7167026B2 (en) * 2004-06-18 2007-01-23 Nantero, Inc. Tri-state circuit using nanotube switching elements
US7330709B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and logic
US7329931B2 (en) 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and transistors
US7288970B2 (en) 2004-06-18 2007-10-30 Nantero, Inc. Integrated nanotube and field effect switching device
US7164744B2 (en) * 2004-06-18 2007-01-16 Nantero, Inc. Nanotube-based logic driver circuits
US7161403B2 (en) * 2004-06-18 2007-01-09 Nantero, Inc. Storage elements using nanotube switching elements
US7652342B2 (en) 2004-06-18 2010-01-26 Nantero, Inc. Nanotube-based transfer devices and related circuits
TWI230973B (en) * 2004-06-25 2005-04-11 Ind Tech Res Inst Method of making nanometer wire array
DE102004031128A1 (de) * 2004-06-28 2006-01-19 Infineon Technologies Ag Elektrischer Schaltkreis mit einer Kohlenstoff-Leiterstruktur und Verfahren zum Herstellen einer Kohlenstoff-Leiterstruktur eines elektrischen Schaltkreises
US7518283B2 (en) * 2004-07-19 2009-04-14 Cjp Ip Holdings Ltd. Nanometer-scale electrostatic and electromagnetic motors and generators
DE102004035368B4 (de) 2004-07-21 2007-10-18 Infineon Technologies Ag Substrat mit Leiterbahnen und Herstellung der Leiterbahnen auf Substraten für Halbleiterbauteile
TWI399864B (zh) 2004-09-16 2013-06-21 Nantero Inc 使用奈米管之發光體及其製造方法
EP1792320A4 (en) * 2004-09-21 2010-08-04 Nantero Inc RESISTIVE ELEMENTS USING CARBON NANOTUBES
EP1792149B1 (en) 2004-09-22 2010-03-31 Nantero, Inc. Random access memory including nanotube switching elements
CA2586120A1 (en) 2004-11-02 2006-12-28 Nantero, Inc. Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
US20100147657A1 (en) * 2004-11-02 2010-06-17 Nantero, Inc. Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
KR100680008B1 (ko) 2004-11-30 2007-02-09 학교법인연세대학교 탄소나노튜브 박막의 제조방법
WO2006065937A2 (en) 2004-12-16 2006-06-22 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
US7598544B2 (en) * 2005-01-14 2009-10-06 Nanotero, Inc. Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same
US8362525B2 (en) * 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same
US7671398B2 (en) * 2005-02-23 2010-03-02 Tran Bao Q Nano memory, light, energy, antenna and strand-based systems and methods
EP1877255A4 (en) * 2005-03-10 2011-03-30 Mat & Electrochem Res Corp METHOD AND DEVICE FOR PRODUCING THIN FILM
US20060213251A1 (en) * 2005-03-24 2006-09-28 University Of Florida Research Foundation, Inc. Carbon nanotube films for hydrogen sensing
US9390790B2 (en) 2005-04-05 2016-07-12 Nantero Inc. Carbon based nonvolatile cross point memory incorporating carbon based diode select devices and MOSFET select devices for memory and logic applications
US8000127B2 (en) * 2009-08-12 2011-08-16 Nantero, Inc. Method for resetting a resistive change memory element
US20060276056A1 (en) * 2005-04-05 2006-12-07 Nantero, Inc. Nanotube articles with adjustable electrical conductivity and methods of making the same
US8941094B2 (en) 2010-09-02 2015-01-27 Nantero Inc. Methods for adjusting the conductivity range of a nanotube fabric layer
US9287356B2 (en) * 2005-05-09 2016-03-15 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7394687B2 (en) 2005-05-09 2008-07-01 Nantero, Inc. Non-volatile-shadow latch using a nanotube switch
US9911743B2 (en) * 2005-05-09 2018-03-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
TWI324773B (en) 2005-05-09 2010-05-11 Nantero Inc Non-volatile shadow latch using a nanotube switch
US8013363B2 (en) * 2005-05-09 2011-09-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8513768B2 (en) * 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US8183665B2 (en) * 2005-11-15 2012-05-22 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7835170B2 (en) 2005-05-09 2010-11-16 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US9196615B2 (en) * 2005-05-09 2015-11-24 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7479654B2 (en) 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US8217490B2 (en) 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7598127B2 (en) * 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
CN100482572C (zh) * 2005-05-13 2009-04-29 中国科学院上海微系统与信息技术研究所 在(111)晶面的硅片上纳米梁的结构及制作方法
US7575693B2 (en) * 2005-05-23 2009-08-18 Nantero, Inc. Method of aligning nanotubes and wires with an etched feature
US7541216B2 (en) * 2005-06-09 2009-06-02 Nantero, Inc. Method of aligning deposited nanotubes onto an etched feature using a spacer
US7402770B2 (en) * 2005-06-10 2008-07-22 Lsi Logic Corporation Nano structure electrode design
JP5019192B2 (ja) * 2005-06-24 2012-09-05 株式会社東芝 半導体装置
US7343581B2 (en) * 2005-06-27 2008-03-11 Tela Innovations, Inc. Methods for creating primitive constructed standard cells
US7538040B2 (en) 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers
CA2850951A1 (en) 2005-07-28 2007-01-28 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
US7638382B2 (en) * 2005-08-11 2009-12-29 Kabushiki Kaisha Toshiba Storage apparatus and manufacturing method thereof
WO2007022226A2 (en) 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors
KR100682952B1 (ko) * 2005-08-31 2007-02-15 삼성전자주식회사 나노탄성 메모리 소자 및 그 제조 방법
WO2008054364A2 (en) 2005-09-06 2008-05-08 Nantero, Inc. Carbon nanotubes for the selective transfer of heat from electronics
AU2006287610A1 (en) * 2005-09-06 2007-03-15 Nantero, Inc. Nanotube fabric-based sensor systems and methods of making same
US7850778B2 (en) * 2005-09-06 2010-12-14 Lemaire Charles A Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
US7744793B2 (en) 2005-09-06 2010-06-29 Lemaire Alexander B Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
US7892299B2 (en) * 2005-09-15 2011-02-22 Headwaters Technology Innovation, Llc Methods of manufacturing fuel cell electrodes incorporating highly dispersed nanoparticle catalysts
US20070235847A1 (en) * 2005-09-19 2007-10-11 Shriram Ramanathan Method of making a substrate having thermally conductive structures and resulting devices
US7446044B2 (en) * 2005-09-19 2008-11-04 California Institute Of Technology Carbon nanotube switches for memory, RF communications and sensing applications, and methods of making the same
US7887771B2 (en) * 2005-10-06 2011-02-15 Headwaters Technology Innovation, Llc Carbon nanorings manufactured from templating nanoparticles
US7718155B2 (en) * 2005-10-06 2010-05-18 Headwaters Technology Innovation, Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
US8133637B2 (en) * 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7629192B2 (en) * 2005-10-13 2009-12-08 International Business Machines Corporation Passive electrically testable acceleration and voltage measurement devices
US7268077B2 (en) * 2005-12-02 2007-09-11 Intel Corporation Carbon nanotube reinforced metallic layer
CN100500556C (zh) * 2005-12-16 2009-06-17 清华大学 碳纳米管丝及其制作方法
TW200730436A (en) 2005-12-19 2007-08-16 Advanced Tech Materials Production of carbon nanotubes
CN100526208C (zh) * 2005-12-30 2009-08-12 中国科学院上海微系统与信息技术研究所 在绝缘体上硅的硅片上纳米宽度谐振结构及其制作方法
US8264137B2 (en) 2006-01-03 2012-09-11 Samsung Electronics Co., Ltd. Curing binder material for carbon nanotube electron emission cathodes
US20070158768A1 (en) * 2006-01-06 2007-07-12 Honeywell International, Inc. Electrical contacts formed of carbon nanotubes
US7417119B2 (en) * 2006-01-17 2008-08-26 Sri International Nanoscale array biomolecular bond enhancer device
DE102006004218B3 (de) * 2006-01-30 2007-08-16 Infineon Technologies Ag Elektromechanische Speicher-Einrichtung und Verfahren zum Herstellen einer elektromechanischen Speicher-Einrichtung
US7935276B2 (en) * 2006-02-09 2011-05-03 Headwaters Technology Innovation Llc Polymeric materials incorporating carbon nanostructures
US7590968B1 (en) 2006-03-01 2009-09-15 Tela Innovations, Inc. Methods for risk-informed chip layout generation
US8658542B2 (en) 2006-03-09 2014-02-25 Tela Innovations, Inc. Coarse grid design methods and structures
US8247846B2 (en) 2006-03-09 2012-08-21 Tela Innovations, Inc. Oversized contacts and vias in semiconductor chip defined by linearly constrained topology
US7763534B2 (en) * 2007-10-26 2010-07-27 Tela Innovations, Inc. Methods, structures and designs for self-aligning local interconnects used in integrated circuits
US9563733B2 (en) 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US8448102B2 (en) 2006-03-09 2013-05-21 Tela Innovations, Inc. Optimizing layout of irregular structures in regular layout context
US8541879B2 (en) 2007-12-13 2013-09-24 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US8653857B2 (en) 2006-03-09 2014-02-18 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US9009641B2 (en) 2006-03-09 2015-04-14 Tela Innovations, Inc. Circuits with linear finfet structures
US7908578B2 (en) 2007-08-02 2011-03-15 Tela Innovations, Inc. Methods for designing semiconductor device with dynamic array section
US7943967B2 (en) 2006-03-09 2011-05-17 Tela Innovations, Inc. Semiconductor device and associated layouts including diffusion contact placement restriction based on relation to linear conductive segments
US7446352B2 (en) 2006-03-09 2008-11-04 Tela Innovations, Inc. Dynamic array architecture
US8245180B2 (en) 2006-03-09 2012-08-14 Tela Innovations, Inc. Methods for defining and using co-optimized nanopatterns for integrated circuit design and apparatus implementing same
US7956421B2 (en) 2008-03-13 2011-06-07 Tela Innovations, Inc. Cross-coupled transistor layouts in restricted gate level layout architecture
US7932545B2 (en) 2006-03-09 2011-04-26 Tela Innovations, Inc. Semiconductor device and associated layouts including gate electrode level region having arrangement of six linear conductive segments with side-to-side spacing less than 360 nanometers
US8225239B2 (en) 2006-03-09 2012-07-17 Tela Innovations, Inc. Methods for defining and utilizing sub-resolution features in linear topology
US9035359B2 (en) 2006-03-09 2015-05-19 Tela Innovations, Inc. Semiconductor chip including region including linear-shaped conductive structures forming gate electrodes and having electrical connection areas arranged relative to inner region between transistors of different types and associated methods
US9230910B2 (en) 2006-03-09 2016-01-05 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US8225261B2 (en) 2006-03-09 2012-07-17 Tela Innovations, Inc. Methods for defining contact grid in dynamic array architecture
US8839175B2 (en) 2006-03-09 2014-09-16 Tela Innovations, Inc. Scalable meta-data objects
EP1996465A2 (en) 2006-03-10 2008-12-03 Goodrich Corporation Low density lightning strike protection for use in airplanes
US20100117764A1 (en) * 2006-04-17 2010-05-13 Board Of Regents, The University Of Texas System Assisted selective growth of highly dense and vertically aligned carbon nanotubes
EP2013408B2 (en) 2006-05-02 2016-09-28 Rohr, Inc. Nacelles and components thereof using nanoreinforcements
US7655272B1 (en) * 2006-05-19 2010-02-02 The Board Of Trustees Of The Leland Stanford Junior University Nanoparticles with controlled growth
TWI463673B (zh) 2006-08-08 2014-12-01 Nantero Inc 非揮發性奈米管二極體與非揮發性奈米管塊材及使用該等之系統以及製造該等之方法
US7586800B1 (en) 2006-08-08 2009-09-08 Tela Innovations, Inc. Memory timing apparatus and associated methods
US8323789B2 (en) 2006-08-31 2012-12-04 Cambridge Enterprise Limited Nanomaterial polymer compositions and uses thereof
WO2008039372A2 (en) * 2006-09-22 2008-04-03 Carnegie Mellon University Assembling and applying nano-electro-mechanical systems
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
SG10201502808UA (en) 2006-10-12 2015-05-28 Cambrios Technologies Corp Nanowire-Based Transparent Conductors And Applications Thereof
US7718156B2 (en) * 2006-12-20 2010-05-18 Headwaters Technology Innovation, Llc Method for manufacturing carbon nanostructures having minimal surface functional groups
US20080166563A1 (en) 2007-01-04 2008-07-10 Goodrich Corporation Electrothermal heater made from thermally conducting electrically insulating polymer material
US8420978B2 (en) 2007-01-18 2013-04-16 The Board Of Trustees Of The University Of Illinois High throughput, low cost dual-mode patterning method for large area substrates
EP1955780A1 (en) * 2007-02-02 2008-08-13 Sony Deutschland Gmbh A method of producing a film of carbon nanotubes on a substrate
US8286107B2 (en) 2007-02-20 2012-10-09 Tela Innovations, Inc. Methods and systems for process compensation technique acceleration
US7979829B2 (en) 2007-02-20 2011-07-12 Tela Innovations, Inc. Integrated circuit cell library with cell-level process compensation technique (PCT) application and associated methods
US20080238882A1 (en) * 2007-02-21 2008-10-02 Ramesh Sivarajan Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs
WO2008103221A1 (en) * 2007-02-22 2008-08-28 Dow Corning Corporation Process for preparing conductive films and articles prepared using the process
US8667443B2 (en) 2007-03-05 2014-03-04 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
WO2008140649A2 (en) * 2007-03-07 2008-11-20 Carbolex, Inc. Boron-doped single-walled nanotubes (swcnt)
US8003300B2 (en) * 2007-04-12 2011-08-23 The Board Of Trustees Of The University Of Illinois Methods for fabricating complex micro and nanoscale structures and electronic devices and components made by the same
TWI556456B (zh) 2007-04-20 2016-11-01 坎畢歐科技公司 複合透明導體及形成其之方法
US8134220B2 (en) * 2007-06-22 2012-03-13 Nantero Inc. Two-terminal nanotube devices including a nanotube bridge and methods of making same
US20110014446A1 (en) * 2007-07-06 2011-01-20 Takeshi Saito Method for forming carbon nanotube film, film-forming apparatus, and carbon nanotube film
US7701013B2 (en) * 2007-07-10 2010-04-20 International Business Machines Corporation Nanoelectromechanical transistors and methods of forming same
US7550354B2 (en) * 2007-07-11 2009-06-23 International Business Machines Corporation Nanoelectromechanical transistors and methods of forming same
US8652763B2 (en) * 2007-07-16 2014-02-18 The Board Of Trustees Of The University Of Illinois Method for fabricating dual damascene profiles using sub pixel-voting lithography and devices made by same
JP2010538444A (ja) * 2007-09-07 2010-12-09 インオーガニック スペシャリスツ インク リチウム二次バッテリー用アノード材料としてのシリコン変性ナノファイバー紙
US8262768B2 (en) 2007-09-17 2012-09-11 Barrick Gold Corporation Method to improve recovery of gold from double refractory gold ores
US8262770B2 (en) 2007-09-18 2012-09-11 Barrick Gold Corporation Process for controlling acid in sulfide pressure oxidation processes
TR201002190T1 (tr) 2007-09-18 2010-08-23 Barrick Gold Corporation Altın ve gümüşün refrakter cevherlerinden geri kazanımına yönelik işlem
KR100866577B1 (ko) * 2007-09-28 2008-11-03 삼성전기주식회사 인쇄회로기판의 층간 도통방법
KR100981309B1 (ko) 2007-12-06 2010-09-10 한국세라믹기술원 양자점 재료 증착박막 형성방법 및 그 생성물
US8336119B2 (en) * 2007-12-09 2012-12-25 180's. Inc. Hand covering with conductive portion
US9003567B2 (en) * 2007-12-09 2015-04-14 180S, Inc. Hand covering with tactility features
CN101458607B (zh) * 2007-12-14 2010-12-29 清华大学 触摸屏及显示装置
US8009461B2 (en) * 2008-01-07 2011-08-30 International Business Machines Corporation SRAM device, and SRAM device design structure, with adaptable access transistors
US8453094B2 (en) 2008-01-31 2013-05-28 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US8546067B2 (en) * 2008-03-21 2013-10-01 The Board Of Trustees Of The University Of Illinois Material assisted laser ablation
US7939443B2 (en) 2008-03-27 2011-05-10 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US7612270B1 (en) * 2008-04-09 2009-11-03 International Business Machines Corporation Nanoelectromechanical digital inverter
US8946683B2 (en) * 2008-06-16 2015-02-03 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
MY152456A (en) 2008-07-16 2014-09-30 Tela Innovations Inc Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US9122832B2 (en) 2008-08-01 2015-09-01 Tela Innovations, Inc. Methods for controlling microloading variation in semiconductor wafer layout and fabrication
WO2010019441A1 (en) 2008-08-14 2010-02-18 Nantero, Inc. Nonvolatile nanotube programmable logic devices and field programmable gate array
US9263126B1 (en) 2010-09-01 2016-02-16 Nantero Inc. Method for dynamically accessing and programming resistive change element arrays
CN101734646B (zh) * 2008-11-14 2012-03-28 清华大学 碳纳米管膜
US8187795B2 (en) * 2008-12-09 2012-05-29 The Board Of Trustees Of The University Of Illinois Patterning methods for stretchable structures
TWI384496B (zh) * 2008-12-23 2013-02-01 Nat Univ Chung Hsing Preparation method of carbon nanotube conductive thin film
US8202568B2 (en) * 2008-12-23 2012-06-19 Ipcooler Technology Inc. Method for making a conductive film of carbon nanotubes
US8574673B2 (en) * 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
WO2011014446A1 (en) * 2009-07-31 2011-02-03 Nantero, Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8128993B2 (en) * 2009-07-31 2012-03-06 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
JP2013501921A (ja) 2009-08-07 2013-01-17 ナノミックス・インコーポレーテッド 磁性炭素ナノチューブに基づく生体検出
US8253171B1 (en) 2009-08-27 2012-08-28 Lockheed Martin Corporation Two terminal nanotube switch, memory array incorporating the same and method of making
US8561934B2 (en) 2009-08-28 2013-10-22 Teresa M. Kruckenberg Lightning strike protection
US8350360B1 (en) 2009-08-28 2013-01-08 Lockheed Martin Corporation Four-terminal carbon nanotube capacitors
CN102001620A (zh) * 2009-08-31 2011-04-06 索尼株式会社 碳纳米管制造方法、碳纳米管膜制造方法和电子设备制造方法
US20110056812A1 (en) * 2009-09-08 2011-03-10 Kaul Anupama B Nano-electro-mechanical switches using three-dimensional sidewall-conductive carbon nanofibers and method for making the same
US8661392B2 (en) 2009-10-13 2014-02-25 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the Same
US8551806B2 (en) * 2009-10-23 2013-10-08 Nantero Inc. Methods for passivating a carbonic nanolayer
US8351239B2 (en) * 2009-10-23 2013-01-08 Nantero Inc. Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array
US8895950B2 (en) 2009-10-23 2014-11-25 Nantero Inc. Methods for passivating a carbonic nanolayer
US9220180B2 (en) * 2010-12-09 2015-12-22 Richard Anthony Dunn, JR. System and methods for scalable parallel data processing and process control
US8222704B2 (en) 2009-12-31 2012-07-17 Nantero, Inc. Compact electrical switching devices with nanotube elements, and methods of making same
US8435798B2 (en) 2010-01-13 2013-05-07 California Institute Of Technology Applications and methods of operating a three-dimensional nano-electro-mechanical resonator and related devices
KR101207020B1 (ko) 2010-01-25 2012-11-30 서강대학교산학협력단 광간섭 리소그래피를 이용한 다공성 탄소 구조체의 제조 방법 및 이에 의한 다공성 탄소 구조체
WO2011097470A2 (en) 2010-02-05 2011-08-11 Cambrios Technologies Corporation Photosensitive ink compositions and transparent conductors and method of using the same
US8405189B1 (en) 2010-02-08 2013-03-26 Lockheed Martin Corporation Carbon nanotube (CNT) capacitors and devices integrated with CNT capacitors
WO2011100661A1 (en) 2010-02-12 2011-08-18 Nantero, Inc. Methods for controlling density, porosity, and/or gap size within nanotube fabric layers and films
US20110203632A1 (en) * 2010-02-22 2011-08-25 Rahul Sen Photovoltaic devices using semiconducting nanotube layers
WO2011103558A1 (en) 2010-02-22 2011-08-25 Nantero, Inc. Logic elements comprising carbon nanotube field effect transistor (cntfet) devices and methods of making same
US20110227043A1 (en) * 2010-03-19 2011-09-22 International Business Machines Corporation Graphene sensor
US20130137324A1 (en) * 2010-03-25 2013-05-30 Xiaowu Shirley Tang Carbon nanotube coatings for visible and ir camouflage
US10661304B2 (en) 2010-03-30 2020-05-26 Nantero, Inc. Microfluidic control surfaces using ordered nanotube fabrics
KR101938425B1 (ko) 2010-03-30 2019-01-14 난테로 인크. 네트워크, 직물, 및 필름 내에서의 나노규모 요소의 배열 방법
CN102893421B (zh) 2010-05-21 2016-01-20 默克专利股份有限公司 在塑料底材结构上的碳纳米管(cnt)聚合物基质的选择性蚀刻
US8169811B2 (en) * 2010-07-13 2012-05-01 Nxp B.V. Non-volatile re-programmable memory device
CN101912848B (zh) * 2010-08-25 2012-06-20 清华大学 电致动清洁装置
US8125824B1 (en) 2010-09-02 2012-02-28 Lockheed Martin Corporation Nanotube random access memory (NRAM) and transistor integration
WO2012040202A1 (en) 2010-09-20 2012-03-29 Nantero Inc. Methods for purifying nanotube solutions
US9159627B2 (en) 2010-11-12 2015-10-13 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
CN102222764B (zh) * 2011-06-24 2013-11-20 清华大学 相变存储器的制备方法
CN103295854B (zh) * 2012-02-23 2015-08-26 清华大学 碳纳米管微尖结构及其制备方法
US9634251B2 (en) 2012-02-27 2017-04-25 Nantero Inc. Nanotube solution treated with molecular additive, nanotube film having enhanced adhesion property, and methods for forming the nanotube solution and the nanotube film
US9196766B1 (en) 2012-04-25 2015-11-24 Magnolia Optical Technologies, Inc. Thermal detectors using graphene and oxides of graphene and methods of making the same
WO2014039509A2 (en) 2012-09-04 2014-03-13 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
US9007732B2 (en) 2013-03-15 2015-04-14 Nantero Inc. Electrostatic discharge protection circuits using carbon nanotube field effect transistor (CNTFET) devices and methods of making same
US9650732B2 (en) 2013-05-01 2017-05-16 Nantero Inc. Low defect nanotube application solutions and fabrics and methods for making same
US10654718B2 (en) 2013-09-20 2020-05-19 Nantero, Inc. Scalable nanotube fabrics and methods for making same
US9401488B2 (en) 2014-12-18 2016-07-26 Northrop Grumman Systems Corporation Cobalt-carbon eutectic metal alloy ohmic contact for carbon nanotube field effect transistors
US9299430B1 (en) 2015-01-22 2016-03-29 Nantero Inc. Methods for reading and programming 1-R resistive change element arrays
KR101783995B1 (ko) 2015-06-10 2017-10-12 서강대학교산학협력단 섬유형 탄소나노물질의 제조 방법
US9947400B2 (en) 2016-04-22 2018-04-17 Nantero, Inc. Methods for enhanced state retention within a resistive change cell
US9934848B2 (en) 2016-06-07 2018-04-03 Nantero, Inc. Methods for determining the resistive states of resistive change elements
US9941001B2 (en) 2016-06-07 2018-04-10 Nantero, Inc. Circuits for determining the resistive states of resistive change elements
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221330B1 (en) * 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6256767B1 (en) * 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)

Family Cites Families (329)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448302A (en) * 1966-06-16 1969-06-03 Itt Operating circuit for phase change memory devices
FR2115034B1 (zh) * 1970-11-24 1973-11-23 Sescosem
US3892890A (en) 1972-05-12 1975-07-01 Hitachi Ltd Process for forming carbon coatings
US3970887A (en) 1974-06-19 1976-07-20 Micro-Bit Corporation Micro-structure field emission electron source
US4378629A (en) * 1979-08-10 1983-04-05 Massachusetts Institute Of Technology Semiconductor embedded layer technology including permeable base transistor, fabrication method
US5032538A (en) 1979-08-10 1991-07-16 Massachusetts Institute Of Technology Semiconductor embedded layer technology utilizing selective epitaxial growth methods
US4324814A (en) * 1981-03-19 1982-04-13 Rca Corporation Method for forming a narrow thin film line
US4524431A (en) * 1982-02-01 1985-06-18 Texas Instruments Incorporated High-speed nonvolatile memory array
US4495511A (en) * 1982-08-23 1985-01-22 The United States Of America As Represented By The Secretary Of The Navy Permeable base transistor structure
US4510016A (en) * 1982-12-09 1985-04-09 Gte Laboratories Method of fabricating submicron silicon structures such as permeable base transistors
US4707197A (en) 1984-08-02 1987-11-17 American Telephone And Telegraph Company, At&T Bell Laboratories Method of producing a silicide/Si heteroepitaxial structure, and articles produced by the method
JPS6177199A (ja) 1984-09-21 1986-04-19 Toshiba Corp 半導体記憶装置
JPS6194042A (ja) * 1984-10-16 1986-05-12 Matsushita Electric Ind Co Ltd 分子構築体およびその製造方法
JPS61121369A (ja) * 1984-11-19 1986-06-09 Fujitsu Ltd 半導体装置
US4901121A (en) * 1985-03-29 1990-02-13 American Telephone & Telegraph Co., At&T Bell Labs. Semiconductor device comprising a perforated metal silicide layer
US4701842A (en) 1985-10-04 1987-10-20 International Business Machines Corporation Method and apparatus for avoiding excessive delay in a pipelined processor during the execution of a microbranch instruction
US4758534A (en) 1985-11-13 1988-07-19 Bell Communications Research, Inc. Process for producing porous refractory metal layers embedded in semiconductor devices
US4819212A (en) * 1986-05-31 1989-04-04 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device with readout test circuitry
US4761801A (en) 1986-06-18 1988-08-02 Hughes Aircraft Company Look ahead terminal counter
US4939556A (en) 1986-07-10 1990-07-03 Canon Kabushiki Kaisha Conductor device
US4845533A (en) 1986-08-22 1989-07-04 Energy Conversion Devices, Inc. Thin film electrical devices with amorphous carbon electrodes and method of making same
CH670914A5 (zh) 1986-09-10 1989-07-14 Landis & Gyr Ag
US4924436A (en) 1987-06-22 1990-05-08 Energy Conversion Devices, Inc. Data storage device having a phase change memory medium reversible by direct overwrite and method of direct overwrite
US4876667A (en) 1987-06-22 1989-10-24 Energy Conversion Devices, Inc. Data storage device having a phase change memory medium reversible by direct overwrite
US4853893A (en) 1987-07-02 1989-08-01 Ramtron Corporation Data storage device and method of using a ferroelectric capacitance divider
EP0315392A3 (en) 1987-11-05 1990-09-12 Energy Conversion Devices, Inc. Data storage device having an encapsulated phase change memory medium and means for suppressing ablation thereof
US4947226A (en) 1987-12-08 1990-08-07 Hoenywell, Inc. Bilateral switching device
US5155561A (en) 1988-01-05 1992-10-13 Massachusetts Institute Of Technology Permeable base transistor having an electrode configuration for heat dissipation
US5184320A (en) * 1988-02-12 1993-02-02 Texas Instruments Incorporated Cached random access memory device and system
US4888630A (en) 1988-03-21 1989-12-19 Texas Instruments Incorporated Floating-gate transistor with a non-linear intergate dielectric
GB8807225D0 (en) 1988-03-25 1988-04-27 Hughes Microelectronics Ltd Nonvolatile ram cell
US5198994A (en) * 1988-08-31 1993-03-30 Kabushiki Kaisha Toshiba Ferroelectric memory device
US5010037A (en) * 1988-10-14 1991-04-23 California Institute Of Technology Pinhole-free growth of epitaxial CoSi2 film on Si(111)
US5592644A (en) * 1988-12-22 1997-01-07 Framdrive Ferroelectric storage device emulating a rotating disk drive unit in a computer system and having an optical data interface
US5592643A (en) * 1988-12-22 1997-01-07 Framdrive Ferroelectric storage device emulating a rotating disk drive unit in acomputer system and having a parallel data interface
US5592642A (en) * 1988-12-22 1997-01-07 Framdrive Ferroelectric storage device emulating a rotating disk drive unit in a computer system and having an optical and parallel data interface
US5089545A (en) * 1989-02-12 1992-02-18 Biotech International, Inc. Switching and memory elements from polyamino acids and the method of their assembly
GB8907045D0 (en) 1989-03-29 1989-05-10 Hughes Microelectronics Ltd Sense amplifier
JPH02296372A (ja) 1989-05-10 1990-12-06 Mitsubishi Electric Corp 透過ベーストランジスタ
US6346413B1 (en) * 1989-06-07 2002-02-12 Affymetrix, Inc. Polymer arrays
US4985871A (en) * 1989-11-13 1991-01-15 Chips And Technologies, Inc. Memory controller for using reserved dram addresses for expanded memory space
US5161218A (en) 1989-11-13 1992-11-03 Chips And Technologies, Inc. Memory controller for using reserved DRAM addresses for EMS
DE4025269A1 (de) 1990-02-07 1991-08-08 Forschungszentrum Juelich Gmbh Elektronisches bauelement und verfahren zu dessen herstellung
US5412785A (en) * 1990-04-09 1995-05-02 Motorola, Inc. Microprogrammed data processor which includes a microsequencer in which a next microaddress output of a microROM is connected to the or-plane of an entry PLA
FR2663466A1 (fr) 1990-06-15 1991-12-20 Thomson Csf Composant semiconducteur a jonction schottky pour amplification hyperfrequence et circuits logiques rapides, et procede de realisation d'un tel composant.
US5216631A (en) * 1990-11-02 1993-06-01 Sliwa Jr John W Microvibratory memory device
CA2062200A1 (en) * 1991-03-15 1992-09-16 Stephen C. Purcell Decompression processor for video applications
US5196396A (en) * 1991-07-16 1993-03-23 The President And Fellows Of Harvard College Method of making a superconducting fullerene composition by reacting a fullerene with an alloy containing alkali metal
US5444651A (en) 1991-10-30 1995-08-22 Sharp Kabushiki Kaisha Non-volatile memory device
US5290715A (en) * 1991-12-31 1994-03-01 U.S. Philips Corporation Method of making dielectrically isolated metal base transistors and permeable base transistors
US5198390A (en) * 1992-01-16 1993-03-30 Cornell Research Foundation, Inc. RIE process for fabricating submicron, silicon electromechanical structures
DE69324508T2 (de) 1992-01-22 1999-12-23 Enhanced Memory Systems Inc DRAM mit integrierten Registern
US5850089A (en) 1992-03-13 1998-12-15 American Research Corporation Of Virginia Modulated-structure of PZT/PT ferroelectric thin films for non-volatile random access memories
US5475341A (en) 1992-06-01 1995-12-12 Yale University Sub-nanoscale electronic systems and devices
US5651126A (en) 1992-06-26 1997-07-22 Apple Computer, Inc. Method and apparatus for reducing transitions on computer signal lines
US5252835A (en) 1992-07-17 1993-10-12 President And Trustees Of Harvard College Machining oxide thin-films with an atomic force microscope: pattern and object formation on the nanometer scale
DE69333551T2 (de) 1993-02-04 2005-06-23 Cornell Research Foundation, Inc. Einzelmaskenprozess zum Herstellen von Mikrostrukturen, Einkristallherstellungsverfahren
JP2541091B2 (ja) 1993-02-26 1996-10-09 日本電気株式会社 炭素材料とその製造方法
CA2118662C (en) 1993-03-22 1999-07-13 Paul A. Santeler Memory controller having all dram address and control signals provided synchronously from a single device
US5346683A (en) 1993-03-26 1994-09-13 Gas Research Institute Uncapped and thinned carbon nanotubes and process
JPH06302179A (ja) 1993-04-13 1994-10-28 Casio Comput Co Ltd 電子機器
JPH0799189A (ja) 1993-04-28 1995-04-11 Mitsubishi Electric Corp 半導体装置の製造方法
US5424054A (en) * 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
US5426070A (en) * 1993-05-26 1995-06-20 Cornell Research Foundation, Inc. Microstructures and high temperature isolation process for fabrication thereof
US5456986A (en) 1993-06-30 1995-10-10 Carnegie Mellon University Magnetic metal or metal carbide nanoparticles and a process for forming same
US5453970A (en) 1993-07-13 1995-09-26 Rust; Thomas F. Molecular memory medium and molecular memory disk drive for storing information using a tunnelling probe
AU8070294A (en) 1993-07-15 1995-02-13 President And Fellows Of Harvard College Extended nitride material comprising beta -c3n4
US5547748A (en) 1994-01-14 1996-08-20 Sri International Carbon nanoencapsulates
JP2526408B2 (ja) * 1994-01-28 1996-08-21 工業技術院長 カ―ボンナノチュ―ブの連続製造方法及び装置
US5533061A (en) 1994-02-10 1996-07-02 Racom Systems, Inc. Method and apparatus for detecting an FSK encoded carrier signal
US5479172A (en) 1994-02-10 1995-12-26 Racom Systems, Inc. Power supply and power enable circuit for an RF/ID transponder
US5521602A (en) * 1994-02-10 1996-05-28 Racom Systems, Inc. Communications system utilizing FSK/PSK modulation techniques
US5608246A (en) * 1994-02-10 1997-03-04 Ramtron International Corporation Integration of high value capacitor with ferroelectric memory
US5517194A (en) * 1994-02-10 1996-05-14 Racom Systems, Inc. Passive RF transponder and method
US5444421A (en) 1994-02-10 1995-08-22 Racom Systems, Inc. Low power consumption oscillator using multiple transconductance amplifiers
US5553099A (en) 1994-02-10 1996-09-03 Racom Systems, Inc. FSK detector for determining an increasing time period between adjacent pulses of an FSK modulated square wave pulse train
US5563424A (en) 1994-03-24 1996-10-08 Uniax Corporation Polymer grid triodes
US6226722B1 (en) * 1994-05-19 2001-05-01 International Business Machines Corporation Integrated level two cache and controller with multiple ports, L1 bypass and concurrent accessing
IT1270228B (it) 1994-06-15 1997-04-29 Imr Srl Struttura di pallinatrice per macchine di stampaggio in conchiglia
US5626670A (en) * 1994-10-03 1997-05-06 American Research Corporation Of Virginia Method for producing low thermal budget ferroelectric thin films for integrated device structures using laser-crystallization of spin-on sol-gel films
US5590078A (en) 1994-10-07 1996-12-31 Mukesh Chatter Method of and apparatus for improved dynamic random access memory (DRAM) providing increased data bandwidth and addressing range for current DRAM devices and/or equivalent bandwidth and addressing range for smaller DRAM devices
US6100109A (en) 1994-11-02 2000-08-08 Siemens Aktiengesellschaft Method for producing a memory device
US5623638A (en) * 1994-11-22 1997-04-22 Advanced Micro Devices, Inc. Memory control unit with programmable edge generator to minimize delay periods for critical DRAM timing parameters
US6203814B1 (en) * 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes
US5716708A (en) * 1995-01-17 1998-02-10 Lagow; Richard J. Acetylenic carbon allotrope
US6231980B1 (en) * 1995-02-14 2001-05-15 The Regents Of The University Of California BX CY NZ nanotubes and nanoparticles
US6063243A (en) * 1995-02-14 2000-05-16 The Regents Of The Univeristy Of California Method for making nanotubes and nanoparticles
US5780101A (en) 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US5747180A (en) * 1995-05-19 1998-05-05 University Of Notre Dame Du Lac Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays
US5751156A (en) * 1995-06-07 1998-05-12 Yale University Mechanically controllable break transducer
US6190634B1 (en) * 1995-06-07 2001-02-20 President And Fellows Of Harvard College Carbide nanomaterials
US5640133A (en) * 1995-06-23 1997-06-17 Cornell Research Foundation, Inc. Capacitance based tunable micromechanical resonators
US6183714B1 (en) * 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
EP1209123A3 (en) 1995-09-08 2006-03-22 William Marsh Rice University Ropes of single-wall carbon nanotubes
US6380434B1 (en) * 1995-10-26 2002-04-30 Long Y. Chiang Fullerene derivatives
US5757038A (en) * 1995-11-06 1998-05-26 International Business Machines Corporation Self-aligned dual gate MOSFET with an ultranarrow channel
CZ162698A3 (cs) 1995-11-27 1998-08-12 The Dow Chemical Company Nosičový materiál, nanesený katalyzátor obsahující volně poutaný aktivátor tvořící kation a způsob adiční polymerace za použití tohoto katalyzátoru
US6445006B1 (en) 1995-12-20 2002-09-03 Advanced Technology Materials, Inc. Microelectronic and microelectromechanical devices comprising carbon nanotube components, and methods of making same
US5872422A (en) 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
US5799209A (en) 1995-12-29 1998-08-25 Chatter; Mukesh Multi-port internally cached DRAM system utilizing independent serial interfaces and buffers arbitratively connected under a dynamic configuration
US5897945A (en) * 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
US6036774A (en) * 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
US5875451A (en) * 1996-03-14 1999-02-23 Enhanced Memory Systems, Inc. Computer hybrid memory including DRAM and EDRAM memory components, with secondary cache in EDRAM for DRAM
US5650958A (en) 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
US5939785A (en) 1996-04-12 1999-08-17 Texas Instruments Incorporated Micromechanical device including time-release passivant
US5993697A (en) 1996-05-14 1999-11-30 The Regents Of The University Of California Metallic carbon materials
RU98120524A (ru) * 1996-05-15 2000-10-10 Хайперион Каталайзис Интернэшнл Графитовые нановолокна в электрохимических конденсаторах
AU4055297A (en) 1996-08-08 1998-02-25 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
US5838165A (en) 1996-08-21 1998-11-17 Chatter; Mukesh High performance self modifying on-the-fly alterable logic FPGA, architecture and method
US6057637A (en) * 1996-09-13 2000-05-02 The Regents Of The University Of California Field emission electron source
JP3421549B2 (ja) * 1996-09-18 2003-06-30 株式会社東芝 真空マイクロ装置
KR100365444B1 (ko) 1996-09-18 2004-01-24 가부시끼가이샤 도시바 진공마이크로장치와이를이용한화상표시장치
US5781717A (en) 1996-09-19 1998-07-14 I-Cube, Inc. Dynamic spare column replacement memory system
JPH10106960A (ja) * 1996-09-25 1998-04-24 Sony Corp 量子細線の製造方法
US5802583A (en) 1996-10-30 1998-09-01 Ramtron International Corporation Sysyem and method providing selective write protection for individual blocks of memory in a non-volatile memory device
US6025618A (en) * 1996-11-12 2000-02-15 Chen; Zhi Quan Two-parts ferroelectric RAM
JP3447492B2 (ja) 1996-11-12 2003-09-16 日本電気株式会社 炭素材料とその製造方法
US6038060A (en) * 1997-01-16 2000-03-14 Crowley; Robert Joseph Optical antenna array for harmonic generation, mixing and signal amplification
DE69840276D1 (de) 1997-01-21 2009-01-08 Georgia Tech Res Inst Herstellung eines Halbleiterbauelements mit Luftspalten für niedrigstkapazitive Leiterbahnen
DE69713500T2 (de) * 1997-02-06 2003-02-20 Ibm Schichtiges medium und verfahren zur erzeugung von mustern
US6809462B2 (en) * 2000-04-05 2004-10-26 Sri International Electroactive polymer sensors
US5753088A (en) * 1997-02-18 1998-05-19 General Motors Corporation Method for making carbon nanotubes
TW419828B (en) * 1997-02-26 2001-01-21 Toshiba Corp Semiconductor integrated circuit
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6088760A (en) 1997-03-07 2000-07-11 Mitsubishi Semiconductor America, Inc. Addressing system in a multi-port RAM having main and cache memories
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
JP3183845B2 (ja) 1997-03-21 2001-07-09 財団法人ファインセラミックスセンター カーボンナノチューブ及びカーボンナノチューブ膜の製造方法
US5946930A (en) 1997-03-26 1999-09-07 Anthony; Michael M. Self-cooling beverage and food container using fullerene nanotubes
US6159620A (en) 1997-03-31 2000-12-12 The Regents Of The University Of California Single-electron solid state electronic device
US5847565A (en) 1997-03-31 1998-12-08 Council Of Scientific And Industrial Research Logic device
US6231744B1 (en) * 1997-04-24 2001-05-15 Massachusetts Institute Of Technology Process for fabricating an array of nanowires
US5878840A (en) * 1997-05-06 1999-03-09 Tessum; Mark Reed Apparatus and method for stabilizing a scaffold assembly
US6049856A (en) * 1997-05-27 2000-04-11 Unisys Corporation System for simultaneously accessing two portions of a shared memory
US6233665B1 (en) * 1997-05-27 2001-05-15 Unisys Corporation Mapping shared DRAM address bits by accessing data memory in page mode cache status memory in word mode
US5914553A (en) * 1997-06-16 1999-06-22 Cornell Research Foundation, Inc. Multistable tunable micromechanical resonators
KR100276569B1 (ko) * 1997-06-20 2000-12-15 김영환 강유전메모리장치
JPH1117035A (ja) 1997-06-24 1999-01-22 Mitsubishi Electric Corp 不揮発性半導体記憶装置およびその製造方法
US6069380A (en) * 1997-07-25 2000-05-30 Regents Of The University Of Minnesota Single-electron floating-gate MOS memory
US6212597B1 (en) * 1997-07-28 2001-04-03 Neonet Lllc Apparatus for and method of architecturally enhancing the performance of a multi-port internally cached (AMPIC) DRAM array and like
DE69823441T2 (de) * 1997-09-30 2004-09-23 Noritake Co., Ltd., Nagoya Elektronen emittierende Quelle
US5903010A (en) * 1997-10-29 1999-05-11 Hewlett-Packard Company Quantum wire switch and switching method
JP3363759B2 (ja) * 1997-11-07 2003-01-08 キヤノン株式会社 カーボンナノチューブデバイスおよびその製造方法
US6038637A (en) * 1997-11-25 2000-03-14 Nortel Networks Corporation Universal DRAM address multiplexer
US6409567B1 (en) * 1997-12-15 2002-06-25 E.I. Du Pont De Nemours And Company Past-deposited carbon electron emitters
US5928450A (en) 1998-02-05 1999-07-27 Russell; Daniel Nelson Process of making fractal tubes
US6072718A (en) * 1998-02-10 2000-06-06 International Business Machines Corporation Magnetic memory devices having multiple magnetic tunnel junctions therein
TW392357B (en) * 1998-02-10 2000-06-01 United Microelectronics Corp Manufacturing method for semiconductor device and structure manufactured by the same
US6104633A (en) 1998-02-10 2000-08-15 International Business Machines Corporation Intentional asymmetry imposed during fabrication and/or access of magnetic tunnel junction devices
US5946228A (en) 1998-02-10 1999-08-31 International Business Machines Corporation Limiting magnetic writing fields to a preferred portion of a changeable magnetic region in magnetic devices
US5930164A (en) 1998-02-26 1999-07-27 Motorola, Inc. Magnetic memory unit having four states and operating method thereof
JP3415038B2 (ja) 1998-03-25 2003-06-09 株式会社島津製作所 カーボンの製造方法
US6262469B1 (en) 1998-03-25 2001-07-17 Advanced Micro Devices, Inc. Capacitor for use in a capacitor divider that has a floating gate transistor as a corresponding capacitor
US6138219A (en) 1998-03-27 2000-10-24 Nexabit Networks Llc Method of and operating architectural enhancement for multi-port internally cached dynamic random access memory (AMPIC DRAM) systems, eliminating external control paths and random memory addressing, while providing zero bus contention for DRAM access
US6703163B2 (en) * 1998-03-31 2004-03-09 Celanese Ventures Gmbh Lithium battery and electrode
US6156256A (en) 1998-05-13 2000-12-05 Applied Sciences, Inc. Plasma catalysis of carbon nanofibers
US6265333B1 (en) * 1998-06-02 2001-07-24 Board Of Regents, University Of Nebraska-Lincoln Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces
US6159742A (en) 1998-06-05 2000-12-12 President And Fellows Of Harvard College Nanometer-scale microscopy probes
US6203864B1 (en) * 1998-06-08 2001-03-20 Nec Corporation Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube
US6863942B2 (en) * 1998-06-19 2005-03-08 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
US6426134B1 (en) 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
ATA119098A (de) 1998-07-09 1999-05-15 Ims Ionen Mikrofab Syst Verfahren zur erzeugung eines kohlenstoffilmes auf einem substrat
US6259277B1 (en) 1998-07-27 2001-07-10 University Of South Carolina Use of molecular electrostatic potential to process electronic signals
US7416699B2 (en) 1998-08-14 2008-08-26 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
US6346189B1 (en) * 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US6052263A (en) * 1998-08-21 2000-04-18 International Business Machines Corporation Low moment/high coercivity pinned layer for magnetic tunnel junction sensors
US6219212B1 (en) * 1998-09-08 2001-04-17 International Business Machines Corporation Magnetic tunnel junction head structure with insulating antiferromagnetic layer
US6630772B1 (en) * 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
US6146227A (en) 1998-09-28 2000-11-14 Xidex Corporation Method for manufacturing carbon nanotubes as functional elements of MEMS devices
US6187823B1 (en) 1998-10-02 2001-02-13 University Of Kentucky Research Foundation Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines
JP2000123711A (ja) 1998-10-12 2000-04-28 Toshiba Corp 電界放出型冷陰極及びその製造方法
US6348700B1 (en) * 1998-10-27 2002-02-19 The Mitre Corporation Monomolecular rectifying wire and logic based thereupon
US6237130B1 (en) * 1998-10-29 2001-05-22 Nexabit Networks, Inc. Chip layout for implementing arbitrated high speed switching access of pluralities of I/O data ports to internally cached DRAM banks and the like
US6048740A (en) * 1998-11-05 2000-04-11 Sharp Laboratories Of America, Inc. Ferroelectric nonvolatile transistor and method of making same
US6300205B1 (en) 1998-11-18 2001-10-09 Advanced Micro Devices, Inc. Method of making a semiconductor device with self-aligned active, lightly-doped drain, and halo regions
US6152977A (en) 1998-11-30 2000-11-28 General Electric Company Surface functionalized diamond crystals and methods for producing same
KR100398276B1 (ko) 1998-12-03 2003-09-19 다이켄카가쿠 코교 가부시키가이샤 전자장치의 표면신호조작용 프로우브 및 그 제조방법
US6144481A (en) 1998-12-18 2000-11-07 Eastman Kodak Company Method and system for actuating electro-mechanical ribbon elements in accordance to a data stream
JP4069532B2 (ja) * 1999-01-11 2008-04-02 松下電器産業株式会社 カーボンインキ、電子放出素子、電子放出素子の製造方法、および画像表示装置
JP3943272B2 (ja) * 1999-01-18 2007-07-11 双葉電子工業株式会社 カーボンナノチューブのフイルム化方法
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
US6280697B1 (en) 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
JP2000268706A (ja) 1999-03-18 2000-09-29 Matsushita Electric Ind Co Ltd 電子放出素子及びそれを用いた画像描画装置
JP2000277003A (ja) * 1999-03-23 2000-10-06 Futaba Corp 電子放出源の製造方法及び電子放出源
US6348295B1 (en) * 1999-03-26 2002-02-19 Massachusetts Institute Of Technology Methods for manufacturing electronic and electromechanical elements and devices by thin-film deposition and imaging
US6518156B1 (en) 1999-03-29 2003-02-11 Hewlett-Packard Company Configurable nanoscale crossbar electronic circuits made by electrochemical reaction
US6128214A (en) 1999-03-29 2000-10-03 Hewlett-Packard Molecular wire crossbar memory
US6314019B1 (en) 1999-03-29 2001-11-06 Hewlett-Packard Company Molecular-wire crossbar interconnect (MWCI) for signal routing and communications
US6105381A (en) 1999-03-31 2000-08-22 International Business Machines Corporation Method and apparatus for cooling GMR heads for magnetic hard disks
AUPP976499A0 (en) * 1999-04-16 1999-05-06 Commonwealth Scientific And Industrial Research Organisation Multilayer carbon nanotube films
JP3484441B2 (ja) 1999-04-21 2004-01-06 震 張 炭素ナノチューブの製造方法
DE69926341T2 (de) 1999-05-10 2006-01-12 Hitachi Europe Ltd., Maidenhead Magnetoelektrischer Vorrichtung
US6177703B1 (en) * 1999-05-28 2001-01-23 Vlsi Technology, Inc. Method and apparatus for producing a single polysilicon flash EEPROM having a select transistor and a floating gate transistor
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
KR100376197B1 (ko) 1999-06-15 2003-03-15 일진나노텍 주식회사 탄소 소오스 가스 분해용 촉매금속막을 이용한탄소나노튜브의 저온 합성 방법
KR100364095B1 (ko) 1999-06-15 2002-12-12 일진나노텍 주식회사 탄소나노튜브의 대량 정제 방법
US6648711B1 (en) 1999-06-16 2003-11-18 Iljin Nanotech Co., Ltd. Field emitter having carbon nanotube film, method of fabricating the same, and field emission display device using the field emitter
EP1061044B1 (en) 1999-06-16 2006-06-21 Institute of Metal Research of the Chinese Academy of Sciences Production of single-walled carbon nanotubes
JP2001052652A (ja) 1999-06-18 2001-02-23 Cheol Jin Lee 白色光源及びその製造方法
US6536106B1 (en) * 1999-06-30 2003-03-25 The Penn State Research Foundation Electric field assisted assembly process
CA2372707C (en) 1999-07-02 2014-12-09 President And Fellows Of Harvard College Nanoscopic wire-based devices, arrays, and method of their manufacture
US6322713B1 (en) 1999-07-15 2001-11-27 Agere Systems Guardian Corp. Nanoscale conductive connectors and method for making same
EP1072693A1 (en) 1999-07-27 2001-01-31 Iljin Nanotech Co., Ltd. Chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the apparatus
EP1226295A4 (en) 1999-08-12 2004-10-13 Midwest Research Inst SINGLE WALL PURE CARBON NANOTUBES
US6277318B1 (en) 1999-08-18 2001-08-21 Agere Systems Guardian Corp. Method for fabrication of patterned carbon nanotube films
US6062931A (en) * 1999-09-01 2000-05-16 Industrial Technology Research Institute Carbon nanotube emitter with triode structure
US6166948A (en) 1999-09-03 2000-12-26 International Business Machines Corporation Magnetic memory array with magnetic tunnel junction memory cells having flux-closed free layers
US6806397B1 (en) * 1999-09-17 2004-10-19 Ut-Battelle, Llc Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes
US6325909B1 (en) 1999-09-24 2001-12-04 The Governing Council Of The University Of Toronto Method of growth of branched carbon nanotubes and devices produced from the branched nanotubes
AT407754B (de) 1999-09-29 2001-06-25 Electrovac Verfahren und vorrichtung zur herstellung einer nanotube-schicht auf einem substrat
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
CN1287404C (zh) 1999-10-12 2006-11-29 松下电器产业株式会社 电子发射器件和利用它的电子源、图象显示装置、荧光灯及其制造方法
US6741019B1 (en) 1999-10-18 2004-05-25 Agere Systems, Inc. Article comprising aligned nanowires
AT408052B (de) 1999-11-10 2001-08-27 Electrovac Verbindungssystem
US6198655B1 (en) * 1999-12-10 2001-03-06 The Regents Of The University Of California Electrically addressable volatile non-volatile molecular-based switching devices
KR20010055501A (ko) * 1999-12-10 2001-07-04 김순택 전계 방출 표시 소자의 음극 형성 방법
KR20010056153A (ko) 1999-12-14 2001-07-04 구자홍 카본나노 튜브막을 갖는 전계방출형 디스플레이 소자 및그의 제조방법
WO2001044796A1 (en) * 1999-12-15 2001-06-21 Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
KR20010063852A (ko) * 1999-12-24 2001-07-09 박종섭 반도체소자의 자기정렬적인 콘택 형성방법
KR100477739B1 (ko) 1999-12-30 2005-03-18 삼성에스디아이 주식회사 전계 방출 소자 및 그 구동 방법
US7335603B2 (en) 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
US6727105B1 (en) 2000-02-28 2004-04-27 Hewlett-Packard Development Company, L.P. Method of fabricating an MRAM device including spin dependent tunneling junction memory cells
US6294450B1 (en) 2000-03-01 2001-09-25 Hewlett-Packard Company Nanoscale patterning for the formation of extensive wires
US6495116B1 (en) 2000-04-10 2002-12-17 Lockheed Martin Corporation Net shape manufacturing using carbon nanotubes
US6413487B1 (en) 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6443901B1 (en) 2000-06-15 2002-09-03 Koninklijke Philips Electronics N.V. Capacitive micromachined ultrasonic transducers
EP1170799A3 (de) * 2000-07-04 2009-04-01 Infineon Technologies AG Elektronisches Bauelement und Verfahren zum Herstellen eines elektronischen Bauelements
CN1251962C (zh) 2000-07-18 2006-04-19 Lg电子株式会社 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管
US6709566B2 (en) * 2000-07-25 2004-03-23 The Regents Of The University Of California Method for shaping a nanotube and a nanotube shaped thereby
CN101887935B (zh) * 2000-08-22 2013-09-11 哈佛学院董事会 掺杂的拉长半导体,其生长,包含这类半导体的器件及其制造
DE10041378C1 (de) 2000-08-23 2002-05-16 Infineon Technologies Ag MRAM-Anordnung
WO2002016257A2 (en) 2000-08-24 2002-02-28 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
US6376787B1 (en) * 2000-08-24 2002-04-23 Texas Instruments Incorporated Microelectromechanical switch with fixed metal electrode/dielectric interface with a protective cap layer
MY128644A (en) 2000-08-31 2007-02-28 Georgia Tech Res Inst Fabrication of semiconductor devices with air gaps for ultra low capacitance interconnections and methods of making same
US6566983B2 (en) 2000-09-02 2003-05-20 Lg Electronics Inc. Saw filter using a carbon nanotube and method for manufacturing the same
AU2001294585A1 (en) 2000-09-18 2002-03-26 President And Fellows Of Harvard College Fabrication of nanotube microscopy tips
US6495258B1 (en) 2000-09-20 2002-12-17 Auburn University Structures with high number density of carbon nanotubes and 3-dimensional distribution
AU2001294876A1 (en) * 2000-09-29 2002-04-08 President And Fellows Of Harvard College Direct growth of nanotubes, and their use in nanotweezers
US6354133B1 (en) * 2000-10-25 2002-03-12 Advanced Micro Devices, Inc. Use of carbon nanotubes to calibrate conventional tips used in AFM
US6504118B2 (en) * 2000-10-27 2003-01-07 Daniel J Hyman Microfabricated double-throw relay with multimorph actuator and electrostatic latch mechanism
US6548841B2 (en) * 2000-11-09 2003-04-15 Texas Instruments Incorporated Nanomechanical switches and circuits
EP1205436A1 (en) 2000-11-13 2002-05-15 International Business Machines Corporation Crystals comprising single-walled carbon nanotubes
US6400088B1 (en) 2000-11-15 2002-06-04 Trw Inc. Infrared carbon nanotube detector
JP4802363B2 (ja) * 2000-11-29 2011-10-26 日本電気株式会社 電界放出型冷陰極及び平面画像表示装置
US6625047B2 (en) * 2000-12-31 2003-09-23 Texas Instruments Incorporated Micromechanical memory element
US6423583B1 (en) 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
US7052668B2 (en) 2001-01-31 2006-05-30 William Marsh Rice University Process utilizing seeds for making single-wall carbon nanotubes
US20020102193A1 (en) 2001-01-31 2002-08-01 William Marsh Rice University Process utilizing two zones for making single-wall carbon nanotubes
US6358756B1 (en) * 2001-02-07 2002-03-19 Micron Technology, Inc. Self-aligned, magnetoresistive random-access memory (MRAM) structure utilizing a spacer containment scheme
US6448701B1 (en) 2001-03-09 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Self-aligned integrally gated nanofilament field emitter cell and array
US6541309B2 (en) * 2001-03-21 2003-04-01 Hewlett-Packard Development Company Lp Fabricating a molecular electronic device having a protective barrier layer
AU2002254367B2 (en) * 2001-03-26 2007-12-06 Eikos, Inc. Coatings containing carbon nanotubes
US6803840B2 (en) * 2001-03-30 2004-10-12 California Institute Of Technology Pattern-aligned carbon nanotube growth and tunable resonator apparatus
AU2002307129A1 (en) 2001-04-03 2002-10-21 Carnegie Mellon University Electronic circuit device, system and method
US6611033B2 (en) 2001-04-12 2003-08-26 Ibm Corporation Micromachined electromechanical (MEM) random access memory array and method of making same
US20020160111A1 (en) 2001-04-25 2002-10-31 Yi Sun Method for fabrication of field emission devices using carbon nanotube film as a cathode
WO2002095097A1 (en) 2001-05-21 2002-11-28 Trustees Of Boston College, The Varied morphology carbon nanotubes and methods for their manufacture
JP4207398B2 (ja) 2001-05-21 2009-01-14 富士ゼロックス株式会社 カーボンナノチューブ構造体の配線の製造方法、並びに、カーボンナノチューブ構造体の配線およびそれを用いたカーボンナノチューブデバイス
US6426687B1 (en) * 2001-05-22 2002-07-30 The Aerospace Corporation RF MEMS switch
US6858455B2 (en) 2001-05-25 2005-02-22 Ut-Battelle, Llc Gated fabrication of nanostructure field emission cathode material within a device
US20040023253A1 (en) * 2001-06-11 2004-02-05 Sandeep Kunwar Device structure for closely spaced electrodes
US6432740B1 (en) 2001-06-28 2002-08-13 Hewlett-Packard Company Fabrication of molecular electronic circuit by imprinting
US6896864B2 (en) * 2001-07-10 2005-05-24 Battelle Memorial Institute Spatial localization of dispersed single walled carbon nanotubes into useful structures
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6911682B2 (en) * 2001-12-28 2005-06-28 Nantero, Inc. Electromechanical three-trace junction devices
US6924538B2 (en) * 2001-07-25 2005-08-02 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US6706402B2 (en) * 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
EP1444701A4 (en) * 2001-07-27 2005-01-12 Eikos Inc CONFORMAL COATINGS CONTAINING CARBON NANOTUBES
US6891319B2 (en) * 2001-08-29 2005-05-10 Motorola, Inc. Field emission display and methods of forming a field emission display
US6586965B2 (en) 2001-10-29 2003-07-01 Hewlett Packard Development Company Lp Molecular crossbar latch
US6645628B2 (en) * 2001-11-13 2003-11-11 The United States Of America As Represented By The Secretary Of The Air Force Carbon nanotube coated anode
US6849245B2 (en) 2001-12-11 2005-02-01 Catalytic Materials Llc Catalysts for producing narrow carbon nanostructures
TW552156B (en) * 2001-12-25 2003-09-11 Univ Nat Cheng Kung Method for fabrication of carbon nanotubes having multiple junctions
US6784028B2 (en) * 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US7176505B2 (en) * 2001-12-28 2007-02-13 Nantero, Inc. Electromechanical three-trace junction devices
US6894359B2 (en) * 2002-09-04 2005-05-17 Nanomix, Inc. Sensitivity control for nanotube sensors
WO2003063208A2 (en) * 2002-01-18 2003-07-31 California Institute Of Technology Array-based architecture for molecular electronics
EP1341184B1 (en) * 2002-02-09 2005-09-14 Samsung Electronics Co., Ltd. Memory device utilizing carbon nanotubes and method of fabricating the memory device
US6889216B2 (en) * 2002-03-12 2005-05-03 Knowm Tech, Llc Physical neural network design incorporating nanotechnology
US6858197B1 (en) * 2002-03-13 2005-02-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled patterning and growth of single wall and multi-wall carbon nanotubes
US7147894B2 (en) * 2002-03-25 2006-12-12 The University Of North Carolina At Chapel Hill Method for assembling nano objects
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US6946410B2 (en) * 2002-04-05 2005-09-20 E. I. Du Pont De Nemours And Company Method for providing nano-structures of uniform length
CN100341629C (zh) * 2002-05-21 2007-10-10 艾考斯公司 使碳纳米管涂层形成图案的方法和碳纳米管布线
US20040007528A1 (en) * 2002-07-03 2004-01-15 The Regents Of The University Of California Intertwined, free-standing carbon nanotube mesh for use as separation, concentration, and/or filtration medium
JP4338948B2 (ja) * 2002-08-01 2009-10-07 株式会社半導体エネルギー研究所 カーボンナノチューブ半導体素子の作製方法
US6809465B2 (en) * 2002-08-23 2004-10-26 Samsung Electronics Co., Ltd. Article comprising MEMS-based two-dimensional e-beam sources and method for making the same
JP4547852B2 (ja) * 2002-09-04 2010-09-22 富士ゼロックス株式会社 電気部品の製造方法
US20040087162A1 (en) * 2002-10-17 2004-05-06 Nantero, Inc. Metal sacrificial layer
US20040077107A1 (en) * 2002-10-17 2004-04-22 Nantero, Inc. Method of making nanoscopic tunnel
US20040075159A1 (en) * 2002-10-17 2004-04-22 Nantero, Inc. Nanoscopic tunnel
JP5025132B2 (ja) * 2002-10-29 2012-09-12 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ カーボンナノチューブ素子の製造
KR100704795B1 (ko) * 2002-11-01 2007-04-09 미츠비시 레이온 가부시키가이샤 탄소 나노튜브 함유 조성물, 이를 포함하는 도막을 갖는복합체, 및 이들의 제조 방법
US7052588B2 (en) * 2002-11-27 2006-05-30 Molecular Nanosystems, Inc. Nanotube chemical sensor based on work function of electrodes
US7858185B2 (en) * 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
US6919740B2 (en) * 2003-01-31 2005-07-19 Hewlett-Packard Development Company, Lp. Molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits, and more complex circuits composed, in part, from molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits
US6918284B2 (en) * 2003-03-24 2005-07-19 The United States Of America As Represented By The Secretary Of The Navy Interconnected networks of single-walled carbon nanotubes
US7113426B2 (en) * 2003-03-28 2006-09-26 Nantero, Inc. Non-volatile RAM cell and array using nanotube switch position for information state
US7075141B2 (en) * 2003-03-28 2006-07-11 Nantero, Inc. Four terminal non-volatile transistor device
US6944054B2 (en) * 2003-03-28 2005-09-13 Nantero, Inc. NRAM bit selectable two-device nanotube array
US7294877B2 (en) * 2003-03-28 2007-11-13 Nantero, Inc. Nanotube-on-gate FET structures and applications
US6958665B2 (en) * 2003-04-02 2005-10-25 Raytheon Company Micro electro-mechanical system (MEMS) phase shifter
US7045421B2 (en) * 2003-04-22 2006-05-16 Nantero, Inc. Process for making bit selectable devices having elements made with nanotubes
US6995046B2 (en) * 2003-04-22 2006-02-07 Nantero, Inc. Process for making byte erasable devices having elements made with nanotubes
CA2526946A1 (en) * 2003-05-14 2005-04-07 Nantero, Inc. Sensor platform using a non-horizontally oriented nanotube element
US7161218B2 (en) * 2003-06-09 2007-01-09 Nantero, Inc. One-time programmable, non-volatile field effect devices and methods of making same
US7274064B2 (en) * 2003-06-09 2007-09-25 Nanatero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US6882256B1 (en) * 2003-06-20 2005-04-19 Northrop Grumman Corporation Anchorless electrostatically activated micro electromechanical system switch
KR20050004360A (ko) * 2003-07-02 2005-01-12 삼성전자주식회사 포토리소그래피를 이용한 탄소 나노튜브 절단방법
US7115960B2 (en) * 2003-08-13 2006-10-03 Nantero, Inc. Nanotube-based switching elements
CN1868002B (zh) * 2003-08-13 2011-12-14 南泰若股份有限公司 具有多个控件的基于纳米管的开关元件及由其制成的电路
WO2005017967A2 (en) * 2003-08-13 2005-02-24 Nantero, Inc. Nanotube device structure and methods of fabrication
WO2005048296A2 (en) * 2003-08-13 2005-05-26 Nantero, Inc. Nanotube-based switching elements with multiple controls and circuits made from same
US7289357B2 (en) * 2003-08-13 2007-10-30 Nantero, Inc. Isolation structure for deflectable nanotube elements
US7416993B2 (en) * 2003-09-08 2008-08-26 Nantero, Inc. Patterned nanowire articles on a substrate and methods of making the same
US7375369B2 (en) * 2003-09-08 2008-05-20 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US20050052894A1 (en) * 2003-09-09 2005-03-10 Nantero, Inc. Uses of nanofabric-based electro-mechanical switches
US7354877B2 (en) * 2003-10-29 2008-04-08 Lockheed Martin Corporation Carbon nanotube fabrics
KR20050049868A (ko) * 2003-11-24 2005-05-27 삼성에스디아이 주식회사 카본나노튜브 에미터 형성방법 및 이를 이용한 전계방출표시소자의 제조방법
US7528437B2 (en) * 2004-02-11 2009-05-05 Nantero, Inc. EEPROMS using carbon nanotubes for cell storage
US7288970B2 (en) * 2004-06-18 2007-10-30 Nantero, Inc. Integrated nanotube and field effect switching device
US7161403B2 (en) * 2004-06-18 2007-01-09 Nantero, Inc. Storage elements using nanotube switching elements
CA2586120A1 (en) * 2004-11-02 2006-12-28 Nantero, Inc. Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
WO2006065937A2 (en) * 2004-12-16 2006-06-22 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
US8362525B2 (en) * 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same
US7538040B2 (en) * 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221330B1 (en) * 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6256767B1 (en) * 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)

Also Published As

Publication number Publication date
EP1410397B1 (en) 2018-07-04
KR100899587B1 (ko) 2009-05-27
US20050101112A1 (en) 2005-05-12
WO2003022733A3 (en) 2003-07-24
WO2003027003A2 (en) 2003-04-03
US20030199172A1 (en) 2003-10-23
CN1556996A (zh) 2004-12-22
WO2003027003A3 (en) 2003-10-30
US7335528B2 (en) 2008-02-26
EP2286929B1 (en) 2018-07-18
AU2002357641A1 (en) 2003-04-07
AU2002353771A1 (en) 2003-03-24
EP1410397A4 (en) 2007-08-29
US7264990B2 (en) 2007-09-04
US6835591B2 (en) 2004-12-28
JP2005503007A (ja) 2005-01-27
CA2454845C (en) 2013-10-01
EP1409156B1 (en) 2012-05-30
JP5068921B2 (ja) 2012-11-07
US20070141746A1 (en) 2007-06-21
EP1410397A2 (en) 2004-04-21
EP2343709A2 (en) 2011-07-13
EP2343709A3 (en) 2013-12-04
WO2003022733A2 (en) 2003-03-20
KR20050012707A (ko) 2005-02-02
EP1409156A4 (en) 2007-08-29
EP2286929A1 (en) 2011-02-23
CA2454895C (en) 2013-06-18
EP1409156A2 (en) 2004-04-21
CA2454845A1 (en) 2003-03-20
CA2454895A1 (en) 2003-04-03

Similar Documents

Publication Publication Date Title
CN1556996B (zh) 导电制品、组合件和导电轨线
US10096363B2 (en) Methods of forming nanotube films and articles
CN100466181C (zh) 使用纳米管带子的机电式存储阵列及其制法
US7817458B2 (en) Hybrid circuit having nanotube memory cells
US7120047B2 (en) Device selection circuitry constructed with nanotube technology
US7272511B2 (en) Molecular memory obtained using DNA strand molecular switches and carbon nanotubes, and method for manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220216

Address after: Tokyo, Japan

Patentee after: ZEON Corp.

Address before: Massachusetts

Patentee before: NANTERO, Inc.

TR01 Transfer of patent right
CX01 Expiry of patent term

Granted publication date: 20150902

CX01 Expiry of patent term