CN1578848A - 利用掺杂金属后的硫族化物材料的集成电路器件和制造 - Google Patents

利用掺杂金属后的硫族化物材料的集成电路器件和制造 Download PDF

Info

Publication number
CN1578848A
CN1578848A CNA028214501A CN02821450A CN1578848A CN 1578848 A CN1578848 A CN 1578848A CN A028214501 A CNA028214501 A CN A028214501A CN 02821450 A CN02821450 A CN 02821450A CN 1578848 A CN1578848 A CN 1578848A
Authority
CN
China
Prior art keywords
electrode
plasma
chalcogenide layer
neon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028214501A
Other languages
English (en)
Other versions
CN100402694C (zh
Inventor
J·李
A·麦克特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN1578848A publication Critical patent/CN1578848A/zh
Application granted granted Critical
Publication of CN100402694C publication Critical patent/CN100402694C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/544Controlling the film thickness or evaporation rate using measurement in the gas phase
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • H10N70/046Modification of the switching material, e.g. post-treatment, doping by diffusion, e.g. photo-dissolution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe

Abstract

形成掺杂金属的硫族化物层的方法和含这种掺杂后的硫族化物层的器件,包括利用等离子引发金属扩散进入硫族化物层,同时发生金属沉积。该等离子含至少一种低原子量的稀有气体,如氖或氦。该等离子溅射收率足以溅射金属靶,其发射光谱的UV成分足以引发该溅射金属扩散进入硫族化物层。利用这种方法,可在该掺杂后的硫族化物层上(原位)形成导电层。在集成电路器件中,诸如在非易失性硫族化物的存储器元件中,在发生金属沉积的同时对硫族化物层的掺杂和随着对硫族化物的掺杂使导电层的(原位)生成,减少了污染忧虑和由于刀具之间移动器件基片所引起的物理损坏,从而有利于器件可靠性提高。

Description

利用掺杂金属后的硫族化物材料的集成电路器件和制造
本发明技术领域
本发明一般涉及集成电路存储器,尤其涉及在硫族化物存储元件和含该存储元件的集成电路器件的制造中对硫族化物材料掺杂金属。
发明背景
电子可编程和可擦除材料,即在一般电阻状态和一般导电状态间可电子切换的材料,是本领域众所周知的。硫族化物材料是发现这些材料可用于半导体工业,尤其可用于制造非易失性存储器件的一个实例。
硫族化物材料是由一种或更多种硫族元素和一种或更多种比硫族元素正电性更高的元素组成的化合物。硫族元素是通用IUPAC版周期表的VIB族元素,即氧(O)、硫(S)、硒(Se)、碲(Te)和钋(Po)。更高正电性的元素一般选自IVB和VB族。用于非易失性存储器的典型组合,包括硒及/或碲与锗(Ge)及/或锑(Sb)。但是,其它的组合也是已知的,如砷(As)和硫的组合。
为获得所需电特性,通常对硫族化物材料掺杂金属,如铜(Cu),银(Ag)、金(Au)或铝(Al)。图IA-ID描述了简单硫族化物存储元件100的制造。硫族化物存储元件的基本结构包括第一电极、第二电极和插在第一和第二电极之间的硫族化物材料。硫族化物存储器的另外细节,以及对硫族化物存储元件基本结构的变异实例,均在Wolstenholme等人1999年12月7日颁布的US 5,998,244,Reinberg 1999年7月6日颁布的US 5,920,788和Sandhu等人1998年11月17日颁布的US5,837,564中给出,各专利均由本公开的专利受让人共同转让。一般说来,硫族化物存储元件是在半导体晶片(wafer)或其它基片上形成的作为集成电路器件的一个部分。
硫族化物存储元件一般存储一个位(single bit),如低电阻率(高导电率)相当于第一逻辑状态,高电阻率(低导电率)相当于第二逻辑状态。利用本领域众所周知的电流传感(sensing)技术同时施加一个低于阈电压的读取电位,读出硫族化物存储元件的不同水平电阻率。
在导电态之间,通过对掺杂后的硫族化物材料施加不同电场,可以电切换硫族化物存储元件。通过施加高于某一阈电压的可编程序电位,可以认为该金属掺合剂原子定位于树状结构中,从而形成导电通道,并降低该硫族化物材料的电阻率。施加反向极性的电位,这种转换是可逆的。可以施加其大小低于阈电压的外加电位范围,即读取电位,而不致改变该掺杂后的硫族化物材料的电阻率。可以把这些读取电位施加给该硫族化物存储元件,以读出该掺杂后的硫族化物材料的电阻率,并因此读出该存储元件的数据值。
不同于动态随机存取存储(DRAM)器件,为维持其编程状态,非易失性存储器件不要求定期恢愎。反而,非易失性存储器件可以被长时间(通常以年记)切断与电源的连接,而不致损失写入其存储单元(memory cells)中的信息。因此,最适用于非易失性存储器件的硫族化物材料将倾向于无限维持其电阻率的数值,只要外加电压不超过阈电压。
图1A中构成了第一电极110,构成硫族化物层115覆盖在第一电极110上。如前所述,硫族化物层115的电特性可通过对硫族化物材料掺杂金属而得以改善。这一般是通过一种由光子诱发金属原子扩散的被称为光致掺杂(photo-doping)方法完成的。在这个方法中,使金属层120首先形成在硫族化物层115上,如图1A所示。金属层120一般含铜、银、金、铝或其它高扩散金属。形成第一电极110及/或金属层120一般是在真空室中完成的,如采用真空溅射方法。
为使图1B中的光致掺杂过程继续,将电磁辐射125对准金属层120,使金属原子从金属层120扩散进入硫族化物层115。电磁辐射125一般是紫外(UV)光。驱使金属原子进入硫族化物层115导致形成内含硫族化物材料和扩散金属的掺杂后的硫族化物层130。为使该晶片表面曝露于紫外光源下,一般必须从真空室取出这种半导体晶片。
光致掺杂过程一般进行至金属层120完全扩散进入掺杂后的硫族化物层130为止,如图1C所示。应该选择金属层120的厚度,使之可以达到在掺杂后的硫族化物层130中所需的掺杂水平。但是,金属层120必须足够地薄,如数百埃,以使电磁辐射125透射,构成所需的光子诱发的金属扩散。然后,如图1D所示,构成第二电极150,覆盖在掺杂后的硫族化物层130和金属层120的所有其余部分上,形成硫族化物存储元件100。如同第一电极110及/或硫族化物层115,一般也是在真空室中构成第二电极150。第二电极150优选是一种功函数(m)不同于第一电极110的材料。此功函数是去除材料表面一个电子所需能量的量度。
这种传统光致掺杂方法有好几个缺点。这种方法可能费时,因为在上述各处理阶段的过程中要把半导体晶片移进和移出真空室。在各种工艺设备中对半导体晶片的这种移动也增加了传输过程中污染或其它损害的几率。此外,由于为了使光子有效地诱发金属扩散,该金属层必须薄,而所需的掺杂量可能不是用单一光致掺杂方法可有效达到的,因为这种必需的金属层厚度会导致电磁辐射过多反射。
由于上述原因,以及以下陈述的对本领域技术人员在阅读和理解本说明书后均会很清楚的其它原因,本领域还需要有另一种生产硫族化物存储元件的方法。
发明综述
这里描述了形成掺杂金属后硫族化物层和形成含该掺杂后硫族化物层的器件的方法。这些方法包括利用等离子诱发金属扩散进入硫族化物层同时发生金属沉积。该等离子含至少一种低原子量的稀有气体,如氖或氦。该等离子具有足以溅射金属靶的溅射率和足以诱发溅射金属扩散进入硫族化物层的其发射波谱的UV成分。利用这种方法,可以在掺杂后的硫族化物层上原位形成一层导电层。在集成电路器件中,如在非易失性硫族化物的存储器件中,在金属的沉积同时对硫族化物层的掺杂和随对硫族化物的掺杂原位形成导电层,减轻了污染忧虑和由于在刀具之间移动器件基片所引起的物理损坏,从而促进了器件可靠性的改善。
对于另一实施方案,本发明提供一种形成掺杂后的硫族化物层的方法。此方法包括利用含至少一种选自氖和氦的组分气体的等离子溅射金属,并利用由此等离子产生的UV成分驱使该溅射金属进入硫族化物材料层。
对于再一实施方案,本发明提供一种形成掺杂后的硫族化物层的方法。此方法包括形成一层硫族化物材料层,并利用含至少两种稀有气体的等离子溅射金属至该硫族化物材料层上。此等离子发射具有UV成分的波谱,能通过UV增强的扩散驱使该溅射金属进入硫族化物材料层。对于一种实施方案,选择该等离子的组成,使具有足以产生所需溅射效率的平均原子量。对于另一实施方案,选择该等离子的组成,使等离子发射波谱的UV成分达到所需相对强度。对于再一实施方案,选择该等离子的组成,使等离子具有所需的发射波谱。
对于一种实施方案,本发明提供一种形成硫族化物存储元件的方法,该硫族化物存储元件具有第一电极、第二电极和插在第一电极和第二电极之间的掺杂后的硫族化物层。这种方法包括:在第一电极上形成一层硫族化物层,利用含至少一种选自氖和氦的组分气体的第一等离子,溅射金属至该硫族化物层上并使金属扩散进入该硫族化物层,从而形成掺杂后的硫族化物层,和利用含至少一种其原子量高于氖原子量的组分气体的第二等离子,溅射金属至所述硫族化物层上,从而形成第二电极。对于另一实施方案,其第一等离子和第二等离子是相同的等离子。对于再一实施方案,第一等离子的组成被改性以产生第二等离子。这种组成的改进可以作为在溅射阶段中的一个步骤变化而发生,或它可与金属溅射同时发生。
对于另一实施方案,本发明提供一种形成硫族化物存储元件的方法,该硫族化物存储元件具有第一电极、第二电极和插在第一电极和第二电极之间的掺杂后的硫族化物层。该方法包括在第一电极上形成一层硫族化物层,利用由基本上由氖构成的原料气产生的第一等离子,将银溅射至该硫族化物层上和使银扩散进入该硫族化物层,从而形成掺杂后的硫族化物层,并利用由基本上由氩气构成原料气产生的第二等离子,将银溅射至掺杂后的硫族化物层上,从而形成第二电极。
对于再一实施方案,本发明提供一种形成非易失性存储器件的方法。该方法包括形成字线(word lines)和形成耦联该字线的第一电极,其中各字线被耦联至一个以上的第一电极上。该方法另外包括在各第一电极上形成一层硫族化物层,和利用含至少一种选自氖和氦的组分气体的第一等离子,溅射金属至各硫族化物层上和使金属扩散进入各硫族化物层中,从而形成掺杂后的硫族化物层。该方法还进一步包括利用不同的第二等离子,溅射金属至各掺杂后的硫族化物层上,从而形成各第二电极。此第二等离子可以含至少一种其原子量比氖原子量高的组分气体。或者或另外,此第二等离子可以含氮(N2),以便由金属氮化物材料形成所述第二电极。此方法还进一步包括形成耦联至第二电极的位线(bit line),其中各位线被耦联至一个以上的第二电极。可以形成各二极管,使之插在第二电极和位线之间,这样使各第二电极通过一个二极管被耦联至位线上。或者,可以形成各二极管,使之插在第一电极和字线之间,这样使各第一电极通过一个二极管被耦联至一个字线上。
本发明进一步的实施方案包括范围不同的方法。
附图简述
图1A-1D是在不同加工阶段过程中硫族化物存储元件的横截面剖视图。
图2A-2D是按照本发明一个实施方案在不同加工阶段过程中硫族化物存储元件的横截面剖视图。
图3为适用于本发明实施方案的一种物理汽相沉积设备的示意图。
图4为按照本发明实施方案的存储器阵列部分示意图。
图5为按照本发明实施方案的集成电路存储器件简化方框图。
详细说明
在对本发明各实施方案以下详细说明中,参考了构成部分本文件的各附图,其中通过说明可实施本发明具体实施方案的方法加以说明。对这些实施方案进行了充分详细描述,以使本领域技术人员能实施本发明并了解可利用其它实施方案和可在工艺、电路或机械方面做出一些改变,而不致偏离本发明的范围。用于以下描述的术语晶片或基片包括所有基础半导体结构。实施例包括蓝宝石硅片(SOS)工艺、绝缘体硅(SOI)工艺、薄膜晶体管(TFT)工艺、掺杂和未掺杂的半导体、由基础半导体结构支撑的硅外延层,以及本领域技术人员众所周知的其它半导体结构。此外,当涉及以下说明中的晶片或基片时,也许已利用了在前的工艺步骤来构成在基础半导体结构中的部位(regions)/接点(junctions),而且此术语晶片和基片包括含这些部位/接点的下衬层(underlying layers)。因此,以下详细说明并不具有限制意义,本发明范围仅受附后各权利要求项和其各同等项限定。
图2A-2D描述了制造硫族化物存储元件200作为按照本发明实施方案的部分集成电路器件。图2A-2D是在不同处理阶段过程中所取的横截面剖视图。
在图2A中,下电极或第一电极210是在基片(未示出)上构成的。第一电极210包含导电材料。实例包括导电掺杂的多晶硅、碳(C)、金属、合金、金属硅化物、导电金属氮化物和导电金属氧化物。第一电极210还可以包含一种以上的导电材料。例如,第一电极210可包含覆盖一层钼(Mo)层的碳层,或覆盖一层氮化钛(TiN)层的钨(W)层。此外,第一电极210可以包括一层或更多层毗连下衬层或覆盖层的粘附或屏障(barrier)层。任何粘附或屏障层优选应该是导电的,以便不干扰硫族化物存储元件200的编程。对于一种实施方案,第一电极210含有银。对于加一实施方案,第一电极210是一层银。
第一电极210优选是利用物理汽相沉积(PVD)方法构成的。实施例包括本领域众所周知的真空或热蒸发、电子束蒸发和溅射方法。在PVD方法中,含待沉积材料的源或靶被蒸发,且可包括使部分或全部汽化的靶材料电离。然后,撞击在基片上的被汽化及/或电离的物种可沉积在该基片上。由于其形成高纯度层的总能力,PVD方法是优选的,仅受PVD方法所用物源或靶的纯度的限制。但是,也可采用其它沉积方法,诸如化学汽相沉积(CVD)方法,其中汽化了的化学前体被吸附在基片表面上,进行反应,构成第一电极210。
对于一种实施方案,第一电极210厚度为约500-1000。对于另一实施方案,第一电极210厚度为约700。
在形成第一电极210后,在第一电极210上形成硫族化物层215。如与第一电极210那样,优选利用PVD方法形成硫族化物层215,但是也可利用其它沉积方法来形成。对于一种实施方案,硫族化物层215含一种硫族化物材料,其内含一种或更多种在传统IUPAC版周期表中的VIB族元素,即氧(O)、硫(S)、硒(Se)、碲(Te)及钋(Po),和一种或更多种在传统IUPAC版周期表中的IVB及VB族元素,即碳(C)、硅(Si)、锗(Ge)、锡(Sn)、铅(Pb)、氮(N)、磷(P)、砷(As)、锑(Sb)及铋(Bi)。更优选地是,硫族化物层215包含一种内含硒及/或碲与锗及/或锑组合的硫族化物材料。对于一种实施方案,硫族化物层215含一种硒化锗材料(GeSe或GeSe2)。
对于一种实施方案,硫族化物层215厚度为约300-700。对于另一实施方案,硫族化物层215厚度为约500。
如图2B所示,利用溅射方法对硫族化物层215掺杂金属240,形成一层掺杂后的硫族化物层230。此掺杂后的硫族化物层230被掺杂到所需掺杂水平。对于一种实施方案,此所需掺杂水平构成一层由金属240所饱和的掺杂后的硫族化物层230。对于另一实施方案,所需掺杂水平构成一层过饱和的掺杂后的硫族化物层230。对于再一实施方案,在掺杂后的硫族化物层230中,所需掺杂水平为约15-30重量%的金属240。
用于进行溅射的设备的一个实例可包括ENDURA系统,在市场上可由Applied Materials(Santa Clara,California,USA)公司提供。在这种设备中所产生的等离子会发射UV成分,由此产生在溅射过程中的光子诱导扩散。
图3为说明适用于本发明实施方案的一种PVD设备310的示意图。那些熟悉PVD设备的人们应承认,这是一种简化示意图,典型的PVD设备可以包含另外或替代的部件。
包含基片312的导电基片314被放在沉积室316中。此基片314连接直流电源324。设置了一个把组分气体引至室316中的气体入口318。组分气体构成等离子322。在设备310操作过程中,一般不断地将这些组分气体加至沉积室316中。如这里所用,组分气体不包括在溅射过程中所产生的任何被汽化的靶材料。
连接直流电源328的溅射靶326被安置在室316中。靶326可以是一块由待溅射材料构成的平板。在对硫族化物层215的掺杂中待溅射材料的实例包括高扩散金属,诸如铜、银、金及铝。用真空泵(未示出)经排气口329从沉积室316排放出过量或废气体。
在磁控管结构中,磁体327帮助形成等离子322。对作为阴极的靶326和作为阳极的基片312施加偏压,形成等离子322。磁体327通常置于靶326之后。
为增加由等离子发射的UV成分,将低分子量的稀有气体添加至等离子中。尤其,用氖(Ne)及/或氦(He)至少部分地形成等离子。该等离子还可含其它组分气体。一个实例是氩(Ar),它在溅射工艺中是常常使用的。尽管氩的波谱也有UV成分,但与氖或氦相比,它的相对强度较低,因而造成金属扩散速率较低。对于一种实施方案,掺杂过程所用等离子是由基本上由氖构成的进料气体产生的。对于另一实施方案,掺杂过程所用等离子含有氦。对于再一实施方案,掺杂过程所用等离子至少含有氩和氖。由于其UV成分增加,等离子也可以由基本上由氦构成的进料气体产生,但是这种应用会导致溅射效率降低,而不理想。利用原子量较低的气体,可以产生比传统PVD方法高很多的操作压力,例如30-300毫乇。
调节产生等离子所用气体的体积百分比,可产生其平均原子量为最低气体原子量和最高气体原子量之间任何值的等离子。以这种方式可以产生其平均原子量足以促进所需溅射效率的等离子。溅射效率一般指的是单位入射离子所喷出的靶原子的数量,典型范围在约0.5-1.5。溅射效率主要决定了溅射植入或沉积的速率。溅射效率取决于许多因素,包括入射离子方向、靶材料、轰击离子质量、轰击离子能量、剂量、晶体状态和表面结合能。
值得注意的是,在由两种以上的气体产生等离子时,这些气体的多重组合可以构成相同的平均原子量。例如,按体积计,由5%氩、78%氖和17%氦组成的混合物将大致具有与按体积计的10%氩、67%氖和23%氦组成的混合物相同的平均原子量。
调节等离子中气体的体积百分比,也可产生一种等离子,其具有单个气体波谱复合的UV成分和具有一般在等离子中气体相对强度最低和气体相对强度最高之间的相对强度。以这种方式可以产生一种等离子,其复合UV成分的相对强度足以产生所需水平的光子诱发的被溅射金属扩散。应注意的是,由两种以上的气体产生等离子时,这些气体的多重组合可以发射具有相同相对强度的UV成分。
鉴于以上这些,通过选择两种或更多种的组分气体和其相对体积百分比,有可能选出使之具有其发射UV成分的所需相对强度和所需平均原子量的等离子。但是,应当承认,这些数值即所需相对强度和所需平均原子量可能是相互排斥的。换句话说,达到某一数值可能要求对另一数值做出让步。一种让步方法可能应是先确定产生具有所需相对强度的等离子的组分气体的组合,然后选择其中平均原子量接近于所需原子量的组分气体的组合中的一种。另一种方法是,先确定产生具有所需平均原子量的等离子的组分气体的组合,然后选择这些组合中一种其UV成分的相对强度接近于所需相对强度的组分气体的组合。
不同等离子的UV成分可能波谱不同,但相对强度却相同。因为波谱也会影响扩散速率,可能最好产生一种在所得等离子中特定的发射光谱。因此,对于一种实施方案,选择一种组分气体混合物以产生所得等离子的理想波谱。对于另一实施方案,选择一种组分气体混合物,以产生其所得等离子可见成分水平高于由氖构成的等离子的所需波谱。对于另一实施方案,选择一种能使所得等离子产生所需波谱的组分气体混合物,达到靶溅射效率。对于硫族化物层215进行掺杂,一般选择在溅射过程中所用的等离子的组分气体来产生所需的扩散和溅射速率。
作为等离子组合物如何影响扩散的实例,利用不同的等离子,但其它方面类似的处理条件,进行了将银溅射至硒化锗上的试验。利用一种由基本上由氖构成的进料气体产生的等离子,溅射约501.6的银至约503的硒化锗(GeSe)上。据推测约300的银扩散进入硒化锗层。相反,利用由基本上由氩构成的进料气体产生的等离子,溅射约468.0的银至约503的硒化锗(GeSe)上,在硒化锗的表面上检出为约336.3的银。因此,据推测对于氩仅约131.7的银扩散进入硒化锗层。
现返回参照图2C,上电极或第二电极250是在掺杂后的硫族化物层230上形成的。第二电极250一般采纳与第一电极210相同的准则。因此,第二电极250包含导电材料。实例包括导电掺杂的多晶硅、碳、金属(包括难熔金属)、合金、金属硅化物、导电金属氮化物和导电金属氧化物。第二电极250还可含一种以上的导电材料。此外,第二电极250可以包括一层或更多层的粘附或屏障层,毗连于下衬层或覆盖层。任何粘附或屏障层优选应该是导电的,以便不干扰硫族化物存储元件200的编程。对于一种实施方案,第二电极250含银。对于另一实施方案,第二电极250是一层银。
第二电极250优选是利用PVD方法形成的,但也可用其它如CVD方法形成。更优选地是,第二电极250是采用与对硫族化物层215进行掺杂过程中所用相同的PVD设备和靶来形成的。以这种方式,第二电极250可能是与掺杂过程一起原位形成的,因此进一步减少了与半导体基片输送有关的污染或损坏危险。因此,对于一种实施方案,第二电极250是通过溅射金属245至掺杂后的硫族化物层230上的方法形成的。
对于一种实施方案,第二电极250厚度为约800-1200。对于另一实施方案,第二电极250厚度为约1000。
对于一种实施方案,在第二电极250形成之前,排出沉积室316中对硫族化物层215进行掺杂所用的组分气体。对于这样的实施方案,对第二电极250的沉积,用新组分气体形成新等离子322。例如,可用基本上由氖构成的进料气体产生的等离子322,进行对硫族化物层215的掺杂。在达到所需掺杂水平之后,排空沉积室316。随后,可用基本上由氩构成的进料气体所产生的等离子322,形成第二电极。或者或另外,此第二等离子322可含氮或氧,以分别形成导电金属氮化物或金属氧化物。
或者,可以改变组分气体的进料组成,而不排空沉积室316。例如,可用一种组分气体和具有如基本上由氖构成的第一组成的等离子322,完成对硫族化物层215的掺杂。在接近所需掺杂水平时,可改变组分气体进料为第二组成,如基本上由氩构成。因此,对于此实施例,等离子322中的氩浓度将随对沉积室316添加氩和排出混合气体而逐渐增高。由于等离子322组成变化,倾向较高的平均原子量及/或较少的UV成分,动力学会远离扩散而转向沉积。为减少等离子322组成的变化率,可以逐渐改变组分气体的进料组成而步骤不变。
对于另一实施方案,可结合参照图2B和2C所述的处理,利用单一组成的等离子322。对于这一实施方案,选择组分气体要使扩散和沉积产生所需的组合。扩散速率相对于沉积速率应足够的高,以便在第二电极250厚度变得足以阻断金属进一步扩散进入该掺杂后硫族化物层230之前,充分进行掺杂。
图2D显示第二电极250形成后的硫族化物存储元件200。该硫族化物存储元件200具有一层插在第一电极210和第二电极250之间的掺杂后的硫族化物层。该硫族化物存储元件200可用于形成硫族化物存储单元(cell),在此单元掺杂后的硫族化物层200的状态表示由存储单元写入的数据值。
图4表示按这里所述含硫族化物存储元件200的部分存储器阵列400的示意图。该存储器阵列400包括一般按行列排列的许多存储单元405。典型存储器阵列400包含数百万这些存储单元405。每个存储单元405包括一个耦联在第一导线(first conductive line)如字线410和二极管415之间的硫族化物存储元件200。二极管415又耦联在第二导线(second conductive line)如位线420和硫族化物存储元件200之间。或者,该二极管415可能耦联在第一导线和硫族化物存储元件200之间。该二极管415对存储单元300起存取器(access device)作用。被耦联至同一字线410的存储单元300的组合一般被称为一行存储单元。同样,被耦联至同一位线420的存储单元300的组合一般被称为一列存储单元。
图5为按照本发明实施方案的一种集成电路存储器件500的简化框图。存储器件500是一种内含按照本发明的硫族化物存储元件的非易失性存储器件。存储器件500包括含若干非易失性硫族化物存储元件的存储单元的阵列502。该存储阵列502是按多个可寻址存储库(addressable banks)排列。在一种实施方案中,该存储器含4个存储库504、506、508和510。各存储库含可寻址行和列的存储单元。
可利用外部提供的由地址寄存器(address registers)512经地址信号接点(connections)528接受的位点地址,选取存储器阵列502中所写入的数据。利用存储库译码逻辑电路(bank decode logic)516,解码这些地址,选择目标存储库。也可利用行译码线路514,解码这些地址,选择目标行。还可利用列译码线路518,解码这些地址,以选择一个或更多个目标列。
数据经数据连接点530通过I/O电路520而输入和输出。I/O电路528包括数据输出寄存器、输出驱动器和输出缓存器(output buffers)。指令执行逻辑电路522是提供来控制该存储器件500的基本操作,以响应于经控制信号连接点526所接受的控制信号。也可以提供一种状态机械装置(State machine)524,以控制在存储器阵列和单元上运行的具体操作。该指令执行逻辑电路522及/或状态机械装置524一般可被称为控制回路,用于控制读取、写入、删除及其它存储操作。数据连接点530一般用于双向数据信息交流。存储器可以被耦联至外处理机550上用于操作或进行检测。
本领域技术人员应知道,可提供另外的电路和控制信号,且图5的存储器件已被简化,以有助于理解本发明。应当理解,以上对存储器件的说明是用于提供对存储器的一般认识,而非对典型存储器件所有元件和特征的完整叙述。
如本领域技术人员所公认的,这里所述类型的存储器件一般是按包含各种半导体器件的集成电路而制造的。集成电路由基片支撑。各基片上的集成电路一般被多次重复。如本领域众所周知,此基片还被进一步处理,以分离这些集成电路为电路小片(dies)。
以上各图是用于帮助理解所附文本的。但是,对这些图未按比例描绘,各单独部件和层的相对尺寸不一定表示这些部件或层各自应用中的相对尺寸。因此,附图不是用来表示量纲特征的。
尽管这里提供了量纲特征作为信息,但应承认,为缩小集成电路器件尺寸,增强性能和降低制造成本,仍然需继续努力。此外,这里所述概念基本不受绝对尺寸的限制。因此,期望在制造和传感技术方面做出有利于在此所述缩小硫族化物存储元件量纲特性的改进,尤其在它们涉及层厚方面。
结论
现已描述了形成掺杂金属后的硫族化物层和含此掺杂后的硫族化物层器件的方法。这些方法包括利用等离子诱发金属扩散进入硫族化物层,同时发生金属沉积。该等离子含至少一种低原子量的稀有气体,如氖或氦。该等离子溅射率足以溅射金属靶,且其发射光谱的UV成分足以诱发该溅射金属扩散进入硫族化物层。利用这些方法,可在该掺杂后的硫族化物层上原位形成层导电层。在集成电路器件中,诸如在非易失性硫族化物的存储器件中,在金属沉积的同时对硫族化物层进行掺杂,和借助对硫族化物的掺杂使导电层的原位形成,减少对由于在刀具之间移动器件基片造成污染忧虑和物理损坏,从而促进器件可靠性的提高。
尽管这里已经说明和描述了若干具体实施方案,但本领域普通技术人员应当知道,为达到同一目标而计算的任何排列都可能替代所示具体实施方案。对本领域的普通技术人员而言,许多对本发明的修改都会是显而易见的。因此,本申请是要覆盖对本发明的任何修改或变异。显然要指出的是,本发明仅受以下各权利要求项和其等同项的限制。

Claims (55)

1.一种形成掺杂后的硫族化物层的方法,包括:
在含至少一种选自氖和氦的组分气体的等离子存在的情况下将金属溅射至硫族化物材料层上。
2.按照权利要求1的方法,其中硫族化物材料是硒化锗材料。
3.按照权利要求1的方法,其中等离子还含有原子量高于氖原子量的稀有气体。
4.按照权利要求3的方法,其中原子量高于氖原子量的稀有气体是氩。
5.按照权利要求1的方法,其中等离子是由基本上由氖构成的进料气体产生的。
6.按照权利要求1的方法,其中金属选自铝、铜、银和金。
7.按照权利要求1的方法,其中硫族化物材料含有至少一种选自氧、硫、硒、碲和钋的元素,和至少一种选自碳、硅、锗、锡、铅、氮、磷、砷、锑和铋的元素。
8.按照权利要求1的方法,其中硫族化物材料含有至少一种选自硒和碲的元素,和至少一种选自锗和锑的元素。
9.一种形成掺杂后的硫族化物层的方法,包括:
形成一层硫族化物材料层;
在至少含氖的等离子存在的情况下,溅射来自金属靶的微粒;
使该溅射微粒沉积在硫族化物材料层上;和
使溅射微粒扩散进入硫族化物材料层。
10.按照权利要求9的方法,其中金属靶含选自铝、铜、银和金的金属。
11.按照权利要求9的方法,其中在溅射来自金属靶微粒的同时扩散该溅射微粒进入硫族化物材料层。
12.按照权利要求9的方法,其中等离子是由基本上由氖构成的进料气体产生的。
13.按照权利要求9的方法,其中等离子还含有氦。
14.按照权利要求9的方法,其中等离子还含有氩。
15.按照权利要求9的方法,其中等离子还含有至少一种其原子量不同于氖的原子量的稀有气体。
16.按照权利要求9的方法,还包括:
选择用于等离子的包括氖和至少一种不同于氖的稀有气体的组分气体,各组分气体具有原子量;和
调节这些组分气体的体积百分比,产生足以促使所需溅射效率的平均原子量。
17.按照权利要求9的方法,还包括:
选择用于等离子的包括氖和至少一种不同于氖的稀有气体的组分气体;和
调节这些组分气体的体积百分比,以产生具有所需发射波谱的等离子。
18.按照权利要求17的方法,其中调节所述组分气体的体积百分比以产生具有所需发射波谱的等离子还包括调节所述组分气体体积百分比,以产生其发射波谱的可见成分水平比仅含氖的等离子的更高的等离子。
19.按照权利要求9的方法,还包括:
选择用于等离子的包括氖和至少一种不同于氖的稀有气体的组分气体,各组分气体的发射波谱具有UV成分;和
调节这些组分气体的体积百分比,以产生其发射波谱的UV成分具有所需相对强度的等离子。
20.按照权利要求19的方法,其中等离子发射波谱的UV成分的所需相对强度是足以造成使溅射微粒进入硫族化物材料层中的所需扩散水平的相对强度。
21.按照权利要求9的方法,还包括:
选择用于等离子的包括氖和至少一种不同于氖的稀有气体的组分气体,各组分气体具有某一原子量和其发射波谱的某一UV成分;
确定这些组分气体的至少两种组合,产生一种等离子,该等离子的发射波谱的UV成分的相对强度足以产生使溅射微粒进入硫族化物材料层的所需水平的扩散;和
选择所述组分气体组合中的一种,使其平均原子量最接近所需平均原子量。
22.按照权利要求9的方法,还包括:
选择用于等离子的包括氖和至少一种不同于氖的稀有气体的组分气体,各组分气体具有某一原子量和其发射波谱的某一UV成分;
确定所述组分气体的至少两种组合,产生其平均原子量足以促成所需溅射效率的等离子;和
选择所述组分气体组合中的一种,产生其发射波谱的UV成分具有所需相对强度的等离子。
23.一种形成掺杂后的硫族化物层的方法,包括:
形成一层硫族化物材料层;和
用含至少两种稀有气体的等离子将金属溅射至该硫族化物材料层上并使该溅射金属扩散进入该硫族化物材料层中,其中选择等离子的组成,以使其具有足以产生所需溅射效率的平均原子量。
24.按照权利要求23的方法,其中各稀有气体选自氦、氖和氩。
25.一种形成掺杂后的硫族化物层的方法,包括:
形成一层硫族化物材料层;和
用含至少两种稀有气体的等离子将金属原子溅射至该硫族化物材料层上并使该金属原子扩散进入该硫族化物材料层中,其中选择该等离子的组成,使该等离子发射波谱的UV成分具有所需相对强度。
26.一种形成掺杂后的硫族化物层的方法,包括:
形成一层硫族化物材料层;和
用含至少两种稀有气体的等离子将金属溅射至该硫族化物材料层上并使该溅射金属扩散进入该硫族化物材料层中,其中选择等离子的组成,使该等离子具有所需发射波谱。
27.一种形成硫族化物存储元件的方法,该存储元件具有第一电极、第二电极和插在第一电极和第二电极之间的掺杂后的硫族化物层,所述方法包括:
在第一电极上形成硫族化物层;
用含至少一种选自氖和氦的组分气体的第一等离子溅射金属至该硫族化物层上,从而形成掺杂后的硫族化物层,其中第一等离子发射足以诱发溅射金属扩散进入硫族化物层的UV成分;和
用含至少一种其原子量高于氖的原子量的组分气体的第二等离子溅射金属至掺杂后的硫族化物层上,从而形成第二电极。
28.按照权利要求27的方法,其中所述至少一种其原子量高于氖原子量的组分气体是氩。
29.按照权利要求27的方法,其中形成硫族化物层还包括形成一层硫化锗材料层,其中用第一等离子溅射金属至硫族化物层上还包括溅射银,且其中用第二等离子溅射金属至掺杂后的硫族化物层上也包括溅射银。
30.按照权利要求27的方法,其中第一等离子和第二等离子是相同的等离子。
31.按照权利要求27的方法,其中第二电极的功函数(m)不同于第一电极的。
32.一种形成硫族化物存储元件的方法,该硫族化物存储元件具有第一电极、第二电极和插在第一电极和第二电极之间的掺杂后的硫族化物层,所述方法包括:
在第一电极上形成硫族化物层;
用含至少一种选自氖和氦的组分气体的第一等离子溅射金属至该硫族化物层上,从而形成掺杂后的硫族化物层;和
用至少含氩的第二等离子溅射金属至掺杂后的硫族化物层上,从而形成第二电极。
33.一种形成硫族化物存储元件的方法,该硫族化物存储元件具有第一电极、第二电极和插在第一电极和第二电极之间的掺杂后的硫族化物层,所述方法包括:
在第一电极上形成硫族化物层;
用含至少一种选自氖和氦的组分气体的第一等离子溅射金属至该硫族化物层上,从而形成掺杂后的硫族化物层,和
用所述等离子溅射金属至掺杂后的硫族化物层上,从而形成第二电极。
34.一种形成硫族化物存储元件的方法,该硫族化物存储元件具有第一电极、第二电极和插在第一电极和第二电极之间的掺杂后的硫族化物层,所述方法包括:
在第一电极上形成硫族化物层;
用起始由含至少一种选自氖和氦的组分气体的进料气体产生的等离子,将金属溅射至硫族化物层上,从而形成掺杂后的硫族化物层,
增大用于产生等离子的进料气体的平均原子量;和
用由具有提高的平均原子量的进料气体产生的等离子,将金属溅射至掺杂后的硫族化物层上,从而形成第二电极。
35.按照权利要求34的方法,其中增大用于产生等离子的进料气体的平均原子量还包括,在形成掺杂后的硫族化物层之后排出所述进料气体,并用具有所述更高平均原子量的进料气体产生用于形成第二电极的等离子。
36.按照权利要求34的方法,其中增大等离子平均原子量还包括在溅射金属的同时改变组分气体进入等离子的进料速率。
37.一种形成硫族化物存储元件的方法,该硫族化物存储元件具有第一电极、第二电极和插在第一电极和第二电极之间的掺杂后的硫族化物层,所述方法包括:
在第一电极上形成硫族化物层;
在沉积室中用第一等离子将金属溅射至硫族化物层上,以形成掺杂后的硫族化物层,其中第一等离子是用至少一种选自氖和氦的组分气体产生的;和
在沉积室中用第二等离子将金属溅射至掺杂后的硫族化物层上,以形成第二电极,其中第二等离子是用至少一种其原子量高于氖原子量的组分气体产生的。
38.按照权利要求37的方法,其中所述至少一种用于产生第一等离子的组分气体基本上由氖组成。
39.按照权利要求37的方法,其中所述至少一种用于产生第二等离子的组分气体基本上由氩组成。
40.按照权利要求39的方法,其中第二等离子是至少利用氩产生的。
41.按照权利要求37的方法,其中溅射金属至掺杂后的硫族化物层上以形成第二电极是原位与溅射金属至硫族化物层上形成掺杂后的硫族化物一起进行。
42.按照权利要求37的方法,其中溅射金属至硫族化物层上以形成掺杂后的硫族化物层还包括自金属靶进行溅射,且其中溅射金属至掺杂后的硫族化物层上以形成第二电极还包括自同一金属靶进行溅射。
43.按照权利要求42的方法,其中金属靶是一种银靶,硫族化物层含硫化锗材料。
44.按照权利要求37的方法,其中第一等离子和第二等离子各含至少一种选自氖和氦的组分气体和至少一种其原子量高于氖原子量的组分气体。
45.按照权利要求44的方法,其中第一等离子和第二等离子具有相同的组成。
46.一种形成硫族化物存储元件的方法,该硫族化物存储元件具有第一电极、第二电极和插在第一电极和第二电极之间的掺杂后的硫族化物层,所述方法包括:
在第一电极上形成硫族化物层;
用由基本上由氖构成的进料气体产生的第一等离子,溅射银至硫族化物层上,从而形成掺杂后的硫族化物层;和
用由基本上由氩构成的进料气体产生的第二等离子,溅射金属至掺杂后的硫族化物层上,从而构成第二电极,其中第二电极功函数(m)不同于第一电极的。
47.一种形成硫族化物存储元件的方法,该硫族化物存储元件具有第一电极、第二电极和插在第一电极和第二电极之间的掺杂后的硫族化物层,所述方法包括:
在第一电极上形成硫族化物层,
用基本上由氖构成的第一等离子,溅射银至该硫族化物层上,从而形成掺杂后的硫族化物层;和
用基本上由氩构成的第二等离子,将银溅射至掺杂后的硫族化物层上,从而形成第二电极。
48.按照权利要求47的方法,其中硫族化物层是硒化锗材料。
49.一种形成非易失性存储器件的方法,包括:
形成字线;
形成耦联至字线的第一电极,其中各字线耦联至一个以上的第一电极;
在各第一电极上形成硫族化物层;
用含至少一种选自氖和氦的组分气体的第一等离子,溅射金属至各硫族化物层上,从而形成掺杂后的硫族化物层;
用含至少一种其原子量高于氖原子量的组分气体的第二等离子,溅射金属至各掺杂后的硫族化物层上,从而形成第二电极;和
形成耦联至第二电极的位线,其中各位线耦联至一个以上的第二电极。
50.按照权利要求49的方法,还包括:
形成二极管,其中各二极管是在选自被插在第二电极和位线之间和被插在第一电极和字线之间的位置形成的,前者使各第二电极经过二极管被耦联至一个位线,后者使各第一电极通过一个二极管耦联至一个字线。
51.一种形成非易失性存储器件的方法,包括:
形成字线;
形成耦联至这些字线的第一电极,其中各字线被耦联至一个以上的第一电极;
在各第一电极上形成硫族化物层;
用含至少一种选自氖和氦的组分气体的第一等离子,溅射金属至各硫族化物层上,从而形成掺杂后的硫族化物层;
用含至少一种其原子量高于氖原子量的组分气体的第二等离子,溅射金属至各掺杂后的硫族化物层上,从而形成第二电极;
形成耦联至各第二电极的二极管;和
形成耦联至这些二极管的位线,其中各位线被耦联至一个以上的二极管。
52.一种形成非易失性存储器件的方法,包括:
形成字线;
形成耦联至这些字线的二极管,其中各字线被耦联至一个以上的二极管上;
形成耦联至各二极管的第一电极;
在各第一电极上形成硫族化物层;
用含至少一种选自氖和氦的组分气体的第一等离子,溅射金属至各硫族化物层上,从而形成掺杂后的硫族化物层;
用含至少一种其原子量高于氖原子量的组分气体的第二等离子,溅射金属至各掺杂后的硫族化物层上,从而形成第二电极。
形成耦联至各第二电极的二极管;和
形成耦联到第二电极的位线,其中各位线被耦联至一个以上的第二电极上。
53.一种形成非易失性存储器件的方法,包括:
形成字线;
形成耦联这些字线的第一电极,其中各字线被耦联至一个以上的第一电极上;
在各第一电极上形成硫族化物层;
用基本上由氖构成的第一等离子,溅射银至各硫族化物层上,从而形成掺杂后的硫族化物层;
用基本上由氩构成的第二等离子,溅射金属至各掺杂后的硫族化物层上,从而形成第二电极,其中该金属功函数(m)不同于第一电极的;和
形成耦联至这些第二电极的位线,其中各位线被耦联到一个以上的第二电极。
54.一种形成非易失性存储器件的方法,包括:
形成字线;
形成耦联这些字线的第一电极,其中各字线被耦联至一个以上的第一电极上;
在各第一电极上形成硫族化物层;
用基本上由氖构成的第一等离子溅射银至各硫族化物层上,从而形成掺杂后的硫族化物层;
用基本上由氩构成的第二等离子溅射银至各掺杂后的硫族化物层上,从而形成第二电极;和
形成耦联至这些第二电极的位线,其中各位线被耦联至一个以上的第二电极。
55.按照权利要求54的方法,还包括:
形成二极管,其中各二极管是在选自被插在第二电极和位线之间以使各第二电极通过一个二极管与一个位线耦联,和被插在第一电极和一个字线之间以使各第一电极通过一个二极管耦联至一个字线的位置而构成的。
CNB028214501A 2001-08-30 2002-08-30 利用掺杂金属后的硫族化物材料的集成电路器件和制造 Expired - Lifetime CN100402694C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/943,426 2001-08-30
US09/943,426 US6709958B2 (en) 2001-08-30 2001-08-30 Integrated circuit device and fabrication using metal-doped chalcogenide materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100854187A Division CN100550460C (zh) 2001-08-30 2002-08-30 利用掺杂金属后的硫族化物材料的集成电路器件和制造

Publications (2)

Publication Number Publication Date
CN1578848A true CN1578848A (zh) 2005-02-09
CN100402694C CN100402694C (zh) 2008-07-16

Family

ID=25479641

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2007100854187A Expired - Lifetime CN100550460C (zh) 2001-08-30 2002-08-30 利用掺杂金属后的硫族化物材料的集成电路器件和制造
CNB028214501A Expired - Lifetime CN100402694C (zh) 2001-08-30 2002-08-30 利用掺杂金属后的硫族化物材料的集成电路器件和制造

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2007100854187A Expired - Lifetime CN100550460C (zh) 2001-08-30 2002-08-30 利用掺杂金属后的硫族化物材料的集成电路器件和制造

Country Status (8)

Country Link
US (4) US6709958B2 (zh)
EP (2) EP1425431B1 (zh)
JP (1) JP4194490B2 (zh)
KR (1) KR100586716B1 (zh)
CN (2) CN100550460C (zh)
AT (2) ATE529540T1 (zh)
DE (1) DE60231129D1 (zh)
WO (1) WO2003020998A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038392A (zh) * 2010-06-02 2013-04-10 原子能与替代能源委员会 在复合层内扩散金属颗粒的方法
WO2023184667A1 (zh) * 2022-03-30 2023-10-05 华中科技大学 四面体结构化合物掺杂的Sb-Te相变材料、相变存储器

Families Citing this family (269)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542690B1 (en) * 2000-05-08 2003-04-01 Corning Incorporated Chalcogenide doping of oxide glasses
JP4742429B2 (ja) * 2001-02-19 2011-08-10 住友電気工業株式会社 ガラス微粒子堆積体の製造方法
US6734455B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
DE10119463C2 (de) * 2001-04-12 2003-03-06 Hahn Meitner Inst Berlin Gmbh Verfahren zur Herstellung einer Chalkogenid-Halbleiterschicht des Typs ABC¶2¶ mit optischer Prozesskontrolle
US7102150B2 (en) * 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6951805B2 (en) * 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US6646902B2 (en) 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US6709958B2 (en) * 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US7109056B2 (en) * 2001-09-20 2006-09-19 Micron Technology, Inc. Electro-and electroless plating of metal in the manufacture of PCRAM devices
US6612695B2 (en) * 2001-11-07 2003-09-02 Michael Waters Lighted reading glasses
US6815818B2 (en) * 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6909656B2 (en) * 2002-01-04 2005-06-21 Micron Technology, Inc. PCRAM rewrite prevention
WO2003065377A1 (fr) * 2002-02-01 2003-08-07 Hitachi, Ltd. Memoire
US6867064B2 (en) * 2002-02-15 2005-03-15 Micron Technology, Inc. Method to alter chalcogenide glass for improved switching characteristics
US6791885B2 (en) * 2002-02-19 2004-09-14 Micron Technology, Inc. Programmable conductor random access memory and method for sensing same
US7151273B2 (en) * 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6809362B2 (en) * 2002-02-20 2004-10-26 Micron Technology, Inc. Multiple data state memory cell
US6847535B2 (en) 2002-02-20 2005-01-25 Micron Technology, Inc. Removable programmable conductor memory card and associated read/write device and method of operation
US7087919B2 (en) * 2002-02-20 2006-08-08 Micron Technology, Inc. Layered resistance variable memory device and method of fabrication
US6937528B2 (en) * 2002-03-05 2005-08-30 Micron Technology, Inc. Variable resistance memory and method for sensing same
US6849868B2 (en) 2002-03-14 2005-02-01 Micron Technology, Inc. Methods and apparatus for resistance variable material cells
US6858482B2 (en) * 2002-04-10 2005-02-22 Micron Technology, Inc. Method of manufacture of programmable switching circuits and memory cells employing a glass layer
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6855975B2 (en) * 2002-04-10 2005-02-15 Micron Technology, Inc. Thin film diode integrated with chalcogenide memory cell
US20030205822A1 (en) * 2002-05-02 2003-11-06 Taiwan Semiconductor Manufacturing Co. Ltd. Low-strength plasma treatment for interconnects
US6731528B2 (en) * 2002-05-03 2004-05-04 Micron Technology, Inc. Dual write cycle programmable conductor memory system and method of operation
US6825135B2 (en) 2002-06-06 2004-11-30 Micron Technology, Inc. Elimination of dendrite formation during metal/chalcogenide glass deposition
US6890790B2 (en) * 2002-06-06 2005-05-10 Micron Technology, Inc. Co-sputter deposition of metal-doped chalcogenides
US7209378B2 (en) * 2002-08-08 2007-04-24 Micron Technology, Inc. Columnar 1T-N memory cell structure
US7018863B2 (en) * 2002-08-22 2006-03-28 Micron Technology, Inc. Method of manufacture of a resistance variable memory cell
US6867114B2 (en) * 2002-08-29 2005-03-15 Micron Technology Inc. Methods to form a memory cell with metal-rich metal chalcogenide
US7364644B2 (en) * 2002-08-29 2008-04-29 Micron Technology, Inc. Silver selenide film stoichiometry and morphology control in sputter deposition
US6831019B1 (en) * 2002-08-29 2004-12-14 Micron Technology, Inc. Plasma etching methods and methods of forming memory devices comprising a chalcogenide comprising layer received operably proximate conductive electrodes
US6864521B2 (en) * 2002-08-29 2005-03-08 Micron Technology, Inc. Method to control silver concentration in a resistance variable memory element
US7010644B2 (en) * 2002-08-29 2006-03-07 Micron Technology, Inc. Software refreshed memory device and method
US7337160B2 (en) * 2002-12-31 2008-02-26 Bae Systems Information And Electronic Systems Integration Inc. Use of radiation-hardened chalcogenide technology for spaceborne reconfigurable digital processing systems
JPWO2004066386A1 (ja) * 2003-01-23 2006-05-18 日本電気株式会社 電子素子、それを使用した集積電子素子及びそれを使用した動作方法
US7402851B2 (en) * 2003-02-24 2008-07-22 Samsung Electronics Co., Ltd. Phase changeable memory devices including nitrogen and/or silicon and methods for fabricating the same
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
US7022579B2 (en) 2003-03-14 2006-04-04 Micron Technology, Inc. Method for filling via with metal
US7061004B2 (en) * 2003-07-21 2006-06-13 Micron Technology, Inc. Resistance variable memory elements and methods of formation
US6903361B2 (en) * 2003-09-17 2005-06-07 Micron Technology, Inc. Non-volatile memory structure
US7562375B2 (en) * 2003-10-10 2009-07-14 Microsoft Corporation Fast channel change
US7583551B2 (en) * 2004-03-10 2009-09-01 Micron Technology, Inc. Power management control and controlling memory refresh operations
US7098068B2 (en) * 2004-03-10 2006-08-29 Micron Technology, Inc. Method of forming a chalcogenide material containing device
DE102004020297B4 (de) * 2004-04-26 2007-06-21 Infineon Technologies Ag Verfahren zur Herstellung resistiv schaltender Speicherbauelemente
DE102004029436B4 (de) * 2004-06-18 2009-03-05 Qimonda Ag Verfahren zum Herstellen eines Festkörperelektrolytmaterialbereichs
US20050287698A1 (en) * 2004-06-28 2005-12-29 Zhiyong Li Use of chalcogen plasma to form chalcogenide switching materials for nanoscale electronic devices
US7354793B2 (en) 2004-08-12 2008-04-08 Micron Technology, Inc. Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element
US7326950B2 (en) * 2004-07-19 2008-02-05 Micron Technology, Inc. Memory device with switching glass layer
US7190048B2 (en) * 2004-07-19 2007-03-13 Micron Technology, Inc. Resistance variable memory device and method of fabrication
US7365411B2 (en) * 2004-08-12 2008-04-29 Micron Technology, Inc. Resistance variable memory with temperature tolerant materials
US7151688B2 (en) * 2004-09-01 2006-12-19 Micron Technology, Inc. Sensing of resistance variable memory devices
US7224598B2 (en) * 2004-09-02 2007-05-29 Hewlett-Packard Development Company, L.P. Programming of programmable resistive memory devices
WO2006044982A1 (en) * 2004-10-20 2006-04-27 Massachusetts Institute Of Technology Infrared detection material and method of production
US7106096B2 (en) * 2004-11-11 2006-09-12 International Business Machines Corporation Circuit and method of controlling integrated circuit power consumption using phase change switches
US20060108667A1 (en) 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
US7138290B2 (en) * 2004-12-03 2006-11-21 Micron Technology, Inc. Methods of depositing silver onto a metal selenide-comprising surface and methods of depositing silver onto a selenium-comprising surface
US7374174B2 (en) * 2004-12-22 2008-05-20 Micron Technology, Inc. Small electrode for resistance variable devices
US20060131555A1 (en) * 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
FR2880177B1 (fr) 2004-12-23 2007-05-18 Commissariat Energie Atomique Memoire pmc ayant un temps de retention et une vitesse d'ecriture ameliores
DE102005001253A1 (de) * 2005-01-11 2006-07-20 Infineon Technologies Ag Speicherzellenanordnung, Verfahren zu deren Herstellung und Halbleiterspeichereinrichtung
US20060172067A1 (en) * 2005-01-28 2006-08-03 Energy Conversion Devices, Inc Chemical vapor deposition of chalcogenide materials
DE102005005325B4 (de) * 2005-02-04 2011-12-15 Adesto Technology Corp., Inc. Verfahren zur Herstellung einer resistiv schaltenden nicht-flüchtigen Speicherzelle
US7317200B2 (en) 2005-02-23 2008-01-08 Micron Technology, Inc. SnSe-based limited reprogrammable cell
DE102005012047A1 (de) * 2005-03-16 2006-09-28 Infineon Technologies Ag Festkörperelektrolyt-Speicherelement und Verfahren zur Herstellung eines solchen Speicherlements
KR100694188B1 (ko) * 2005-03-22 2007-03-14 한국표준과학연구원 메모리 및 그 제조 방법
US7709289B2 (en) * 2005-04-22 2010-05-04 Micron Technology, Inc. Memory elements having patterned electrodes and method of forming the same
US7427770B2 (en) 2005-04-22 2008-09-23 Micron Technology, Inc. Memory array for increased bit density
US7269079B2 (en) * 2005-05-16 2007-09-11 Micron Technology, Inc. Power circuits for reducing a number of power supply voltage taps required for sensing a resistive memory
US7696503B2 (en) * 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US20070007505A1 (en) * 2005-07-07 2007-01-11 Honeywell International Inc. Chalcogenide PVD components
US7233520B2 (en) * 2005-07-08 2007-06-19 Micron Technology, Inc. Process for erasing chalcogenide variable resistance memory bits
US20070007579A1 (en) * 2005-07-11 2007-01-11 Matrix Semiconductor, Inc. Memory cell comprising a thin film three-terminal switching device having a metal source and /or drain region
US7274034B2 (en) * 2005-08-01 2007-09-25 Micron Technology, Inc. Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication
US7317567B2 (en) * 2005-08-02 2008-01-08 Micron Technology, Inc. Method and apparatus for providing color changing thin film material
US7332735B2 (en) * 2005-08-02 2008-02-19 Micron Technology, Inc. Phase change memory cell and method of formation
KR100682969B1 (ko) * 2005-08-04 2007-02-15 삼성전자주식회사 상변화 물질, 이를 포함하는 상변화 램과 이의 제조 및 동작 방법
US20070037316A1 (en) * 2005-08-09 2007-02-15 Micron Technology, Inc. Memory cell contact using spacers
US7579615B2 (en) * 2005-08-09 2009-08-25 Micron Technology, Inc. Access transistor for memory device
US7304368B2 (en) * 2005-08-11 2007-12-04 Micron Technology, Inc. Chalcogenide-based electrokinetic memory element and method of forming the same
US7251154B2 (en) 2005-08-15 2007-07-31 Micron Technology, Inc. Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance
KR100637235B1 (ko) * 2005-08-26 2006-10-20 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
US7277313B2 (en) * 2005-08-31 2007-10-02 Micron Technology, Inc. Resistance variable memory element with threshold device and method of forming the same
KR100694316B1 (ko) 2005-09-30 2007-03-14 한양대학교 산학협력단 플라즈마 가스처리를 이용한 산화박막의 안정성이 우수한ReRAM 소자의 제조방법
US20070080428A1 (en) * 2005-10-12 2007-04-12 Herman Gregory S Semiconductor film composition
US8969865B2 (en) * 2005-10-12 2015-03-03 Hewlett-Packard Development Company, L.P. Semiconductor film composition
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7450411B2 (en) * 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7829876B2 (en) * 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7507986B2 (en) * 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7816661B2 (en) 2005-11-21 2010-10-19 Macronix International Co., Ltd. Air cell thermal isolation for a memory array formed of a programmable resistive material
US7599217B2 (en) * 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) * 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7521364B2 (en) * 2005-12-02 2009-04-21 Macronix Internation Co., Ltd. Surface topology improvement method for plug surface areas
FR2895531B1 (fr) * 2005-12-23 2008-05-09 Commissariat Energie Atomique Procede ameliore de realisation de cellules memoires de type pmc
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7956358B2 (en) 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US8492810B2 (en) * 2006-02-28 2013-07-23 Qimonda Ag Method of fabricating an integrated electronic circuit with programmable resistance cells
DE102006009254B3 (de) * 2006-02-28 2007-07-12 Infineon Technologies Ag Verfahren zur Herstellung eines integrierten elektronischen Schaltkreises mit programmierbaren resistiven Zellen, entsprechende Zellen und Datenspeicher mit solchen
US8936702B2 (en) * 2006-03-07 2015-01-20 Micron Technology, Inc. System and method for sputtering a tensile silicon nitride film
US7554144B2 (en) 2006-04-17 2009-06-30 Macronix International Co., Ltd. Memory device and manufacturing method
US7928421B2 (en) * 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
KR100782482B1 (ko) * 2006-05-19 2007-12-05 삼성전자주식회사 GeBiTe막을 상변화 물질막으로 채택하는 상변화 기억 셀, 이를 구비하는 상변화 기억소자, 이를 구비하는 전자 장치 및 그 제조방법
US7423300B2 (en) * 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US8618523B2 (en) * 2006-05-31 2013-12-31 Renesas Electronics Corporation Semiconductor device
US7825033B2 (en) * 2006-06-09 2010-11-02 Micron Technology, Inc. Methods of forming variable resistance memory cells, and methods of etching germanium, antimony, and tellurium-comprising materials
TWI303875B (en) * 2006-06-16 2008-12-01 Ind Tech Res Inst Confined spacer phase change memory and fabrication method thereof
US7696506B2 (en) * 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
KR100631400B1 (ko) * 2006-06-29 2006-10-04 주식회사 아이피에스 상변화 메모리용 칼코제나이드막 증착 방법
KR100791071B1 (ko) * 2006-07-04 2008-01-02 삼성전자주식회사 일회 프로그래머블 소자, 이를 구비하는 전자시스템 및 그동작 방법
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
CN100452319C (zh) * 2006-07-14 2009-01-14 上海华虹Nec电子有限公司 低等离子体诱生损伤的硅化物制备方法
US8115282B2 (en) * 2006-07-25 2012-02-14 Adesto Technology Corporation Memory cell device and method of manufacture
KR100838527B1 (ko) 2006-07-31 2008-06-17 삼성전자주식회사 상변화 기억소자 형성 방법
US7560723B2 (en) 2006-08-29 2009-07-14 Micron Technology, Inc. Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication
US7772581B2 (en) 2006-09-11 2010-08-10 Macronix International Co., Ltd. Memory device having wide area phase change element and small electrode contact area
KR100829601B1 (ko) * 2006-09-27 2008-05-14 삼성전자주식회사 칼코겐 화합물 타겟, 이의 제조 방법 및 상변화 메모리장치의 제조 방법
US7504653B2 (en) 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7510929B2 (en) 2006-10-18 2009-03-31 Macronix International Co., Ltd. Method for making memory cell device
US7863655B2 (en) 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US7682868B2 (en) * 2006-12-06 2010-03-23 Macronix International Co., Ltd. Method for making a keyhole opening during the manufacture of a memory cell
US7476587B2 (en) 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US7903447B2 (en) 2006-12-13 2011-03-08 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on programmable resistive memory cell
US8344347B2 (en) 2006-12-15 2013-01-01 Macronix International Co., Ltd. Multi-layer electrode structure
US7718989B2 (en) * 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
US7433226B2 (en) * 2007-01-09 2008-10-07 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on multiple programmable resistive memory cell
US7440315B2 (en) * 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7663135B2 (en) 2007-01-31 2010-02-16 Macronix International Co., Ltd. Memory cell having a side electrode contact
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7483292B2 (en) 2007-02-07 2009-01-27 Macronix International Co., Ltd. Memory cell with separate read and program paths
US7463512B2 (en) 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US7884343B2 (en) 2007-02-14 2011-02-08 Macronix International Co., Ltd. Phase change memory cell with filled sidewall memory element and method for fabricating the same
KR100888145B1 (ko) * 2007-02-22 2009-03-13 성균관대학교산학협력단 무응력 연성회로기판 제조 장치 및 방법
US7956344B2 (en) 2007-02-27 2011-06-07 Macronix International Co., Ltd. Memory cell with memory element contacting ring-shaped upper end of bottom electrode
US8268664B2 (en) * 2007-03-05 2012-09-18 Altis Semiconductor Methods of manufacturing a semiconductor device; method of manufacturing a memory cell; semiconductor device; semiconductor processing device; integrated circuit having a memory cell
US7786461B2 (en) 2007-04-03 2010-08-31 Macronix International Co., Ltd. Memory structure with reduced-size memory element between memory material portions
US8610098B2 (en) * 2007-04-06 2013-12-17 Macronix International Co., Ltd. Phase change memory bridge cell with diode isolation device
US7755076B2 (en) * 2007-04-17 2010-07-13 Macronix International Co., Ltd. 4F2 self align side wall active phase change memory
US7483316B2 (en) * 2007-04-24 2009-01-27 Macronix International Co., Ltd. Method and apparatus for refreshing programmable resistive memory
US8846516B2 (en) * 2007-07-06 2014-09-30 Micron Technology, Inc. Dielectric charge-trapping materials having doped metal sites
US8513637B2 (en) * 2007-07-13 2013-08-20 Macronix International Co., Ltd. 4F2 self align fin bottom electrodes FET drive phase change memory
US7884342B2 (en) 2007-07-31 2011-02-08 Macronix International Co., Ltd. Phase change memory bridge cell
US7729161B2 (en) 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US9018615B2 (en) * 2007-08-03 2015-04-28 Macronix International Co., Ltd. Resistor random access memory structure having a defined small area of electrical contact
JP5088036B2 (ja) 2007-08-06 2012-12-05 ソニー株式会社 記憶素子および記憶装置
US8178386B2 (en) 2007-09-14 2012-05-15 Macronix International Co., Ltd. Phase change memory cell array with self-converged bottom electrode and method for manufacturing
US7642125B2 (en) 2007-09-14 2010-01-05 Macronix International Co., Ltd. Phase change memory cell in via array with self-aligned, self-converged bottom electrode and method for manufacturing
US7551473B2 (en) 2007-10-12 2009-06-23 Macronix International Co., Ltd. Programmable resistive memory with diode structure
FR2922368A1 (fr) 2007-10-16 2009-04-17 Commissariat Energie Atomique Procede de fabrication d'une memoire cbram ayant une fiabilite amelioree
US7919766B2 (en) 2007-10-22 2011-04-05 Macronix International Co., Ltd. Method for making self aligning pillar memory cell device
US7804083B2 (en) 2007-11-14 2010-09-28 Macronix International Co., Ltd. Phase change memory cell including a thermal protect bottom electrode and manufacturing methods
EP2068368B1 (en) * 2007-12-06 2012-10-10 Electronics and Telecommunications Research Institute Method for manufacturing n-type and p-type chalcogenide thin film transistor
US7646631B2 (en) 2007-12-07 2010-01-12 Macronix International Co., Ltd. Phase change memory cell having interface structures with essentially equal thermal impedances and manufacturing methods
KR20090076077A (ko) * 2008-01-07 2009-07-13 삼성전자주식회사 저항성 메모리 소자
US7879643B2 (en) 2008-01-18 2011-02-01 Macronix International Co., Ltd. Memory cell with memory element contacting an inverted T-shaped bottom electrode
US7879645B2 (en) 2008-01-28 2011-02-01 Macronix International Co., Ltd. Fill-in etching free pore device
KR101480292B1 (ko) * 2008-03-17 2015-01-12 삼성전자주식회사 상변화막을 포함하는 반도체 소자의 형성 방법
US8084842B2 (en) 2008-03-25 2011-12-27 Macronix International Co., Ltd. Thermally stabilized electrode structure
US8030634B2 (en) 2008-03-31 2011-10-04 Macronix International Co., Ltd. Memory array with diode driver and method for fabricating the same
FR2929759B1 (fr) * 2008-04-03 2010-04-16 Commissariat Energie Atomique Dispositif magnetique integrant un empilement magnetoresistif
US7825398B2 (en) 2008-04-07 2010-11-02 Macronix International Co., Ltd. Memory cell having improved mechanical stability
US7791057B2 (en) 2008-04-22 2010-09-07 Macronix International Co., Ltd. Memory cell having a buried phase change region and method for fabricating the same
US8077505B2 (en) 2008-05-07 2011-12-13 Macronix International Co., Ltd. Bipolar switching of phase change device
US7701750B2 (en) 2008-05-08 2010-04-20 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
KR100974069B1 (ko) * 2008-06-02 2010-08-04 한국과학기술원 저항변화메모리 및 제조방법
US8415651B2 (en) 2008-06-12 2013-04-09 Macronix International Co., Ltd. Phase change memory cell having top and bottom sidewall contacts
US8134857B2 (en) 2008-06-27 2012-03-13 Macronix International Co., Ltd. Methods for high speed reading operation of phase change memory and device employing same
US7932506B2 (en) 2008-07-22 2011-04-26 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
US8467236B2 (en) * 2008-08-01 2013-06-18 Boise State University Continuously variable resistor
US7825479B2 (en) 2008-08-06 2010-11-02 International Business Machines Corporation Electrical antifuse having a multi-thickness dielectric layer
US7903457B2 (en) 2008-08-19 2011-03-08 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US7719913B2 (en) 2008-09-12 2010-05-18 Macronix International Co., Ltd. Sensing circuit for PCRAM applications
US8324605B2 (en) 2008-10-02 2012-12-04 Macronix International Co., Ltd. Dielectric mesh isolated phase change structure for phase change memory
US7897954B2 (en) * 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
US8036014B2 (en) * 2008-11-06 2011-10-11 Macronix International Co., Ltd. Phase change memory program method without over-reset
US7869270B2 (en) 2008-12-29 2011-01-11 Macronix International Co., Ltd. Set algorithm for phase change memory cell
US8148707B2 (en) * 2008-12-30 2012-04-03 Stmicroelectronics S.R.L. Ovonic threshold switch film composition for TSLAGS material
US8089137B2 (en) 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8107283B2 (en) 2009-01-12 2012-01-31 Macronix International Co., Ltd. Method for setting PCRAM devices
US8030635B2 (en) 2009-01-13 2011-10-04 Macronix International Co., Ltd. Polysilicon plug bipolar transistor for phase change memory
US8064247B2 (en) 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8933536B2 (en) 2009-01-22 2015-01-13 Macronix International Co., Ltd. Polysilicon pillar bipolar transistor with self-aligned memory element
US8084760B2 (en) 2009-04-20 2011-12-27 Macronix International Co., Ltd. Ring-shaped electrode and manufacturing method for same
CN101525738B (zh) * 2009-04-23 2011-05-11 哈尔滨工业大学 电感耦合等离子体管筒内表面离子注入改性装置及方法
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8097871B2 (en) 2009-04-30 2012-01-17 Macronix International Co., Ltd. Low operational current phase change memory structures
US7933139B2 (en) 2009-05-15 2011-04-26 Macronix International Co., Ltd. One-transistor, one-resistor, one-capacitor phase change memory
US8350316B2 (en) 2009-05-22 2013-01-08 Macronix International Co., Ltd. Phase change memory cells having vertical channel access transistor and memory plane
US7968876B2 (en) 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US8168538B2 (en) * 2009-05-26 2012-05-01 Macronix International Co., Ltd. Buried silicide structure and method for making
WO2010140210A1 (ja) * 2009-06-01 2010-12-09 株式会社日立製作所 半導体記憶装置およびその製造方法
US8809829B2 (en) 2009-06-15 2014-08-19 Macronix International Co., Ltd. Phase change memory having stabilized microstructure and manufacturing method
US8406033B2 (en) 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US8198619B2 (en) 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
US8178387B2 (en) 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
KR101243837B1 (ko) 2009-10-23 2013-03-20 한국전자통신연구원 다층 배선 연결 구조 및 그의 제조 방법
US8198124B2 (en) 2010-01-05 2012-06-12 Micron Technology, Inc. Methods of self-aligned growth of chalcogenide memory access device
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
FR2961018B1 (fr) * 2010-06-04 2012-07-20 Altis Semiconductor Snc Procede de fabrication d'un dispositif microelectronique a memoire programmable
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
JP5348108B2 (ja) * 2010-10-18 2013-11-20 ソニー株式会社 記憶素子
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US8426242B2 (en) * 2011-02-01 2013-04-23 Macronix International Co., Ltd. Composite target sputtering for forming doped phase change materials
US8497182B2 (en) 2011-04-19 2013-07-30 Macronix International Co., Ltd. Sidewall thin film electrode with self-aligned top electrode and programmable resistance memory
US8605495B2 (en) 2011-05-09 2013-12-10 Macronix International Co., Ltd. Isolation device free memory
US8946666B2 (en) 2011-06-23 2015-02-03 Macronix International Co., Ltd. Ge-Rich GST-212 phase change memory materials
US8525290B2 (en) 2011-06-24 2013-09-03 Macronix International Co., Ltd. Method of forming memory cell access device
US20130017647A1 (en) * 2011-07-13 2013-01-17 Applied Nanotech Holdings, Inc. Surface-modified nanoparticle ink for photovoltaic applications
US9054295B2 (en) 2011-08-23 2015-06-09 Micron Technology, Inc. Phase change memory cells including nitrogenated carbon materials, methods of forming the same, and phase change memory devices including nitrogenated carbon materials
US8916414B2 (en) 2013-03-13 2014-12-23 Macronix International Co., Ltd. Method for making memory cell by melting phase change material in confined space
KR101500944B1 (ko) * 2013-03-22 2015-03-10 경희대학교 산학협력단 칼코겐 화합물의 2차원 대면적 성장 방법, cmos형 구조체의 제조 방법, 칼코겐 화합물의 막, 칼코겐 화합물의 막을 포함하는 전자 소자 및 cmos형 구조체
US9171616B2 (en) 2013-08-09 2015-10-27 Macronix International Co., Ltd. Memory with multiple levels of data retention
US9245742B2 (en) 2013-12-18 2016-01-26 Asm Ip Holding B.V. Sulfur-containing thin films
US9478419B2 (en) 2013-12-18 2016-10-25 Asm Ip Holding B.V. Sulfur-containing thin films
TWI549229B (zh) 2014-01-24 2016-09-11 旺宏電子股份有限公司 應用於系統單晶片之記憶體裝置內的多相變化材料
KR101465211B1 (ko) * 2014-02-17 2014-11-25 성균관대학교산학협력단 도핑된 금속 칼코게나이드 박막의 제조 방법
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9159412B1 (en) 2014-07-15 2015-10-13 Macronix International Co., Ltd. Staggered write and verify for phase change memory
US9118006B1 (en) * 2014-08-12 2015-08-25 Boise State University Carbon-chalcogenide variable resistance memory device
DE102014119088A1 (de) * 2014-12-18 2016-06-23 Infineon Technologies Ag Ein Verfahren zum Bilden eines Halbleiterbauelements und eines Halbleitersubstrats
US9461134B1 (en) 2015-05-20 2016-10-04 Asm Ip Holding B.V. Method for forming source/drain contact structure with chalcogen passivation
US10490475B2 (en) 2015-06-03 2019-11-26 Asm Ip Holding B.V. Methods for semiconductor passivation by nitridation after oxide removal
US9711350B2 (en) 2015-06-03 2017-07-18 Asm Ip Holding B.V. Methods for semiconductor passivation by nitridation
US9711396B2 (en) 2015-06-16 2017-07-18 Asm Ip Holding B.V. Method for forming metal chalcogenide thin films on a semiconductor device
US9741815B2 (en) 2015-06-16 2017-08-22 Asm Ip Holding B.V. Metal selenide and metal telluride thin films for semiconductor device applications
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
US9917252B2 (en) 2015-06-19 2018-03-13 Macronix International Co., Ltd. GaSbGe phase change memory materials
US9472274B1 (en) 2015-07-01 2016-10-18 Macronix International Co., Ltd. Refresh of nonvolatile memory cells and reference cells with resistance drift
KR101962336B1 (ko) * 2016-12-26 2019-07-18 전북대학교 산학협력단 희생 금속 산화막을 이용한 코팅층, 이의 제조 방법 및 이를 이용한 스퍼터링 휠
US10008665B1 (en) * 2016-12-27 2018-06-26 Intel Corporation Doping of selector and storage materials of a memory cell
CN106601911B (zh) * 2016-12-30 2019-03-01 中国科学院上海微系统与信息技术研究所 Ge-Se-Al OTS材料、OTS选通器单元及其制备方法
TWI627301B (zh) * 2017-02-17 2018-06-21 國立清華大學 製備金屬硫屬化物垂直異質接面的方法
US10050196B1 (en) 2017-05-04 2018-08-14 Macronix International Co., Ltd. Dielectric doped, Sb-rich GST phase change memory
US10541271B2 (en) 2017-10-18 2020-01-21 Macronix International Co., Ltd. Superlattice-like switching devices
US10374009B1 (en) 2018-07-17 2019-08-06 Macronix International Co., Ltd. Te-free AsSeGe chalcogenides for selector devices and memory devices using same
KR102636534B1 (ko) * 2018-08-20 2024-02-15 에스케이하이닉스 주식회사 칼코게나이드 재료 및 이를 포함하는 전자 장치
KR20210032762A (ko) 2019-09-17 2021-03-25 에스케이하이닉스 주식회사 칼코게나이드 물질, 가변 저항 메모리 장치 및 전자 장치
US11289540B2 (en) 2019-10-15 2022-03-29 Macronix International Co., Ltd. Semiconductor device and memory cell
US20220406998A1 (en) * 2019-11-22 2022-12-22 Agency For Science, Technology And Research Electronic synapse device and method of forming the same
US11515147B2 (en) 2019-12-09 2022-11-29 Micron Technology, Inc. Material deposition systems, and related methods
US11158787B2 (en) 2019-12-17 2021-10-26 Macronix International Co., Ltd. C—As—Se—Ge ovonic materials for selector devices and memory devices using same
US11362276B2 (en) 2020-03-27 2022-06-14 Macronix International Co., Ltd. High thermal stability SiOx doped GeSbTe materials suitable for embedded PCM application
KR102509798B1 (ko) * 2021-04-20 2023-03-14 고려대학교 산학협력단 전이금속 칼코겐 화합물 도핑 방법

Family Cites Families (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202896C (zh) *
US72188A (en) * 1867-12-17 Elliott p
DE1419289A1 (de) 1961-01-26 1968-12-12 Siemens Ag Verfahren zum Herstellen dotierter Halbleiterkoerper
US3622319A (en) 1966-10-20 1971-11-23 Western Electric Co Nonreflecting photomasks and methods of making same
LU52765A1 (zh) 1967-01-06 1968-08-06
US3743847A (en) 1971-06-01 1973-07-03 Motorola Inc Amorphous silicon film as a uv filter
US4267261A (en) * 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
US3820150A (en) 1972-08-01 1974-06-25 Us Army Temperature insensitive doped amorphous thin film switching and memory device
US3866577A (en) * 1973-05-18 1975-02-18 Harold J Mathis Prefabricated animal house
US3886577A (en) * 1973-09-12 1975-05-27 Energy Conversion Devices Inc Filament-type memory semiconductor device and method of making the same
US3961314A (en) * 1974-03-05 1976-06-01 Energy Conversion Devices, Inc. Structure and method for producing an image
US3966317A (en) * 1974-04-08 1976-06-29 Energy Conversion Devices, Inc. Dry process production of archival microform records from hard copy
US4089714A (en) * 1977-01-06 1978-05-16 Honeywell Inc. Doping mercury cadmium telluride with aluminum or silicon
US4132614A (en) 1977-10-26 1979-01-02 International Business Machines Corporation Etching by sputtering from an intermetallic target to form negative metallic ions which produce etching of a juxtaposed substrate
US4203123A (en) 1977-12-12 1980-05-13 Burroughs Corporation Thin film memory device employing amorphous semiconductor materials
GB1600599A (en) 1978-05-31 1981-10-21 Philips Electronic Associated Infrared detector device manufacture
JPS5565365A (en) 1978-11-07 1980-05-16 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method
US4332879A (en) 1978-12-01 1982-06-01 Hughes Aircraft Company Process for depositing a film of controlled composition using a metallo-organic photoresist
DE2901303C2 (de) 1979-01-15 1984-04-19 Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung
US4276368A (en) 1979-05-04 1981-06-30 Bell Telephone Laboratories, Incorporated Photoinduced migration of silver into chalcogenide layer
US4312938A (en) 1979-07-06 1982-01-26 Drexler Technology Corporation Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer
US4269935A (en) 1979-07-13 1981-05-26 Ionomet Company, Inc. Process of doping silver image in chalcogenide layer
US4350541A (en) * 1979-08-13 1982-09-21 Nippon Telegraph & Telephone Public Corp. Doping from a photoresist layer
US4316946A (en) 1979-12-03 1982-02-23 Ionomet Company, Inc. Surface sensitized chalcogenide product and process for making and using the same
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4405710A (en) 1981-06-22 1983-09-20 Cornell Research Foundation, Inc. Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US4371608A (en) 1981-06-22 1983-02-01 Ionomet Company Resist system having increased light response
DD202896A1 (de) * 1981-09-22 1983-10-05 Werk Fernsehelektronik Veb Chemische dampfabscheidung bi- oder ternaerer zink/cadmium-chalkogenidschichten
US4454221A (en) 1982-04-08 1984-06-12 At&T Bell Laboratories Anisotropic wet etching of chalcogenide glass resists
US4737379A (en) * 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same
US4566645A (en) * 1983-04-07 1986-01-28 Martin Processing, Inc. Apparatus for winding yarn
US4550074A (en) 1983-05-06 1985-10-29 At&T Bell Laboratories Sensitizing bath for chalcogenide resists
US4506005A (en) 1983-05-10 1985-03-19 Gca Corporation Method of catalytic etching
US4795657A (en) 1984-04-13 1989-01-03 Energy Conversion Devices, Inc. Method of fabricating a programmable array
US4673957A (en) * 1984-05-14 1987-06-16 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4843443A (en) * 1984-05-14 1989-06-27 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4670763A (en) * 1984-05-14 1987-06-02 Energy Conversion Devices, Inc. Thin film field effect transistor
US4668968A (en) * 1984-05-14 1987-05-26 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4646266A (en) * 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US4664939A (en) * 1985-04-01 1987-05-12 Energy Conversion Devices, Inc. Vertical semiconductor processor
US4637895A (en) * 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4671618A (en) 1986-05-22 1987-06-09 Wu Bao Gang Liquid crystalline-plastic material having submillisecond switch times and extended memory
JPS62243144A (ja) * 1986-04-15 1987-10-23 Dainippon Printing Co Ltd 光学的記録媒体および光学的記録方法
US4818717A (en) 1986-06-27 1989-04-04 Energy Conversion Devices, Inc. Method for making electronic matrix arrays
US4728406A (en) * 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
US4809044A (en) * 1986-08-22 1989-02-28 Energy Conversion Devices, Inc. Thin film overvoltage protection devices
US4847674A (en) 1987-03-10 1989-07-11 Advanced Micro Devices, Inc. High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
US4800526A (en) 1987-05-08 1989-01-24 Gaf Corporation Memory element for information storage and retrieval system and associated process
US4891330A (en) * 1987-07-27 1990-01-02 Energy Conversion Devices, Inc. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements
US5272359A (en) 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
GB8816632D0 (en) 1988-07-13 1988-08-17 Raychem Ltd Electrical device
GB8910854D0 (en) 1989-05-11 1989-06-28 British Petroleum Co Plc Semiconductor device
US5314772A (en) 1990-10-09 1994-05-24 Arizona Board Of Regents High resolution, multi-layer resist for microlithography and method therefor
JPH0770731B2 (ja) 1990-11-22 1995-07-31 松下電器産業株式会社 電気可塑性素子
US5170091A (en) * 1990-12-10 1992-12-08 Ultraviolet Energy Generators, Inc. Linear ultraviolet flash lamp with self-replenishing cathode
US5406509A (en) * 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5596522A (en) 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5335219A (en) 1991-01-18 1994-08-02 Ovshinsky Stanford R Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5296716A (en) * 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5414271A (en) 1991-01-18 1995-05-09 Energy Conversion Devices, Inc. Electrically erasable memory elements having improved set resistance stability
US5219788A (en) 1991-02-25 1993-06-15 Ibm Corporation Bilayer metallization cap for photolithography
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5359205A (en) 1991-11-07 1994-10-25 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5238862A (en) 1992-03-18 1993-08-24 Micron Technology, Inc. Method of forming a stacked capacitor with striated electrode
US5512328A (en) 1992-08-07 1996-04-30 Hitachi, Ltd. Method for forming a pattern and forming a thin film used in pattern formation
US5350484A (en) 1992-09-08 1994-09-27 Intel Corporation Method for the anisotropic etching of metal films in the fabrication of interconnects
EP0601692B1 (en) 1992-09-14 1997-11-12 Kabushiki Kaisha Toshiba Electronic device incorporating artificial super lattice
US5364434A (en) 1992-09-30 1994-11-15 The United States Of America As Represented By The Secretary Of The Navy Plasma treatment of glass surfaces to remove carbon
US5841651A (en) * 1992-11-09 1998-11-24 The United States Of America As Represented By The United States Department Of Energy Closed loop adaptive control of spectrum-producing step using neural networks
JPH06244128A (ja) * 1993-02-15 1994-09-02 Matsushita Electric Ind Co Ltd p型半導体基体への電極形成方法
BE1007902A3 (nl) 1993-12-23 1995-11-14 Philips Electronics Nv Schakelelement met geheugen voorzien van schottky tunnelbarriere.
US5500532A (en) 1994-08-18 1996-03-19 Arizona Board Of Regents Personal electronic dosimeter
JP2643870B2 (ja) 1994-11-29 1997-08-20 日本電気株式会社 半導体記憶装置の製造方法
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
WO1996041381A1 (en) 1995-06-07 1996-12-19 Micron Technology, Inc. A stack/trench diode for use with a multi-state material in a non-volatile memory cell
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US6126740A (en) 1995-09-29 2000-10-03 Midwest Research Institute Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films
JPH09153598A (ja) * 1995-09-29 1997-06-10 Sharp Corp 誘電体薄膜素子の製造方法及び誘電体薄膜素子
US5714768A (en) * 1995-10-24 1998-02-03 Energy Conversion Devices, Inc. Second-layer phase change memory array on top of a logic device
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
US5830336A (en) * 1995-12-05 1998-11-03 Minnesota Mining And Manufacturing Company Sputtering of lithium
US5591501A (en) * 1995-12-20 1997-01-07 Energy Conversion Devices, Inc. Optical recording medium having a plurality of discrete phase change data recording points
US5807467A (en) 1996-01-22 1998-09-15 Micron Technology, Inc. In situ preclean in a PVD chamber with a biased substrate configuration
US6653733B1 (en) 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
US5750012A (en) * 1996-04-04 1998-05-12 Micron Technology, Inc. Multiple species sputtering for improved bottom coverage and improved sputter rate
US5852870A (en) 1996-04-24 1998-12-29 Amkor Technology, Inc. Method of making grid array assembly
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5667645A (en) * 1996-06-28 1997-09-16 Micron Technology, Inc. Method of sputter deposition
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5883827A (en) 1996-08-26 1999-03-16 Micron Technology, Inc. Method and apparatus for reading/writing data in a memory system including programmable resistors
FR2753545B1 (fr) 1996-09-18 1998-10-16 Saint Gobain Vitrage Dispositif electrochimique
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US5825046A (en) 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US6187151B1 (en) 1997-01-02 2001-02-13 Micron Technology, Inc. Method of in-situ cleaning and deposition of device structures in a high density plasma environment
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
KR20000075827A (ko) * 1997-02-28 2000-12-26 야마모토 카즈모토 상변화형 광 기록 매체 및 그 제조 방법 및 그 기록 방법
US5846889A (en) 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
US5998066A (en) 1997-05-16 1999-12-07 Aerial Imaging Corporation Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass
US6080665A (en) 1997-04-11 2000-06-27 Applied Materials, Inc. Integrated nitrogen-treated titanium layer to prevent interaction of titanium and aluminum
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6087689A (en) 1997-06-16 2000-07-11 Micron Technology, Inc. Memory cell having a reduced active area and a memory array incorporating the same
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US6051511A (en) 1997-07-31 2000-04-18 Micron Technology, Inc. Method and apparatus for reducing isolation stress in integrated circuits
US6143124A (en) 1997-08-22 2000-11-07 Micron Technology, Inc. Apparatus and method for generating a plasma from an electromagnetic field having a lissajous pattern
US6013159A (en) 1997-11-16 2000-01-11 Applied Materials, Inc. Particle trap in a magnetron sputtering chamber
GB2331765A (en) * 1997-12-01 1999-06-02 Cambridge Display Tech Ltd Sputter deposition onto organic material using neon as the discharge gas
AU751949C (en) * 1997-12-04 2003-08-21 Arizona Board Of Regents On Behalf Of The University Of Arizona, The Programmable sub-surface aggregating metallization structure and method of making same
US6011757A (en) * 1998-01-27 2000-01-04 Ovshinsky; Stanford R. Optical recording media having increased erasability
US6187682B1 (en) * 1998-05-26 2001-02-13 Motorola Inc. Inert plasma gas surface cleaning process performed insitu with physical vapor deposition (PVD) of a layer of material
US6297170B1 (en) 1998-06-23 2001-10-02 Vlsi Technology, Inc. Sacrificial multilayer anti-reflective coating for mos gate formation
US6388324B2 (en) 1998-08-31 2002-05-14 Arizona Board Of Regents Self-repairing interconnections for electrical circuits
US6469364B1 (en) 1998-08-31 2002-10-22 Arizona Board Of Regents Programmable interconnection system for electrical circuits
US6825489B2 (en) * 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6635914B2 (en) 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6177338B1 (en) 1999-02-08 2001-01-23 Taiwan Semiconductor Manufacturing Company Two step barrier process
WO2000048196A1 (en) * 1999-02-11 2000-08-17 Arizona Board Of Regents Programmable microelectronic devices and methods of forming and programming same
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6143604A (en) 1999-06-04 2000-11-07 Taiwan Semiconductor Manufacturing Company Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM)
US6350679B1 (en) 1999-08-03 2002-02-26 Micron Technology, Inc. Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry
US6423628B1 (en) 1999-10-22 2002-07-23 Lsi Logic Corporation Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines
JP3407874B2 (ja) * 1999-12-01 2003-05-19 本田技研工業株式会社 車両用シート
US6340603B1 (en) * 2000-01-27 2002-01-22 Advanced Micro Devices, Inc. Plasma emission detection during lateral processing of photoresist mask
US6914802B2 (en) * 2000-02-11 2005-07-05 Axon Technologies Corporation Microelectronic photonic structure and device and method of forming the same
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6339544B1 (en) * 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6563164B2 (en) * 2000-09-29 2003-05-13 Ovonyx, Inc. Compositionally modified resistive electrode
US6653193B2 (en) 2000-12-08 2003-11-25 Micron Technology, Inc. Resistance variable device
US6696355B2 (en) * 2000-12-14 2004-02-24 Ovonyx, Inc. Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory
US6569705B2 (en) * 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6531373B2 (en) * 2000-12-27 2003-03-11 Ovonyx, Inc. Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements
US6687427B2 (en) * 2000-12-29 2004-02-03 Intel Corporation Optic switch
US6638820B2 (en) 2001-02-08 2003-10-28 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices
US6727192B2 (en) 2001-03-01 2004-04-27 Micron Technology, Inc. Methods of metal doping a chalcogenide material
US6348365B1 (en) 2001-03-02 2002-02-19 Micron Technology, Inc. PCRAM cell manufacturing
US6818481B2 (en) 2001-03-07 2004-11-16 Micron Technology, Inc. Method to manufacture a buried electrode PCRAM cell
US6734455B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
WO2002091384A1 (en) 2001-05-07 2002-11-14 Advanced Micro Devices, Inc. A memory device with a self-assembled polymer film and method of making the same
US6570784B2 (en) * 2001-06-29 2003-05-27 Ovonyx, Inc. Programming a phase-change material memory
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6511862B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Modified contact for programmable devices
US6514805B2 (en) * 2001-06-30 2003-02-04 Intel Corporation Trench sidewall profile for device isolation
US6951805B2 (en) 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6590807B2 (en) * 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6709958B2 (en) * 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6646902B2 (en) * 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US20030047765A1 (en) * 2001-08-30 2003-03-13 Campbell Kristy A. Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
WO2003021589A1 (en) * 2001-09-01 2003-03-13 Energy Conversion Devices, Inc. Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses
US6545287B2 (en) * 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6690026B2 (en) * 2001-09-28 2004-02-10 Intel Corporation Method of fabricating a three-dimensional array of active media
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6545907B1 (en) * 2001-10-30 2003-04-08 Ovonyx, Inc. Technique and apparatus for performing write operations to a phase change material memory device
US6576921B2 (en) * 2001-11-08 2003-06-10 Intel Corporation Isolating phase change material memory cells
US6815818B2 (en) * 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6671710B2 (en) * 2002-05-10 2003-12-30 Energy Conversion Devices, Inc. Methods of computing with digital multistate phase change materials
US6918382B2 (en) * 2002-08-26 2005-07-19 Energy Conversion Devices, Inc. Hydrogen powered scooter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038392A (zh) * 2010-06-02 2013-04-10 原子能与替代能源委员会 在复合层内扩散金属颗粒的方法
WO2023184667A1 (zh) * 2022-03-30 2023-10-05 华中科技大学 四面体结构化合物掺杂的Sb-Te相变材料、相变存储器

Also Published As

Publication number Publication date
JP4194490B2 (ja) 2008-12-10
US20050026433A1 (en) 2005-02-03
KR100586716B1 (ko) 2006-06-08
EP1425431B1 (en) 2009-02-11
US20030068862A1 (en) 2003-04-10
US6800504B2 (en) 2004-10-05
EP1801898B1 (en) 2011-10-19
KR20040034680A (ko) 2004-04-28
EP1801898A3 (en) 2010-09-01
EP1425431A2 (en) 2004-06-09
US6730547B2 (en) 2004-05-04
WO2003020998A3 (en) 2004-01-29
CN100402694C (zh) 2008-07-16
JP2005502197A (ja) 2005-01-20
EP1801898A2 (en) 2007-06-27
CN101005114A (zh) 2007-07-25
CN100550460C (zh) 2009-10-14
ATE422560T1 (de) 2009-02-15
WO2003020998A2 (en) 2003-03-13
DE60231129D1 (de) 2009-03-26
US20030068861A1 (en) 2003-04-10
US6709958B2 (en) 2004-03-23
ATE529540T1 (de) 2011-11-15
US20030186504A1 (en) 2003-10-02

Similar Documents

Publication Publication Date Title
CN100402694C (zh) 利用掺杂金属后的硫族化物材料的集成电路器件和制造
CN100517791C (zh) 制造电阻可变材料单元的方法和装置
US6858482B2 (en) Method of manufacture of programmable switching circuits and memory cells employing a glass layer
US6917052B2 (en) Modified contact for programmable devices
KR930000719B1 (ko) 디스플레이
US7397060B2 (en) Pipe shaped phase change memory
US8686411B2 (en) Methods of self-aligned growth of chalcogenide memory access device
JP2005502197A5 (zh)
CN1550048A (zh) 非易失性可调电阻器件和可编程存储单元的制造
US7223627B2 (en) Memory element and its method of formation
US20080096344A1 (en) Method for Manufacturing a Resistor Random Access Memory with a Self-Aligned Air Gap insulator
US20160372661A1 (en) GaSbGe PHASE CHANGE MEMORY MATERIALS
US20040042265A1 (en) Method and apparatus for controlling metal doping of a chalcogenide memory element
CN1650443A (zh) 对于可编程器件使用原子层沉积
CN1650442A (zh) 用于可编程器件的修改的触点
KR20060109456A (ko) 고밀도 폴리머 메모리 요소 어레이를 위한 측벽 형성
Rockett An Environment of Challenges

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20080716

CX01 Expiry of patent term